Australian Code for the Transport of Dangerous Goods by Road & Rail

Edition 7.7, 2020

Volume 1

Electronic version www.ntc.gov.au
COMPETENT AUTHORITIES FOR ROAD AND RAIL TRANSPORT

Contact the relevant Competent Authority in your state or territory for questions relating to:

- licensing
- classification
- day-to-day operational issues relating to the transport of hazardous substances and dangerous goods.

This list is correct as at 29 February 2020, the details may change over time. An up-to-date list can be found at:

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Telephone</th>
<th>Website / email</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIAN CAPITAL TERRITORY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dangerous Substances Licensing</td>
<td>13 22 81</td>
<td>www.accesscanberra.act.gov.au</td>
</tr>
<tr>
<td>Access Canberra</td>
<td></td>
<td>E: dangeroussubstances@act.gov.au</td>
</tr>
<tr>
<td>GPO Box 158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANBERRA CITY ACT 2601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUSTRALIAN CAPITAL TERRITORY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW SOUTH WALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premises-based activities</td>
<td>131 050</td>
<td>www.safework.nsw.gov.au</td>
</tr>
<tr>
<td>(including packaging approvals,</td>
<td></td>
<td>E: contact@safework.nsw.gov.au</td>
</tr>
<tr>
<td>labelling & classification)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous Chemical Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SafeWork NSW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locked Bag 2906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LISAROW NSW 2252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW SOUTH WALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport related matters</td>
<td>02 9995 5555</td>
<td>www.epa.nsw.gov.au</td>
</tr>
<tr>
<td>Manager, Chemicals Regulation</td>
<td></td>
<td>E: d.goods@epa.nsw.gov.au</td>
</tr>
<tr>
<td>NSW Environment Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authority</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59-61 Goulburn Street</td>
<td>131 555</td>
<td></td>
</tr>
<tr>
<td>SYDNEY NSW 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORTHERN TERRITORY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT WorkSafe</td>
<td>1800 019 115</td>
<td>ntworksafe@nt.gov.au</td>
</tr>
<tr>
<td>GPO Box 1722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DARWIN NT 0801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facsimile: 08 8999 5141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Contact Information</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>QUEENSLAND</td>
<td>Director-General</td>
<td>www.tmr.qld.gov.au</td>
</tr>
<tr>
<td></td>
<td>Department of Transport and Main Roads</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPO Box 1549</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRISBANE QLD 4001</td>
<td></td>
</tr>
<tr>
<td>Road Transport:</td>
<td>Industry and Operator Authorisation</td>
<td>07 3066 2995 E: dgu@tmr.qld.gov.au</td>
</tr>
<tr>
<td></td>
<td>Facsimile: 07 3066 2453</td>
<td></td>
</tr>
<tr>
<td>Rail Transport:</td>
<td>Rail Safety Regulation</td>
<td>07 3066 2916 E: railsafety@tmr.qld.gov.au</td>
</tr>
<tr>
<td></td>
<td>Facsimile: 07 3066 2917</td>
<td></td>
</tr>
<tr>
<td>SOUTH AUSTRALIA</td>
<td>Chief Officer Dangerous Substances Team</td>
<td>1300 365 255 08 8226 4785 E: dangerous.substances@sa.gov.au</td>
</tr>
<tr>
<td></td>
<td>Safework SA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attorney General Department</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPO Box 465</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADELAIDE SA 5001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facsimile: 08 8226 4999</td>
<td></td>
</tr>
<tr>
<td>TASMANIA</td>
<td>Manager, Dangerous Substances Unit</td>
<td>1300 366 322 (local calls) E: wstinfo@justice.tas.gov.au</td>
</tr>
<tr>
<td></td>
<td>Department of Justice</td>
<td>03 6166 4600 (outside Tasmania)</td>
</tr>
<tr>
<td></td>
<td>WorkSafe Tasmania</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO Box 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ROSNY PARK TAS 7018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facsimile: 03 6233 8338</td>
<td></td>
</tr>
<tr>
<td>VICTORIA</td>
<td>The Manager, Dangerous Goods Worksafe Victoria</td>
<td>03 9641 1551 E: info@worksafe.vic.gov.au</td>
</tr>
<tr>
<td></td>
<td>1 Malop Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEELONG VIC 3220</td>
<td></td>
</tr>
<tr>
<td>WESTERN AUSTRALIA</td>
<td>Chief Dangerous Goods Officer</td>
<td>08 9358 8001 E: dgsb@dmirs.wa.gov.au</td>
</tr>
<tr>
<td></td>
<td>Dangerous Goods and Petroleum Safety Branch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of Mines, Industry Regulation and Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 Plain Street</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EAST PERTH WA 6004</td>
<td></td>
</tr>
</tbody>
</table>
INFORMATION ON COMPETENT AUTHORITY PANEL DECISIONS

The Competent Authorities Panel (CAP) is a body whose prime responsibility is to consider submissions requesting national exemptions, determinations and classifications that may operate at variance to ADG7.7.

CAP generally meets twice a year and considers submissions from industry and industry associations. Submissions to CAP for either an exemption, approval or administrative determination must first be considered by the Competent Authority in the relevant jurisdiction to ensure that the matter is of national effect and the submission is complete and in accordance with the Regulations.

The Secretariat for CAP is provided by the Department of Infrastructure and Regional Development (DIRD). When submitting an application to CAP through your Competent Authority it is essential that you use the pro-forma, see DIRD website below, and provide adequate supporting information for Panel members to consider. This may include diagrams, photographic material and other technical information. When applying for an Exemption the submission material must demonstrate ‘equivalent safety’. If you are uncertain of what to provide to support your submission contact your Competent Authority to discuss the matter.

For further details:
Contents

COMPETENT AUTHORITIES FOR ROAD AND RAIL TRANSPORT.......................... iii
INTRODUCTION .. x
Acknowledgements ... x
About the Australian Code for the Transport of Dangerous Goods by Road & Rail xi
Contents of the Code .. xii
Using the Code .. xii

PART 1: GENERAL PROVISIONS, DEFINITIONS AND INTERPRETATION 1
CHAPTER 1.1 - GENERAL PROVISIONS ... 2
1.1.1 SCOPE AND APPLICATION .. 2
1.1.2 DANGEROUS GOODS FORBIDDEN FROM TRANSPORT 6
CHAPTER 1.2 - INTERPRETATION, DEFINITIONS, UNITS OF MEASUREMENT AND
REFERENCES ... 6
1.2.0 INTERPRETATION .. 6
1.2.1 DEFINITIONS ... 6
1.2.2 UNITS OF MEASUREMENT .. 29
1.2.3 REFERENCES ... 31
CHAPTER 1.3 - TRAINING .. 40
CHAPTER 1.4 - SECURITY PROVISIONS .. 40
CHAPTER 1.5 - GENERAL PROVISIONS CONCERNING CLASS 7 40

PART 2: CLASSIFICATION .. 41
CHAPTER 2.0 - INTRODUCTION .. 42
2.0.0 <RESERVED> ... 42
2.0.1 CLASSES, DIVISIONS, PACKING GROUPS ... 42
2.0.2 UN NUMBERS AND PROPER SHIPPING NAMES 44
2.0.3 PRECEDENCE OF HAZARD CHARACTERISTICS 46
2.0.4 TRANSPORT OF SAMPLES .. 50
2.0.5 Classification of articles containing dangerous goods N.O.S 51
CHAPTER 2.1 - CLASS 1 - EXPLOSIVES ... 53
2.1.1 DEFINITIONS AND GENERAL PROVISIONS .. 53
2.1.2 COMPATIBILITY GROUPS .. 55
2.1.3 CLASSIFICATION PROCEDURE ... 57
CHAPTER 2.2 - CLASS 2 - GASES ... 71
2.2.1 DEFINITIONS AND GENERAL PROVISIONS .. 71
2.2.2 DIVISIONS ... 72
2.2.3 MIXTURES OF GASES .. 73
2.2.4 GASES NOT ACCEPTED FOR TRANSPORT ... 74
CHAPTER 2.3 - CLASS 3 – FLAMMABLE LIQUIDS ... 75
 2.3.1 DEFINITION AND GENERAL PROVISIONS .. 75
 2.3.2 ASSIGNMENT OF PACKING GROUPS .. 76
 2.3.3 DETERMINATION OF FLASH POINT .. 78
 2.3.4 DETERMINATION OF INITIAL BOILING POINT 78
 2.3.5 SUBSTANCES NOT ACCEPTED FOR TRANSPORT 79
CHAPTER 2.4 - CLASS 4 - FLAMMABLE SOLIDS; SUBSTANCES LIABLE TO
SPONTANEOUS COMBUSTION; SUBSTANCES WHICH, IN CONTACT
WITH WATER, EMIT FLAMMABLE GASES ... 80
 2.4.1 DEFINITIONS AND GENERAL PROVISIONS 80
 2.4.2 DIVISION 4.1 - FLAMMABLE SOLIDS, SELF-REACTIVE SUBSTANCES,
SOLID DESENSITISED EXPLOSIVES AND POLYMERIZING
SUBSTANCES ... 81
 2.4.3 DIVISION 4.2 - SUBSTANCES LIABLE TO SPONTANEOUS
COMBUSTION ... 95
 2.4.4 DIVISION 4.3 - SUBSTANCES WHICH IN CONTACT WITH WATER EMIT
FLAMMABLE GASES ... 96
 2.4.5 CLASSIFICATION OF ORGANOMETALLIC SUBSTANCES 97
CHAPTER 2.5 - CLASS 5 - OXIDISING SUBSTANCES AND ORGANIC
PEROXIDES .. 99
 2.5.1 DEFINITIONS AND GENERAL PROVISIONS 99
 2.5.2 DIVISION 5.1 - OXIDISING SUBSTANCES 99
 2.5.3 DIVISION 5.2 - ORGANIC PEROXIDES .. 102
CHAPTER 2.6 - CLASS 6 – TOXIC SUBSTANCES AND INFECTIOUS
SUBSTANCES .. 129
 2.6.1 DEFINITIONS ... 129
 2.6.2 DIVISION 6.1 - TOXIC SUBSTANCES .. 129
 2.6.3 DIVISION 6.2 - INFECTIOUS SUBSTANCES 136
CHAPTER 2.7 – CLASS 7 - RADIOACTIVE MATERIAL 143
 2.7.1 <DELETED> .. 143
 2.7.2 CLASSIFICATION ... 143
CHAPTER 2.8 – CLASS 8 - CORROSIVE SUBSTANCES 146
 2.8.1 DEFINITION AND GENERAL PROVISIONS 146
 2.8.2 GENERAL CLASSIFICATION PROVISIONS 146
 2.8.3 PACKING GROUP ASSIGNMENT FOR SUBSTANCES AND MIXTURES
... 146
 2.8.4 ALTERNATIVE PACKING GROUP ASSIGNMENT METHODS FOR
MIXTURES: STEP-WISE APPROACH .. 148
 2.8.5 Substances not accepted for transport .. 152
3.4.10 <Reserved> ... 701
3.4.11 USE OF OVERPACKS .. 701
3.4.12 INFORMATION TO BE PROVIDED BY CONSIGNOR 701
3.4.13 DOCUMENTATION ... 701

CHAPTER 3.5 - DANGEROUS GOODS PACKED IN EXCEPTED QUANTITIES
.. 703
3.5.1 EXCEPTED QUANTITIES ... 703
3.5.2 PACKAGINGS ... 704
3.5.3 TESTS FOR PACKAGES .. 705
3.5.4 MARKING OF PACKAGES .. 705
3.5.5 MAXIMUM NUMBER OF PACKAGES IN AN CARGO TRANSPORT UNIT
... 707
3.5.6 DOCUMENTATION ... 707

CHAPTER 4.1 - USE OF PACKAGINGS, INCLUDING INTERMEDIATE BULK
CONTAINERS (IBCs) AND LARGE PACKAGINGS 709
4.1.1 GENERAL PROVISIONS FOR THE PACKING OF DANGEROUS GOODS
IN PACKAGINGS, INCLUDING IBCS AND LARGE PACKAGINGS 709
4.1.2 ADDITIONAL GENERAL PROVISIONS FOR THE USE OF IBCS 715
4.1.3 GENERAL PROVISIONS CONCERNING PACKING INSTRUCTIONS 716
4.1.4 LIST OF PACKING INSTRUCTIONS .. 720
4.1.5 SPECIAL PACKING PROVISIONS FOR GOODS OF CLASS 1 833
4.1.6 SPECIAL PACKING PROVISIONS FOR GOODS OF CLASS 2 835
4.1.7 SPECIAL PACKING PROVISIONS FOR ORGANIC PEROXIDES (DIVISION
5.2) AND SELF-REACTIVE SUBSTANCES OF DIVISION 4.1 837
4.1.8 SPECIAL PACKING PROVISIONS FOR INFECTIOUS SUBSTANCES OF
CATEGORY A (DIVISION 6.2, UN 2814 AND UN 2900) 839
4.1.9 SPECIAL PACKING PROVISIONS FOR RADIOACTIVE MATERIAL 840

CHAPTER 4.2 - USE OF PORTABLE TANKS AND MULTIPLE-ELEMENT GAS
CONTAINERS (MEGCs) ... 841
4.2.1 GENERAL PROVISIONS FOR THE USE OF PORTABLE TANKS FOR THE
TRANSPORT OF SUBSTANCES OF CLASS 1 AND CLASSES 3 TO 9 ... 841
4.2.2 GENERAL PROVISIONS FOR THE USE OF PORTABLE TANKS FOR THE
TRANSPORT OF NON-REFRIGERATED LIQUEFIED GASES AND
CHEMICALS UNDER PRESSURE .. 847
4.2.3 GENERAL PROVISIONS FOR THE USE OF PORTABLE TANKS FOR THE
TRANSPORT OF REFRIGERATED LIQUEFIED GASES 848
4.2.4 GENERAL PROVISIONS FOR THE USE OF MULTIPLE-ELEMENT GAS
CONTAINERS (MEGCs) ... 850
4.2.5 PORTABLE TANK INSTRUCTIONS AND SPECIAL PROVISIONS 851
4.2.6 TRANSITIONAL MEASURES ... 871

CHAPTER 4.3 - USE OF BULK CONTAINERS (for solids) 872
4.3.1 GENERAL PROVISIONS ... 872
4.3.2 ADDITIONAL PROVISIONS APPLICABLE TO BULK GOODS OF
DIVISIONS 4.2, 4.3, 5.1, 6.2 AND CLASSES 7 AND 8 874
CHAPTER 4.4 - USE OF VEHICLES, TANK VEHICLES, FREIGHT CONTAINERS, EQUIPMENT AND SEGREGATION DEVICES ... 877

4.4.1 GENERAL ... 877
4.4.2 USE OF TANK VEHICLES .. 877
4.4.3 USE OF FREIGHT CONTAINERS ... 878
4.4.4 USE OF EQUIPMENT ON VEHICLES ... 879
4.4.5 USE OF SEGREGATION DEVICES .. 879

PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING, MARKING AND PLACARDING

CHAPTER 5.1 - GENERAL PROVISIONS ... 882
5.1.1 APPLICATION AND GENERAL PROVISIONS.. 882
5.1.2 USE OF OVERPACKS .. 882
5.1.3 EMPTY PACKAGINGS .. 883
5.1.4 MIXED PACKING .. 884
5.1.5 <RESERVED> ... 884

CHAPTER 5.2 - MARKING AND LABELLING .. 885
5.2.1 MARKING.. 885
5.2.2 LABELLING ... 889

CHAPTER 5.3 - PLACARDING AND MARKING OF CARGO TRANSPORT UNITS, PLACARDABLE UNITS AND BULK CONTAINERS 905
5.3.1 GENERAL PLACARDING REQUIREMENTS .. 905
5.3.2 MARKING.. 916
5.3.3 PLACARDING PLACARDABLE UNITS ... 918
5.3.4 PLACARDING PORTABLE TANKS AND BULK CONTAINERS 919
5.3.5 PLACARDING FREIGHT CONTAINERS ... 920
5.3.6 PLACARDING ROAD VEHICLES .. 921
5.3.7 PLACARDING RAIL WAGONS ... 924
5.3.8 PLACARDING INTERMODAL LOADS .. 926

CHAPTER 5.4 - <RESERVED> .. 933

CHAPTER 5.5 - SPECIAL PROVISIONS ... 934
5.5.1 DELETED .. 934
5.5.2 SPECIAL PROVISIONS APPLICABLE TO FUMIGATED CARGO TRANSPORT UNITS (UN 3359) ... 934
5.5.3 SPECIAL PROVISIONS APPLICABLE TO PACKAGES AND CARGO TRANSPORT UNITS CONTAINING SUBSTANCES PRESENTING A RISK OF ASPHYXIATION WHEN USED FOR COOLING OR CONDITIONING PURPOSES (SUCH AS DRY ICE (UN 1845) OR NITROGEN, REFRIGERATED LIQUID (UN 1977) OR ARGON, REFRIGERATED LIQUID (UN 1951) OR NITROGEN) ... 936
5.5.4 DANGEROUS GOODS IN EQUIPMENT IN USE OR INTENDED FOR USE DURING TRANSPORT .. 939
Part 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

CHAPTER 6.1 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS

6.1.1 GENERAL ... 941
6.1.2 CODE FOR DESIGNATING TYPES OF PACKAGINGS 942
6.1.3 MARKING ... 945
6.1.4 REQUIREMENTS FOR PACKAGINGS 949
6.1.5 TEST REQUIREMENTS FOR PACKAGINGS 962

CHAPTER 6.2 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PRESSURE RECEPTACLES, AEROSOL DISPENSERS, SMALL RECEPTACLES CONTAINING GAS (GAS CARTRIDGES) AND FUEL CELL CARTRIDGES CONTAINING LIQUEFIED FLAMMABLE GAS

6.2.1 GENERAL REQUIREMENTS .. 972
6.2.2 REQUIREMENTS FOR UN PRESSURE RECEPTACLES 979
6.2.3 REQUIREMENTS FOR NON-UN PRESSURE RECEPTACLES 1005
6.2.4 REQUIREMENTS FOR AEROSOL DISPENSERS, SMALL RECEPTACLES CONTAINING GAS (GAS CARTRIDGES) AND FUEL CELL CARTRIDGES CONTAINING LIQUEFIED FLAMMABLE GAS .. 1006

CHAPTER 6.3 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS FOR DIVISION 6.2 INFECTIOUS SUBSTANCES OF CATEGORY A (UN 2814 AND UN 2900)

6.3.1 GENERAL ... 1010
6.3.2 REQUIREMENTS FOR PACKAGINGS 1010
6.3.3 CODE FOR DESIGNATING TYPES OF PACKAGINGS 1010
6.3.4 MARKING ... 1011
6.3.5 TEST REQUIREMENTS FOR PACKAGINGS 1012

CHAPTER 6.4 <Reserved> (CLASS 7) 1018

CHAPTER 6.5 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF INTERMEDIATE BULK CONTAINERS

6.5.1 GENERAL REQUIREMENTS .. 1019
6.5.2 MARKING ... 1023
6.5.3 CONSTRUCTION REQUIREMENTS 1027
6.5.4 TESTING, CERTIFICATION AND INSPECTION 1028
6.5.5 SPECIFIC REQUIREMENTS FOR IBCS 1030
6.5.6 TEST REQUIREMENTS FOR IBCS 1039

CHAPTER 6.6 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF LARGE PACKAGINGS

6.6.1 GENERAL ... 1050
6.6.2 CODE FOR DESIGNATING TYPES OF LARGE PACKAGINGS .. 1050
6.6.3 MARKING ... 1051
6.6.4 SPECIFIC REQUIREMENTS FOR LARGE PACKAGINGS 1053
6.6.5 TEST REQUIREMENTS FOR LARGE PACKAGINGS 1056
CHAPTER 6.7 - REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS AND MULTIPLE-ELEMENT GAS CONTAINERS (MEGCs)

6.7.1 APPLICATION AND GENERAL REQUIREMENTS

6.7.2 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS INTENDED FOR THE TRANSPORT OF SUBSTANCES OF CLASS 1 AND CLASSES 3 TO 9

6.7.3 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS INTENDED FOR THE TRANSPORT OF NON-REFRIGERATED LIQUEFIED GASES

6.7.4 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS INTENDED FOR THE TRANSPORT OF REFRIGERATED LIQUEFIED GASES

6.7.5 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF MULTIPLE-ELEMENT GAS CONTAINERS (MEGCs) INTENDED FOR THE TRANSPORT OF NON-REFRIGERATED GASES

CHAPTER 6.8 - REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF BULK CONTAINERS

6.8.1 DEFINITIONS

6.8.2 APPLICATION AND GENERAL REQUIREMENTS

6.8.3 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF FREIGHT CONTAINERS USED AS BK1 OR BK2 BULK CONTAINERS

6.8.4 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION AND APPROVAL OF BK1 OR BK2 BULK CONTAINERS OTHER THAN FREIGHT CONTAINERS

6.8.5 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF FLEXIBLE BULK CONTAINERS BK3

CHAPTER 6.9 - REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION, TESTING AND APPROVAL OF TANK VEHICLES

6.9.1 APPLICATION

6.9.2 REQUIREMENTS FOR TANK VEHICLES

CHAPTER 6.10 - FREIGHT CONTAINERS

6.10.1 STANDARDS FOR FREIGHT CONTAINERS

CHAPTER 6.11 - SEGREGATION DEVICES

6.11.1 TYPES OF SEGREGATION DEVICES

6.11.2 OVERPACKING DRUM SEGREGATION DEVICE

6.11.3 TYPE I SEGREGATION DEVICE

6.11.4 TYPE II SEGREGATION DEVICE

6.11.5 DESIGN TYPE TESTS FOR TYPE II SEGREGATION DEVICES

6.11.6 MARKING

6.11.7 NON-TYPE I UNDERSLUNG SEGREGATION DEVICE
Part 7: PROVISIONS CONCERNING TRANSPORT OPERATIONS

CHAPTER 7.1 - TRANSPORT PROVISIONS .. 1155
 7.1.1 GENERAL PROVISIONS .. 1155
 7.1.2 <RESERVED> ... 1156
 7.1.3 <RESERVED> ... 1156
 7.1.4 SPECIAL PROVISIONS APPLICABLE TO THE TRANSPORT OF CLASS 2
 SUBSTANCES AND ARTICLES .. 1156
 7.1.5 SPECIAL PROVISIONS APPLICABLE TO THE TRANSPORT OF SELF-
 REACTIVE SUBSTANCES OF DIVISION 4.1, ORGANIC PEROXIDES OF
 DIVISION 5.2 AND SUBSTANCES STABILIZED BY TEMPERATURE
 CONTROL (OTHER THAN SELF-REACTIVE SUBSTANCES AND
 ORGANIC PEROXIDES) ... 1157
 7.1.6 <RESERVED> ... 1160
 7.1.7 SPECIAL PROVISIONS APPLICABLE TO THE TRANSPORT OF DIVISION
 6.1 (TOXIC) AND DIVISION 6.2 (INFECTIOUS) SUBSTANCES 1160
 7.1.8 <RESERVED> ... 1161
 7.1.9 <RESERVED> ... 1161
 7.1.10 <RESERVED> ... 1161
 7.1.11 SPECIAL PROVISIONS APPLICABLE TO THE TRANSPORT OF DIVISION
 4.3 ... 1161

CHAPTER 7.2 - TRANSPORT OF NOMINALLY EMPTY STORAGE VESSELS 1162
 7.2.1 APPLICATION ... 1162
 7.2.2 <RESERVED> ... 1162
 7.2.3 <RESERVED> ... 1162
 7.2.4 <RESERVED> ... 1162
 7.2.5 <DELETED> .. 1162
 7.2.6 <DELETED> .. 1162
 7.2.7 TRANSPORT OF NOMINALLY EMPTY STORAGE VESSELS 1162

CHAPTER 7.3 - Reserved ... 1164

Part 8: STOWAGE AND RESTRAINT

CHAPTER 8.1 - STOWAGE AND RESTRAINT ON OR IN CARGO TRANSPORT
 UNITS ... 1166
 8.1.1 APPLICATION ... 1166
 8.1.2 GENERAL REQUIREMENTS FOR STOWAGE AND RESTRAINT 1166
 8.1.3 OPEN AND NON-RIGID SIDED VEHICLES AND CONTAINERS 1167

CHAPTER 8.2 - RESTRAIN OF CARGO TRANSPORT UNITS ON VEHICLES 1169
 8.2.1 RESTRAINING FREIGHT CONTAINERS .. 1169
 8.2.2 RESTRAINING PORTABLE TANKS .. 1169
 8.2.3 RESTRAINING BULK CONTAINERS .. 1170
 8.2.4 STOWING AND RESTRAINING FLEXIBLE BULK CONTAINERS 1170
INTRODUCTION

Acknowledgements

The National Transport Commission wishes to acknowledge the valuable contributions in producing this edition of the Australian Dangerous Goods Code.

Agencies that contributed to the development of this publication include:

- Australasian Fire and Emergency Service Authorities Council (AFAC)
- Australian Maritime Safety Authority (AMSA)
- Access Canberra, Australian Capital Territory
- Civil Aviation Safety Authority (CASA)
- Department of Infrastructure and Regional Development (DIRD)
- NSW Environment Protection Authority
- SafeWork New South Wales
- Northern Territory WorkSafe
- Department of Natural Resources, Mines and Energy, Queensland
- Department of Transport and Main Roads, Queensland
- Safework South Australia
- WorkSafe Tasmania
- WorkSafe Victoria
- Department of Mines, Industry Regulation and Safety, Western Australia.

The NTC would like to thank the many industries; individual businesses, both small and large; industry groups; professional groups and individuals who contributed to this publication by public, private, written and verbal submissions, and all of those who provided comments on draft publications to the commission.

The NTC also acknowledges the permission given by the United Nations for use of material from the Recommendations on the Transport of Dangerous Goods Model Regulations, Twenty first revised edition, United Nations, 2019.
ABOUT THE AUSTRALIAN CODE FOR THE TRANSPORT OF DANGEROUS GOODS BY ROAD & RAIL

Foreward
Every Australian has a responsibility to do what they can to keep our roads and other transport networks safe. This principle is especially important for those who are part of the supply chain that transports dangerous goods. This Australian Code for the Transport of Dangerous Goods by Road & Rail, commonly known as the Australian Dangerous Goods Code (edition 7.7, 2020) sets out the requirements for transporting dangerous goods by road and rail.

The Code can be used from 1 October 2020 and is compulsory from 1 October 2021. Until then, either the Code edition 7.6 or the Code edition 7.7 can be used.

The Code is an important technical resource to help Australia’s transport and logistics industry to operate safely when carrying dangerous goods. It is important that all members of the supply chain understand and work to the requirements of the Code, including the consignor, packer, truck driver and dangerous goods transport companies, along with dangerous goods professionals and trainers.

The Code is aligned to the United Nations recommendations on the Transport of Dangerous Goods Model Regulations (21st revised edition) and also includes specific provisions that better reflect current Australian practices and conditions.
CONTENTS OF THE CODE

The Code applies to the dangerous goods classified as:

- gases, Class 2
- flammable liquids, Class 3
- flammable solids, self-reactive and desensitized explosives, Division 4.1
- substances liable to spontaneous combust, Division 4.2
- substances dangerous if wet, Division 4.3
- oxidizing substances, Division 5.1
- organic peroxides, Division 5.2
- toxic substances, Division 6.1
- infectious substances, Division 6.2(*)
- corrosive substances, Class 8
- miscellaneous dangerous substances and articles and environmentally hazardous substances, Class 9.

(*) Refer to the relevant Competent Authority to determine the appropriate regulator for this substance.

The Code details the requirements for:

- classification of substances
- packaging and performance testing
- use of bulk containers, IBCs, freight containers and unit loads
- marking and placarding
- vehicle requirements
- segregation and stowage
- transfer of bulk dangerous goods
- documentation
- safety equipment
- procedures during transport emergencies.

USING THE CODE

The Code details the technical requirements to transport dangerous goods.

The Code should be read in conjunction with the specific dangerous goods transport legislation that have been enacted in the relevant state or territory. The details of the legislation in each jurisdiction can be found on the Commonwealth Department of Infrastructure and Regional Development website at: https://infrastructure.gov.au/transport/australia/dangerous/transport_dangerous_goods.aspx.

The jurisdictional legislation is based on the Model Act on the Transport of Dangerous Goods by Road and Rail and the Model Subordinate Instrument on the Transport of Dangerous Goods by Road and Rail.

The legislation sets out specific legal requirements for transporting dangerous goods by both road and rail. The legislation identifies the responsible industry employees in the transport of dangerous goods and imposes obligations and penalties (for failure of duty) on each of those in the land transport chain to ensure that dangerous goods are transported safely. The basis of the duties and responsibilities outlined in the model subordinate instrument are the technical requirements set out in this Code.
The Code and associated legislation does NOT cover:

<table>
<thead>
<tr>
<th>Transport of explosives (Class 1)</th>
<th>Unless transported with other dangerous goods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport of radioactive materials (Class 7)</td>
<td>Security provisions associated with Security Sensitive Ammonium Nitrate (SSAN)</td>
</tr>
<tr>
<td>Usage, storage or security of dangerous goods,</td>
<td>Transport of waste or environmentally hazardous products, unless they are a dangerous good</td>
</tr>
</tbody>
</table>

Please contact the jurisdictional Competent Authority or relevant jurisdictional authority in relation to these substances.

The Australian Dangerous Goods Code is a technical resource for Australia setting out requirements and guidelines for the transport of dangerous goods. The Code only sets out requirements and guidelines relating to the transport of explosives and radioactive materials where these goods are transported together with other dangerous goods, or where the dangerous goods have a subsidiary hazard of another class. For completeness and international uniformity, the Code includes the full Dangerous Goods List and the classification criteria for all classes and divisions of dangerous goods.

The Code is a resource on dangerous goods that is used as a reference point for all aspects of dangerous goods. However, the primary focus is on the safe transportation of these goods by road and rail. It does not contain any provisions relating to usage, storage or security of these goods. The Code may act as a starting point or as a source of information requiring further development in these areas or other legislation may be required to be reviewed for compliance with these issues.

Provisions of this Code dealing with Class 1 (Explosives), Class 7 (Radioactive substances or articles), Division 6.2 infectious substances and waste products should be read subject to Division 1.1 (Introduction and Application) of the Model Subordinate Instrument on the Transport of Dangerous Goods by Road or Rail and the following:

- Requirements in this Code relating to the transport of explosives are subject to the requirements of the laws of a state, territory or the Commonwealth relating to the transport of explosives. Rules for the transport of explosives are in the Australian Explosives Code, (http://www.safeworkaustralia.gov.au/sites/swa/about/publications/Documents/255/A)
- Any provision in this Code for Class 1 goods is advisory and for information purposes only, unless it is referenced by other legislation. These requirements should also be read in conjunction with the legislation applicable in each jurisdiction and to Security Sensitive Ammonium Nitrate (SSAN) legislation.
- Requirements relating to the transport of radioactive substances are subject to state or territory acts and regulations and are based on the following Commonwealth publications:

- Any provision in this Code for **Class 7** is advisory and for information purposes only, unless it is referenced by other legislation.
- In addition, the requirements relating to **Division 6.2** for the transport of infectious substances may be subject to the requirements of state, territory or Commonwealth law relating to the transport of infectious substances.
- The requirements of this code do not apply to **waste products and other environmentally hazardous substances** unless those products or substances are also dangerous goods as specified in the code. Enquiries regarding the transport of waste and other environmentally hazardous substances should be directed to the relevant state or territory authority responsible for administering environment protection legislation.
PART 1: GENERAL PROVISIONS, DEFINITIONS AND INTERPRETATION
CHAPTER 1.1 - GENERAL PROVISIONS

Introductory Notes

NOTE 1: Recommendations on Tests and Criteria, which are incorporated by reference into certain provisions of UN21 and this Code are published by the United Nations as a separate Manual “Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria” (ST/SG/AC.10/11/Rev.7), the contents of which are:

Part I: Classification procedures, test methods and criteria relating to explosives.

Part II: Classification procedures, test methods and criteria relating to self-reactive substances, organic peroxides and polymerizing substances.

Part III: Classification procedures, test methods and criteria relating to various hazard classes.

Part IV: Test methods concerning transport equipment.

Part V: Classification procedures, test methods and criteria relating to sectors other than transport.

Appendices: Information common to a number of different types of tests and national contacts for test details.

NOTE 2: Part III of the Manual of Tests and Criteria contains some classification procedures, test methods and criteria which are also given in this Code.

1.1.1 SCOPE AND APPLICATION

1.1.1.1 This Code provides detailed technical specifications, requirements and recommendations applicable to the transport of dangerous goods in Australia by road and rail. Subject matter includes rules and recommendations covering:

(a) the definition, classification, packaging, marking and labelling of substances and articles that meet the United Nations classification criteria for dangerous goods or are prescribed as dangerous goods by the competent authority; and

(b) the consigning of dangerous goods for transport, including loading, stowage, load retention and segregation; and

(c) the provision of transport documentation describing the dangerous goods being transported, and appropriate emergency information for those goods; and

(d) the unloading, receipt and transfer of dangerous goods; and

(e) the transport of dangerous goods; including the use of vehicles, containers and equipment, and the provision of safety equipment.

This Code, in Part 3, Table 3.2.3, incorporates a comprehensive listing of all dangerous goods by UN number and in Section 3.2.4.2 by alphabetic listing of the proper shipping name.
NOTE: While this Code includes technical instructions intended to provide for safe transport by road and rail of dangerous goods in all conditions, its provisions are only legally enforceable where they are adopted, applied or incorporated by legislation applicable in the jurisdiction. For road and rail transport throughout Australia, it is expected that each jurisdiction will prepare and implement regulations that adopt or incorporate the provisions of the Model subordinate instrument. The details of the legislation in each jurisdiction can be found on the Commonwealth Department of Infrastructure and Regional Development website at: https://infrastructure.gov.au/transport/australia/dangerous/transport_dangerous_goods.aspx

1.1.1.2 Exceptions to application:

This Code does not apply to goods that would otherwise be dangerous goods where there is a statement that a particular substance, article or type of goods is ‘not subject to this Code’ in:

(a) Part 2; or
(b) a special provision in Chapter 3.3 that is referenced to the goods from Column (6) of the Dangerous Goods List in Section 3.2.3; subject, in each instance, to any and all conditions included with that statement being met.

NOTE: The application clauses of the Model subordinate instrument contain a number of exemptions from its application, in the following areas:

(1) Regulation 1.1.5 conditionally exempts the non-commercial transport of up to 25 % of a placard load of certain dangerous goods from the application of the Model subordinate instrument and therefore from the mandatory application of this Code;

(2) Under Regulation 1.1.6(1), the transport of dangerous goods of Classes 1 and 7 is outside the scope of the Model subordinate instrument, being subject to other legislation. However, in the interests of safety, and where consistent with that legislation:

(a) the segregation provisions of Part 9 of this Code should be applied to those classes when they are transported with other dangerous goods; and

(b) when transporting goods of those classes that have a subsidiary hazard, the provisions of this Code should be additionally applied;

(3) Regulation 1.1.6(2) provides further exemptions for:

(a) very small consignments, where the aggregate quantity of dangerous goods is not more than the following limits:
PART 1: GENERAL PROVISIONS, DEFINITIONS AND INTERPRETATION

Table 1.1.1.2: Quantity Limits for exempted small consignments

<table>
<thead>
<tr>
<th>Packing Group</th>
<th>Class or Division</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>I</td>
<td>50 ml</td>
</tr>
<tr>
<td>II</td>
<td>150 ml</td>
</tr>
<tr>
<td>III</td>
<td>300 aml</td>
</tr>
</tbody>
</table>

Table notes: a 2 L if the Class 3, packing group III substance is Manufactured Product

(b) dangerous goods in vehicle fuel tanks;
(c) dangerous goods in appliances and plant that form part of a vehicle and are necessary for its operation; and
(d) portable fire fighting and safety equipment that are part of the vehicle’s safety equipment;

(4) Regulation 1.1.6(3) provides an exemption from the application of the Model subordinate Instrument and therefore from the mandatory application of this Code, for the transport of dangerous goods by a mobile processing unit for the purpose of manufacturing explosives. This exemption does not extend to any trailer being towed by a mobile processing unit.

(5) Regulation 1.1.7 provides concessions for certain small quantities of dangerous goods when used as tools of trade. Detailed conditions apply.

In each instance, refer to the Model subordinate instrument for details.

1.1.1.3 Assignment of duties

Throughout this Code, particular actions are prescribed, but the responsibilities for carrying out these actions are not specifically assigned to any particular person. These responsibilities are assigned by the Regulations.

1.1.1.4 <Reserved>

1.1.1.5 <Reserved>

1.1.1.6 Consignment by post

Dangerous Goods must not be consigned by mail except as agreed by the postal authority.

1.1.1.7 Commencement of changes made by Amendment Package No. 6

The amendments made to this Code by the Amendment Package No. 6 approved by the Transport and Infrastructure Council 5 June 2020 take effect on 1 October 2020.

1 Tools of trade concessions may not have been adopted by some jurisdictions. Refer to the relevant state or territory legislation.
However, a person does not commit an offence against, under, or in relation to this Code as amended by that Amendment Package if the person transports dangerous goods by road or rail before 1 October 2021 in accordance with this Code in the form it was in immediately before 1 October 2020.

1.1.1.8 Transport of dangerous goods used as a coolant or conditioner

Dangerous goods, that are only asphyxiant (which dilute or replace the oxygen normally in the atmosphere), when used in cargo transport units for cooling or conditioning purposes are only subject to the provisions of section 5.5.3.

1.1.1.9 Lamps Containing Dangerous Goods

The following lamps are not subject to this Code provided that they do not contain radioactive material and do not contain mercury in quantities above those specified in special provision 366 of Chapter 3.3:

(a) Lamps that are collected directly from individuals and households when transported to a collection or recycling facility;

(b) Lamps each containing not more than 1 g of dangerous goods and packaged so that there is not more than 30 g of dangerous goods per package, provided that:

(i) the lamps are certified to a manufacturer’s quality management system;

NOTE: The application of ISO 9001:2008 may be considered acceptable for this purpose.

and

(ii) each lamp is either individually packed in inner packagings, separated by dividers, or surrounded with cushioning material to protect the lamps and packed into strong outer packagings meeting the general provisions of 4.1.1.1 and capable of passing a 1.2 m drop test.

(c) Used, damaged or defective lamps each containing not more than 1 g of dangerous goods with not more than 30 g of dangerous goods per package when transported from a collection or recycling facility. The lamps shall be packed in strong outer packagings sufficient for preventing release of the contents under normal conditions of transport meeting the general provisions of 4.1.1.1 and that are capable of passing a drop test of not less than 1.2 m.

(d) Lamps containing only gases of Division 2.2 (according to 2.2.2.1) provided they are packaged so that the projectile effects of any rupture of the bulb will be contained within the package.

NOTE: Lamps containing radioactive material are addressed in Australian Radiation Protection and Nuclear Safety Authority (ARPANSA) codes:

- RPS 2 Code of Practice for the Safe Transport of Radioactive Material

1 Allows the use of specific dangerous goods (UN 1845, UN 1951 or UN1977) to cool or preserve or ‘condition’ other dangerous goods or articles for transport. An asphyxiating label (Figure 5.5.2) section 5.5.3.4 is required to be attached to the package.
PART 1: GENERAL PROVISIONS, DEFINITIONS AND INTERPRETATION

1.1.2 DANGEROUS GOODS FORBIDDEN FROM TRANSPORT

1.1.2.1 Dangerous goods forbidden from transport includes any substance or article that meets the definition of goods too dangerous to be transported in 1.2.1.2.6 of this Code. Appendix A lists a number of goods which are considered to be goods too dangerous to be transported.

CHAPTER 1.2 - INTERPRETATION, DEFINITIONS, UNITS OF MEASUREMENT AND REFERENCES

Introductory Note

NOTE: Scope of definitions

This Chapter provides definitions of general applicability that are used throughout this Code. Additional definitions of a highly specific nature (e.g., terms relating to construction of intermediate bulk containers or portable tanks) are presented in the relevant chapters.

1.2.0 INTERPRETATION

In this Code, unless the contrary intention appears, a word or expression which is defined in the Regulations, but is not defined in this Code, has the meaning attributed to it in the Regulations. However, a word or expression which is defined differently in section 1.2.1 of this Code to the definition of the same word or expression in the Regulations, has for the purposes of this Code the meaning attributed to it in this Code.

1.2.0.1 For the purpose of compliance with this code the words subsidiary risk has the same meaning as subsidiary hazard.

1.2.1 DEFINITIONS

NOTE: A number of terms are defined within clauses of the Model subordinate instrument. To ensure uniformity, those that are used in this Code are reproduced in 1.2.1.2, with minimal changes necessary to suit their context in this Code. References to those definitions are included in 1.2.1.1.

1.2.1.1 For the purposes of this Code:

Aerosols or aerosol dispensers means an article consisting of a non-refillable receptacles meeting the requirements of Section 6.2.4, made of metal, glass or plastics and containing a gas, compressed, liquefied or dissolved under pressure, with or without a liquid, paste or powder, and fitted with a release device allowing the contents to be ejected as
solid or liquid particles in suspension in a gas, as a foam, paste or powder or in a liquid state or in a gaseous state.

Aggregate quantity (see 1.2.1.2.1).

Alternative arrangement means an approval or exemption granted by the competent authority for a portable tank or MEGC that has been designed, constructed or tested to technical requirements or testing methods other than those specified in this Code (see, for instance, 6.7.5.11.1).

Animal material means animal carcasses, animal body parts, foodstuffs or feedstuffs derived from animals.

Article means a manufactured item, other than a fluid or particle, that:

(a) is formed into a particular shape or design during manufacture; and

(b) has hazard properties and a function that are wholly or partly dependent on the shape or design – and includes automotive and marine batteries and other large batteries such as those used in telecommunications facilities, small and other assorted batteries, aerosols, gas-filled lighters, seat belt pre-tensioners and refrigerating machines.

ASTM means the American Society for Testing and Materials (ASTM International, <www.astm.org> 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959, United States of America).

Bags are flexible packagings made of paper, plastics film, textiles, woven material or other suitable materials.

Boxes are packagings with complete rectangular or polygonal faces, made of metal, wood, plywood, reconstituted wood, fibreboard, plastics or other suitable material. Small holes for purposes such as ease of handling or opening, or to meet classification requirements, are permitted as long as they do not compromise the integrity of the packaging during transport.

Built-up area means an area that has one or more roads with street lighting or buildings at intervals of not more than 100 metres for a distance of at least 500 metres.

Bulk container (see 1.2.1.2.2).

Bundles of cylinders are assemblies of cylinders that are fastened together and which are interconnected by a manifold and transported as a unit. The total water capacity must not exceed 3000 litres except that bundles intended for the transport of gases of Division 2.3 must be limited to 1000 litres water capacity.

Bus means a motorised road vehicle:

(a) built mainly to carry passengers; and

(b) that seats more than 9 adults (including the driver).

CANUTEC means the Canadian Transport Emergency Centre operated by the Transportation of Dangerous Goods (TDG) Directorate of Transport Canada who publish a first responders Emergency Responders Guide

Capacity means the total internal volume of the receptacle at a temperature of 15 degrees Celsius expressed in litres or cubic metres.

Cargo transport unit (see 1.2.1.2.3)

Category (see 1.2.1.2.17).

Class (see 1.2.1.2.17).

Closed cargo transport unit means a cargo transport unit which totally encloses the contents by permanent structures with complete and rigid surfaces. Cargo transport units with fabric sides or tops are not considered closed cargo transport units.

Closures are devices which close an opening in a receptacle.

Combination packagings are a combination of packagings for transport purposes, consisting of one or more inner packagings secured in an outer packaging in accordance with 4.1.1.5.

Combination road vehicle ¹ means a group of road vehicles consisting of:

(a) a prime mover and 2 or more trailers; or
(b) a rigid vehicle and 1 or more trailers.

Combustible liquid means a combustible liquid within the meaning of AS 1940;
– A C1 combustible liquid is a combustible liquid that has a flash point of 93 °C or less.

Competent authority

(a) in relation to dangerous goods transported by road or rail in a State or Territory, means the Competent Authority appointed for the State or Territory under the Regulations or corresponding legislation; (see page iii) and
(b) in relation to international transport of dangerous goods or to imported dangerous goods, packagings, portable tanks or bulk containers, means, depending on the context:

(i) the Competent Authority for road or rail transport in accordance with (a) above; and

(ii) the Competent Authority appointed by the Commonwealth for sea or air transport; and

(iii) any body or authority designated or otherwise recognised as such by the government of the country of origin for any purpose in connection with the transport of dangerous goods.

Composite packagings are packagings consisting of an outer packaging and an inner receptacle so constructed that the inner

¹ Examples of combination road vehicles include B-doubles, B-triples, road trains and rigid truck/'dog' or 'pig' trailer combinations. Despite common usage, where used in this Code, a combination road vehicle does not include a semi-trailer comprising a prime mover and a single articulated trailer.
receptacle and the outer packaging form an integral packaging. Once assembled it remains thereafter an integrated single unit; it is filled, stored, transported and emptied as such.

Consignee means any person, organisation or government which is entitled to take delivery of a consignment.

Consignment means any package or packages, or load of dangerous goods, presented by a consignor for transport.

Consignor (see 1.2.1.2.4).

Crates are outer packagings with incomplete surfaces.

Critical temperature is the temperature above which the substance cannot exist in the liquid state.

Cryogenic receptacles are transportable thermally insulated receptacles for refrigerated liquefied gases, of a water capacity of not more than 1000 litres.

Cylinders are transportable pressure receptacles of a water capacity not exceeding 150 litres.

Dangerous goods (see 1.2.1.2.5).

Dangerous Goods List (see Introduction to Chapter 3.2).

Dangerous situation means a situation that is causing or is likely to cause imminent risk of death or injury to a person, or harm to the environment or to property.

Demountable tank means a tank, other than a portable tank, that is designed to be carried on a vehicle but that does not form part of and is not permanently attached to the vehicle and is designed to be removable.

Design life, for composite cylinders and tubes, means the maximum life (in number of years) to which the cylinder or tube is designed and approved in accordance with the applicable standard.

Division (see 1.2.1.2.17).

Domestic consumable dangerous good means party poppers; sparklers and bon-bons (UN0337), domestic smoke detectors (UN 2911), lighters and lighter refills (UN1057) or portable fire extinguishers with compressed or liquefied gas up to 23kg gross weight) (UN 1044).

Drums are flat-ended or convex-ended cylindrical packagings made of metal, fibreboard, plastics, plywood or other suitable materials. This definition also includes packagings of other shapes e.g. round taper-necked packagings, or pail-shaped packagings. Wooden barrels or jerricans are not covered by this definition.

Elevated temperature substance means a substance which is transported or offered for transport:

- in the liquid state at a temperature at or above 100 °C; or
– in the liquid state with a flash point above 60 °C and which is intentionally heated to a temperature above its flash point; or
– in a solid state and at a temperature at or above 240 °C.

Emergency service means:
(a) an ambulance, fire, police or other emergency service; or
(b) a unit of the Defence Force corresponding to a service mentioned in paragraph (a).

Filling ratio is the ratio of the mass of gas to the mass of water at 15 °C that would fill completely a pressure receptacle fitted ready for use.

Fire-risk substance means any readily ignitable solid substance, including:
(a) waste paper; and
(b) hay; and
(c) sawdust; and
(d) wood chips.

Food includes:
(a) a substance prepared or intended for human or animal consumption; and
(b) a substance (except dangerous goods) intended to be an ingredient of food.

Food packaging means:
(a) a receptacle that contains or is designed or intended to contain food; or
(b) material designed or intended to be used in a receptacle that is designed or intended to contain food; or
(c) plastics wrapping intended for the packaging of food.

Free from dangerous goods means, in relation to a receptacle, that:
(a) the receptacle is:
 (i) thoroughly cleaned so that there is no discernible trace of the dangerous goods; or
 (ii) subjected to a process in which its contents are neutralised, cured or chemically deactivated; and
(b) the atmosphere within the receptacle is cleared:
 (i) if the gas or vapour in the atmosphere is listed in "Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment", to ensure that the concentration is less than the TWA Exposure Standard listed for that gas or vapour; and
 (ii) if the atmosphere includes dangerous goods of Division 2.1 or vapour from dangerous goods of Class 3 or Subsidiary Hazard 3, to ensure that the concentration of those gases and vapours is less
than 5% of the lower explosive limit for the goods when sampled at ambient temperature.

Freight container means:

(a) for transport of dangerous goods wholly within Australia, a re-usable container of the kind mentioned in AS/NZS 3711 that is designed for repeated use for the transport of goods by one or more modes of transport; and

(b) for international transport of dangerous goods, an article of transport equipment that is of a permanent character and accordingly strong enough to be suitable for repeated use; specially designed to facilitate the transport of goods, by one or other modes of transport, without intermediate reloading; designed to be secured and/or readily handled, having fittings for these purposes, and approved in accordance with the International Convention for Safe Containers (CSC), 1972, as amended. The term “freight container” includes neither vehicle nor packaging. However, a freight container that is carried on a chassis is included.

A small freight container is that which has an internal volume of not more than 3 m3. Any other freight container is considered to be a large freight container.

Fuel cell means an electrochemical device that converts the chemical energy of a fuel to electrical energy, heat and reaction products.

Fuel cell engine means a device used to power equipment and which consists of a fuel cell and its fuel supply, whether integrated with or separate from the fuel cell, and includes all appurtenances necessary to fulfil its function.

GHS means the current edition of the Globally Harmonized System of classification and labelling of chemicals, published by the United Nations, which can be found on http://www.unece.org/trans/danger/publi/dg_publications.html

(Note that other regulations may use a different edition of the GHS)

Goods too dangerous to be transported (see 1.2.1.2.7).

Hazchem code in relation to dangerous goods in placardable units, tanks or bulk containers, means the Hazchem code prescribed for those goods in Appendix C.

Hose assembly means a hose or hoses connected together, for use in the transfer of dangerous goods to or from a tank on a vehicle, portable tank or storage receptacle and includes:

(a) if there are 2 or more hoses connected together - the couplings or connections between the hoses; and

(b) the coupling or attachment connecting the hose or hoses to the tank; and

(c) anything else (except the vehicle, portable tank or storage receptacle) attached to the hose or hoses.
IAEA means the International Atomic Energy Agency (IAEA, <www.iaea.org>, P.O. Box 100 – A -1400 Vienna, Austria).

ICAO means the International Civil Aviation Organisation (ICAO, <www.icao.int/Pages/default.aspx>, 999 University Street, Montreal, Quebec H3C 5H7, Canada).

IMO means the International Maritime Organisation (IMO, <www.imo.org/Pages/home.aspx>, 4 Albert Embankment, London SE1 7SR, United Kingdom).

Incompatible (see 1.2.1.2.9).

Inspection body is an independent inspection and testing body approved by or acceptable to the competent authority responsible for pressure vessel legislation.

Intermediate Bulk Container (IBC) (see 1.2.1.2.8).

NOTE: The primary definition of IBC is in 1.2.1.2.8 as it is a term defined in the text of the Model subordinate instrument. The UN20 definitions relating to maintenance and repair of IBCs are included here.

- Remanufactured IBCs are metal, rigid plastics or composite IBCs that:
 (a) are produced as a UN type from a non-UN type; or
 (b) are converted from one UN design type to another UN design type.

Remanufactured IBCs are subject to the same requirements of this Code that apply to new IBCs of the same type (see also design type definition in 6.5.6.1.1).

- Repaired IBCs are metal, rigid plastics or composite IBCs that, as a result of impact or for any other cause (e.g. corrosion, embrittlement or other evidence of reduced strength as compared to the design type) are restored so as to conform to the design type and to be able to withstand the design type tests. For the purposes of this Code, the replacement of the rigid inner receptacle of a composite IBC with a receptacle conforming to the original design type from the same manufacturer is considered repair. However, routine maintenance of rigid IBCs (see definition below) is not considered repair. The bodies of rigid plastics IBCs and the inner receptacles of composite IBCs are not repairable. Flexible IBCs are not repairable unless in accordance with a competent authority determination.

- Routine maintenance of flexible IBCs is the routine performance on plastics or textile flexible IBCs of operations, such as:
 (a) cleaning; or
 (b) replacement of non-integral components, such as non-integral liners and closure ties, with components conforming to the original manufacturer’s specification; provided that these operations do not adversely affect the containment function of the flexible IBC or alter the design type.

- Routine maintenance of rigid IBCs is the routine performance on metal, rigid plastics or composite IBCs of operations such as:
 (a) cleaning; or
(b) removal and reinstallation or replacement of body closures (including associated gaskets), or of service equipment, conforming to the original manufacturer's specifications, provided that the leaktightness of the IBC is verified; or
(c) restoration of structural equipment not directly performing a dangerous goods containment or discharge pressure retention function so as to conform to the design type (e.g. the straightening of legs or lifting attachments) provided that the containment function of the IBC is not affected.

Inner packagings are packagings for which an outer packaging is required for transport.

Inner receptacles are receptacles which require an outer packaging in order to perform their containment function.

Intermediate packagings are packagings placed between inner packagings, or articles, and an outer packaging.

Jerricans are metal or plastics packagings of rectangular or polygonal cross-section.

Journey means the transport of dangerous goods from where the goods are consigned to where the goods are delivered to the consignee.

Label means:
(a) a label as illustrated in 5.2.2.2.2, identifying the class or division, or a subsidiary hazard of a dangerous substance or article; or
(b) a mixed class label as illustrated in 5.2.2.2.3
(c) a limited quantities label as illustrated in 5.2.2.2.4 and 3.4.4.

Large packaging ¹ means a packaging consisting of an outer packaging which contains articles or inner packagings and which
(a) is designed for mechanical handling; and
(b) exceeds 400 kg net mass or 450 litres capacity but has a volume of not more than 3 m³;

Large salvage packaging means a special packaging which:
(a) is designed for mechanical handling; and
(b) exceeds 400 kg net mass or 450 litres capacity but has a volume of not more than 3 m³;

into which damaged, defective, leaking or non-conforming dangerous goods packages, or dangerous goods that have spilled or leaked are placed for purposes of transport for recovery or disposal.

Limited Quantity (see 1.2.1.2.6).

Liner means a separate tube or bag inserted into a packaging, (including IBCs and large packagings) but not forming an integral part of it, including the closures of its openings.

Liquids are dangerous goods which at 50 °C have a vapour pressure of not more than 300 kPa (3 bar), which are not completely gaseous at 20 °C and at a pressure of 101.3 kPa, and which have a melting point or initial melting point of 20 °C or less at a pressure of 101.3 kPa. A

¹ Large packaging does not include an IBC and is a different concept to an overpack.
viscous substance for which a specific melting point cannot be determined must be subjected to the ASTM D 4359-90 test; or to the test for determining fluidity (penetrometer test) prescribed in section 2.3.4 of Annex A of the European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR).

Load means, in relation to a cargo transport unit, all the goods in or on that cargo transport unit.

Load platform means, in relation to a rail wagon:

(a) in the case of a rigid rail wagon (e.g. container flat, ‘skel’, well, tank or open wagon, or rail van), the whole of that wagon; or

(b) in the case of an articulated wagon, each rigid section of the wagon that is designed to transport goods in one or more cargo transport units.

Manufactured product means dangerous goods of Class 3 of packing group II or packing group III:

(a) that is a suspension or solution of at least 10% non-volatile materials as determined by AS 1580, Method 301.1;

(b) of which less than 3% of the mobile solvent layer separates in the solvent separation test specified in the Manual of Tests and Criteria; and

(c) the viscosity of which is:

(i) at least 250 mm²/s (centistokes) at 23 °C; or

(ii) at least 20 mm²/s at 23 °C if the product requires stirring before use.

Marking includes all information, other than a label or a placard, that is required by this Code to be applied or affixed to a packaging, a package, an overpack, a large package, an intermediate bulk container, a portable tank, a demountable tank, a multiple element gas container a road tank vehicle or a rail tank wagon.

Maximum capacity as used in 6.1.4 is the maximum inner volume of receptacles or packagings expressed in litres.

Maximum net mass is the maximum net mass of contents in a single packaging or maximum combined mass of inner packagings and the contents thereof and is expressed in kg.

MEGC (see 1.2.1.2.10).

Metal hydride storage system means a single complete hydrogen storage system, including a receptacle, metal hydride, pressure relief device, shut-off valve, service equipment and internal components used for the transport of hydrogen only.

Modal codes means the IMDG Code for sea transport and the ICAO Rules or IATA Regulations for air transport (see 1.2.3.1).
Model Law means the Model subordinate instrument or the Model Transport of Dangerous Goods by Road or Rail Act as agreed to from time to time by the Transport and Infrastructure Council and published on the Parliamentary Counsel’s Committee website.

Model subordinate instrument means the Model subordinate instrument on the Transport of Dangerous Goods by Road or Rail as agreed to from time to time by the Transport and Infrastructure Council and published on the Parliamentary Counsel’s Committee website.

SEE ALSO “Regulations”.

MSDS (see Safety Data Sheet).

Multimodal means applicable to, or suitable for use on, more than one mode of transport (e.g. road and rail transport or road and sea transport).

Multiple-element gas containers (MEGCs) (see 1.2.1.2.10).

Must, where used in a numbered clause or special provision, or in a table in this Code, indicates a mandatory requirement.

Net Explosive Mass (NEM) means the total mass of the explosive substances, without the packagings, casings, etc. (Net explosive quantity (NEQ), net explosive contents (NEC), or net explosive weight (NEW) are often used to convey the same meaning.).

N.O.S. means Not Otherwise Specified.

Open cryogenic receptacle means a transportable thermally insulated receptacle for refrigerated liquefied gases maintained at atmospheric pressure by continuous venting of the refrigerated liquefied gas.

Outer packaging means external packaging (including absorbent materials, cushioning and any other components) necessary to contain and protect:

(a) articles; or

(b) inner receptacles of composite packagings; or

(c) inner packagings of combination packagings.

Overpack means an enclosure used to contain one or more packages and to form one unit for convenience of handling and stowage during transport. Examples of overpacks are a number of packages either:

(a) placed or stacked onto a load board such as a pallet and secured by strapping, shrink wrapping, stretch wrapping, or other suitable means; or

(b) placed in a protective outer packaging such as a box or crate.

Owner (see 1.2.1.2.18).

Packages (see 1.2.1.2.11).

Packagings (see 1.2.1.2.11).

Packing group has the meaning given to it in clause 2.0.1.3 of this Code.

Placard means a label or Emergency Information Panel that is fixed to, stencilled or printed on, or placed in a frame that is fixed to a cargo transport unit or placardable unit.
Placard load means a load in a cargo transport unit that must be placarded under Chapter 5.3 as determined in accordance with Table 5.3.

Placardable unit means any large receptacle or other large item such as an IBC, pressure drum, tube, MEGC or demountable tank, that individually has a capacity of more than 500 kg(L), other than:
- a cargo transport unit; or
- large packaging meeting the requirements of Chapter 6.6; or
- an overpack used in accordance with Section 5.1.2; or
- a segregation device meeting the requirements of Chapter 6.11.

Portable tank means a multimodal tank that:
- is designed primarily to be loaded onto a vehicle or ship; and
- has a capacity of more than 450 L; and
- is equipped with skids, mountings, stabilisers and accessories to facilitate manual handling; and
- is capable of being loaded and unloaded without removing its service or structural equipment; and
- is capable of being lifted when full.

However, road tank-vehicles, rail tank-wagons, non-metallic tanks, gas cylinders, large receptacles, and intermediate bulk containers (IBCs) are not considered to be portable tanks.

Portable fire extinguisher means a first attack firefighting appliance which is designed to be carried by hand and which, when charged to design capacity, has a gross mass not greater than 23kg.

Pressure drums are welded transportable pressure receptacles of a water capacity exceeding 150 litres and of not more than 1000 litres, (e.g. cylindrical receptacles equipped with rolling hoops, spheres on skids).

Pressure receptacles is a collective term that includes cylinders, tubes, pressure drums, closed cryogenic receptacles, metal hydride storage systems, bundles of cylinders and salvage pressure receptacles.

Prime contractor (see 1.2.1.2.12).

Prime mover means a road vehicle that is designed to tow a trailer but does not include a vehicle that has a load carrying capability in addition to a trailer.

Proper shipping name has the meaning given to it in clause 2.0.2 of this Code.

Quality assurance means a systematic programme of controls and inspections applied by any organisation or body which is aimed at providing adequate confidence that the standard of safety prescribed in this Code is achieved in practice.

Rail operator (see 1.2.1.2.13).
Rail tank wagon means a rail wagon of which a tank forms an integral part.

Rail wagon means a unit of rolling stock that:
(a) is designed to carry freight by rail; and
(b) bears a unique identifying number or alphanumeric identifier.

React dangerously means, in relation to the reaction of substances, to react in a manner that directly creates a hazard due to the reaction:
(a) being violent; or
(b) producing an explosion; or
(c) producing a potentially explosive combination of products; or
(d) producing potentially dangerous quantities of toxic vapour or gas.

Receptacles are containment vessels for receiving and holding substances or articles, including any means of closing.

Reconditioned packagings include:
(a) metal drums that:
 (i) are cleaned to original materials of construction, with all former contents, internal and external corrosion, and external coatings and labels removed;
 (ii) are restored to original shape and contour, with chimes (if any) straightened and sealed, and all non-integral gaskets replaced; and
 (iii) are inspected after cleaning but before painting, with rejection of packagings with visible pitting, significant reduction in material thickness, metal fatigue, damage threads or closures, or other significant defects; or

(b) plastics drums and jerricans that:
 (i) are cleaned to original materials of construction, with all former contents, external coatings and labels removed;
 (ii) have all non-integral gaskets replaced; and
 (iii) are inspected after cleaning with rejection of packagings with visible damage such as tears, creases or cracks, or damaged threads, or closures, or other significant defects.

Recycled plastics material means material recovered from used industrial packagings that has been cleaned and prepared for processing into new packagings. The specific properties of the recycled material used for production of new packagings must be assured and documented regularly as part of a quality assurance programme recognised by the competent authority. The quality assurance programme must include a record of proper pre-sorting and verification that each batch of recycled plastics material has the proper melt flow rate, density, and tensile yield strength, consistent with that of the design type manufactured from such recycled material. This necessarily includes knowledge about the packaging material from which the...
recycled plastics have been derived, as well as awareness of the prior contents of those packagings if those prior contents might reduce the capability of new packagings produced using that material. In addition, the packaging manufacturer’s quality assurance programme under 6.1.1.4 must include performance of the mechanical design type test in 6.1.5 on packagings manufactured from each batch of recycled plastics material. In this testing, stacking performance may be verified by appropriate dynamic compression testing rather than static load testing.

NOTE: AS ISO 16103:2005 “Packaging – Transport packages for dangerous goods - Recycled plastics material”, provides additional guidance on procedures to be followed in approving the use of recycled plastics material.

Regulations means the Model Law.

Reference in this Code to a **numbered Regulation** (e.g. Regulation 1.1.7) is a reference to the clause bearing that number in the Model subordinate instrument. Depending on the context, **Regulations** may also mean the law of the participating jurisdiction that adopts or embodies the Model Legislation.

Remanufactured IBCs (see “Intermediate Bulk Containers (IBCs)”).

Remanufactured large packaging means a metal or rigid plastics large packaging that:

(a) is produced as a UN type from a non-UN type; or

(b) is converted from one UN design type to another UN design type.

Remanufactured large packagings are subject to the same requirements of this Code that apply to new large packagings of the same type (see also design type definition in 6.6.5.1.2).

Remanufactured packagings include:

(a) metal drums that:

(i) are produced as a UN type from a non-UN type; or

(ii) are converted from one UN type to another UN type; or

(iii) undergo the replacement of integral structural components (such as non-removable heads); and

(b) plastics drums that:

(i) are converted from one UN type to another UN type (e.g. 1H1 to 1H2); or

(ii) undergo the replacement of integral structural components.

NOTE: Remanufactured drums are subject to the same requirements of this Code that apply to a new drum of the same type.

Repaired IBCs (see “Intermediate Bulk Containers (IBCs)”).

Reused large packaging means a large packaging to be refilled which has been examined and found free of defects affecting the ability to withstand the performance tests: the term includes those which are refilled with the same or similar compatible contents and are transported within distribution chains controlled by the consignor of the product.
Reused packagings are packagings to be refilled which have been examined and found free of defects affecting the ability to withstand the performance tests: the term includes those which are refilled with the same or similar compatible contents and are transported within distribution chains controlled by the consignor of the product.

Rigid vehicle means a vehicle the load carrying area of which is fixed to the vehicle’s chassis or frame.

Road tank vehicle means a road vehicle of which a tank forms part or to which a tank, other than a portable tank, is attached.

Rolling stock means a vehicle that operates on or uses a railway track but does not include a vehicle designed for use both on and off a railway track when the unit is operated off the railway track.

Routine maintenance of flexible IBCs (see “Intermediate Bulk Containers (IBCs)”).

Routine maintenance of rigid IBCs (see “Intermediate Bulk Containers (IBCs)”).

SADT means self-accelerating decomposition temperature.

Safety Data Sheet means Safety Data Sheet or the material Safety Data Sheet [MSDS] for the dangerous goods or other substance, prepared by the manufacturer or Australian supplier in accordance with the Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice, <www.safeworkaustralia.gov.au/sites/SWA/about/Publications/Documents/642/COP_Preparation_of_Safety_Data_Sheet_for_Hazardous_Chemicals.pdf> or equivalent.

Salvage packagings are special packagings into which damaged, defective, leaking or non-conforming dangerous goods packages, or dangerous goods that have spilled or leaked, are placed for purposes of transport for recovery or disposal.

Salvage pressure receptacle means a pressure receptacle with a water capacity not exceeding 3,000 litres into which are placed damaged, defective, leaking or non-conforming pressure receptacle(s) for the purpose of transport e.g. for recovery or disposal.

Segregation device means a device for segregating dangerous goods from incompatible goods, that:

(a) complies with the requirements in relation to devices used to segregate those goods set out in Chapter 6.11; or

(b) is approved by a Competent Authority as a segregation device for use in segregating the goods.

Semi-trailer means a trailer having:

(a) one axle group, or a single axle, towards the rear of the trailer; and

(b) a means of attachment to a prime mover that, once attached, results in some of the load being imposed on the prime mover.
Self-accelerating polymerization temperature (SAPT) means the lowest temperature at which polymerization may occur with a substance in the packaging, IBC, portable tank as offered for transport. The SAPT shall be determined in accordance with the test procedures established for the self-accelerating decomposition temperature for self-reactive substances in accordance with Part II, Section 28 of the Manual of Tests and Criteria.

Service life, for composite cylinders and tubes, means the number of years the cylinder or tube is permitted to be in service.

Settled pressure is the pressure of the contents of a pressure receptacle in thermal and diffusive equilibrium.

Shell means, in relation to a tank, the part of the tank which retains the substance intended for transport (tank proper, receptacle or principal containment vessel), including openings and their closures, but does not include service equipment or external structural equipment.

Shipment means the specific movement of a consignment from origin to destination.

Should indicates an advisory guideline or recommendation, compliance with which is not mandatory.

Siftproof packagings are packagings impermeable to dry contents including fine solid material produced during transport.

Single packagings mean packagings that do not require inner packagings to be capable of performing their containment function during transport including composite packagings.

Solids are dangerous goods, other than gases, that do not meet the definition of liquids in this Code.

Source of ignition means a source of energy sufficient to ignite a flammable atmosphere including:

(a) a lighted match, a cigarette lighter, a lighted cigarette or other form of lighted tobacco, a lighted furnace, an incinerator, and any other naked flame; and

(b) electrical equipment that is not suitable for use in an area defined as a hazardous area in AS/NZS 60079.10.1.

SP (Special Provision) means a Special Provision set out in Chapter 3.3 of this Code.

Subsidiary Hazard (see 1.2.1.2.14).

NOTE: In 2018 the Code Edition 7.6 replaced subsidiary risk with subsidiary hazard in all instances occurring to align with UN20. For the purposes of compliance with this Code the words subsidiary risk have the same meaning as subsidiary hazard.

Subsidiary Risk means Subsidiary Hazard.

Tank (see 1.2.1.2.15).

Tank vehicle means a road vehicle or rail wagon:

(a) of which a tank forms part; or

(b) to which a tank (other than a portable tank) is attached.
However, a tank vehicle does not include a hopper vehicle or any other vehicle into which solid dangerous goods are directly loaded, which should instead be considered a bulk container.

Technical name means a technical name as described in 3.1.2.8.

Telephone advisory service (see 1.2.1.2.16).

Test pressure is the required pressure applied during a pressure test for qualification or requalification.

This Code means this Australian Code for the Transport of Dangerous Goods by Road & Rail (ADG Code or ADGC or Australian Dangerous Goods Code) and includes any code, manual, supplement or standard applied or adopted by, or incorporated into this Code.

Trailer means a vehicle that is designed to be towed, or is towed, by another road vehicle but does not include a road vehicle propelled by a motor that forms part of the vehicle.

Train means two or more units of rolling stock coupled together, at least one unit of which is a locomotive or a self-propelled unit.

Train manifest means a list of rolling stock that makes up the train which provides information regarding dangerous goods carried as required by clause 11.1.4.

Transfer operation means the process of transferring dangerous goods into or from a tank vehicle, portable tank, bulk container or freight container and includes:

(a) the connection of any hose or other equipment to the tank vehicle, portable tank, bulk container or freight container; and

(b) the connection of any hose or other equipment to a storage receptacle; and

(c) the movement of the goods into or from the tank vehicle, portable tank, bulk container or freight container; and

(d) any other activity directly connected with the transfer of the goods.

Transport documentation means documentation that complies with the requirements for transport documents in Part 11 of this Code.

Tube means a transportable pressure receptacle of seamless or composite construction having a water capacity exceeding 150 litres but not more than 3000 litres.

Ullage means the difference between the capacity of a receptacle and the net volume of the contents of the receptacle, calculated as a percentage as follows:

\[
\text{ullage} = \left(\frac{\text{capacity} - \text{net volume of contents}}{\text{capacity}} \right) \times 100
\]

PART 1: GENERAL PROVISIONS, DEFINITIONS AND INTERPRETATION

UN Number has the meaning given to it in clause 2.0.2 of this Code.

Vehicle means
(a) a road vehicle including an articulated or combination vehicle; or
(b) a unit of rolling stock.

Wooden barrels are packagings made of natural wood, of round cross-section, having convex walls, consisting of staves and heads and fitted with hoops.

Working pressure is the settled pressure of a compressed gas at a reference temperature of 15 °C in a full pressure receptacle.

1.2.1.2 **Terms defined in the text of the Model subordinate instrument**

The definitions in 1.2.1.2 have been adapted from the corresponding entries in the Model subordinate instrument to be consistent with the context of this Code.

1.2.1.2.1 **Aggregate quantity** – (Regulation 1.2.1)

The aggregate quantity of dangerous goods means the total of:
(a) the number of kilograms of:
 (i) solid dangerous goods; and
 (ii) articles (including aerosols); and
(b) the number of litres or kilograms, whichever is used in the transport documentation to describe the goods, of liquid dangerous goods; and
(c) the total capacity in litres of receptacles containing dangerous goods of Class 2 (except aerosols).

1.2.1.2.2 **Bulk Container** – (Regulation 1.2.1)

1.2.1.2.2.1 **Bulk container** means a container (with or without a liner or coating) that:
(a) has a capacity of 1.0 m³ or more; and
(b) is intended for the transport of solid dangerous goods that are in direct contact with the container.

1.2.1.2.2.2 To avoid doubt, the following are not bulk containers even if they have a capacity of 1.0 m³ or more and are intended for the transport of solid dangerous goods:
(a) a large packaging that complies with the requirements of Chapter 6.6 of this Code
(b) an IBC
(c) a tank
(d) a tank vehicle
(e) any other packaging that complies with the requirements of Chapter 6.1 or 6.3 of this Code.

1.2.1.2.3 In addition, for the purposes of this Code, Bulk containers are:
– of a permanent character and accordingly strong enough to be suitable for repeated use
PART 1: GENERAL PROVISIONS, DEFINITIONS AND INTERPRETATION

– specially designed to facilitate the transport of goods by one or more means of transport without intermediate reloading
– fitted with devices permitting ready handling.

Examples of bulk containers are freight containers [when used in accordance with 1.2.1.2.1(b)], offshore bulk containers, skips, bulk bins, swap bodies, trough-shaped containers, roller containers, load compartments of vehicle, flexible bulk containers.

NOTE: This bulk container definition represents alignment with UN20 and provides consistency with the IMDG, ICAO and IATA codes for sea and air transport.

1.2.1.2.3 Cargo Transport Unit – (Regulation 1.2.1)

A cargo transport unit includes:
(a) a road transport tank or freight vehicle; or
(b) a railway transport tank or freight wagon; or
(c) a portable tank; or
(d) a bulk container; or
(e) a freight container; or
(f) a MEGC.

1.2.1.2.4 Consignors – (Regulation 1.2.1)

A person consigns dangerous goods for transport, and is the consignor of the goods, if:
(a) the person, with the person’s authority, is named or otherwise identified in transport documentation that complies with Chapter 11.1 of this Code as the consignor of the goods; or
(b) sub-clause (a) does not apply to the person or anyone else and the person:
 (i) engages a prime contractor or rail operator, either directly or through an agent or other intermediary, to transport the goods; or
 (ii) if sub-clause (i) does not apply, has possession of, or control over, the goods immediately before the goods are transported; or
 (iii) if neither sub-clause (i) nor (ii) applies, loads a vehicle with the goods, for transport, at a place where dangerous goods are awaiting collection and that is unattended (except by the driver) during loading; or
(c) sub-clauses (a) and (b) do not apply to the person or anyone else and:
 (i) the goods are imported into Australia; and
 (ii) the person is the importer of the goods.

1.2.1.2.5 Dangerous Goods – (Regulation 2.1.1)

1.2.1.2.5.1 Goods are dangerous goods, if:
(a) the goods are determined under Regulation 1.5.1(1)(a) to be dangerous goods, or
(b) the goods satisfy the criteria set out, or referred to, in Part 2 of this Code for determining whether goods are dangerous goods.

1.2.1.2.5.2 However, substances or articles that satisfy the criteria set out, or referred to, in Part 2 of this Code are not dangerous goods for the purposes of this Code if they are:
(a) determined under Regulation 1.5.1(1)(a) not to be dangerous goods; or
(b) described as ‘not subject to this Code’ in a special provision in Chapter 3.3 of this Code that is applied to the goods by column (6) of the Dangerous Goods List, provided that all conditions included with that statement are met.

1.2.1.2.6 Dangerous goods packed in limited quantities – (Regulation 1.2.9)
Dangerous goods are packed in limited quantities if:
(a) the goods are packed in accordance with Chapter 3.4 of this Code; and
(b) the quantity of dangerous goods in each inner packaging does not exceed the quantity specified in or referenced from column (7a) of the Dangerous Goods List for those goods.

1.2.1.2.7 Goods too dangerous to be transported – (Regulation 2.1.2)
Goods are too dangerous to be transported if they are:
(a) goods set out or described in Appendix A of this Code; or
(b) goods determined under Regulation 1.5.1(2)(a) to be too dangerous to be transported; or
(c) goods or combinations of goods for which the statement ‘are not to be accepted for transport’ applies in a special provision in Chapter 3.3 of this Code that is applied to the goods by column (6) of the Dangerous Goods List; or
(d) other goods that are so sensitive or unstable that they cannot be safely transported even if all relevant requirements of the Regulations and this Code are complied with (see 2.1.3.3.2).

1.2.1.2.8 IBC – (Regulation 1.2.7)
Intermediate bulk containers (IBCs) are rigid or flexible portable packagings, other than packagings specified in Chapter 6.1 or 6.3 and large packagings specified in Chapter 6.6, that:
(a) have a capacity of:
 (i) not more than 3.0 m³ (3,000 litres) for solids and liquids of packing groups II and III;
 (ii) not more than 1.5 m³ for solids of packing group I when packed in flexible, rigid plastics, composite, fibreboard and wooden IBCs;
 (iii) not more than 3.0 m³ for solids of packing group I when packed in metal IBCs;
PART 1: GENERAL PROVISIONS, DEFINITIONS AND INTERPRETATION

(iv) not more than 3.0 m3 for radioactive material of Class 7;

(b) are designed for mechanical handling;

(c) are resistant to the stresses produced in handling and transport, as determined by tests.

NOTE: Chapter 6.5 provides detailed requirements for IBCs.

For discussion of maintenance of IBCs, remanufactured IBCs and repaired IBCs, see the alphabetical list of definitions in 1.2.1.1.

1.2.1.2.9 Incompatibility – (Regulation 2.1.6)

1.2.1.2.9.1 Dangerous or other goods are incompatible with dangerous goods if:

(a) the goods are determined under Regulation 1.5.1(1)(e) to be incompatible with the dangerous goods; or

(b) when the goods are mixed, or otherwise brought into contact, with the dangerous goods, the goods are likely to interact with the dangerous goods and increase risk because of the interaction.

NOTE: For compatibility guidelines based on classification, see Chapter 9.1.

1.2.1.2.9.2 A containment system, (including a packaging, tank, bulk container, IBC or MEGC) or equipment for use in the transport or transfer of dangerous goods is incompatible with the goods if any component of the system or equipment that is intended or likely to come into contact with the substance during handling, transfer or transport is:

(a) likely to interact with the goods and increase risk because of the interaction; and

(b) not protected from contact under foreseeable circumstances by a protective coating or other effective means.

1.2.1.2.10 MEGC – (Regulation 1.2.8)

MEGC means a multiple-element gas container, comprising:

(a) multimodal assemblies of cylinders, tubes or bundles of cylinders that are interconnected by a manifold and assembled within a framework; and

(b) service and structural equipment necessary for the transport of gases.

1.2.1.2.11 Packages and Packaging – (Regulation 4.1.2)

1.2.1.2.11.1 A package of dangerous goods or other goods is the complete product of the packing of the goods for transport, and consists of the goods and their packaging.

1.2.1.2.11.2 Packaging means one or more receptacles and any other components or materials necessary for the receptacles to perform their containment and other safety functions.

1.2.1.2.12 Prime Contractor – (Regulation 1.2.1)
PART 1: GENERAL PROVISIONS, DEFINITIONS AND INTERPRETATION

A person is the prime contractor for the transport of dangerous or other goods by road if the person, in conducting a business for or involving the transport of dangerous goods by road, undertakes to be responsible, or is responsible, for the transport of the goods by road.

1.2.1.2.13 Rail Operator – (Regulation 1.2.1)
A person is a rail operator for the transport of dangerous or other goods by rail if the person undertakes to be responsible, or is responsible, for:
(a) the transport of the goods by rail; or
(b) the condition of a rail wagon transporting the goods.

1.2.1.2.14 Subsidiary Hazard – (Regulation 2.1.4)

1.2.1.2.14.1 A reference to dangerous goods with a subsidiary hazard is a reference to goods that:
(a) are assigned a Subsidiary Hazard by a determination under Regulation 1.5.1(1)(c); or
(b) satisfy the criteria in Part 2 of this Code for assignment to more than one Class or Division.

1.2.1.2.14.2 Dangerous goods are assigned a particular Subsidiary Hazard where it is assigned:
(a) by a determination under Regulation 1.5.1(1)(c); or
(b) if there is no determination, - in Column (4) of the Dangerous Goods List, subject to any Special Provision in Chapter 3.3 that is applied to the goods by column (6).

1.2.1.2.14.3 For dangerous goods that meet the criteria of 1.2.1.2.13.1 and are not assigned a Subsidiary Hazard by 1.2.1.2.13.2, the Subsidiary Hazard or hazards must be determined in accordance with Section 2.0.3 of this Code.

1.2.1.2.15 Tank – (Regulation 1.2.1)

1.2.1.2.15.1 Subject to 1.2.1.2.14.2, tank means a receptacle in the form of a shell fitted with service equipment and structural equipment necessary to contain dangerous substances.

1.2.1.2.15.2 Tanks include fixed storage tanks, portable tanks, demountable tanks and the cargo receptacles of road tank vehicles and rail tank wagons, but do not include:
(a) receptacles, for gases as defined in 2.2.1.1, that have a capacity of less than 450 L; or
(b) packagings that comply with Chapter 6.1 or 6.3 of this Code; or
(c) bulk containers that comply with Chapter 6.8 of this Code; or
(d) IBCs, MEGCs, cylinders, tubes or pressure drums; or
(e) large packagings that comply with Chapter 6.6 of this Code; or
(f) freight containers that comply with Chapter 6.10 of this Code; or
(g) segregation devices that comply with Chapter 6.11 of this Code.

1.2.1.2.16 **Telephone Advisory Service – (Regulation 14.2.1)**

A telephone advisory service, for the transport of dangerous goods, means a service providing access by telephone to persons competent to give advice about:

(a) the construction and properties of the receptacles in which the dangerous goods are being transported; and

(b) the use of equipment on vehicles on which the dangerous goods are being transported; and

(c) the properties of the dangerous goods; and

(d) methods of safely handling the dangerous goods; and

(e) methods of safely containing and controlling the dangerous goods in a dangerous situation.

1.2.1.2.17 **UN Classes, UN Divisions and Categories of dangerous goods – (Regulation 2.1.3)**

Notwithstanding Regulation 2.1.3, for the purposes of this Code, except when subject to a determination under Regulation 1.5.1(1)(b), dangerous goods are assigned to classes, divisions and categories in accordance with Part 2 of this Code, subject to any Special Provision in Chapter 3.3 that is assigned to the particular dangerous goods from column (6) of the Dangerous Goods List.

1.2.1.2.18 **Vehicle owners – (Regulation 1.2.1)**

A person is an owner of a vehicle if the person:

(a) is the sole owner, a joint owner or a part owner of the vehicle; or

(b) has possession or use of the vehicle under a credit, hire-purchase, lease or other agreement, except an agreement requiring the vehicle to be registered in the name of someone else.

1.2.1.3 **Clarifying examples for certain defined terms**

The following explanations and examples are meant to assist in clarifying the use of some of the packaging terms defined in this section.

The definitions in this section are consistent with the use of the defined terms throughout this Code. However, some of the defined terms are commonly used in other ways. This is particularly evident in respect of the term “inner receptacle” which has often been used to describe the “inners” of a combination packaging.

The “inners” of “combination packagings” are always termed “inner packagings” not “inner receptacles”. A glass bottle is an example of such an “inner packaging”.

The “inners” of “composite packagings” are normally termed “inner receptacles”. For example, the “inner” of a 6HA1 composite packaging (plastics material) is such an “inner receptacle” since it is normally not designed to perform a containment function without its “outer packaging” and is not therefore an “inner packaging”.
1.2.2 UNITS OF MEASUREMENT

1.2.2.1 The following units of measurement are applicable in this Code:

Table 1.2.2.1: Dangerous Goods Code Units of measurement

<table>
<thead>
<tr>
<th>Measurement of 1</th>
<th>SI Unit $^2,^3$</th>
<th>Acceptable alternative unit</th>
<th>Relationship between units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>m (metre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>m2 (square metre)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>m3 (cubic metre)</td>
<td>l (or L) (litre)4</td>
<td>$1 \text{ LT}^3 = 10^{-3} \text{ m}^3$</td>
</tr>
<tr>
<td>Time</td>
<td>s (second)</td>
<td>h (hour)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d (day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>kg (kilogram)</td>
<td>g (gram)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t (tonne)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass density</td>
<td>kg/m3</td>
<td>kg/L</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>K (kelvin)</td>
<td>°C (degree Celsius)</td>
<td></td>
</tr>
<tr>
<td>Difference of</td>
<td>K (kelvin)</td>
<td>°C (degree Celsius)</td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force</td>
<td>N (newton)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa (pascal)</td>
<td>bar (bar)</td>
<td></td>
</tr>
<tr>
<td>Stress</td>
<td>N/m2</td>
<td>N/mm2</td>
<td></td>
</tr>
<tr>
<td>Work Energy</td>
<td>J (joule)</td>
<td>kWh (kilowatt hour)</td>
<td></td>
</tr>
<tr>
<td>Quantity of heat</td>
<td>J (joule)</td>
<td>eV (electronvolt)</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>W (watt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinematic viscosity</td>
<td>m2/s</td>
<td>mm2/s</td>
<td>1 mm^2/s = 10^{-6} m2/s</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>Pa s</td>
<td>mPa s</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Bq (becquerel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose equivalent</td>
<td>Sv (sievert)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes to Table 1.2.2.1:

1 (note 1): The following round figures are applicable for the conversion of the units hitherto used into SI Units.

Force

- $1 \text{ kg} = 9.807 \text{ N}$
- $1 \text{ N} = 0.102 \text{ kg}$

Pressure

- $1 \text{ Pa} = 1 \text{ N/m}^2 = 10^{-5} \text{ bar} = 1.02 	imes 10^{-5} \text{ kg/cm}^2 = 0.75 \times 10^{-2} \text{ torr}$
- $1 \text{ bar} = 10^5 \text{ Pa} = 1.02 \text{ kg/cm}^2 = 750 \text{ torr}$
- $1 \text{ kg/cm}^2 = 9.807 \times 10^4 \text{ Pa} = 0.9807 \text{ bar} = 736 \text{ torr}$
- $1 \text{ torr} = 1.33 \times 10^2 \text{ Pa} = 1.33 \times 10^{-3} \text{ bar} = 1.36 \times 10^{-3} \text{ kg/cm}^2$
1 kg/mm2 = 9.807 N/mm2
1 N/mm2 = 0.102 kg/mm2

Work, Energy, Quantity of heat
1 J = 1 Nm = 0.278 x 10$^{-6}$ kWh = 0.102 kgm = 0.239 x 10$^{-3}$ kcal
1 kWh = 3.6 x 106 J = 367 x 103 kgm = 860 kcal
1 kgm = 9.807 J = 2.72 x 10$^{-6}$ kWh = 2.34 x 10$^{-3}$ kcal
1 kcal = 4.19 x 103 J = 1.16 x 10$^{-3}$ kWh = 427 kgm

Power
1 W = 0.102 kgm/s = 0.86 kcal/h
1 kgm/s = 9.807 W = 8.43 kcal/h
1 kcal/h = 1.16 W = 0.119 kgm/s

Kinematic viscosity
1 m2/s = 104 St (Stokes)
1 St = 10$^{-4}$ m2/s

Dynamic viscosity
1 Pa.s = 1 Ns/m2 = 10 P (poise) = 0.102 kgs/m2
1 P = 0.1 Pa.s = 0.1 Ns/m2 = 1.02 x 10$^{-2}$ kgs/m2
1 kgs/m2 = 9.807 Pa.s = 9.807 Ns/m2 = 98.07 P

T2 (note 2): The International System of Units (SI) is the result of decisions taken at the General Conference on Weights and Measures (Address: Pavillon de Breteuil, Parc de St-Cloud, F-92 310 Sèvres).

T3 (note 3): In this Code, the abbreviation "L" is used for litre in place of "l" because of the difficulty of distinguishing between numeral "1" and letter "l".

T4 (note 4): The decimal multiples and sub-multiples of a unit may be formed by prefixes or symbols, having the following meanings, placed before the name or symbol of the unit, as shown below:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000,000,000,000,000,000</td>
<td>1018</td>
<td>(quintillion)</td>
</tr>
<tr>
<td>1,000,000,000,000,000,000</td>
<td>1015</td>
<td>(quadrillion)</td>
</tr>
<tr>
<td>1,000,000,000,000</td>
<td>1012</td>
<td>(trillion)</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>109</td>
<td>(billion)</td>
</tr>
<tr>
<td>1,000,000</td>
<td>106</td>
<td>(million)</td>
</tr>
<tr>
<td>1,000</td>
<td>103</td>
<td>(thousand)</td>
</tr>
<tr>
<td>100</td>
<td>102</td>
<td>(hundred)</td>
</tr>
<tr>
<td>10</td>
<td>101</td>
<td>(ten)</td>
</tr>
<tr>
<td>0.1</td>
<td>10$^{-1}$</td>
<td>(tenth)</td>
</tr>
<tr>
<td>0.01</td>
<td>10$^{-2}$</td>
<td>(hundredth)</td>
</tr>
<tr>
<td>0.001</td>
<td>10$^{-3}$</td>
<td>(thousandth)</td>
</tr>
<tr>
<td>0.000,001</td>
<td>10$^{-6}$</td>
<td>(millionth)</td>
</tr>
<tr>
<td>0.000,000,001</td>
<td>10$^{-9}$</td>
<td>(billionth)</td>
</tr>
<tr>
<td>0.000,000,000,001</td>
<td>10$^{-12}$</td>
<td>(trillionth)</td>
</tr>
<tr>
<td>0.000,000,000,000,001</td>
<td>10$^{-15}$</td>
<td>(quadrillionth)</td>
</tr>
</tbody>
</table>
1.2.2.2 Whenever the word “weight” is used, it means “mass”

1.2.2.3 Whenever the weight of a package is mentioned, the gross mass is meant unless otherwise stated. The mass of containers or tanks used for the transport of goods is not included in the gross mass.

1.2.2.4 Unless expressly stated otherwise, the sign “%” represents:

(a) in the case of mixtures of solids or of liquids, and also in the case of solutions and of solids wetted by a liquid: a percentage mass based on the total mass of the mixture, the solution or the wetted solid; and

(b) in the case of mixtures of compressed gases: when filled by pressure, the proportion of the volume indicated as a percentage of the total volume of the gaseous mixture, or, when filled by mass, the proportion of the mass indicated as a percentage of the total mass of the mixture; and

(c) in the case of mixtures of liquefied gases and gases dissolved under pressure: the proportion of the mass indicated as a percentage of the total mass of the mixture.

1.2.2.5 Pressures of all kinds relating to receptacles (such as test pressure, internal pressure, safety-valve opening pressure) are always indicated in gauge pressure (pressure in excess of atmospheric pressure); however, the vapour pressure of substances is always expressed in absolute pressure.

1.2.3 REFERENCES

1.2.3.1 Codes, standards and rules referred to in this Code

In this Code, unless the contrary intention appears:

- **ADR** means “Accord Relatif au Transport International des Marchandises Dangereuses par Route“ (Agreement Concerning the International Carriage of Dangerous Goods by Road), published by the Inland Transport Committee of the Economic Commission for Europe;

- **Australian Explosives Code** means the “Australian Code for the Transport of Explosives by Road and Rail”, published by Safework Australia;

1. **The third edition of the Australian Explosives Code, prepared by the Australian Forum of Explosives Regulators (AFER) and endorsed by the Workplace Relations Ministers’ Council, was published by the Commonwealth of Australia in 2009. See Safe Work Australia website.**
Australian Standard means a standard published by Standards Australia (Standards Australia, <www.standards.org.au/Pages/default.aspx> 286 Sussex Street, GPO Box 476, Sydney, NSW, 2001, Australia). (A list of Standards referred to in this Code is set out in Table 1.1)

Dangerous Goods – Initial Emergency Response Guide means the Guide of that name published by Standards Australia as HB76;

IATA Regulations means the “Dangerous Goods Regulations” published by the International Air Transport Association (IATA) <www.iata.org/publications/dgr/Pages/index.aspx>

ISO (standard) means an international standard published by the International Organisation for Standardisation (ISO - 1, rue de Varembé, CH-1204 Geneva 20, Switzerland) (A list of Standards referred to in this Code is set out in Table 1.1); <www.iso.org/iso/home.html>

Load Restraint Guide means the document of that name prepared by the National Transport Commission

National Standard for the Storage and Handling of Dangerous Goods means the standard headed Storage and Handling of Workplace Dangerous Goods published by Safe Work Australia, as NOHSC:1015(2001)

OECD Guidelines for the testing of Chemicals means the document of that name published by the Organisation for Economic Co-operation and Development.

RID means “Reglements Internationales Relatif au Transport des Marchandises Dangereuses par Chemin de Fer” (Regulations concerning the International carriage of Dangerous goods by rail) published by the Inland Transport Committee of the Economic Commission for Europe

The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification means the document of that name published jointly by the United Nations Environment Programme, the International Labour Organisation and the World Health Organisation. The 2004 edition of this document may be downloaded from:

UN21 means those Model Regulations annexed to the 21st revised edition of the “Recommendations on the Transport of Dangerous Goods” published by the United Nations

1.2.3.2 References to other codes, standards and international rules

1.2.3.2.1 In this Code, a reference to a code, standard or international rule or a provision of a code, standard or international rule includes another code, standard or international rule or a provision of another code, standard or international rule as applied or adopted by, or incorporated in, the first mentioned code, standard or international rule, as the case requires.

1 Where used the terms UN13, UN14, UN15, UN16, UN17, UN18, UN19, UN20 and UN21 have the corresponding meanings and refer to the relevant edition of UN document ‘Recommendations on the Transport of Dangerous Goods Model Regulations’.
1.2.3.2.2 In this Code, unless the contrary intention appears, a reference to a code, standard or international rule is a reference to that code, standard or international rule as amended from time to time.

1.2.3.2.3 If a code, standard or international rule, or a provision of a code, standard or international rule:

(a) is applied or adopted by, or is incorporated in, this Code; and

(b) contains a provision that is inconsistent with a provision of this Code;

the provision of this Code prevails.

1.2.3.2.4 Where a numbered Australian Standard is referenced in this Code, a relevant international (ISO or equivalent) or foreign standard, code or rule will also be recognised in relation to imported material.

1.2.3.2.5 If a word or expression is defined:

(a) in a document referred to in this Code; and

(b) in 1.2.1.1 or 1.2.1.2 of this Code using a different form of words but in a manner that expresses the same idea as the definition in the document referred to:

(c) the expression is taken, as far as practicable, to have the same meaning as it has in the document referred to in this Code.

Table 1.1: Standards referred to in this Code

<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Standard Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB 9436 1994</td>
<td>Occupational personal protection</td>
</tr>
<tr>
<td>HB 976 2010</td>
<td>Dangerous goods – Initial emergency response guide *</td>
</tr>
<tr>
<td>SA/SNZ HB 436 2009</td>
<td>Risk Management Guidelines</td>
</tr>
<tr>
<td>ISO 535 2014</td>
<td>Paper and board - Determination of water absorptiveness</td>
</tr>
<tr>
<td>ISO 787 1974 to 2002</td>
<td>General methods of test for pigments and extenders (25 part set)</td>
</tr>
<tr>
<td>AS ISO 1000 1998</td>
<td>The international system of units (SI) and its application</td>
</tr>
<tr>
<td>AS 1180.13B 1987</td>
<td>Methods of test for hose made from elastomeric materials – Determination of electrical resistance of hose assembly</td>
</tr>
<tr>
<td>AS 1180.13C 1983</td>
<td>Methods of test for hose made from elastomeric materials – Determination of electrical continuity of a hose assembly with reinforcing wire(s)</td>
</tr>
<tr>
<td>AS 1210 2010</td>
<td>Pressure vessels</td>
</tr>
<tr>
<td>AS 1216 2006</td>
<td>Class labels for dangerous goods</td>
</tr>
<tr>
<td>AS/NZS 1269 2005 to 2014</td>
<td>Occupational noise management (Set)</td>
</tr>
<tr>
<td>AS/NZS 1336 2014</td>
<td>Eye and face protection - Guidelines</td>
</tr>
</tbody>
</table>
Reference is by number first, then alphabetically, with SA read as AS and SNZ read as NZS. Reference includes any amendments.

<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Standard Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS/NZS 1337</td>
<td>Personal eye protection (Set)</td>
</tr>
<tr>
<td>AS/NZS 1338</td>
<td>Filters for eye protectors (Set)</td>
</tr>
<tr>
<td>AS/NZS 1301.411s</td>
<td>Methods of test for pulp and paper – Water absorptiveness of paper and paperboard (Cobb Test)</td>
</tr>
<tr>
<td>ISO 1496</td>
<td>Series 1 freight containers - Specification and testing</td>
</tr>
<tr>
<td>ISO 1523</td>
<td>Determination of flash point - Closed cup equilibrium method</td>
</tr>
<tr>
<td>AS/NZS 1580.301.1</td>
<td>Paints and related materials - Methods of test - Non-volatile content by mass</td>
</tr>
<tr>
<td>AS/NZS 1595</td>
<td>Cold-rolled, unalloyed, sheet steel and strip</td>
</tr>
<tr>
<td>AS/NZS 1596</td>
<td>The storage and handling of LP Gas</td>
</tr>
<tr>
<td>AS 1678</td>
<td>Emergency procedure guide – Transport (series) or individually by proper shipping name</td>
</tr>
<tr>
<td>AS 1692</td>
<td>Steel tanks for flammable and combustible liquids</td>
</tr>
<tr>
<td>AS/NZS 1715</td>
<td>Selection, use and maintenance of respiratory protective equipment</td>
</tr>
<tr>
<td>AS/NZS 1716</td>
<td>Respiratory protective devices</td>
</tr>
<tr>
<td>AS/NZS 1800</td>
<td>Occupational protective helmets - Selection, care and use</td>
</tr>
<tr>
<td>AS/NZS 1801</td>
<td>Occupational protective helmets</td>
</tr>
<tr>
<td>AS/NZS 1841</td>
<td>Portable fire extinguishers (series)</td>
</tr>
<tr>
<td>AS/NZS 1850</td>
<td>Portable fire extinguishers – Classification, rating and performance testing</td>
</tr>
<tr>
<td>AS 1851</td>
<td>Routine service of fire protection systems and equipment</td>
</tr>
<tr>
<td>AS/NZS 1869</td>
<td>Hose and hose assemblies for liquefied petroleum gas (LP Gas), natural gas and town gas</td>
</tr>
<tr>
<td>AS 1894</td>
<td>The storage and handling of non-flammable cryogenic and refrigerated liquids</td>
</tr>
<tr>
<td>AS 1940</td>
<td>The storage and handling of flammable and combustible liquids</td>
</tr>
<tr>
<td>AS/NZS 2022</td>
<td>Anhydrous ammonia – Storage and handling</td>
</tr>
<tr>
<td>AS 2030</td>
<td>The verification, filling, inspection, testing and maintenance of cylinders for storage and transport of compressed gases (series)</td>
</tr>
<tr>
<td>AS 2106</td>
<td>Methods for the determination of the flash point of flammable liquids (closed cup) (series)</td>
</tr>
<tr>
<td>AS 2161</td>
<td>Occupational Protective Gloves (Set)</td>
</tr>
<tr>
<td>AS 2278.1</td>
<td>Metal aerosol dispensers of capacity 50 ml to 1000 ml inclusive</td>
</tr>
<tr>
<td>ISO 2592</td>
<td>Determination of flash and fire points - Cleveland open cup method</td>
</tr>
<tr>
<td>AS 2594</td>
<td>Hose and hose assemblies for liquid chemicals</td>
</tr>
</tbody>
</table>
Reference is by number first, then alphabetically, with SA read as AS and SNZ read as NZS. Reference includes any amendments.

<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Standard Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 2683 2000</td>
<td>Hose and hose assemblies for distribution of petroleum and petroleum products (excepting LPG)</td>
</tr>
<tr>
<td>ISO 2719 2002</td>
<td>Determination of flash point - Pensky-Martens closed cup method</td>
</tr>
<tr>
<td>AS 2700 2011</td>
<td>Colour standards for general purposes (Set)</td>
</tr>
<tr>
<td>AS 2809.1 2008</td>
<td>Road tank vehicles for dangerous goods Part 1 – General requirements</td>
</tr>
<tr>
<td>AS 2809.2 2008</td>
<td>Road tank vehicles for dangerous goods Part 2 – Tankers for flammable liquids</td>
</tr>
<tr>
<td>AS 2809.3 2008</td>
<td>Road tank vehicles for dangerous goods Part 3 – Tankers for compressed liquefiable gases</td>
</tr>
<tr>
<td>AS 2809.4 2001</td>
<td>Road tank vehicles for dangerous goods Part 4 – Tankers for toxic and corrosive cargoes</td>
</tr>
<tr>
<td>AS 2809.5 2001</td>
<td>Road tank vehicles for dangerous goods Part 5 – Tankers for bitumen-based products</td>
</tr>
<tr>
<td>AS 2809.6 2001</td>
<td>Road tank vehicles for dangerous goods Part 6 – Tankers for cryogenic liquids</td>
</tr>
<tr>
<td>AS 2854 2004</td>
<td>Tinplate cans for general use</td>
</tr>
<tr>
<td>AS/NZS 2927 2019</td>
<td>The storage and handling of liquefied chlorine gas</td>
</tr>
<tr>
<td>ISO 3036 1975</td>
<td>Board - Determination of puncture resistance</td>
</tr>
<tr>
<td>ISO 3405 2011</td>
<td>Petroleum products - Determination of distillation characteristics at atmospheric pressure</td>
</tr>
<tr>
<td>ISO 3573 2012</td>
<td>Hot-rolled carbon steel sheet of commercial and drawing qualities</td>
</tr>
<tr>
<td>ISO 3574 2012</td>
<td>Cold-reduced carbon steel sheet of commercial and drawing qualities</td>
</tr>
<tr>
<td>ISO 3679 2004</td>
<td>Determination of flash point - Rapid equilibrium closed cup method</td>
</tr>
<tr>
<td>ISO 3680 2004</td>
<td>Determination of flash/no flash - Rapid equilibrium closed cup method</td>
</tr>
<tr>
<td>AS 3711 1993 to 2015</td>
<td>Freight Containers (series)</td>
</tr>
<tr>
<td>AS/NZS 3788 2006</td>
<td>Pressure Equipment – In-service Inspection</td>
</tr>
<tr>
<td>AS 3790 1992</td>
<td>Portable warning triangles for motor vehicles</td>
</tr>
<tr>
<td>ISO 3807 1998</td>
<td>Gas cylinders - Acetylene cylinders - Basic requirements and type testing</td>
</tr>
<tr>
<td>ISO 3924 2010</td>
<td>Petroleum products - Determination of boiling range distribution - Gas chromatography method</td>
</tr>
<tr>
<td>AS/NZS 3931 1998</td>
<td>Risk Analysis of technological systems – Application guide</td>
</tr>
<tr>
<td>AS 4031 1992</td>
<td>Non-reusable containers for the collection of sharp medical items used in health care areas</td>
</tr>
<tr>
<td>ISO 4126 2003 to 2014</td>
<td>Safety devices for protection against excessive pressure</td>
</tr>
<tr>
<td>AS/NZS 4261 1994</td>
<td>Reusable containers for the collection of sharp items used in human and animal medical applications</td>
</tr>
<tr>
<td>ISO 4624 2005</td>
<td>Paints and varnishes - Pull-off test for adhesion</td>
</tr>
<tr>
<td>Standard Number</td>
<td>Standard Title</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>ISO 4706</td>
<td>Gas cylinders - Refillable welded steel cylinders - Test pressure 60 bar and below</td>
</tr>
<tr>
<td>AS 4834</td>
<td>Packaging for surface transport of biological material that may cause disease in humans, animals and plants</td>
</tr>
<tr>
<td>AS 4939</td>
<td>Non-reusable personal use containers for the collection and disposal of hypodermic needles and syringes</td>
</tr>
<tr>
<td>AS/NZS 5601</td>
<td>Gas Installations (Set)</td>
</tr>
<tr>
<td>ISO 5659</td>
<td>Plastics - Smoke generation</td>
</tr>
<tr>
<td>ISO 6383-1</td>
<td>Plastics - Film and sheeting - Determination of tear resistance - Part 1: Trouser tear method</td>
</tr>
<tr>
<td>ISO 6383-2</td>
<td>Plastics - Film and sheeting - Determination of tear resistance - Part 2: Elmendorf method</td>
</tr>
<tr>
<td>ISO 6406</td>
<td>Gas cylinders - Seamless steel gas cylinders - Periodic inspection and testing</td>
</tr>
<tr>
<td>ISO 6892</td>
<td>Metallic materials - Tensile testing</td>
</tr>
<tr>
<td>ISO 7225</td>
<td>Gas cylinders - Precautionary labels</td>
</tr>
<tr>
<td>ISO 7765-1</td>
<td>Plastics film and sheeting - Determination of impact resistance by the free-falling dart method - Part 1: Staircase methods</td>
</tr>
<tr>
<td>ISO 7765-2</td>
<td>Plastics film and sheeting - Determination of impact resistance by the free-falling dart method - Part 2: Instrumented puncture test</td>
</tr>
<tr>
<td>ISO 7866</td>
<td>Gas cylinders - Refillable seamless aluminium alloy gas cylinders - Design, construction and testing</td>
</tr>
<tr>
<td>AS/NZS 9001</td>
<td>Quality management systems—Requirements</td>
</tr>
<tr>
<td>ISO 9809</td>
<td>Gas cylinders - Refillable seamless steel gas cylinders - Design, construction and testing</td>
</tr>
<tr>
<td>BS EN 10028</td>
<td>Flat Products Made Of Steels For Pressure Purposes</td>
</tr>
<tr>
<td>ISO 10156</td>
<td>Gases and gas mixtures - Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets</td>
</tr>
<tr>
<td>ISO 10297</td>
<td>Gas cylinders - Cylinder valves - Specification and type testing</td>
</tr>
<tr>
<td>ISO 10460</td>
<td>Gas cylinders - Welded carbon-steel gas cylinders - Periodic inspection and testing</td>
</tr>
<tr>
<td>ISO 10461</td>
<td>Gas cylinders - Seamless aluminium-alloy gas cylinders - Periodic inspection and testing</td>
</tr>
<tr>
<td>ISO 10462</td>
<td>Gas cylinders - Acetylene cylinders - Periodic inspection and maintenance</td>
</tr>
<tr>
<td>ISO 10692-1</td>
<td>Gas cylinders - Gas cylinder valve connections for use in the micro-electronics industry - Part 1: Outlet connections</td>
</tr>
<tr>
<td>ISO 10692-2</td>
<td>Gas cylinders - Gas cylinder valve connections for use in the micro-electronics industry - Part 2: Specification and type testing for valve to cylinder connections</td>
</tr>
</tbody>
</table>
Reference is by number first, then alphabetically, with SA read as AS and SNZ read as NZS. Reference includes any amendments.

<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Standard Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 11114-1</td>
<td>2012 Gas cylinders - Compatibility of cylinder and valve materials with gas contents - Part 1: Metallic materials</td>
</tr>
<tr>
<td>ISO 11114-4</td>
<td>2005 Transportable gas cylinders - Compatibility of cylinder and valve materials with gas contents - Part 4: Test methods for selecting metallic materials resistant to hydrogen embrittlement</td>
</tr>
<tr>
<td>ISO 11117</td>
<td>2008 Gas cylinders - Valve protection caps and valve guards - Design, construction and tests</td>
</tr>
<tr>
<td>ISO 11118</td>
<td>1999 Gas cylinders - Non-refillable metallic gas cylinders - Specification and test methods</td>
</tr>
<tr>
<td>ISO 11119-1</td>
<td>2012 Gas cylinders - Refillable composite gas cylinders and tubes - Design, construction and testing - Part 1: Hoop wrapped fibre reinforced composite gas cylinders and tubes up to 450 l</td>
</tr>
<tr>
<td>ISO 11119-2</td>
<td>2012 Gas cylinders - Refillable composite gas cylinders and tubes - Design, construction and testing - Part 2: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with load-sharing metal liners</td>
</tr>
<tr>
<td>ISO 11119-3</td>
<td>2013 Gas cylinders - Refillable composite gas cylinders and tubes - Design, construction and testing - Part 3: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450L with non-load-sharing metallic or non-metallic liners</td>
</tr>
<tr>
<td>ISO 11120</td>
<td>1999 Gas cylinders - Refillable seamless steel tubes for compressed gas transport, of water capacity between 150 l and 3000 l - Design construction and testing</td>
</tr>
<tr>
<td>ISO 11621</td>
<td>1997 Gas cylinders - Procedures for change of gas service</td>
</tr>
<tr>
<td>ISO 11949</td>
<td>1995 Cold-reduced electrolytic tinplate</td>
</tr>
<tr>
<td>ISO 11950</td>
<td>1995 Cold-reduced electrolytic chromium/chromium oxide-coated steel</td>
</tr>
<tr>
<td>ISO 11951</td>
<td>1995 Cold-reduced blackplate in coil form for the production of tinplate or electrolytic chromium/chromium oxide-coated steel</td>
</tr>
<tr>
<td>ISO 12097-1</td>
<td>2002 Road vehicles - Airbag components - Part 1: Vocabulary</td>
</tr>
<tr>
<td>ISO 13340</td>
<td>2001 Transportable gas cylinders - Cylinders valves for non-refillable cylinders - Specification and prototype testing</td>
</tr>
<tr>
<td>ISO 13736</td>
<td>2013 Determination of flash point - Abel closed-cup method</td>
</tr>
</tbody>
</table>
Reference is by number first, then alphabetically, with SA read as AS and SNZ read as NZS. Reference includes any amendments.

<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Standard Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 13770</td>
<td>1997 Aluminium alloy gas cylinders - Operational requirements for avoidance of neck and shoulder cracks</td>
</tr>
<tr>
<td>AS ISO 16103</td>
<td>2005 Packaging – Transport packaging for dangerous goods– Recycled plastics material</td>
</tr>
<tr>
<td>AS ISO 16106</td>
<td>2006 Packaging – Transport packages for dangerous goods– Dangerous goods packagings, intermediate bulk containers (IBCs) and large packagings – Guidelines for the application of ISO 9001</td>
</tr>
<tr>
<td>ISO 16111</td>
<td>2008 Transportable gas storage devices - Hydrogen absorbed in reversible metal hydride</td>
</tr>
<tr>
<td>ISO 11623</td>
<td>2002 Transportable gas cylinders - Periodic inspection and testing of composite gas cylinders</td>
</tr>
<tr>
<td>ISO 18172</td>
<td>2007 Gas cylinders - Refillable welded stainless steel cylinders</td>
</tr>
<tr>
<td>ISO 20347</td>
<td>2012 Personal protective equipment - Occupational footwear</td>
</tr>
<tr>
<td>ISO 20703</td>
<td>2006 Gas cylinders - Refillable welded aluminium-alloy cylinders - Design, construction and testing</td>
</tr>
<tr>
<td>ISO 21029</td>
<td>2004 Cryogenic vessels - Transportable vacuum insulated vessels of not more than 1 000 litres volume (2 part set).</td>
</tr>
<tr>
<td>AS/NZS ISO 31000</td>
<td>2009 Risk Management – Principles and Guidelines</td>
</tr>
<tr>
<td>AS/NZS 60079.0</td>
<td>2012 Explosive atmospheres - Equipment - General requirements</td>
</tr>
<tr>
<td>AS/NZS 60079.1</td>
<td>2007 Explosive atmospheres - Equipment protection by flameproof enclosures 'd'</td>
</tr>
<tr>
<td>AS/NZS 60079.10.1</td>
<td>2009 Explosive atmospheres - Classification of areas - Explosive gas atmospheres (IEC 60079-10-1, Ed.1.0(2008) MOD)</td>
</tr>
<tr>
<td>AS/NZS 60079.10.2</td>
<td>2011 Explosive atmospheres - Classification of areas - Combustible dust atmospheres</td>
</tr>
<tr>
<td>AS/NZS 60079.11</td>
<td>2011 Electrical apparatus for explosive gas atmospheres – Intrinsic safety 'i'</td>
</tr>
<tr>
<td>AS/NZS 60079.14</td>
<td>2009 Explosive atmospheres - Electrical installations design, selection and erection (IEC 60079-14, Ed. 4.0(2007) MOD)</td>
</tr>
<tr>
<td>AS/NZS 60079.15</td>
<td>2011 Explosive atmospheres - Equipment protection by type of protection ‘n’</td>
</tr>
<tr>
<td>AS/NZS 60079.17</td>
<td>2009 Explosive atmospheres - Electrical installations inspection and maintenance (IEC 60079-17, Ed.4.0(2007) MOD)</td>
</tr>
</tbody>
</table>

* Review applicability to chemical being transported. Refer CANUTEC guide.

Note: The publication date refers to the date of issue of the standard at the date of publication of the ADGC; but includes a future amendment or edition of the standard, if published at a later date; but may also include the previous edition(s) of the standard if that was applicable at the time of testing.

1.2.3.3 Interpretation of references to GHS
1.2.3.3.1 For the purposes of this Code, a ‘thing’ is marked in accordance with GHS if the marking complies with the version of GHS that applies in the jurisdiction of origin of the thing, or if the marking otherwise complies with the GHS law in that jurisdiction, and if any words in the marking are in English.

CHAPTER 1.3 - TRAINING

<Reserved>

NOTE: Chapter 1.3 of UN20 outlines general training issues that are addressed by Division 1.3 of the Model subordinate instrument.

CHAPTER 1.4 - SECURITY PROVISIONS

<Reserved>

NOTE: Chapter 1.4 of UN20 outlines general approaches that can be applied by competent authorities to maintaining security of dangerous goods transport. This is a regulatory issue that is outside the scope of this Code.

CHAPTER 1.5 - GENERAL PROVISIONS CONCERNING CLASS 7

<Reserved>

NOTE: Chapter 1.5 of UN21 lists general provisions to the transport of Class 7 Radioactive material. This section of the UN Model Regulation falls outside of the scope of this Code and the Model Transport Regulations.

Refer to the following information from the Australian Radiation Protection and Nuclear Safety Authority (ARPANSA) now replaces the information found in earlier editions of the ADG Code.

RPS 2 Code of Practice for the Safe Transport of Radioactive Material

RPS No. 2.1 - Safety Guide for the Safe Transport of Radioactive Material (PDF 608k)
RPS No. 2.2 - Safety Guide for the Approval Processes for the Safe Transport of Radioactive Materials (2012) - PDF 605kb
PART 2: CLASSIFICATION
CHAPTER 2.0 - INTRODUCTION

Introductory Notes

NOTE 1: This Part reproduces Part 2 of the 20th revised edition of the UN Model Regulations, except where indicated by the word “<Reserved>” indicating a clause that has been omitted.

NOTE 2: This Part provides the rules for classifying all classes of dangerous goods including Class 1 and Class 7 dangerous goods which are not subject to this Code, except insofar as they are transported with other dangerous goods and may be Regulated by State and Federal laws other than Dangerous Goods. Chapters 2.1 and 2.7 are therefore provided for information purposes only. For Classes 1 and 7, reference should be made to the Australian Explosives Code or the Code of Practice for the Safe Transport of Radioactive Substances as appropriate and the legislation covering transport of those classes in the particular jurisdiction.

NOTE 3: Where in this Part there is a statement that particular substances or articles are 'not subject to this Code', then those substances or articles are not considered to be dangerous goods for the purposes of this Code or the Regulations provided that all conditions included with that statement are met. This also applies to substances and articles for which there is a reference in Column 6 of the Dangerous Goods List in Chapter 3.2 to a Special Provision in Chapter 3.3 that incorporates such a statement.

2.0.0 <RESERVED>

NOTE: Section 2.0.0 of UN21 assigns responsibilities for classifying dangerous goods. In Australia, these responsibilities are assigned by the Regulations, or by State or Territory legislation concerning the transport of explosives or radioactive substances or for storage and handling of dangerous goods.

2.0.1 CLASSES, DIVISIONS, PACKING GROUPS

2.0.1.1 Definitions

Substances (including mixtures and solutions) and articles subject to this Code are assigned to one of nine classes according to the hazard or the most predominant of the hazards they present. Some of these classes are subdivided into divisions. These classes and divisions are:

Class 1: Explosives

Division 1.1: Substances and articles which have a mass explosion hazard

Division 1.2: Substances and articles which have a projection hazard but not a mass explosion hazard

Division 1.3: Substances and articles which have a fire hazard and either a minor blast hazard or a minor projection hazard or both, but not a mass explosion hazard

Division 1.4: Substances and articles which present no significant hazard
PART 2: CLASSIFICATION

Division 1.5: Very insensitive substances which have a mass explosion hazard

Division 1.6: Extremely insensitive articles which do not have a mass explosion hazard

Class 2: Gases
Division 2.1: Flammable gases
Division 2.2: Non-flammable, non-toxic gases
Division 2.3: Toxic gases

Class 3: Flammable liquids

Class 4: Flammable solids; substances liable to spontaneous combustion; substances which, on contact with water, emit flammable gases
Division 4.1: Flammable solids, self-reactive substances solid desensitised explosives and polymerizing substances
Division 4.2: Substances liable to spontaneous combustion
Division 4.3: Substances which in contact with water emit flammable gases

Class 5: Oxidising substances and organic peroxides
Division 5.1: Oxidising substances
Division 5.2: Organic peroxides

Class 6: Toxic and infectious substances
Division 6.1: Toxic substances
Division 6.2: Infectious substances

Class 7: Radioactive material

Class 8: Corrosive substances

Class 9: Miscellaneous dangerous substances and articles, including environmentally hazardous substances.
The numerical order of the classes and divisions is not that of the degree of danger.

2.0.1.2 Many of the substances assigned to Classes 1 to 9 are deemed, without additional labelling, as being environmentally hazardous. Wastes must be transported under the requirements of the appropriate class considering their hazards and the criteria in this Code.

2.0.1.2.1 Wastes not otherwise subject to this Code but covered under the Basel Convention\(^1\) may be transported under Class 9.

2.0.1.3 For packing purposes, substances other than those of Classes 1, 2 and 7, Divisions 5.2 and 6.2, and other than self-reactive substances of

PART 2: CLASSIFICATION

Division 4.1, are assigned to three packing groups in accordance with the degree of danger they present:

- **Packing group I**: Substances presenting high danger;
- **Packing group II**: Substances presenting medium danger; and
- **Packing group III**: Substances presenting low danger.

The packing group to which a substance is assigned is indicated in the Dangerous Goods List in Chapter 3.2.

Articles are not assigned to packing groups. For packing purposes any requirement for a specific packaging performance level is set out in the applicable packing instruction.

2.0.1.4 Dangerous goods are determined to present one or more of the dangers represented by Classes 1 to 9 and divisions and, if applicable, the degree of danger on the basis of the requirements in Chapters 2.1 to 2.9.

2.0.1.5 Dangerous goods presenting a danger of a single class and division are assigned to that class and division and the degree of danger (packing group), if applicable, determined. When an article or substance is specifically listed by name in the Dangerous Goods List in Chapter 3.2, its class or division, its subsidiary hazard(s) and, when applicable, its packing group are taken from this list.

2.0.1.6 Dangerous goods meeting the defining criteria of more than one hazard class or division and which are not listed by name in the Dangerous Goods List, are assigned to a class and division and subsidiary hazard(s) on the basis of the precedence of hazards in 2.0.3.

2.0.2 UN NUMBERS AND PROPER SHIPPING NAMES

2.0.2.1 Dangerous goods are assigned to UN numbers and proper shipping names according to their hazard classification and their composition.

2.0.2.2 Dangerous goods commonly carried are listed in the Dangerous Goods List in Chapter 3.2. Where an article or substance is specifically listed by name, it must be identified in transport by the proper shipping name in the Dangerous Goods List. Such substances may contain technical impurities (for example those deriving from the production process) or additives for stability or other purposes that do not affect its classification. However, a substance listed by name containing technical impurities or additives for stability or other purposes affecting its classification must be considered a mixture or solution (see 2.0.2.5). For dangerous goods not specifically listed by name "generic" or "not otherwise specified" entries are provided (see 2.0.2.7) to identify the article or substance in transport. The substances listed by name in column (2) of the Dangerous Goods List of Chapter 3.2 shall be transported according to their classification in the list or as determined by a Competent Authority.

Each entry in the Dangerous Goods List is characterised by a UN number. This list also contains relevant information for each entry, such as hazard class, subsidiary hazard(s) (if any), packing group (where assigned), packing and tank transport requirements, etc. Entries in the Dangerous Goods List are of the following four types:
PART 2: CLASSIFICATION

(a) Single entries for well-defined substances or articles e.g.
 1090 ACETONE
 1194 ETHYL NITRITE SOLUTION;

(b) Generic entries for well-defined groups of substances or articles e.g.
 1133 ADHESIVES
 1266 PERFUMERY PRODUCT
 2757 CARBAMATE PESTICIDE, SOLID, TOXIC
 3101 ORGANIC PEROXIDE, TYPE B, LIQUID;

(c) Specific N.O.S. entries covering a group of substances or articles of
 a particular chemical or technical nature e.g.
 1477 NITRATES, INORGANIC, N.O.S.
 1987 ALCOHOLS, N.O.S.;

(d) General N.O.S. entries covering a group of substances or articles
 meeting the criteria of one or more classes or divisions e.g.
 1325 FLAMMABLE SOLID, ORGANIC, N.O.S.
 1993 FLAMMABLE LIQUID, N.O.S.

2.0.2.3 All self-reactive substances of Division 4.1 are assigned to one of twenty
 generic entries in accordance with the classification principles and flow
 chart described in 2.4.2.3.3 and Figure 2.4.1.

2.0.2.4 All organic peroxides of Division 5.2 are assigned to one of twenty
 generic entries in accordance with the classification principles and flow
 chart described in 2.5.3.3 and Figure 2.5.1.

2.0.2.5 A mixture or solution meeting the classification criteria of this Code
 composed of a single predominant substance identified by name in the
 Dangerous Goods List and one or more substances not subject to this
 Code and/or traces of one or more substances identified by name in the
 Dangerous Goods List, must be assigned the UN number and proper
 shipping name of the predominant substance named in the Dangerous
 Goods List unless:

 (a) the mixture or solution is identified by name in the Dangerous Goods
 List;
 (b) the name and description of the substance named in the Dangerous
 Goods List specifically indicate that they apply only to the pure
 substance;
 (c) the hazard class or division, subsidiary hazard(s), packing group, or
 physical state of the mixture or solution is different from that of the
 substance named in the Dangerous Goods List; or
 (d) the hazard characteristics and properties of the mixture or solution
 necessitate emergency response measures that are different from
 those required for the substance identified by name in the
 Dangerous Goods List.

 In those other cases, except the one described in paragraph (a), the
 mixture or solution is to be treated as a dangerous substance not
 specifically listed by name in the Dangerous Goods List.

2.0.2.6 For a solution or mixture when the hazard class, the physical state or
 the packing group is changed in comparison with the listed substance,
PART 2: CLASSIFICATION

the appropriate N.O.S. entry must be used including its packaging and labelling provisions.

2.0.2.7 A mixture or solution containing one or more substances identified by name in this Code or classified under a N.O.S. entry and one or more substances is not subject to this Code if the hazard characteristics of the mixture or solution are such that they do not meet the criteria (including human experience criteria) for any class.

2.0.2.8 Substances or articles which are not specifically listed by name in the Dangerous Goods List must be classified under a “generic” or “not otherwise specified” (“N.O.S.”) entry. The substance or article must be classified according to the class definitions and test criteria in this Part, and the article or substance classified under the generic or “N.O.S.” entry in the Dangerous Goods List which most appropriately describes the article or substance1. This means that a substance is only to be assigned to an entry of type (c), as defined in 2.0.2.2, if it cannot be assigned to an entry of type (b), and to an entry of type (d) if it cannot be assigned to an entry of type (b) or (c)2.

2.0.2.9 A mixture or solution meeting the classification criteria of this Code that is not identified by name in the Dangerous Goods List and that is composed of two or more dangerous goods must be assigned to an entry that has the proper shipping name, description, hazard class or division, subsidiary hazards(s) and packing group that most precisely describe the mixture or solution.

2.0.3 PRECEDENCE OF HAZARD CHARACTERISTICS

2.0.3.1 The table below should be used to determine the class of a substance, mixture or solution having more than one hazard, when it is not named in the Dangerous Goods List in Chapter 3.2 or to assign the appropriate entry for articles containing dangerous goods N.O.S. 3537 to 3548, see 2.0.5. For goods having multiple hazards which are not specifically listed by name in the Dangerous Goods List, the most stringent packing group denoted to the respective hazards of the goods takes precedence over other packing groups, irrespective of the precedence of hazard table in this Chapter. The precedence of hazard characteristics of the following have not been dealt with in the Precedence of hazards Table in 2.0.3.3, as these primary characteristics always take precedence:

(a) Substances and articles of Class 1;
(b) Gases of Class 2;
(c) Liquid desensitised explosives of Class 3;
(d) Self-reactive substances and solid desensitised explosives of Division 4.1;
(e) Pyrophoric substances of Division 4.2;
(f) Substances of Division 5.2;

1 See also the “List of generic or N.O.S. proper shipping names” in 3.2.6.
2 Except for substances or preparations meeting the criteria of Class 8 having an inhalation toxicity of dusts and mists (LC50) in the range of packing group I, but toxicity through oral ingestion or dermal contact only in the range of packing group III or less, which must be allocated to Class 8.
(g) Substances of Division 6.1 with a packing group I inhalation toxicity:\(^1\):

(h) Substances of Division 6.2;

(i) Material of Class 7.

2.0.3.2 Apart from radioactive material in excepted packages (where the other hazardous properties take precedence) radioactive material having other hazardous properties must always be classified in Class 7 and the subsidiary hazard must also be identified. For radioactive material in excepted packages, except for UN 3507, URANIUM HEXAFLUORIDE, RADIOACTIVE MATERIAL, EXCEPTED PACKAGE, special provision 290 of Chapter 3.3 applies.

\(^1\) See also the “List of generic or N.O.S. proper shipping names” in 3.2.6.
Table 2.0.3.3: Precedence of hazards

<table>
<thead>
<tr>
<th>Class or Division and Packing Group</th>
<th>4.2</th>
<th>4.3</th>
<th>5.1</th>
<th>5.1</th>
<th>5.1</th>
<th>6.1, I</th>
<th>6.1, I</th>
<th>6.1, I</th>
<th>8, I</th>
<th>8, I</th>
<th>8, II</th>
<th>8, II</th>
<th>8, III</th>
<th>8, III</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 I^a</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>3</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>3 II^a</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>3 III^a</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>3b</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>4.1 II^a</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.1</td>
<td>4.1</td>
<td>–</td>
<td>8</td>
<td>–</td>
<td>4.1</td>
</tr>
<tr>
<td>4.1 III^a</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.1</td>
<td>4.1</td>
<td>–</td>
<td>8</td>
<td>–</td>
<td>4.1</td>
</tr>
<tr>
<td>4.2 II</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.1</td>
<td>4.1</td>
<td>–</td>
<td>8</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>4.2 III</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.2</td>
<td>4.2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4.3 I</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.3</td>
<td>4.3</td>
<td>8</td>
<td>8</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>4.3 II</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.3</td>
<td>4.3</td>
<td>8</td>
<td>8</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>4.3 III</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.3</td>
<td>4.3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5.1 I</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.3</td>
<td>4.3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5.1 II</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.3</td>
<td>4.3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5.1 III</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.3</td>
<td>4.3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>6.1 I Dermal</td>
<td>4.2</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>4.3</td>
<td>4.3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>I Oral</td>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>6.1</td>
<td>II Inhalation</td>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>6.1</td>
<td>II Dermal</td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>6.1</td>
<td>II Oral</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>6.1</td>
<td>III</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Table Notes:

a Substances of Division 4.1 other than self-reactive substances and solid desensitised explosives and substances of Class 3 other than liquid desensitised explosives.

b 6.1 for pesticides.

– Denotes an impossible combination.

For hazards not shown in this table, see 2.0.3.
2.0.4 TRANSPORT OF SAMPLES

2.0.4.1 When the hazard class of a substance is uncertain and it is being transported for further testing, a tentative hazard class, proper shipping name and identification number must be assigned on the basis of the consignor’s knowledge of the substance and application of:

(a) the classification criteria of this Code; and
(b) the precedence of hazards given in 2.0.3.

The most severe packing group possible for the proper shipping name chosen must be used.

Where this provision is used the proper shipping name must be supplemented with the word “SAMPLE” (e.g., FLAMMABLE LIQUID, N.O.S. SAMPLE). In certain instances, where a specific proper shipping name is provided for a sample of a substance considered to meet certain classification criteria (e.g. GAS SAMPLE, NON-PRESSURISED, FLAMMABLE, UN 3167) that proper shipping name must be used. When an N.O.S. entry is used to transport the sample, the proper shipping name need not be supplemented with the technical name as required by special provision 274.

2.0.4.2 Samples of the substance must be transported in accordance with the requirements applicable to the tentative assigned proper shipping name provided:

(a) the substance is not considered to be a substance prohibited for transport by 1.1.2 or the Regulations;
(b) the substance is not considered to meet the criteria for Class 1 or considered to be an infectious substance or a radioactive material;
(c) the substance is in compliance with 2.4.2.3.2.4(b) or 2.5.3.2.5.1 if it is a self-reactive substance or an organic peroxide, respectively;
(d) the sample is transported in a combination packaging with a net mass per package not exceeding 2.5 kg; and
(e) the sample is not packed together with other goods.

2.0.4.3 Samples of energetic materials for testing purposes

2.0.4.3.1 Samples of organic substances carrying functional groups listed in tables A6.1 and/or A6.3 in Appendix 6 (Screening Procedures of the Manual of Tests and Criteria may be transported under UN 3224 (self-reactive solid type C) or UN 3223 (self-reactive liquid type C), as applicable, of Division 4.1 provided that:

(a) The samples do not contain any:

(i) Known explosives;
(ii) Substances showing explosive effects in testing;
(iii) Compounds designed with the view of producing a practical explosive or pyrotechnic effect; or
(iv) Components consisting of synthetic precursors of intentional explosives;
PART 2: CLASSIFICATION

(b) For mixtures, complexes or salts of inorganic oxidizing substances of Division 5.1 with organic material(s), the concentration of the inorganic oxidizing substance is:

Less than 15% by mass, is assigned to packing group I (high hazard) or II (medium hazard); or

(c) Available data do not allow a more precise classification;

(d) The sample is not packed together with other goods; and

(e) The sample is packed in accordance with packing instructions P520 and special packing provisions PP94 or PP95 of 4.1.4.1, as applicable.

2.0.5 CLASSIFICATION OF ARTICLES CONTAINING DANGEROUS GOODS N.O.S.

NOTE: For articles which do not have an existing proper shipping name and which contain only dangerous goods within the permitted limited quantity amounts specified in Column 7a of the Dangerous Goods List, see UN No. 3363 and special provision 301 of Chapter 3.3.

2.0.5.1 Articles containing dangerous goods may be classified as otherwise provided by this Code under the proper shipping name for the dangerous goods they contain or in accordance with this section. For the purposes of this section “article” means machinery, apparatus or other devices containing one or more dangerous goods (or residues thereof) that are an integral element of the article, necessary for its functioning and that cannot be removed for the purpose of transport. An inner packaging shall not be an article.

2.0.5.2 Such articles may in addition contain batteries. Lithium batteries that are integral to the article shall be of a type proven to meet the testing requirements of the Manual of Tests and Criteria, part III, sub-section 38.3, except when otherwise specified by this Code (e.g. for pre-production prototype articles containing lithium batteries or for a small production run, consisting of not more than 100 such articles).

2.0.5.3 This section does not apply to articles for which a more specific proper shipping name already exists in the Dangerous Goods List of Chapter 3.2.

2.0.5.4 This section does not apply to dangerous goods of Class 1, Division 6.2, Class 7 or radioactive material contained in articles. However, this section applies to articles containing explosives which are excluded from Class 1 in accordance with 2.1.3.6.4.

2.0.5.5 Articles containing dangerous goods shall be assigned to the appropriate Class or Division determined by the hazards present using, where applicable, the Precedence of Hazards table in 2.0.3.3 for each of the dangerous goods contained in the article. If dangerous goods classified as Class 9 are contained within the article, all other dangerous goods present in the article shall be considered to present a higher hazard.
2.0.5.6 Subsidiary hazards shall be representative of the primary hazard posed by the other dangerous goods contained within the article. When only one item of dangerous goods is present in the article, the subsidiary hazard(s), if any, shall be the subsidiary hazard(s) identified in column (4) of the Dangerous Goods List. If the article contains more than one item of dangerous goods and these could react dangerously with one another during transport, each of the dangerous goods shall be enclosed separately (see 4.1.1.6).
CHAPTER 2.1 - CLASS 1 - EXPLOSIVES

Introductory Notes

NOTE 0: Chapter 2.1 is reproduced from UN21 for information purposes in order to provide a single Australian source document for classification criteria for all classes of dangerous goods.

THE TRANSPORT OF CLASS 1 IS NOT SUBJECT TO THIS CODE.

Transport of Class 1 by road or rail in Australia is subject to the Australian Explosives Code and separate State and Territory legislation. However, subject to that legislation, when other dangerous goods are being transported with Class 1 dangerous goods, the segregation requirements of Part 9 of this Code may apply (refer to State and Territory legislation).

NOTE 1: Class 1 is a restricted class, that is, only those explosive substances and articles that are listed in the Dangerous Goods List in Chapter 3.2 may be accepted for transport. However, competent authorities retain the right by mutual agreement to approve transport of explosive substances and articles for special purposes under special conditions. Therefore entries have been included in the Dangerous Goods List for “Substances, explosive, not otherwise specified” and “Articles, explosive, not otherwise specified”. It is the intention that these entries will be used only when no other method of operation is possible.

NOTE 2: General entries such as “Explosive, blasting, Type A” are used to allow for the transport of new substances. In preparing these requirements, military ammunition and explosives have been taken into consideration to the extent that they are likely to be transported by commercial carriers.

NOTE 3: A number of substances and articles in Class 1 are described in Appendix B1 of UN20 and the Australian Explosives Code. These descriptions are given because a term may not be well-known or may be at variance with its usage for regulatory purposes.

NOTE 4: Class 1 is unique in that the type of packaging frequently has a decisive effect on the hazard and therefore on the assignment to a particular division. The correct division is determined by use of the procedures provided in this Chapter.

2.1.1 DEFINITIONS AND GENERAL PROVISIONS

2.1.1.1 Class 1 comprises:

(a) Explosive substances (a substance which is not itself an explosive but which can form an explosive atmosphere of gas, vapour or dust is not included in Class 1), except those that are too dangerous to transport or those where the predominant hazard is appropriate to another class;

1 Appendix B from the UN Model Regulations are not included in this Code.
PART 2: CLASSIFICATION

(b) Explosive articles, except devices containing explosive substances in such quantity or of such a character that their inadvertent or accidental ignition or initiation during transport will not cause any effect external to the device either by projection, fire, smoke, heat or loud noise (see 2.1.3.6); and

(c) substances and articles not mentioned under (a) and (b) which are manufactured with a view to producing a practical explosive or pyrotechnic effect.

2.1.1.2 Transport of explosive substances which are unduly sensitive or so reactive as to be subject to spontaneous reaction is prohibited.

2.1.1.3 Definitions

For the purposes of UN21 and this Code, the following definitions apply:

(a) **Explosive substance** is a solid or liquid substance (or a mixture of substances) which is in itself capable by chemical reaction of producing gas at such a temperature and pressure and at such a speed as to cause damage to the surroundings. Pyrotechnic substances are included even when they do not evolve gases;

(b) **Pyrotechnic** substance is a substance or a mixture of substances designed to produce an effect by heat, light, sound, gas or smoke or a combination of these as the result of non-detonative self-sustaining exothermic chemical reactions;

(c) **Explosive article** is an article containing one or more explosive substances;

(d) **Phlegmatised** means that a substance (or "phlegmatiser") has been added to an explosive to enhance its safety in handling and transport. The phlegmatiser renders the explosive insensitive, or less sensitive, to the following actions: heat, shock, impact, percussion or friction. Typical phlegmatising agents include, but are not limited to: wax, paper, water, polymers (such as chlorofluoropolymers), alcohol and oils (such as petroleum jelly and paraffin).

2.1.1.4 Divisions

Class 1 is divided into six divisions as follows:

(a) **Division 1.1** Substances and articles which have a mass explosion hazard (a mass explosion is one which affects almost the entire load virtually instantaneously);

(b) **Division 1.2** Substances and articles which have a projection hazard but not a mass explosion hazard;

(c) **Division 1.3** Substances and articles which have a fire hazard and either a minor blast hazard or a minor projection hazard or both, but not a mass explosion hazard.

This division comprises substances and articles:

(i) which give rise to considerable radiant heat; or

(ii) which burn one after another, producing minor blast or projection effects or both;

(d) **Division 1.4** Substances and articles which present no significant hazard
PART 2: CLASSIFICATION

This division comprises substances and articles which present only a small hazard in the event of ignition or initiation during transport. The effects are largely confined to the package and no projection of fragments of appreciable size or range is to be expected. An external fire will not cause virtually instantaneous explosion of almost the entire contents of the package;

NOTE: Substances and articles of this division are in Compatibility Group S if they are so packaged or designed that any hazardous effects arising from accidental functioning are confined within the package unless the package has been degraded by fire, in which case all blast or projection effects are limited to the extent that they do not significantly hinder fire-fighting or other emergency response efforts in the immediate vicinity of the package.

(e) Division 1.5 Very insensitive substances which have a mass explosion hazard

This division comprises substances which have a mass explosion hazard but are so insensitive that there is very little probability of initiation or of transition from burning to detonation under normal conditions of transport;

NOTE: The probability of transition from burning to detonation is greater when large quantities are carried in a ship.

(f) Division 1.6 Extremely insensitive articles which do not have a mass explosion hazard

This division comprises articles which predominantly contain extremely insensitive substances and which demonstrate a negligible probability of accidental initiation or propagation.

NOTE: The hazard from articles of Division 1.6 is limited to the explosion of a single article.

2.1.1.5 Any substance or article having or suspected of having explosive characteristics must first be considered for classification in Class 1 in accordance with the procedures in 2.1.3. Goods are not classified in Class 1 when:

(a) unless specially authorised, the transport of an explosive substance is prohibited because sensitivity of the substance is excessive; or
(b) the substance or article comes within the scope of those explosive substances and articles which are specifically excluded from Class 1 by the definition of this class; or
(c) the substance or article has no explosive properties.

2.1.2 COMPATIBILITY GROUPS

2.1.2.1 Goods of Class 1 are assigned to one of six divisions, depending on the type of hazard they present (see 2.1.1.4) and to one of thirteen compatibility groups which identify the kinds of explosive substances and articles that are deemed to be compatible. The tables in 2.1.2.1.1 and 2.1.2.1.2 show the scheme of classification into compatibility groups, the possible hazard divisions associated with each group and the consequential classification codes.
Table 2.1.2.1.1: Classification codes

<table>
<thead>
<tr>
<th>Description of substance or article to be classified</th>
<th>Compatibility Group</th>
<th>Classification Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary explosive substance</td>
<td>A</td>
<td>1.1A</td>
</tr>
<tr>
<td>Article containing a primary explosive substance and not containing two or more effective protective features. Some articles, such as detonators for blasting, detonator assemblies for blasting and primers, cap-type, are included, even though they do not contain primary explosives</td>
<td>B</td>
<td>1.1B, 1.2B, 1.4B</td>
</tr>
<tr>
<td>Propellant explosive substance or other deflagrating explosive substance or article containing such explosive substance</td>
<td>C</td>
<td>1.1C, 1.2C, 1.3C, 1.4C</td>
</tr>
<tr>
<td>Secondary detonating explosive substance or black powder or article containing a secondary detonating explosive substance, in each case without means of initiation and without a propelling charge, or article containing a primary explosive substance and containing two or more effective protective features</td>
<td>D</td>
<td>1.1D, 1.2D, 1.4D, 1.5D</td>
</tr>
<tr>
<td>Article containing a secondary detonating explosive substance, without means of initiation, with a propelling charge (other than one containing a flammable liquid or gel or hypergolic liquids)</td>
<td>E</td>
<td>1.1E, 1.2E, 1.4E</td>
</tr>
<tr>
<td>Article containing a secondary detonating explosive substance with its own means of initiation, with a propelling charge (other than one containing a flammable liquid or gel or hypergolic liquids) or without a propelling charge</td>
<td>F</td>
<td>1.1F, 1.2F, 1.3F, 1.4F</td>
</tr>
<tr>
<td>Pyrotechnic substance, or article containing a pyrotechnic substance, or article containing both an explosive substance and an illuminating, incendiary, tear - or smoke-producing substance (other than a water-activated article or one containing white phosphorus, phosphides a pyrophoric substance, a flammable liquid or gel, or hypergolic liquids)</td>
<td>G</td>
<td>1.1G, 1.2G, 1.3G, 1.4G</td>
</tr>
<tr>
<td>Article containing both an explosive substance and white phosphorus</td>
<td>H</td>
<td>1.2H, 1.3H</td>
</tr>
<tr>
<td>Article containing both an explosive substance and a flammable liquid or gel</td>
<td>J</td>
<td>1.1J, 1.2J, 1.3J</td>
</tr>
<tr>
<td>Article containing both an explosive substance and a toxic chemical agent</td>
<td>K</td>
<td>1.2K, 1.3K</td>
</tr>
<tr>
<td>Explosive substance or article containing an explosive substance and presenting a special hazard (e.g. due to water-activation or presence of hypergolic liquids, phosphides or a pyrophoric substance) and needing isolation of each type (see 7.1.3.1.5 of UN21)</td>
<td>L</td>
<td>1.1L, 1.2L, 1.3L</td>
</tr>
<tr>
<td>Articles predominantly containing extremely insensitive substances</td>
<td>N</td>
<td>1.6N</td>
</tr>
<tr>
<td>Substance or article so packed or designed that any hazardous effects arising from accidental functioning are confined within the package unless the package has been degraded by fire, in which case all blast or projection effects are limited to the extent that they do not significantly hinder or prohibit fire fighting or other emergency response efforts in the immediate vicinity of the package</td>
<td>S</td>
<td>1.4S</td>
</tr>
</tbody>
</table>

Table notes:

NOTE A Articles of compatibility groups D and E may be fitted or packed together with their own means of initiation provided that such means have at least
PART 2: CLASSIFICATION

two effective protective features designed to prevent an explosion in the event of accidental functioning of the means of initiation. Such articles and packages must be assigned to compatibility groups D or E.

NOTE B Articles of compatibility groups D and E may be packed together with their own means of initiation, which do not have two effective protective features when, in the opinion of the competent authority of the country of origin, the accidental functioning of the means of initiation does not cause the explosion of an article under normal conditions of transport. Such packages must be assigned to compatibility groups D or E.

2.1.2.1.2 Scheme of classification of explosives, combination of hazard division with compatibility group

Table 2.1.2.1.2: Explosive compatibility group

<table>
<thead>
<tr>
<th>Hazard Division</th>
<th>Compatibility Group</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>N</th>
<th>S</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
<td>1.1A</td>
<td>1.1B</td>
<td>1.1C</td>
<td>1.1D</td>
<td>1.1F</td>
<td>1.1G</td>
<td>1.1J</td>
<td>1.1L</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>1.2B</td>
<td>1.2C</td>
<td>1.2D</td>
<td>1.2E</td>
<td>1.2F</td>
<td>1.2G</td>
<td>1.2H</td>
<td>1.2J</td>
<td>1.2K</td>
<td>1.2L</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td>1.3C</td>
<td>1.3D</td>
<td>1.3E</td>
<td>1.3F</td>
<td>1.3G</td>
<td>1.3H</td>
<td>1.3J</td>
<td>1.3K</td>
<td>1.3L</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td>1.4B</td>
<td>1.4C</td>
<td>1.4D</td>
<td>1.4E</td>
<td>1.4F</td>
<td>1.4G</td>
<td>1.4J</td>
<td>1.4L</td>
<td>1.4S</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>1.5F</td>
<td>1.5D</td>
<td>1.5G</td>
<td>1.5H</td>
<td>1.5J</td>
<td>1.5K</td>
<td>1.5L</td>
<td>1.5S</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td>1.6N</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.1-1.6</td>
<td></td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

2.1.2.2 The definitions of compatibility groups in 2.1.2.1.1 are intended to be mutually exclusive, except for a substance or article which qualifies for Compatibility Group S. Since the criterion of Compatibility Group S is an empirical one, assignment to this Group is necessarily linked to the tests for assignment to Division 1.4.

2.1.3 CLASSIFICATION PROCEDURE

2.1.3.1 General

2.1.3.1.1 Any substance or article having or suspected of having explosives characteristics must be considered for classification in Class 1. Substances and articles classified in Class 1 must be assigned to the appropriate division and compatibility group.

2.1.3.1.2 Except for substances which are listed by their proper shipping name in the Dangerous Goods List in Chapter 3.2, goods must not be offered for transport as Class 1 until they have been subjected to the classification procedure prescribed in this section. In addition, the classification procedure must be undertaken before a new product is offered for transport. In this context a new product is one which, in the opinion of the competent authority, involves any of the following:
PART 2: CLASSIFICATION

(a) a new explosive substance or a combination or a mixture of explosive substances which is considered to be significantly different from other combinations or mixtures already classified;
(b) a new design of article or an article containing a new explosive substance or a new combination or mixture of explosive substances;
(c) a new design of package for an explosive substance or article including a new type of inner packaging;

NOTE: The importance of this can be overlooked unless it is realised that a relatively minor change in an inner or outer packaging can be critical and can convert a lesser hazard into a mass explosion hazard.

2.1.3.1.3 The producer or other applicant for classification of a product must provide adequate information concerning the names and characteristics of all explosive substances in the product and must furnish the results of all relevant tests which have been done. It is assumed that all the explosive substances in a new article have been properly tested and then approved.

2.1.3.1.4 A report on the series of tests must be drawn up in accordance with the requirements of the competent authority. It must in particular contain information on:
(a) the composition of the substance or the structure of the article;
(b) the quantity of substance or number of articles per test;
(c) the type and construction of the packaging;
(d) the test assembly, including in particular the nature, quantity and arrangement of the means of initiation or ignition used;
(e) the course of the test, including in particular the time elapsing until the occurrence of the first noteworthy reaction of the substance or article, the duration and characteristics of the reaction, and an estimate of the latter's completeness;
(f) the effect of the reaction on the immediate surroundings (up to 25 m from the site of the test);
(g) the effect of the reaction on the more remote surroundings (more than 25 m from the site of the test); and
(h) the atmospheric conditions during the test.

2.1.3.1.5 Verification of the classification must be undertaken if the substance or article or its packaging is degraded and the degradation might affect the behaviour of the item in the tests.

2.1.3.2 Procedure

2.1.3.2.1 Figure 2.1.1 indicates the general scheme for classifying a substance or article which is to be considered for inclusion in Class 1. The assessment is in two stages. First, the potential of a substance or article to explode must be ascertained and its stability and sensitivity, both chemical and physical, must be shown to be acceptable. In order to promote uniform assessments by competent authorities, it is recommended that data from suitable tests be analysed systematically with respect to the appropriate test criteria using the flow chart of Figure 10.2 in Part I of the Manual of Tests and Criteria. If the substance or article is acceptable for Class 1 it is then necessary to proceed to the
second stage, to assign the correct hazard division by the flow chart of Figure 10.3 in the same publication.

2.1.3.2.2 The tests for acceptance and the further tests to determine the correct division in Class 1 are conveniently grouped into seven series as listed in Part I of the Manual of Tests and Criteria. The numbering of these series relates to the sequence of assessing results rather than the order in which the tests are conducted.

2.1.3.2.3 Scheme of procedure for classifying a substance or article.

NOTE 1: The competent authority which prescribes the definitive test method corresponding to each of the Test Types should specify the appropriate test criteria. Where there is international agreement on test criteria, the details are given in the publication referred to above describing the seven series of tests.

NOTE 2: The scheme of assessment is only designed for the classification of packaged substances and articles and for individual unpacked articles. Transport in freight containers, road vehicles and rail wagons may require special tests which take into consideration the quantity (self-confinement) and kind of substance and the container for the substance. Such tests may be specified by the competent authorities.

NOTE 3: Since there will be borderline cases with any scheme of testing there should be an ultimate authority who will make the final decision. Such a decision may not receive international acceptance and may therefore be valid only in the country where it is made. The United Nations Committee of Experts on the Transport of Dangerous Goods provides a forum for the discussion of borderline cases. Where international recognition is sought for a classification, the competent authority should submit full details of all tests made including the nature of any variations introduced.
PART 2: CLASSIFICATION

Figure 2.1.1: Scheme of procedure for classifying a substance or article

- **PRODUCT FOR CLASSIFICATION**
- **ACCEPTANCE PROCEDURE**
 - **REJECT**
 - Explosive but too hazardous for transport
 - **REJECT**
 - Not in Class 1
- **ACCEPT INTO CLASS 1**
 - **HAZARD DIVISION ASSIGNMENT**
 - **DIVISION**
 - 1.1, 1.2, 1.3, 1.4, 1.5 or 1.6
 - **COMPATIBILITY GROUP ASSIGNMENT**
 - **COMPATIBILITY GROUP**
 - A, B, C, D, E, F, G, H, J, K, L, N or S
- **CLASSIFICATION CODE**

* See 2.1.3.3.2

2.1.3.3 Acceptance procedure

2.1.3.3.1 The results from preliminary tests and those from Test Series 1 to 4 are used to determine whether or not the product is acceptable for Class 1. If the substance is manufactured with a view to producing a practical explosive or pyrotechnic effect, it is unnecessary to conduct Test Series 1 and 2. If an article, a packaged article or a packaged substance is rejected by Test Series 3 and/or 4 it may be practicable to redesign the article or the packaging to render it acceptable.
NOTE: Some devices may function accidentally during transport. Theoretical analysis, test data or other evidence of safety should be provided to establish that such an event is very unlikely or that the consequences would not be significant. The assessment should take account of vibration related to the proposed modes of transport, static electricity, electromagnetic radiation at all relevant frequencies (maximum intensity 100 W.m^{-2}), adverse climatic conditions and compatibility of explosive substances with glues, paints and packaging materials with which they may come in contact. All articles containing primary explosive substances should be assessed to evaluate the risk and consequences of accidental functioning during transport. The reliability of fuses should be assessed taking account of the number of independent safety features. All articles and packaged substances should be assessed to ensure they have been designed in a good workmanlike manner (e.g. there is no possibility of formation of voids or thin films of explosive substance, and no possibility of grinding or nipping explosive substances between hard surfaces).

2.1.3.3.2 A product that is determined to be not acceptable for Class 1 in accordance with 2.1.3.3.1 due to either sensitivity or instability must be assessed as too dangerous to be transported.

2.1.3.4 Assignment to hazard divisions

2.1.3.4.1 Assessment of the hazard division is usually made on the basis of test results. A substance or article must be assigned to the hazard division which corresponds to the results of the tests to which the substance or article, as offered for transport, has been subjected. Other test results, and data assembled from accidents which have occurred, may also be taken into account.

2.1.3.4.2 Test series 5, 6 and 7 are used for the determination of the hazard division. Test series 5 is used to determine whether a substance can be assigned to Division 1.5. Test series 6 is used for the assignment of substances and articles to Divisions 1.1, 1.2, 1.3 and 1.4. Test series 7 is used for the assignment of articles to Division 1.6.

2.1.3.4.3 In the case of Compatibility Group S the tests may be waived by the competent authority if classification by analogy is possible using test results for a comparable article.

2.1.3.5 Assignment of fireworks to hazard divisions

2.1.3.5.1 Fireworks must normally be assigned to hazard divisions 1.1, 1.2, 1.3, and 1.4 on the basis of test data derived from Test Series 6. However

(a) waterfalls containing flash composition (see Note 2 of 2.1.3.5.5) shall be classified as 1.1G regardless of the results of Test Series 6;

(b) since the range of fireworks is very extensive and the availability of test facilities may be limited, assignment to hazard divisions may also be made in accordance with the procedure in 2.1.3.5.2.

2.1.3.5.2 Assignment of fireworks to UN Nos. 0333, 0334, 0335 or 0336, and articles to UN 0431 for those used for theatrical effects meeting the definition for article type and 1.4G specification in the default fireworks classification table in 2.1.3.5.5 may be made on the basis of analogy,
without the need for Test Series 6 testing, in accordance with the default fireworks classification table in 2.1.3.5.5. Such assignment must be made with the agreement of the competent authority. Items not specified in the table must be classified on the basis of test data derived from Test Series 6.

NOTE 1: The addition of other types of fireworks to column 1 of the table in 2.1.3.5.5 should only be made on the basis of full test data submitted to the UN Sub-Committee of Experts on the Transport of Dangerous Goods for consideration.

NOTE 2: Test data derived by competent authorities which validates, or contradicts the assignment of Hazard Division to fireworks specified in column 4 of the table in 2.1.3.5.5 to hazard divisions in column 5 should be submitted to the UN Sub-Committee of Experts on the Transport of Dangerous Goods for information (see also note 3 in 2.1.3.2.3).

2.1.3.5.3 Where fireworks of more than one hazard division are packed in the same package they must be classified on the basis of the highest hazard division unless test data derived from Test Series 6 indicate otherwise.

2.1.3.5.4 The classification shown in the table in 2.1.3.5.5 applies only for articles packed in fibreboard boxes (4G).

2.1.3.5.5 Default fireworks Classification table

NOTE 1: References to percentages in the table, unless otherwise stated, are to the mass of all pyrotechnic substances (e.g. rocket motors, lifting charge, bursting charge and effects charge).

NOTE 2: “Flash composition” in this table refers to pyrotechnic substances in powder form or as pyrotechnic units as presented in the fireworks that are used in waterfalls, or to produce an aural effect or used as a bursting charge, or propellant charge unless:

(a) The time taken for the pressure rise in the HSL Flash Composition Test in Appendix 7 of the Manual of Tests and Criteria is demonstrated to be more than 6 ms for 0.5 g of pyrotechnic substance; or

(b) The pyrotechnic substance gives a negative “-” result in the US Flash Composition Test in Appendix 7 of the Manual of Tests and Criteria

NOTE 3: Dimensions in mm refer to:

(a) For spherical and peanut shells the diameter of the sphere of the shell;

(b) For cylinder shells the length of the shell;

1 This table contains a list of firework classifications that may be used in the absence of Test Series 6 data (See 2.1.3.5.2).
PART 2: CLASSIFICATION

(c) For a shell in mortar, Roman candle, shot tube firework or mine the inside diameter of the tube comprising or containing the firework;

(d) For a bag mine or cylinder mine, the inside diameter of the mortar intended to contain the mine.
PART 2: CLASSIFICATION

Table 2.1.3.5.5: Default fireworks classification table

<table>
<thead>
<tr>
<th>Type</th>
<th>Includes: / Synonym:</th>
<th>Definition</th>
<th>Specification</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell, spherical or cylindrical</td>
<td>Spherical display shell: aerial shell, colour shell, dye shell, multi-break shell, multi-effect shell, nautical shell, parachute shell, smoke shell, star shell; report shell: maroon, salute, sound shell, thunderclap, aerial shell kit</td>
<td>Device with or without propellant charge, with delay fuse and bursting charge, pyrotechnic unit(s) or loose pyrotechnic substance and designed to be projected from a mortar</td>
<td>All report shells</td>
<td>1.1G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colour shell: ≥ 180 mm</td>
<td>1.1G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colour shell: < 180 mm with > 25% flash composition, as loose powder and/or report effects</td>
<td>1.1G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colour shell: < 180 mm with ≤ 25% flash composition, as loose powder and/or report effects</td>
<td>1.3G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colour shell: ≤ 50 mm, or ≤ 60 g pyrotechnic substance, with ≤ 2% flash composition as loose powder and/or report effects</td>
<td>1.4G</td>
<td></td>
</tr>
<tr>
<td>Peanut shell</td>
<td>Device with two or more spherical aerial shells in a common wrapper propelled by the same propellant charge with separate external delay fuses</td>
<td>The most hazardous spherical aerial shell determines the classification</td>
<td>1.1G</td>
<td></td>
</tr>
<tr>
<td>Preloaded mortar, shell in mortar</td>
<td>Assembly comprising a spherical or cylindrical shell inside a mortar from which the shell is designed to be projected</td>
<td>All report shells</td>
<td>1.1G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colour shell: ≥ 180 mm</td>
<td>1.1G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colour shell: > 25% flash composition as loose powder and/or report effects</td>
<td>1.1G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colour shell: > 50 mm and < 180 mm</td>
<td>1.2G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colour shell: ≤ 50 mm, or < 60 g pyrotechnic substance, with ≤ 25% flash composition as loose powder and/or report effects</td>
<td>1.3G</td>
<td></td>
</tr>
<tr>
<td>Shell of shells (spherical)</td>
<td>(Reference to percentages for shell of shells are to the gross mass of the fireworks article)</td>
<td>Device without propellant charge, with delay fuse and bursting charge, containing report shells and inert materials and designed to be projected from a mortar</td>
<td>> 120 mm</td>
<td>1.1G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device without propellant charge, with delay fuse and bursting charge, containing report shells ≤ 25g flash composition per report unit, with ≤ 33% flash composition and ≥ 60% inert materials and designed to be projected from a mortar</td>
<td>≤ 120 mm</td>
<td>1.3G</td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Includes / Synonym:</th>
<th>Definition</th>
<th>Specification</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device without propellant charge, with delay fuse and bursting charge, containing colour shells and/or pyrotechnic units and designed to be projected from a mortar</td>
<td>> 300 mm</td>
<td>1.1G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device without propellant charge, with delay fuse and bursting charge, containing colour shells ≤ 70mm and/or pyrotechnic units, with ≤ 25% flash composition and ≤ 60% pyrotechnic substance and designed to be projected from a mortar</td>
<td>> 200 mm and ≤ 300 mm</td>
<td>1.3G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device with propellant charge, with delay fuse and bursting charge, containing colour shells ≤ 70 mm and/or pyrotechnic units, with ≤ 25% flash composition and ≤ 60% pyrotechnic substance and designed to be projected from a mortar</td>
<td>≤ 200 mm</td>
<td>1.3G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery/ combination</td>
<td>Barrage, bombardos, cakes, finale box, flowerbed, hybrid, multiple tubes, shell cakes, banger batteries, flash banger batteries</td>
<td>Assembly including several elements either containing the same type or several types each corresponding to one of the types of fireworks listed in this table, with one or two points of ignition</td>
<td>The most hazardous firework type determines the classification</td>
<td></td>
</tr>
<tr>
<td>Roman candle</td>
<td>Exhibition candle, candle, bombettes</td>
<td>Tube containing a series of pyrotechnic units consisting of alternate pyrotechnic substance, propellant charge, and transmitting fuse</td>
<td></td>
<td>1.1G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 50 mm inner diameter, containing flash composition, or <50 mm with >25% flash composition</td>
<td>1.1G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 50 mm inner diameter, containing no flash composition</td>
<td>1.2G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 50 mm inner diameter and ≤ 25% flash composition</td>
<td>1.3G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 30 mm inner diameter, each pyrotechnic unit ≤ 25 g and ≤ 5% flash composition</td>
<td>1.4G</td>
</tr>
<tr>
<td>Shot tube</td>
<td>Single shot Roman candle, small preloaded mortar</td>
<td>Tube containing a pyrotechnic unit consisting of pyrotechnic substance, propellant charge with or without transmitting fuse</td>
<td></td>
<td>1.3G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 30 mm inner diameter and pyrotechnic unit > 25 g, or > 5% and ≤ 25% flash composition</td>
<td>1.3G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 30 mm inner diameter, pyrotechnic unit ≤ 25 g and ≤ 5% flash composition</td>
<td>1.4G</td>
</tr>
<tr>
<td>Rocket</td>
<td>Avalanche rocket, signal rocket, whistling rocket, bottle rocket, sky</td>
<td>Flash composition effects only</td>
<td>1.1G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flash composition > 25% of the pyrotechnic substance</td>
<td>1.1G</td>
</tr>
<tr>
<td>Type</td>
<td>Includes: / Synonym:</td>
<td>Definition</td>
<td>Specification</td>
<td>Classification</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>rocket</td>
<td>rocket, missile type rocket, table rocket</td>
<td>Tube containing pyrotechnic substance and/or pyrotechnic units, equipped with stick(s) or other means for stabilisation of flight, and designed to be propelled into the air</td>
<td>> 20 g pyrotechnic substance and flash composition ≤ 25 % ≤ 20 g pyrotechnic substance, black powder bursting charge and ≤ 0.13 g flash composition per report and ≤ 1 g in total</td>
<td>1.3G</td>
</tr>
<tr>
<td>Mine</td>
<td>Pot-a-feu, ground mine, bag mine, cylinder mine</td>
<td>Tube containing propellant charge and pyrotechnic units and designed to be placed on the ground or to be fixed in the ground. The principal effect is ejection of all the pyrotechnic units in a single burst producing a widely dispersed visual and/or aural effect in the air or: Cloth or paper bag or cloth or paper cylinder containing propellant charge and pyrotechnic units, designed to be placed in a mortar and to function as a mine</td>
<td>> 25% flash composition, as loose powder and/or report effects ≥ 180 mm and ≤ 25% flash composition, as loose powder and/or report effects < 180 mm and ≤ 25% flash composition, as loose powder and/or report effects ≤ 150 g pyrotechnic substance, containing ≤ 5% flash composition as loose powder and/or report effects. Each pyrotechnic unit ≤ 25 g, each report effect < 2 g ; each whistle, if any, ≤ 3 g</td>
<td>1.1G</td>
</tr>
<tr>
<td>Fountain</td>
<td>Volcanos, gerbs, lances, Bengal fire, flitter sparkle, cylindrical fountains, cone fountains, illuminating torch</td>
<td>Non-metallic case containing pressed or consolidated pyrotechnic substance producing sparks - and flame NOTE: Fountains intended to produce a vertical cascade or curtain of sparks are considered to be waterfalls, see row below)</td>
<td>≥ 1 kg pyrotechnic substance < 1 kg pyrotechnic substance containing flash composition regardless of the results of Test Series 6 (see 2.1.3.5.1 (a))</td>
<td>1.3G</td>
</tr>
<tr>
<td>Waterfall</td>
<td>cascades, showers</td>
<td>pyrotechnic fountain intended to produce a vertical cascade or curtain of sparks</td>
<td>not containing flash composition</td>
<td>1.3G</td>
</tr>
<tr>
<td>Sparkler</td>
<td>Handheld sparklers, non-handheld sparklers, wire sparklers</td>
<td>Rigid wire partially coated (along one end) with slow burning pyrotechnic substance with or without an ignition tip</td>
<td>perchlorate based sparklers: > 5 g per item or > 10 items per pack Perchlorate based sparklers: ≤ 5 g per item and ≤ 10 items per pack; Nitrate based sparklers: ≤ 30 g per item</td>
<td>1.3G</td>
</tr>
<tr>
<td>Bengal</td>
<td>Dipped stick</td>
<td></td>
<td>Perchlorate based items: > 5 g per item or > 10 items per pack</td>
<td>1.3G</td>
</tr>
<tr>
<td>Type</td>
<td>Includes: / Synonym:</td>
<td>Definition</td>
<td>Specification</td>
<td>Classification</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>stick</td>
<td></td>
<td>Non-metallic stick partially coated (along one end) with slow-burning pyrotechnic substance and designed to be held in the hand</td>
<td>Perchlorate based items: ≤ 5 g per item and ≤ 10 items per pack; nitrate based items: ≤ 30 g per item</td>
<td>1.4G</td>
</tr>
<tr>
<td>Low hazard fireworks and novelties</td>
<td>Table bombs, throwdowns, crackling granules, smokes, fog, snakes, glow worm, serpents, snaps, party poppers</td>
<td>Device designed to produce very limited visible and/or audible effect which contains small amounts of pyrotechnic and/or explosive substance.</td>
<td>Throwdowns and snaps may contain up to 1.6 mg of silver fulminate; snaps and party poppers may contain up to 16 mg of potassium chlorate/red phosphorous mixture; other articles may contain up to 5 g of pyrotechnic substance, but no flash composition</td>
<td>1.4G</td>
</tr>
<tr>
<td>Spinner</td>
<td>Aerial spinner, helicopter, chaser, ground spinner</td>
<td>Non-metallic tube or tubes containing gas- or spark-producing pyrotechnic substance, with or without noise producing composition, with or without aerofoils attached</td>
<td>Pyrotechnic substance per item > 20 g, containing ≤ 3% flash composition as report effects, or whistle composition ≤ 5 g</td>
<td>1.3G</td>
</tr>
<tr>
<td>Spinner</td>
<td></td>
<td></td>
<td>Pyrotechnic substance per item ≤ 20 g, containing ≤ 3% flash composition as report effects, or whistle composition ≤ 5 g</td>
<td>1.4G</td>
</tr>
<tr>
<td>Wheels</td>
<td>Catherine wheels, Saxon</td>
<td>Assembly including drivers containing pyrotechnic substance and provided with a means of attaching it to a support so that it can rotate</td>
<td>≥ 1 kg total pyrotechnic composition, no report effect, each whistle (if any) ≤ 25 g and ≤ 50 g whistle composition per wheel</td>
<td>1.3G</td>
</tr>
<tr>
<td>Wheels</td>
<td></td>
<td></td>
<td>< 1 kg total pyrotechnic substance, no report effect, each whistle (if any) ≤ 5 g and ≤ 10 g whistle composition per wheel</td>
<td>1.4G</td>
</tr>
<tr>
<td>Aerial wheel</td>
<td>Flying Saxon, UFO’s, rising crown</td>
<td>Tubes containing propellant charges and sparks- flame- and/or noise producing pyrotechnic substances, the tubes being fixed to a supporting ring</td>
<td>> 200 g total pyrotechnic substance or > 60 g pyrotechnic substance per driver, ≤ 3% flash composition as report effects, each whistle (if any) ≤ 25 g and ≤ 50 g whistle composition per wheel</td>
<td>1.3G</td>
</tr>
<tr>
<td>Aerial wheel</td>
<td></td>
<td></td>
<td>≤ 200 g total pyrotechnic substance and ≤ 60 g pyrotechnic substance per driver, ≤ 3% flash composition as report effects, each whistle (if any) ≤ 5 g and ≤ 10 g whistle composition per wheel</td>
<td>1.4G</td>
</tr>
<tr>
<td>Selection pack</td>
<td>Display selection box, display selection pack, garden selection box, indoor selection box; assortment</td>
<td>A pack of more than one type each corresponding to one of the types of fireworks listed in this table</td>
<td>The most hazardous firework type determines the classification</td>
<td></td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Includes / Synonym:</th>
<th>Definition</th>
<th>Specification</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firecracker</td>
<td>Celebration cracker, celebration roll, string cracker</td>
<td>Assembly of tubes (paper or cardboard) linked by a pyrotechnic fuse, each tube intended to produce an aural effect</td>
<td>Each tube ≤ 140 mg of flash composition or ≤ 1 g black powder</td>
<td>1.4G</td>
</tr>
<tr>
<td>Banger</td>
<td>Salute, flash banger, lady cracker</td>
<td>Non-metallic tube containing report composition intended to produce an aural effect</td>
<td>> 2 g flash composition per item</td>
<td>1.1G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 2 g flash composition per item and ≤ 10 g per inner packaging</td>
<td>1.3G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 1 g flash composition per item and ≤ 10 g per inner packaging or ≤ 10 g black powder per item</td>
<td>1.4G</td>
</tr>
</tbody>
</table>

(a) References to percentages in the table, unless otherwise stated, are to the mass of all pyrotechnic substances (e.g. rocket motors, lifting charge, bursting charge and effect charge).

(b) “Flash composition” in this table refers to pyrotechnic substances in powder form or as pyrotechnic units as presented in the fireworks, that are used to produce an aural effect, or used as a bursting charge or lifting charge, unless the time taken for the pressure rise is demonstrated to be more than 6 ms for 0.5 g of pyrotechnic substance in the HSL Flash Composition Test in Appendix 7 of the Manual of Tests and Criteria.

(c) Dimensions in mm refers to: (i) for spherical and peanut shells the diameter of the sphere of the shell; (ii) for cylinder shells the length of the shell; (iii) for a shell in mortar, Roman candle, shot tube firework or mine the inside diameter of the tube comprising or containing the firework; (iv) for a bag mine or cylinder mine, the inside diameter of the mortar intended to contain the mine.
2.1.3.6 Exclusion from Class 1

2.1.3.6.1 The competent authority may exclude an article or substance from Class 1 by virtue of test results and the Class 1 definition.

2.1.3.6.2 Where a substance provisionally accepted into Class 1 is excluded from Class 1 by performing Test Series 6 on a specific type and size of package, this substance, when meeting the classification criteria or definition for another class or division, should be listed in the Dangerous Goods List of Chapter 3.2 in that class or division with a special provision restricting it to the type and size of package tested.

2.1.3.6.3 Where a substance is assigned to Class 1 but is diluted to be excluded from Class 1 by Test Series 6, this diluted substance (hereafter referred to as desensitised explosive) must be listed in the Dangerous Goods List of Chapter 3.2 with an indication of the highest concentration which excluded it from Class 1 (see 2.3.1.4 and 2.4.2.4.1) and if applicable, the concentration below which it is no longer deemed subject to this Code. New solid desensitised explosives subject to this Code must be listed in Division 4.1 and new liquid desensitised explosives must be listed in Class 3. When the desensitised explosive meets the criteria or definition for another class or division, the corresponding subsidiary hazard(s) must be assigned to it.

2.1.3.6.4 An article may be excluded from Class 1 when three unpackaged articles, each individually activated by its own means of initiation or ignition or external means to function in the designed mode, meet the following test criteria:

(a) No external surface is to have a temperature of more than 65º C. A momentary spike in temperature up to 200 ºC is acceptable;

(b) No rupture or fragmentation of the external casing or movement of the article or detached parts of the article of more than one metre in any direction; and

NOTE: Where the integrity of the article may be affected in the event of an external fire these criteria are to be examined by a fire test. One such method is described in ISO 14451-2 using a heating rate of 80 K/min.

(c) No audible report exceeding 135 dB(C) peak at a distance of one metre; and

(d) No flash or flame capable of igniting a material such as a sheet of 80 ± 10 g/m² paper in contact with the article; and

(e) No production of smoke, fumes or dust in such quantities that the visibility in a one cubic metre chamber equipped with appropriately sized blow out panels is reduced more than 50% as measured by a calibrated light (lux) meter or radiometer located one metre from a constant light source located at the midpoint on opposite walls. The general guidance on Optical Density Testing in ISO 5659-1 and the general guidance on the Photometric System described in Section 7.5 in ISO 5659-2 may be used or similar optical density measurement methods designed to accomplish the same purpose may also be employed. A suitable hood cover surrounding the back and sides of the light meter are to be used to minimise effects of scattered or leaking light not emitted directly from the source.
NOTE 1: If during the tests addressing criteria (a), (b), (c) and (d) no or very little smoke is observed the test described in (e) may be waived.

NOTE 2: The competent authority may require testing in packaged form if it is determined that, as packaged for transport, the article may pose a greater hazard.

2.1.3.7 Classification documentation

2.1.3.7.1 A competent authority assigning an article or substance into Class 1 should confirm with the applicant that classification in writing.

2.1.3.7.2 A competent authority classification document may be in any form and may consist of more than one page, provided pages are numbered consecutively. The document should have a unique reference.

2.1.3.7.3 The information provided shall be easy to identify, legible and durable.

2.1.3.7.4 Examples of the information that may be provided in the classification documents are as follows:

(a) The name of the competent authority and the provisions in national legislation under which it is granted its authority;
(b) The modal or national regulations for which the classification document is applicable;
(c) Confirmation that the classification has been approved, made or agreed in accordance with the United Nations Recommendations on the Transport of Dangerous Goods or the relevant modal regulations;
(d) The name and address of the person in law to which the classification has been assigned and any company registration which uniquely identifies a company or other body corporate under national legislation;
(e) The name under which the explosives will be placed onto the market or otherwise supplied for transport;
(f) The Proper Shipping Name, UN number, Class, Hazard Division and corresponding compatibility group of the explosives;
(g) Where appropriate, the maximum net explosive mass of the package or article;
(h) The name, signature, stamp, seal or other identification of the person authorised by the competent authority to issue the classification document is clearly visible;
(i) Where safety in transport or the hazard division is assessed as being dependent upon the packaging, the packaging mark or a description of the permitted:
 - Inner packagings
 - Intermediate packagings
 - Outer packagings
(j) The classification document states the part number, stock number or other identifying reference under which the explosives will be placed onto the market or otherwise supplied for transport;
(k) The name and address of the person in law who manufactured the explosives and any company registration which uniquely identifies a company or other body
PART 2: CLASSIFICATION

corporate under national legislation;

(l) Any additional information regarding the applicable packing instruction and special packing provisions where appropriate;

(m) The basis for assigning the classification, i.e. whether on the basis of test results, default for fireworks, analogy with classified explosive, by definition from the Dangerous Goods List etc.;

(n) Any special conditions or limitations that the competent authority has identified as relevant to the safety for transport of the explosives, the communication of the hazard and international transport;

(o) The expiry date of the classification document is given where the competent authority considers one to be appropriate.

CHAPTER 2.2 - CLASS 2 - GASES

2.2.1 DEFINITIONS AND GENERAL PROVISIONS

2.2.1.1 A gas is a substance which:

(a) at 50 °C has a vapour pressure greater than 300 kPa; or
(b) is completely gaseous at 20 °C at a standard pressure of 101.3 kPa.

2.2.1.2 The transport condition of a gas is described according to its physical state as:

(a) Compressed gas - a gas which when packaged under pressure for transport is entirely gaseous at -50 °C; this category includes all gases with a critical temperature less than or equal to -50 °C; or
(b) Liquefied gas - a gas which when packaged under pressure for transport is partially liquid at temperatures above -50 °C. A distinction is made between:
 (i) High pressure liquefied gas - a gas with a critical temperature between -50 °C and +65 °C, and
 (ii) Low pressure liquefied gas - a gas with a critical temperature above +65 °C;

(c) Refrigerated liquefied gas - a gas which when packaged for transport is made partially liquid because of its low temperature.

(d) Dissolved gas - a gas which when packaged under pressure for transport is dissolved in a liquid phase solvent.

(e) Adsorbed gas – a gas which when packaged for transport is adsorbed onto a solid porous material resulting in an internal receptacle pressure of less than 101.3 kPa at 20 °C and less than 300 kPa at 50 °C.

2.2.1.3 The class comprises compressed gases, liquefied gases, dissolved gases, refrigerated liquefied gases, adsorbed gases, mixtures of one or more gases with one or more vapours of substances of other classes, articles charged with a gas, aerosols and chemicals under pressure.
PART 2: CLASSIFICATION

2.2.2 DIVISIONS

2.2.2.1 Substances of Class 2 are assigned to one of three divisions based on the primary hazard of the gas during transport.

NOTE: For UN 1950 AEROSOLS, see also the criteria in special provision 63. For chemicals under pressure of UN Nos. 3500 to 3505, see also special provision 362. For UN 2037 RECEPTACLES, SMALL, CONTAINING GAS (GAS CARTRIDGES) see also special provision 303.

(a) Division 2.1 Flammable gases
Gases which at 20 °C and a standard pressure of 101.3 kPa:
(i) are ignitable when in a mixture of 13 per cent or less by volume with air; or
(ii) have a flammable range with air of at least 12 percentage points regardless of the lower flammability limit. Flammability should be determined by tests or by calculation in accordance with methods adopted by ISO (see ISO 10156:2017). Where insufficient data are available to use these methods, tests by a comparable method recognised by the competent authority may be used;

(b) Division 2.2 Non-flammable, non-toxic gases
Gases which:
(i) are asphyxiant – gases which dilute or replace the oxygen normally in the atmosphere; or
(ii) are oxidising – gases which may, generally by providing oxygen, cause or contribute to the combustion of other material more than air does; or
(iii) do not come under the other divisions;

NOTE: In 2.2.2.1 (b) (ii), “gases which cause or contribute to the combustion of other material more than air does” means pure gases or gas mixtures with an oxidising power greater than 23.5% as determined by a method specified in ISO 10156:2017.

(c) Division 2.3 Toxic gases
Gases which:
(i) are known to be so toxic or corrosive to humans as to pose a hazard to health; or
(ii) are presumed to be toxic or corrosive to humans because they have an LC50 value (as defined in 2.6.2.1) equal to or less than 5,000 ml/m³ (ppm).

NOTE: Gases meeting the above criteria owing to their corrosivity are to be classified as toxic with a subsidiary corrosive hazard.

2.2.2.2 Gases and gas mixtures with hazards associated with more than one division take the following precedence:

(a) Division 2.3 takes precedence over all other divisions;
(b) Division 2.1 takes precedence over Division 2.2.
PART 2: CLASSIFICATION

2.2.2.3 Gases of Division 2.2 are not subject to this Code if they are transported at a pressure less than 200 kPa at 20 °C and are not liquefied or refrigerated liquefied gases.

2.2.2.4 Gases of Division 2.2 are not subject to this Code when contained in the following:
- Foodstuffs, including carbonated beverages (except UN 1950);
- Balls intended for use in sports;
- Tyres (except for air transport).

NOTE: This exemption does not apply to lamps. For lamps see 1.1.1.9.

2.2.3 MIXTURES OF GASES

Gas mixtures are to be classified in one of the three divisions (including vapours of substances from other classes) by applying the following procedures:

(a) Flammability is determined by tests or by calculation in accordance with methods adopted by ISO (see ISO 10156:2017). Where insufficient data are available to use these methods, tests by a comparable method recognised by the competent authority may be used;

(b) The level of toxicity is determined either by tests to measure the LC₅₀ value (as defined in 2.6.2.1) or by a calculation method using the following formula:

\[
LC_{50}\text{Toxic(mixture)} = \frac{1}{\sum_{i=1}^{n} f_i T_i}
\]

where: \(f_i \) = mole fraction of the \(i^{th} \) component substance of the mixture
\(T_i \) = Toxicity index of the \(i^{th} \) component substance of the mixture (the \(T_i \) equals the LC₅₀ value when available).

When LC₅₀ values are unknown the toxicity index is determined by using the lowest LC₅₀ value of substances of similar physiological and chemical effects, or through testing if this is the only practical possibility;

(c) A gas mixture has a subsidiary hazard of corrosivity when the mixture is known by human experience to be destructive to the skin, eyes or mucous membranes or when the LC₅₀ value of the corrosive components of the mixture is equal to or less than 5,000 ml/m³ (ppm) when the LC₅₀ is calculated by the formula:
\[LC_{50} \text{ Corrosive(mixture)} = \frac{I}{\sum_{i=1}^{n} \frac{L_{ci}}{T_{ci}}} \]

where: \(f_{ci} \) = mole fraction of the \(i^{th} \) corrosive component substance of the mixture

\(T_{ci} \) = Toxicity index of the \(i^{th} \) corrosive component substance of the mixture (the \(T_{ci} \) equals the \(LC_{50} \) value when available);

(d) Oxidising ability is determined either by tests or by calculation methods adopted by ISO (see the Note in 2.2.2.1 (b) and ISO 10156:2017).

2.2.4 GASES NOT ACCEPTED FOR TRANSPORT

Chemically unstable gases of Class 2 shall not be accepted for transport unless the necessary precautions have been taken to prevent the possibility of a dangerous decomposition or polymerization under normal conditions of transport or unless transported in accordance with special packing provision (r) of packing instruction P200 (5) of 4.1.4.1, as applicable. For the precautions necessary to prevent polymerization, see special provision 386 of Chapter 3.3. To this end particular care shall be taken to ensure that receptacles and tanks do not contain any substances liable to promote these reactions.
CHAPTER 2.3 - CLASS 3 – FLAMMABLE LIQUIDS

Introductory Notes

NOTE 1: The word “flammable” has the same meaning as “inflammable”.

NOTE 2: The flash point of a flammable liquid may be altered by the presence of an impurity. The substances listed in Class 3 in the Dangerous Goods List in Chapter 3.2 should generally be regarded as chemically pure. Since commercial products may contain added substances or impurities, flash points may vary, and this may have an effect on classification or determination of the packing group for the product. In the event of doubt regarding the classification or packing group of a substance, the flash point of the substance must be determined experimentally.

2.3.1 DEFINITION AND GENERAL PROVISIONS

2.3.1.1 Class 3 includes the following substances:

(a) Flammable liquids (see 2.3.1.2 and 2.3.1.3);

(b) Liquid desensitised explosives (see 2.3.1.4).

2.3.1.2 Flammable liquids are liquids, or mixtures of liquids, or liquids containing solids in solution or suspension (for example, paints, varnishes, lacquers, etc., but not including substances otherwise classified on account of their dangerous characteristics) which give off a flammable vapour at temperatures of not more than 60 °C, closed-cup test, or not more than 65.6 °C, open-cup test, normally referred to as the flash point. This class also includes:

(a) liquids offered for transport at temperatures at or above their flash point; and

(b) substances that are transported or offered for transport at elevated temperatures in a liquid state and which give off a flammable vapour at a temperature at or below the maximum transport temperature.

NOTE: The results of open-cup tests and of closed-cup tests are not strictly comparable and even individual results by the same test are often variable.

2.3.1.3 Liquids meeting the definition in 2.3.1.2 with a flash point of more than 35 °C which do not sustain combustion need not be considered as flammable liquids for the purposes of this Code. Liquids are considered to be unable to sustain combustion for the purposes of this Code (i.e. they do not sustain combustion under defined test conditions) if:

(a) they have passed a suitable combustibility test (see SUSTAINED COMBUSTIBILITY TEST) prescribed in the Manual of Tests and Criteria, Part III, sub-section 32.5.2; or

(b) their fire point according to ISO 2592:2000 is greater than 100 °C; or

(c) they are water miscible solutions with a water content of more than 90% by mass.
PART 2: CLASSIFICATION

2.3.1.4 Liquid desensitised explosives are explosive substances which are dissolved or suspended in water or other liquid substances, to form an homogeneous liquid mixture to suppress their explosives properties (see 2.1.3.6.3).

Entries in the Dangerous Goods List for liquid desensitised explosives are:

UN 1204, UN 2059, UN 3064, UN 3343, UN 3357 and UN 3379

2.3.2 ASSIGNMENT OF PACKING GROUPS

2.3.2.1 The criteria in 2.3.2.6 are used to determine the hazard grouping of a liquid that presents a hazard due to flammability.

2.3.2.1.1 For liquids whose only hazard is flammability, the packing group for the substance is the hazard grouping shown in 2.3.2.6.

2.3.2.1.2 For a liquid with additional hazard(s), the hazard group determined from 2.3.2.6 and the hazard group based on the severity of the additional hazard(s) must be considered, and the classification and packing group determined in accordance with the provisions in Chapter 2.0.

2.3.2.2 Viscous flammable liquids such as paints, enamels, lacquers, varnishes, adhesives and polishes having a flash point of less than 23 °C may be placed in packing group III in conformity with the procedures prescribed in the Manual of Tests and Criteria, Part III, sub-section 32.3, provided that:

(a) The viscosity1 expressed as the flowtime in seconds and flash point are in accordance with the following table:

<table>
<thead>
<tr>
<th>Kinematic viscosity (extrapolated) v (at near-zero shear rate) mm2/s at 23 °C</th>
<th>Flow-time t in seconds</th>
<th>Jet diameter (mm)</th>
<th>Flash point, closed-cup (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 < v ≤ 80</td>
<td>20 < t ≤ 60</td>
<td>4</td>
<td>above 17</td>
</tr>
<tr>
<td>80 < v ≤ 135</td>
<td>60 < t ≤ 100</td>
<td>4</td>
<td>above 10</td>
</tr>
<tr>
<td>135 < v ≤ 220</td>
<td>20 < t ≤ 32</td>
<td>6</td>
<td>above 5</td>
</tr>
<tr>
<td>220 < v ≤ 300</td>
<td>32 < t ≤ 44</td>
<td>6</td>
<td>above -1</td>
</tr>
<tr>
<td>300 < v ≤ 700</td>
<td>44 < t ≤ 100</td>
<td>6</td>
<td>above -5</td>
</tr>
<tr>
<td>700 < v</td>
<td>100 < t</td>
<td>6</td>
<td>no limit</td>
</tr>
</tbody>
</table>

(b) Less than 3% of the clear solvent layer separates in the solvent separation test;

(c) The mixture or any separated solvent does not meet the criteria for Division 6.1 or Class 8;

1 Where the substance concerned is non-Newtonian, or where a flow cup method of viscosity determination is otherwise unsuitable, a variable shear-rate viscometer shall be used to determine the dynamic viscosity coefficient of the substance, at 23 °C, at a number of shear rates. The values obtained are plotted against shear rate and then extrapolated to zero shear rate. The dynamic viscosity thus obtained, divided by the density, gives the apparent kinematic viscosity at near-zero shear rate.
(d) The substances are packed in receptacles of not more than 450 litre capacity.

2.3.2.3 <Reserved>

2.3.2.4 Substances classified as flammable liquids due to their being transported or offered for transport at elevated temperatures are included in packing group III.

2.3.2.5 **Viscous liquids**

2.3.2.5.1 Except as provided for in 2.3.2.5.2, viscous liquids which:

- have a flash point of 23 °C or above and less than or equal to 60 °C; and
- are not toxic or corrosive\(^1\); and
- contain not more than 20% nitrocellulose provided the nitrocellulose contains not more than 12.6% nitrogen by dry mass; and
- are packed in receptacles of not more than 450 L capacity;

are not subject to this Code, if:

(a) in the solvent separation test (see Manual of Tests and Criteria, Part III, sub-section 32.5.1), the height of the separated layer of solvent is less than 3% of the total height; and

(b) the flowtime in the viscosity test (see Manual of Tests and Criteria, Part III, sub-section 32.4.3), with a jet diameter of 6 mm is equal to or greater than:

(i) 60 seconds; or

(ii) 40 seconds if the viscous liquid contains not more than 60% of Class 3 substances.

2.3.2.5.2 Viscous liquids which are also environmentally hazardous, but meet all other criteria in 2.3.2.5.1, are not subject to any other provisions of this Code when they are transported in single or combination packagings containing a net quantity per single or inner packaging of 5 litres or less, provided the packagings meet the general provisions of 4.1.1.1, 4.1.1.2 and 4.1.1.4 to 4.1.1.8.

2.3.2.6 **Hazard grouping based on flammability**

<table>
<thead>
<tr>
<th>Packing group</th>
<th>Flash point (closed-cup)</th>
<th>Initial boiling point</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>--</td>
<td>≤ 35 °C</td>
</tr>
<tr>
<td>II</td>
<td>< 23 °C</td>
<td>> 35 °C</td>
</tr>
<tr>
<td>III</td>
<td>≥ 23 °C ≤ 60 °C</td>
<td>> 35 °C</td>
</tr>
</tbody>
</table>

\(^1\) UN20 uses the phrase “or environmentally hazardous” here. However in this Code that would be misleading as environmentally hazardous liquids and solids are not subject to this Code in packagings, IBCs or other receptacles not exceeding 500 kg(L) [see Special Provision AU01].
PART 2: CLASSIFICATION

2.3.3 DETERMINATION OF FLASH POINT

The following methods for determining the flash point of flammable liquids may be used:

International standards:

<table>
<thead>
<tr>
<th>ISO 1516</th>
<th>ISO 1523</th>
<th>ISO 2719</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 3679</td>
<td>ISO 3680</td>
<td>ISO 13736</td>
</tr>
</tbody>
</table>

National standards:

AS 2106-series, Methods for the determination of the flash point of flammable liquids (closed cup)

American Society for Testing Materials International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, Pennsylvania, USA 19428-2959:

ASTM D3828-07a, Standard Test Methods for Flash Point by Small Scale Closed Tester
ASTM D56-05, Standard Test Method for Flash Point by Tag Closed Tester
ASTM D3278-96(2004)e1, Standard Test Methods for Flash Point of Liquids by Setaflash Closed-Cup Apparatus
ASTM D93-08, Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester

Association française de normalisation, AFNOR, 11, rue de Pressensé, 93571 La Plaine Saint-Denis Cedex:

French Standard NF M 07 - 019
French Standards NF M 07 - 011 / NF T 30 - 050 / NF T 66 - 009
French Standard NF M 07 - 036

Deutsches Institut für Normung, Burggrafenstr. 6, D-10787 Berlin:
Standard DIN 51755 (flash points below 65 °C)

State Committee of the Council of Ministers for Standardisation, 113813, GSP, Moscow, M-49 Leninsky Prospect, 9:
GOST 12.1.044-84.

2.3.4 DETERMINATION OF INITIAL BOILING POINT

The following methods for determining the initial boiling point of flammable liquids may be used:

International standards:

<table>
<thead>
<tr>
<th>ISO 3405</th>
<th>ISO 3924</th>
<th>ISO 4626</th>
</tr>
</thead>
</table>
PART 2: CLASSIFICATION

National standards:
American Society for Testing Materials International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, Pennsylvania, USA 19428-2959:

ASTM D86-07a, Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure

Further acceptable methods:

2.3.5 SUBSTANCES NOT ACCEPTED FOR TRANSPORT

Chemically unstable substances of Class 3 shall not be accepted for transport unless the necessary precautions have been taken to prevent the possibility of a dangerous decomposition or polymerization under normal conditions of transport. For the precautions necessary to prevent polymerization, see special provision 386 of Chapter 3.3. To this end particular care shall be taken to ensure that receptacles and tanks do not contain any substances liable to promote these reactions.

PART 2: CLASSIFICATION

CHAPTER 2.4 - CLASS 4 - FLAMMABLE SOLIDS; SUBSTANCES LIABLE TO SPONTANEOUS COMBUSTION; SUBSTANCES WHICH, IN CONTACT WITH WATER, EMIT FLAMMABLE GASES

Introductory Notes

NOTE 1: Where the term “water reactive” is used in this Code, it refers to a substance which in contact with water emits flammable gas.

NOTE 2: Because of the different properties exhibited by dangerous goods within Divisions 4.1 and 4.2, it is impracticable to establish a single criterion for classification in either of these divisions. Tests and criteria for assignment to the three divisions of Class 4 are addressed in this Chapter (and in the Manual of Tests and Criteria, Part III, section 33).

NOTE 3: Since organometallic substances can be classified in Divisions 4.2 or 4.3 with additional subsidiary hazards, depending on their properties, a specific classification flow chart for these substances is given in 2.4.5.

2.4.1 DEFINITIONS AND GENERAL PROVISIONS

2.4.1.1 Class 4 is divided into three divisions as follows:

(a) Division 4.1 Flammable solids
 Solids which, under conditions encountered in transport, are readily combustible or may cause or contribute to fire through friction; self-reactive substances which are liable to undergo a strongly exothermic reaction; solid desensitised explosives which may explode if not diluted sufficiently;

(b) Division 4.2 Substances liable to spontaneous combustion
 Substances which are liable to spontaneous heating under normal conditions encountered in transport, or to heating up in contact with air, and being then liable to catch fire;

(c) Division 4.3 Substances which in contact with water emit flammable gases
 Substances which, by interaction with water, are liable to become spontaneously flammable or to give off flammable gases in dangerous quantities.

2.4.1.2 As referenced in this Chapter, test methods and criteria, with advice on application of the tests, are given in the Manual of Tests and Criteria, for the classification of following types of substances of Class 4:

(a) Flammable solids (Division 4.1);
(b) Self-reactive substances (Division 4.1);
(c) Polymerizing substances (Division 4.1);
(d) Pyrophoric solids (Division 4.2);
(e) Pyrophoric liquids (Division 4.2);
(f) Self heating substances (Division 4.2);
(g) Substances which, in contact with water, emit flammable gases (Division 4.3).

Test methods and criteria for self-reactive substances and polymerizing substances are given in Part II of the Manual of Tests and Criteria, and test methods and criteria for the other types of substances of Class 4 are given in the Manual of Tests and Criteria, Part III, section 33.

2.4.2 DIVISION 4.1 - FLAMMABLE SOLIDS, SELF-REACTIVE SUBSTANCES, SOLID DESENSITISED EXPLOSIVES AND POLYMERIZING SUBSTANCES

2.4.2.1 General
Division 4.1 includes the following types of substances:
(a) Flammable solids (see 2.4.2.2);
(b) Self reactive substances (see 2.4.2.3);
(c) Solid desensitised explosives (see 2.4.2.4);
(d) Polymerizing substances (see 2.4.2.5).

2.4.2.2 Division 4.1 Flammable solids

2.4.2.2.1 Definitions and properties

2.4.2.2.1.1 Flammable solids are readily combustible solids and solids which may cause fire through friction.

2.4.2.2.1.2 Readily combustible solids are powdered, granular, or pasty substances which are dangerous if they can be easily ignited by brief contact with a source of ignition, such as a burning match, and if the flame spreads rapidly. The danger may come not only from the fire but also from toxic combustion products. Metal powders are especially dangerous because of the difficulty of extinguishing a fire since normal extinguishing agents such as carbon dioxide or water can increase the hazard.

2.4.2.2.2 Classification of flammable solids

2.4.2.2.2.1 Powdered, granular or pasty substances shall be classified as readily combustible solids of Division 4.1 when the time of burning of one or more of the test runs, performed in accordance with the test method described in the Manual of Tests and Criteria, Part III, subsection 33.2.1, is less than 45 s or the rate of burning is more than 2.2 mm/s. Powders of metals or metal alloys are classified in Division 4.1 when they can be ignited and the reaction spreads over the whole length of the sample in 10 minutes or less.

2.4.2.2.2.2 Solids which may cause fire through friction are classified in Division 4.1 by analogy with existing entries (e.g. matches) until definitive criteria are established.

2.4.2.3 Assignment of packing groups

2.4.2.3.1 Packing groups are assigned on the basis of the test methods referred to in 2.4.2.2.1. For readily combustible solids (other than metal powders), packing group II must be assigned if the burning time is less than 45 s and the flame passes the wetted zone. Packing group II must
be assigned to powders of metal or metal alloys if the zone of reaction spreads over the whole length of the sample in five minutes or less.

2.4.2.2.3.2 Packing groups are assigned on the basis of the test methods referred to in 2.4.2.2.2.1. For readily combustible solids (other than metal powders), packing group III must be assigned if the burning time is less than 45 s and the wetted zone stops the flame propagation for at least four minutes. Packing group III must be assigned to metal powders if the reaction spreads over the whole length of the sample in more than five minutes but not more than ten minutes.

2.4.2.2.3.3 For solids which may cause fire through friction, the packing group must be assigned by analogy with existing entries or in accordance with any appropriate special provision.

2.4.2.3 Division 4.1 Self-reactive substances

2.4.2.3.1 Definitions and properties

2.4.2.3.1.1 Definitions

For the purposes of this Code:

Self-reactive substances are thermally unstable substances liable to undergo a strongly exothermic decomposition even without participation of oxygen (air). Substances are not considered to be self reactive substances of Division 4.1, if:

(a) they are explosives according to the criteria of Class 1; or

(b) they are oxidising substances according to the classification procedure of Division 5.1 (see 2.5.2.1.1) except that mixtures of oxidising substances which contain 5.0% or more of combustible organic substances must be subjected to the classification procedure defined in Note 3; or

(c) they are organic peroxides according to the criteria of Division 5.2; or

(d) their heat of decomposition is less than 300 J/g; or

(e) their self-accelerating decomposition temperature (SADT) (see 2.4.2.3.4) is greater than 75 °C for a 50 kg package.

NOTE 1: The heat of decomposition can be determined using any internationally recognised method e.g. differential scanning calorimetry and adiabatic calorimetry.

NOTE 2: Any substance which shows the properties of a self-reactive substance must be classified as such, even if this substance gives a positive test result according to 2.4.3.2 for inclusion in Division 4.2.

NOTE 3: Mixtures of oxidising substances meeting the criteria of Division 5.1 which contain 5.0% or more of combustible organic substances, which do not meet the criteria mentioned in (a), (c), (d) or (e) above, must be subjected to the self-reactive substance classification procedure.

A mixture showing the properties of a self-reactive substance, type B to F, must be classified as a self-reactive substance of Division 4.1.
PART 2: CLASSIFICATION

A mixture showing the properties of a self-reactive substance, type G, according to the principle of 2.4.2.3.2 (g) must be considered for classification as a substance of Division 5.1 (see 2.5.2.1.1).

2.4.2.3.1.2 Properties

The decomposition of self reactive substances can be initiated by heat, contact with catalytic impurities (e.g. acids, heavy metal compounds, bases), friction or impact. The rate of decomposition increases with temperature and varies with the substance.

Decomposition, particularly if no ignition occurs, may result in the evolution of toxic gases or vapours. For certain self-reactive substances, the temperature must be controlled. Some self-reactive substances may decompose explosively, particularly if confined. This characteristic may be modified by the addition of diluents or by the use of appropriate packagings.

Some self-reactive substances burn vigorously. Self-reactive substances are, for example, some compounds of the types listed below:
(a) Aliphatic azo compounds (-C-N=N-C-);
(b) Organic azides (-C-N3);
(c) Diazonium salts (-CN2⁺Z-);
(d) N nitroso compounds (-N-N=O);
(e) Aromatic sulphonylhydrazides (-SO2-NH-NH2).

This list is not exhaustive and substances with other reactive groups and some mixtures of substances may have similar properties.

2.4.2.3.2 Classification of self-reactive substances

2.4.2.3.2.1 Self-reactive substances are classified into seven types according to the degree of danger they present. The types of self reactive substance range from type A, which may not be accepted for transport in the packaging in which it is tested, to type G, which is not subject to the provisions for self-reactive substances of Division 4.1. The classification of types B to F is directly related to the maximum quantity allowed in one packaging.

2.4.2.3.2.2 Self-reactive substances permitted for transport in packagings are listed in 2.4.2.3.2.3, those permitted for transport in IBCs are listed in packing instruction IBC520 and those permitted for transport in portable tanks are listed in portable tank instruction T23. For each permitted substance listed, the appropriate generic entry of the Dangerous Goods List (UN Nos. 3221 to 3240) is assigned, and appropriate subsidiary hazards and remarks providing relevant transport information are given. The generic entries specify:
(a) self-reactive substance type (B to F); and
(b) physical state (liquid or solid); and
(c) temperature control, when required (see 2.4.2.3.4).
PART 2: CLASSIFICATION

2.4.2.3.3 List of currently assigned self-reactive substances in packagings

In the column “Packing Method”, codes “OP1” to “OP8” refer to packing methods in packing instruction P520. Self-reactive substances to be transported must fulfil the classification and the control and emergency temperatures (derived from the SADT) as listed. For substances permitted in IBCs, see packing instruction IBC520, and for those permitted in tanks, see portable tank instruction T23. The formulations listed in packing instruction IBC520 of 4.1.4.2 and in portable tank instruction T23 of 4.2.5.2.6 may also be transported packed in accordance with packing method OP8 of packing instruction P520 of 4.1.4.1, with the same control and emergency temperatures, if applicable.

NOTE: The classification shown in the following table is based on the technically pure substance (except where a concentration of less than 100% is specified). For other concentrations, the substances may be classified differently following the procedures in 2.4.2.3.3 and 2.4.2.3.4.
Table 2.4.2.3.2.3: Assigned self-reactive substances in packagings

<table>
<thead>
<tr>
<th>SELF-REACTIVE SUBSTANCE</th>
<th>Concentration (%)</th>
<th>Packing method</th>
<th>Temperature (°C)</th>
<th>UN generic entry</th>
<th>Remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACETONE-PYROGALLOL COPOLYMER 2-DIAZO-1-NAPHTHOL-5-SULPHONATE</td>
<td>100</td>
<td>OP8</td>
<td></td>
<td>3228</td>
<td></td>
</tr>
<tr>
<td>AZODICARBONAMIDE FORMULATION TYPE B, TEMPERATURE CONTROLLED</td>
<td>< 100</td>
<td>OP5</td>
<td></td>
<td>3232</td>
<td>(1) (2)</td>
</tr>
<tr>
<td>AZODICARBONAMIDE FORMULATION TYPE C</td>
<td>< 100</td>
<td>OP6</td>
<td></td>
<td>3224</td>
<td>(3)</td>
</tr>
<tr>
<td>AZODICARBONAMIDE FORMULATION TYPE C, TEMPERATURE CONTROLLED</td>
<td>< 100</td>
<td>OP6</td>
<td></td>
<td>3234</td>
<td>(4)</td>
</tr>
<tr>
<td>AZODICARBONAMIDE FORMULATION TYPE D</td>
<td>< 100</td>
<td>OP7</td>
<td></td>
<td>3226</td>
<td>(5)</td>
</tr>
<tr>
<td>AZODICARBONAMIDE FORMULATION TYPE D, TEMPERATURE CONTROLLED</td>
<td>< 100</td>
<td>OP7</td>
<td></td>
<td>3236</td>
<td>(6)</td>
</tr>
<tr>
<td>2,2’–AZODI(2,4-DIMETHYL–4-METHOXYVALERONITRILE)</td>
<td>100</td>
<td>OP7</td>
<td>-5</td>
<td>+5</td>
<td>3236</td>
</tr>
<tr>
<td>2,2’–AZODI(2,4-DIMETHYL–VALERONITRILE)</td>
<td>100</td>
<td>OP7</td>
<td>+10</td>
<td>+15</td>
<td>3236</td>
</tr>
<tr>
<td>2,2’–AZODI(ETHYL–2–METHYLPROPIONATE)</td>
<td>100</td>
<td>OP7</td>
<td>+20</td>
<td>+25</td>
<td>3235</td>
</tr>
<tr>
<td>1,1–AZODI(HEXAHYDROBENZONITRILE)</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td></td>
<td>3226</td>
</tr>
<tr>
<td>2,2’–AZODI(ISOBUTYRONITRILE)</td>
<td>100</td>
<td>OP6</td>
<td>+40</td>
<td>+45</td>
<td>3234</td>
</tr>
<tr>
<td>2,2’–AZODI(ISOBUTYRONITRILE) as a water based paste</td>
<td>≤ 50</td>
<td>OP6</td>
<td></td>
<td></td>
<td>3224</td>
</tr>
<tr>
<td>2,2’–AZODI(2-METHYLBUTYRONITRILE)</td>
<td>100</td>
<td>OP7</td>
<td>+35</td>
<td>+40</td>
<td>3236</td>
</tr>
<tr>
<td>BENZENE–1,3–DISULPHONYL HYDRAZIDE, as a paste</td>
<td>52</td>
<td>OP7</td>
<td></td>
<td></td>
<td>3226</td>
</tr>
<tr>
<td>BENZENESULPHONYL HYDRAZIDE</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td></td>
<td>3226</td>
</tr>
<tr>
<td>4–(BENZYL(ETHYL)AMINO)–3–ETHOXYBENZENEDIAZONIUM ZINC CHLORIDE</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td></td>
<td>3226</td>
</tr>
<tr>
<td>4–(BENZYL(METHYL)AMINO)–3–ETHOXYBENZENEDIAZONIUM ZINC CHLORIDE</td>
<td>100</td>
<td>OP7</td>
<td>+40</td>
<td>+45</td>
<td>3236</td>
</tr>
<tr>
<td>3–CHLORO–4–DIETHYLAMINOBENZENEDIAZONIUM ZINC CHLORIDE</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td></td>
<td>3226</td>
</tr>
<tr>
<td>2–DIAZO–1–NAPHTHOL–4–SULPHONYL CHLORIDE</td>
<td>100</td>
<td>OP5</td>
<td></td>
<td></td>
<td>3222</td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>SELF-REACTIVE SUBSTANCE</th>
<th>Concentration (%)</th>
<th>Packing method</th>
<th>Temperature (°C)</th>
<th>UN generic entry</th>
<th>Remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-DIAZO–1–NAPHTHOL–5– SULPHONYL CHLORIDE</td>
<td>100</td>
<td>OP5</td>
<td></td>
<td>3222</td>
<td>(2)</td>
</tr>
<tr>
<td>2-DIAZO–1–NAPHTHOL SULPHONIC ACID ESTER MIXTURE, TYPE D</td>
<td><100</td>
<td>OP7</td>
<td></td>
<td>3226</td>
<td>(9)</td>
</tr>
<tr>
<td>2,5–DIBUTYOXY–4–(4–MORPHOLINYL) BENZENEDIAZONIUM, TETRACHLOROZINCATE (2:1)</td>
<td>100</td>
<td>OP8</td>
<td></td>
<td>3228</td>
<td></td>
</tr>
<tr>
<td>2,5–DIETHOXY–4–MORPHOLINOBENZENEDIAZONIUM ZINC CHLORIDE</td>
<td>67-100</td>
<td>OP7</td>
<td>+35</td>
<td>3236</td>
<td></td>
</tr>
<tr>
<td>2,5–DIETHOXY–4–MORPHOLINOBENZENEDIAZONIUM ZINC CHLORIDE</td>
<td>66</td>
<td>OP7</td>
<td>+40</td>
<td>3236</td>
<td></td>
</tr>
<tr>
<td>2,5–DIETHOXY–4–MORPHOLINOBENZENEDIAZONIUM TETRAFLUOROBorate</td>
<td>100</td>
<td>OP7</td>
<td>+30</td>
<td>3236</td>
<td></td>
</tr>
<tr>
<td>2,5–DIETHOXY–4–(4–MORPHOLINYL)–BENZENEDIAZONIUM SULPHATE</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td>3226</td>
<td></td>
</tr>
<tr>
<td>2,5–DIETHOXY–4–(PHENYL SULPHONYL)–BENZENEDIAZONIUM ZINC CHLORIDE</td>
<td>67</td>
<td>OP7</td>
<td>+40</td>
<td>3236</td>
<td></td>
</tr>
<tr>
<td>DIETHYLENEGLYCOL BIS (ALLYL CARBONATE) + DI ISOPROPYLPEROXYDICARBONATE</td>
<td>≥ 88 + ≤ 12</td>
<td>OP8</td>
<td>-10</td>
<td>0</td>
<td>3237</td>
</tr>
<tr>
<td>2,5–DIMETHOXY–4–(4–METHYLPHENYL SULPHONYL) BENZENEDIAZONIUM ZINC CHLORIDE</td>
<td>79</td>
<td>OP7</td>
<td>+40</td>
<td>3236</td>
<td></td>
</tr>
<tr>
<td>4–(DIMETHYLAMINO)–BENZENEDIAZONIUM TRICHLOROZINCATE (–1)</td>
<td>100</td>
<td>OP8</td>
<td></td>
<td>3228</td>
<td></td>
</tr>
<tr>
<td>4–DIMETHYLAMINO–6–(2–DIMETHYLAMINOETHOXY) TOLUENE–2–DIAZONIUM ZINC CHLORIDE</td>
<td>100</td>
<td>OP7</td>
<td>+40</td>
<td>3236</td>
<td></td>
</tr>
<tr>
<td>N,N’–DINITROSO–N,N’–DIMETHYL TEREPTHALAMIDE, as a paste</td>
<td>72</td>
<td>OP6</td>
<td></td>
<td>3224</td>
<td></td>
</tr>
<tr>
<td>N,N’–DINITROSOPENTAMETHYLENETETRAMINE</td>
<td>82</td>
<td>OP6</td>
<td></td>
<td>3224</td>
<td>(7)</td>
</tr>
<tr>
<td>DIPHENYLOXIDE–4,4’–DISULPHONYL HYDRAZIDE</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td>3226</td>
<td></td>
</tr>
<tr>
<td>4–DIPROPYLAMINOBENZENEDIAZONIUM ZINC CHLORIDE</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td>3226</td>
<td></td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>Self-Reactively Substance</th>
<th>Concentration (%)</th>
<th>Packing method</th>
<th>Temperature (°C)</th>
<th>UN generic entry</th>
<th>Remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N–FORMYL–2–(NITROMETHYLENE)–1,3–PERHYDROTHIAZINE</td>
<td>100</td>
<td>OP7</td>
<td>+45</td>
<td>+50</td>
<td>3236</td>
</tr>
<tr>
<td>2–(2–HYDROXYETHOXY)–1–(PYRROLIDIN–1–YL) BENZENE–4–DIAZONIUM ZINC CHLORIDE</td>
<td>100</td>
<td>OP7</td>
<td>+45</td>
<td>+50</td>
<td>3236</td>
</tr>
<tr>
<td>3–(2–HYDROXYETHOXY)–4–(PYRROLIDIN–1–YL) BENZENE DIAZONIUM ZINC CHLORIDE</td>
<td>100</td>
<td>OP7</td>
<td>+40</td>
<td>+45</td>
<td>3236</td>
</tr>
<tr>
<td>2–(N,N–METHYLAMINOETHYL– CARBONYL)–4–(3,4–DIMETHYL–PHENYSULPHONYL) BENZENEDIAZONIUM HYDROGEN SULPHATE</td>
<td>96</td>
<td>OP7</td>
<td>+45</td>
<td>+50</td>
<td>3236</td>
</tr>
<tr>
<td>4–METHYLBENZENESULPHONYL– HYDRAZIDE</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td></td>
<td>3226</td>
</tr>
<tr>
<td>3–METHYL–4–(PYRROLIDIN–1–YL) BENZENEDIAZONIUM TETRAFLUOROBORATE</td>
<td>95</td>
<td>OP6</td>
<td>+45</td>
<td>+50</td>
<td>3234</td>
</tr>
<tr>
<td>4–NITROSOPHENOL</td>
<td>100</td>
<td>OP7</td>
<td>+35</td>
<td>+40</td>
<td>3236</td>
</tr>
<tr>
<td>PHOSPHOROTHIOIC ACID, O[(CYANOPHENYL METHYLENE) AZANYL] O,O-DIETHYL ESTER</td>
<td>82-91 (Z isomer)</td>
<td>OP8</td>
<td></td>
<td></td>
<td>3227</td>
</tr>
<tr>
<td>SELF–REACTIVE LIQUID, SAMPLE</td>
<td></td>
<td>OP2</td>
<td></td>
<td></td>
<td>3223</td>
</tr>
<tr>
<td>SELF–REACTIVE LIQUID, SAMPLE, TEMPERATURE CONTROLLED</td>
<td></td>
<td>OP2</td>
<td></td>
<td></td>
<td>3233</td>
</tr>
<tr>
<td>SELF–REACTIVE SOLID, SAMPLE</td>
<td></td>
<td>OP2</td>
<td></td>
<td></td>
<td>3224</td>
</tr>
<tr>
<td>SELF–REACTIVE SOLID, SAMPLE, TEMPERATURE CONTROLLED</td>
<td></td>
<td>OP2</td>
<td></td>
<td></td>
<td>3234</td>
</tr>
<tr>
<td>SODIUM 2–DIAZO–1–NAPHTHOL– 4–SULPHONATE</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td></td>
<td>3226</td>
</tr>
<tr>
<td>SODIUM 2–DIAZO–1–NAPHTHOL– 5–SULPHONATE</td>
<td>100</td>
<td>OP7</td>
<td></td>
<td></td>
<td>3226</td>
</tr>
<tr>
<td>TETRAMINE PALLADIUM (II) NITRATE</td>
<td>100</td>
<td>OP6</td>
<td>+30</td>
<td>+35</td>
<td>3234</td>
</tr>
</tbody>
</table>
Notes to table 2.4.2.3.2.3:

1. Azodicarbonamide formulations which fulfil the criteria of 2.4.2.3.3.2 (b). The control and emergency temperatures must be determined by the procedure given in 7.1.5.3 to 7.1.5.3.1.3.

2. “EXPLOSIVE” subsidiary hazard label (Model No.1, see 5.2.2.2.2) required.

3. Azodicarbonamide formulations which fulfil the criteria of 2.4.2.3.3.2 (c).

4. Azodicarbonamide formulations which fulfil the criteria of 2.4.2.3.3.2 (c). The control and emergency temperatures must be determined by the procedure given in 7.1.5.3 to 7.1.5.3.1.3.

5. Azodicarbonamide formulations which fulfil the criteria of 2.4.2.3.3.2 (d).

6. Azodicarbonamide formulations which fulfil the criteria of 2.4.2.3.3.2 (d). The control and emergency temperatures must be determined by the procedure given in 7.1.5.3 to 7.1.5.3.1.3.

7. With a compatible diluent having a boiling point of not less than 150 °C.

8. See 2.4.2.3.2.4 (b).

9. This entry applies to mixtures of esters of 2-diazo-1-naphthol-4-sulphonic acid and 2-diazo-1-naphthol-5-sulphonic acid meeting the criteria of 2.4.2.3.3.2 (d).

10. This entry applies to the technical mixture in n-butanol within the specified concentration limits of the (Z) isomer.
2.4.2.3.2.4 Classification of self-reactive substances not listed in 2.4.2.3.2.3, packing instruction IBC520 or portable tank instruction T23 and assignment to a generic entry must be made by the competent authority of the country or jurisdiction of origin on the basis of a test report. Principles applying to the classification of such substances are provided in 2.4.2.3.3. The applicable classification procedures, test methods and criteria, and an example of a suitable test report, are given in the Manual of Tests and Criteria, Part II. The determination must contain the classification and the relevant transport conditions.

(a) Activators, such as zinc compounds, may be added to some self-reactive substances to change their reactivity. Depending on both the type and the concentration of the activator, this may result in a decrease in thermal stability and a change in explosive properties. If either of these properties is altered, the new formulation must be assessed in accordance with this classification procedure;

(b) Samples of self-reactive substances or formulations of self-reactive substances not listed in 2.4.2.3.2.3, for which a complete set of test results is not available and which are to be transported for further testing or evaluation, may be assigned to one of the appropriate entries for self-reactive substances type C provided the following conditions are met:

 (i) the available data indicate that the sample would be no more dangerous than self-reactive substances type B;

 (ii) the sample is packaged in accordance with packing method OP2 (see applicable packing instruction) and the quantity per cargo transport unit is limited to 10 kg; and

 (iii) the available data indicate that the control temperature, if any, is sufficiently low to prevent any dangerous decomposition and sufficiently high to prevent any dangerous phase separation.

2.4.2.3.3 Principles for classification of self-reactive substances

NOTE: This section refers only to those properties of self-reactive substances which are decisive for their classification. A flow chart, presenting the classification principles in the form of a graphically arranged scheme of questions concerning the decisive properties together with the possible answers, is given in Figure 2.4.1. These properties must be determined experimentally using the test methods and criteria given in the Manual of Tests and Criteria, Part II.

2.4.2.3.3.1 A self-reactive substance is regarded as possessing explosive properties when in laboratory testing the formulation is liable to detonate, to deflagrate rapidly or to show a violent effect when heated under confinement.

2.4.2.3.3.2 The following principles apply to the classification of self-reactive substances not listed in 2.4.2.3.2.3.

(a) Any substance which can detonate or deflagrate rapidly, as packaged for transport, is prohibited from transport under the provisions for self-reactive substances of Division 4.1 in that packaging (defined as self-reactive substance type A, exit box A of Figure 2.4.1);

(b) Any substance possessing explosive properties and which, as packaged for transport, neither detonates nor deflagrates rapidly, but is liable to undergo a thermal explosion in that package, must also bear an “EXPLOSIVE” subsidiary hazard label (Model No.1, see 5.2.2.2.2). Such a substance may not be packed or transported according to the provisions for self-reactive substances of Division 4.1 in that packaging.
be packaged in amounts of up to 25 kg unless the maximum quantity has to be limited to a lower amount to preclude detonation or rapid deflagration in the package (defined as self-reactive substance type B, exit box B of Figure 2.4.1);

(c) Any substance possessing explosive properties may be transported without an “EXPLOSIVE” subsidiary hazard label when the substance as packaged (maximum 50 kg) for transport cannot detonate or deflagrate rapidly or undergo a thermal explosion (defined as self-reactive substance type C, exit box C of Figure 2.4.1);

(d) Any substance which in laboratory testing:
 (i) detonates partially, does not deflagrate rapidly and shows no violent effect when heated under confinement; or
 (ii) does not detonate at all, deflagrates slowly and shows no violent effect when heated under confinement; or
 (iii) does not detonate or deflagrate at all and shows a medium effect when heated under confinement,
 may be accepted for transport in packages of not more than 50 kg net mass (defined as self-reactive substance type D, exit box D of Figure 2.4.1);

(e) Any substance which, in laboratory testing, neither detonates nor deflagrates at all and shows low or no effect when heated under confinement may be accepted for transport in packages of not more than 400 kg/450 litres (defined as self-reactive substance type E, exit box E of Figure 2.4.1);

(f) Any substance which, in laboratory testing, neither detonates in the cavitated state nor deflagrates at all and shows only a low or no effect when heated under confinement as well as low or no explosive power may be considered for transport in IBCs or tanks (defined as self-reactive substance type F, exit box F of Figure 2.4.1); (for additional provisions see 4.1.7.2.2 and 4.2.1.13);

(g) Any substance which, in laboratory testing, neither detonates in the cavitated state nor deflagrates at all and shows no effect when heated under confinement nor any explosive power is exempted from classification as a self-reactive substance of Division 4.1 provided that the formulation is thermally stable (self-accelerating decomposition temperature 60 °C to 75 °C for a 50 kg package) and any diluent meets the requirements of 2.4.2.3.5 (defined as self-reactive substance type G, exit box G of Figure 2.4.1). If the formulation is not thermally stable or a compatible diluent having a boiling point less than 150 °C is used for desensitisation, the formulation must be defined as SELF REACTIVE LIQUID/SOLID TYPE F.

2.4.2.3.4 Temperature control requirements

Self-reactive substances are subject to temperature control in transport if their self-accelerating decomposition temperature (SADT) is less than or equal to 55 °C. Test methods for determining the SADT are given in the Manual of Tests and Criteria, Part II, section 28. The test selected must be conducted in a manner which is representative, both in size and material, of the package to be transported.
2.4.2.3.5 Desensitisation of self-reactive substances

2.4.2.3.5.1 In order to ensure safety during transport, self-reactive substances may be desensitised through the use of a diluent. If a diluent is used, the self-reactive substance must be tested with the diluent present in the concentration and form used in transport.

2.4.2.3.5.2 Diluents which may allow a self-reactive substance to concentrate to a dangerous extent in the event of leakage from a package must not be used.

2.4.2.3.5.3 The diluent must be compatible with the self-reactive substance. In this regard, compatible diluents are those solids or liquids which have no detrimental influence on the thermal stability and hazard type of the self-reactive substance.

2.4.2.3.5.4 Liquid diluents in liquid formulations requiring temperature control must have a boiling point of at least 60 °C and a flash point not less than 5 °C. The boiling point of the liquid must be at least 50 °C higher than the control temperature of the self-reactive substance (see 7.1.5.3.1).
Figure 2.4.1: Flow chart scheme for self-reactive substances

Figure 2.4.1: FLOW CHART SCHEME FOR SELF-REACTIVE SUBSTANCES

SELF-REACTION SUBSTANCE

Box 1
Does it propagate a detonation?

1.1 Yes
1.2 Partial
1.3 No

Box 2
Can it detonate as packaged for transport?

2.1 Yes
2.2 No

Box 3
Can it propagate a deflagration?

3.1 Yes, rapidly
3.2 Yes, slowly
3.3 No

Box 4
Can it propagate a deflagration?

4.1 Yes, rapidly
4.2 Yes, slowly
4.3 No

Box 5
Can it propagate a deflagration?

5.1 Yes, rapidly
5.2 Yes, slowly
5.3 No

Box 6
Does it deflagrate rapidly in package?

6.1 Yes
6.2 No

Box 7
What is the effect of heating it under defined confinement?

7.1 Violent
7.2 Medium
7.3 Low
7.4 No

Box 8
What is the effect of heating it under defined confinement?

8.1 Violent
8.2 Medium
8.3 Low
8.4 No

Box 9
What is the effect of heating it under defined confinement?

9.1 Violent
9.2 Medium
9.3 Low
9.4 No

Box 10
Can it explode as packaged for transport?

10.1 Yes
10.2 No

Exit A
NOT ACCEPTED FOR TRANSPORT IN THAT PACKAGING

Exit B
ACCEPTED FOR TRANSPORT IN PACKAGES OF NOT MORE THAN 25 KG NET MASS WITH 'EXPLOSIVE' SUBSIDIARY RISK LABEL

Exit C
ACCEPTED FOR TRANSPORT IN PACKAGES OF NOT MORE THAN 50 KG NET MASS

Exit D
ACCEPTED FOR TRANSPORT IN PACKAGES OF NOT MORE THAN 50 KG NET MASS
Figure 2.4.1: Flow chart scheme for self-reactive substances (cont'd)
2.4.2.4 Division 4.1 Solid desensitised explosives

2.4.2.4.1 Definition

Solid desensitised explosives are explosive substances which are wetted with water or alcohols or are diluted with other substances, to form a homogeneous solid mixture to suppress their explosive properties (see 2.1.3.6.3).

Entries in the Dangerous Goods List for solid desensitised explosives are:

- UN 1310
- UN 1320
- UN 1321
- UN 1322
- UN 1336
- UN 1337
- UN 1344
- UN 1347
- UN 1348
- UN 1349
- UN 1354
- UN 1355
- UN 1356
- UN 1357
- UN 1517
- UN 1571
- UN 2555
- UN 2556
- UN 2557
- UN 2852
- UN 2907
- UN 3317
- UN 3319
- UN 3344
- UN 3364
- UN 3365
- UN 3366
- UN 3367
- UN 3368
- UN 3369
- UN 3370
- UN 3376
- UN 3380
- UN 3474

2.4.2.4.2 Substances that:

(a) have been provisionally accepted into Class 1 according to Test Series 1 and 2 but exempted from Class 1 by Test Series 6; and
(b) are not self-reactive substances of Division 4.1; and
(c) are not substances of Class 5;

are also assigned to Division 4.1. Though not desensitised explosives, UN 2956, UN 3241, UN 3242 and UN 3251 are such entries that are assigned to Division 4.1.

2.4.2.5 Division 4.1 Polymerizing substances and mixtures (stabilized)

2.4.2.5.1 Definitions and properties

Polymerizing substances are substances which, without stabilization, are liable to undergo a strongly exothermic reaction resulting in the formation of larger molecules or resulting in the formation of polymers under conditions normally encountered in transport. Such substances are considered to be polymerizing substances of Division 4.1 when:

(a) Their self-accelerating polymerization temperature (SAPT) is 75 °C or less under the conditions (with or without chemical stabilization as offered for transport) and in the packaging, IBC or portable tank in which the substance or mixture is to be transported;

(b) They exhibit a heat of reaction of more than 300 J/g; and

(c) They do not meet any other criteria for inclusion in Classes 1-8.

A mixture meeting the criteria of a polymerizing substance shall be classified as a polymerizing substance of Division 4.1.

2.4.2.5.2 Polymerizing substances are subject to temperature control in transport if their self-accelerating polymerization temperature (SAPT) is:

(a) When offered for transport in a packaging or IBC, 50 °C or less in the packaging or IBC in which the substance is to be transported; or
PART 2: CLASSIFICATION

(b) When offered for transport in a portable tank, 45 °C or less in the portable tank in which the substance is to be transported

NOTE: Substances meeting the criteria of a polymerizing substance and also for inclusion in Classes 1 to 8 are subject to the requirements of special provision 386 of Chapter 3.3.

2.4.3 DIVISION 4.2 - SUBSTANCES LIABLE TO SPONTANEOUS COMBUSTION

2.4.3.1 Definitions and properties

2.4.3.1.1 Division 4.2 includes:

(a) Pyrophoric substances, which are substances, including mixtures and solutions (liquid or solid), which even in small quantities ignite within five minutes of coming in contact with air. These are the Division 4.2 substances are the most liable to spontaneous combustion; and

(b) Self-heating substances, which are substances, other than pyrophoric substances, which in contact with air without energy supply are liable to self heating. These substances will ignite only when in large amounts (kilograms) and after long periods of time (hours or days).

2.4.3.1.2 Self-heating of a substance is a process where the gradual reaction of that substance with oxygen (in air) generates heat. If the rate of heat production exceeds the rate of heat loss, then the temperature of the substance will rise which, after an induction time, may lead to self-ignition and combustion.

2.4.3.2 Classification in Division 4.2

2.4.3.2.1 Solids must be considered pyrophoric solids of Division 4.2 if, in tests performed in accordance with the test method given in the Manual of Tests and Criteria, Part III, sub-section 33.3.1.4, the sample ignites in one of the tests.

2.4.3.2.2 Liquids must be considered pyrophoric liquids of Division 4.2 if, in tests performed in accordance with the test method given in the Manual of Tests and Criteria, Part III, sub-section 33.3.1.5, the liquid ignites in the first part of the test, or if it ignites or chars the filter paper.

2.4.3.2.3 Self-heating substances

2.4.3.2.3.1 A substance must be classified as a self-heating substance of Division 4.2 if, in tests performed in accordance with the test method given in the Manual of Tests and Criteria, Part III, sub-section 33.3.1.6:

(a) a positive result is obtained using a 25 mm cube sample at 140 °C;

(b) a positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 100 mm cube sample at 120 °C and the substance is to be transported in packages with a volume of more than 3 m³;

(c) a positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 100 mm cube sample at 100 °C and the substance is to be transported in packages with a volume of more than 450 litres;
(d) a positive result is obtained in a test using a 100 mm sample cube at 140 °C and a positive result is obtained using a 100 mm cube sample at 100 °C.

NOTE: Self-reactive substances giving also a positive result with this test method, must not be classified in Division 4.2 but in Division 4.1 (see 2.4.2.3.1.1).

2.4.3.2.3.2 A substance should not be classified in Division 4.2 if:

(a) a negative result is obtained in a test using a 100 mm cube sample at 140 °C;

(b) a positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 25 mm cube sample at 140 °C, a negative result is obtained in a test using a 100 mm cube sample at 120 °C and the substance is to be transported in packages with a volume not more than 3 m³;

(c) a positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 25 mm cube sample at 140 °C, a negative result is obtained in a test using a 100 mm cube sample at 100 °C and the substance is to be transported in packages with a volume not more than 450 litres.

2.4.3.3 Assignment of packing groups

2.4.3.3.1 Packing group I must be assigned to all pyrophoric solids and liquids.

2.4.3.3.2 Packing group II must be assigned to self-heating substances which give a positive result in a test using a 25 mm sample cube at 140 °C.

2.4.3.3.3 Packing group III must be assigned to self-heating substances if:

(a) a positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 25 mm cube sample at 140 °C and the substance is to be transported in packages with a volume of more than 3 m³;

(b) a positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 25 mm cube sample at 140 °C, a positive result is obtained in a test using a 100 mm cube sample at 120 °C and the substance is to be transported in packages with a volume of more than 450 litres;

(c) a positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 25 mm cube sample at 140 °C and a positive result is obtained in a test using a 100 mm cube sample at 100 °C.

2.4.4 DIVISION 4.3 - SUBSTANCES WHICH IN CONTACT WITH WATER EMIT FLAMMABLE GASES

2.4.4.1 Definitions and properties

Certain substances in contact with water may emit flammable gases that can form explosive mixtures with air. Such mixtures are easily ignited by all ordinary sources of ignition, for example naked lights, sparking handtools or unprotected lamps. The resulting blast wave and flames may endanger people and the environment. The test method referred to in 2.4.4.2 is used to determine whether the reaction of a substance with water leads to the development of a dangerous
amount of gases which may be flammable. This test method should not be applied to pyrophoric substances.

2.4.4.2 Classification in Division 4.3

Substances which in contact with water emit flammable gases must be classified in Division 4.3 if, in tests performed in accordance with the test method given in the Manual of Tests and Criteria, Part III, sub-section 33.4.1:
(a) spontaneous ignition takes place in any step of the test procedure; or
(b) there is an evolution of a flammable gas at a rate greater than 1 litre per kilogram of the substance per hour.

2.4.4.3 Assignment of packing groups

2.4.4.3.1 Packing group I must be assigned to any substance which reacts vigorously with water at ambient temperatures and demonstrates generally a tendency for the gas produced to ignite spontaneously, or which reacts readily with water at ambient temperatures such that the rate of evolution of flammable gas is equal to or greater than 10 litres per kilogram of substance over any one minute.

2.4.4.3.2 Packing group II must be assigned to any substance which reacts readily with water at ambient temperatures such that the maximum rate of evolution of flammable gas is equal to or greater than 20 litres per kilogram of substance per hour, and which does not meet the criteria for packing group I.

2.4.4.3.3 Packing group III must be assigned to any substance which reacts slowly with water at ambient temperatures such that the maximum rate of evolution of flammable gas is greater than 1 litre per kilogram of substance per hour, and which does not meet the criteria for packing groups I or II.

2.4.5 CLASSIFICATION OF ORGANOMETALLIC SUBSTANCES

Depending on their properties, organometallic substances may be classified in Divisions 4.2 or 4.3, as appropriate, in accordance with the flowchart scheme given in figure 2.4.2.
Figure 2.4.2: Flowchart scheme for organometallic substances

- **If applicable and testing is relevant, taking into account reactivity properties, class 6.1 and 8 properties should be considered according to the precedence of hazard table 2.0.3.3.**

- **Test methods N.1 to N.5 can be found in the Manual of tests and Criteria, Part III, Section 33.**
CHAPTER 2.5 - CLASS 5 - OXIDISING SUBSTANCES AND ORGANIC PEROXIDES

Introductory Note

NOTE: Because of the different properties exhibited by dangerous goods within Divisions 5.1 and 5.2, it is impracticable to establish a single criterion for classification in either division. Tests and criteria for assignment to the two divisions of Class 5 are addressed in this Chapter.

2.5.1 DEFINITIONS AND GENERAL PROVISIONS

Class 5 is divided into two divisions as follows:
(a) Division 5.1 Oxidising substances

Substances which, while in themselves not necessarily combustible, may, generally by yielding oxygen, cause, or contribute to, the combustion of other material. Such substances may be contained in an article;

(b) Division 5.2 Organic peroxides

Organic substances which contain the bivalent -O-O- structure and may be considered derivatives of hydrogen peroxide, where one or both of the hydrogen atoms have been replaced by organic radicals. Organic peroxides are thermally unstable substances, which may undergo exothermic self-accelerating decomposition. In addition, they may have one or more of the following properties:
(i) be liable to explosive decomposition;
(ii) burn rapidly;
(iii) be sensitive to impact or friction;
(iv) react dangerously with other substances;
(v) cause damage to the eyes.

2.5.2 DIVISION 5.1 - OXIDISING SUBSTANCES

2.5.2.1 Classification in Division 5.1

Oxidising substances are classified in Division 5.1 in accordance with the test methods, procedures and criteria in 2.5.2.2, 2.5.2.3 and the Manual of Tests and Criteria, Part III, section 34. In the event of divergence between test results and known experience, judgement based on known experience must take precedence over test results.

NOTE: Where substances of this Division are listed in the Dangerous Goods List in Chapter 3.2, reclassification of those substances in accordance with this criteria should be undertaken only when this is necessary for safety.

2.5.2.1.2 By exception, solid ammonium nitrate based fertilizers shall be classified in accordance with the procedure as set out in the Manual of Tests and Criteria, Part III, Section 39

2.5.2.1.3 For substances having other hazards, e.g. toxicity or corrosivity, the requirements of Chapter 2.0 must be met.
2.5.2.2 **Oxidising solids**

2.5.2.2.1 Criteria for classification in Division 5.1

Tests are performed to measure the potential for the solid substance to increase the burning rate or burning intensity of a combustible substance when the two are thoroughly mixed. The procedure is given in the Manual of Tests and Criteria, Part III, sub-section 34.4.1 (test O.1) or alternatively, in sub-section 34.4.3 (test O.3). Tests are conducted on the substance to be evaluated mixed with dry fibrous cellulose in mixing ratios of 1:1 and 4:1, by mass, of sample to cellulose. The burning characteristics of the mixtures are compared:

(a) In the test O.1, with the standard 3:7 mixture, by mass, of potassium bromate to cellulose. If the burning time is equal to or less than this standard mixture, the burning times must be compared with those from the packing group I or II reference standards, 3:2 and 2:3 ratios, by mass, of potassium bromate to cellulose respectively; or

(b) In the test O.3, with the standard 1:2 mixture, by mass, of calcium peroxide to cellulose. If the burning rate is equal to or greater than this standard mixture, the burning rates must be compared with those from the packing group I or II reference standards 3:1 and 1:1 ratios, by mass, of calcium peroxide to cellulose, respectively.

2.5.2.2.1.2 The classification test results are assessed on the basis of:

(a) The comparison of the mean burning time (for the test O.1) or burning rate (for the test O.3) with those of the reference mixtures; and

(b) Whether the mixture of substance and cellulose ignites and burns.

2.5.2.2.1.3 A solid substance is classified in Division 5.1 if the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits:

(a) In the test O.1, a mean burning time equal to or less than the mean burning time of a 3:7 mixture (by mass) of potassium bromate and cellulose; or

(b) In the test O.3, a mean burning rate equal to or greater than the mean burning rate of a 1:2 mixture (by mass) of calcium peroxide and cellulose.

2.5.2.2 Assignment of packing groups

Solid oxidising substances are assigned to a packing group according to the test procedure in the Manual of Tests and Criteria, Part III, section 34.4.1, (test O.1) or sub section 34.4.3 (test O.3) in accordance with the following criteria:

(a) Test O.1:

(i) Packing group I: any substance which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time less than the mean burning time of a 3:2 mixture, by mass, of potassium bromate and cellulose;

(ii) Packing group II: any substance which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean
burning time equal to or less than the mean burning time of a 2:3 mixture (by mass) of potassium bromate and cellulose and the criteria for packing group I are not met;

(iii) Packing group III: any substance which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time equal to or less than the mean burning time of a 3:7 mixture (by mass) of potassium bromate and cellulose and the criteria for packing groups I and II are not met;

(iv) Not Division 5.1: any substance which, in both the 4:1 and 1:1 sample-to-cellulose ratio (by mass) tested, does not ignite and burn, or exhibits mean burning times greater than that of a 3:7 mixture (by mass) of potassium bromate and cellulose.

(b) Test O.3:

(i) Packing group I: any substance which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time less than the mean burning time of a 3:1 mixture (by mass) of calcium peroxide and cellulose;

(ii) Packing group II: any substance which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time equal to or less than the mean burning time of a 1:1 mixture (by mass) of calcium peroxide and cellulose and the criteria for packing group I are not met;

(iii) Packing group III: any substance which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time equal to or less than the mean burning time of a 1:2 mixture (by mass) of calcium peroxide and cellulose and the criteria for packing groups I and II are not met;

(iv) Not Division 5.1: any substance which, in both the 4:1 and 1:1 sample-to-cellulose ratio (by mass) tested, does not ignite and burn, or exhibits mean burning times greater than that of a 1:2 mixture (by mass) of calcium peroxide and cellulose.

2.5.2.3 Oxidising liquids

2.5.2.3.1 Criteria for classification in Division 5.1

2.5.2.3.1.1 A test is performed to determine the potential for a liquid substance to increase the burning rate or burning intensity of a combustible substance or for spontaneous ignition to occur when the two are thoroughly mixed. The procedure is given in the Manual of Tests and Criteria, Part III, sub-section 34.4.2 (Test O.2). It measures the pressure rise time during combustion. Whether a liquid is an oxidising substance of Division 5.1 and, if so, whether packing groups I, II or III are assigned, is decided on the basis of the test result (see also precedence of hazards characteristics in 2.0.3).

2.5.2.3.1.2 The classification test results are assessed on the basis of:

(a) whether the mixture of substance and cellulose spontaneously ignites;

(b) the comparison of the mean time taken for the pressure to rise from 690 kPa to 2070 kPa gauge with those of the reference substances.
PART 2: CLASSIFICATION

2.5.2.3.1.3 A liquid substance is classified in Division 5.1 if the 1:1 mixture, by mass, of substance and cellulose tested, exhibits a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 65% aqueous nitric acid and cellulose.

2.5.2.3.2 Assignment of packing groups

Liquid oxidising substances are assigned to a packing group according to the test procedure in the Manual of Tests and Criteria, Part III, section 34.4.2, in accordance with the following criteria:

(a) Packing group I: any substance which, in the 1:1 mixture, by mass, of substance and cellulose tested, spontaneously ignites; or the mean pressure rise time of a 1:1 mixture, by mass, of substance and cellulose is less than that of a 1:1 mixture, by mass, of 50% perchloric acid and cellulose;

(b) Packing group II: any substance which, in the 1:1 mixture, by mass, of substance and cellulose tested, exhibits a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 40% aqueous sodium chlorate solution and cellulose; and the criteria for packing group I are not met;

(c) Packing group III: any substance which, in the 1:1 mixture, by mass, of substance and cellulose tested, exhibits a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 65% aqueous nitric acid and cellulose; and the criteria for packing groups I and II are not met;

(d) Not Division 5.1: any substance which, in the 1:1 mixture, by mass, of substance and cellulose tested, exhibits a pressure rise of less than 2070 kPa gauge; or exhibits a mean pressure rise time greater than the mean pressure rise time of a 1:1 mixture, by mass, of 65% aqueous nitric acid and cellulose.

2.5.3 DIVISION 5.2 - ORGANIC PEROXIDES

2.5.3.1 Properties

2.5.3.1.1 Organic peroxides are liable to exothermic decomposition at normal or elevated temperatures. The decomposition can be initiated by heat, contact with impurities (e.g. acids, heavy-metal compounds, amines), friction or impact. The rate of decomposition increases with temperature and varies with the organic peroxide formulation. Decomposition may result in the evolution of harmful, or flammable, gases or vapours. For certain organic peroxides the temperature must be controlled during transport. Some organic peroxides may decompose explosively, particularly if confined. This characteristic may be modified by the addition of diluents or by the use of appropriate packagings. Many organic peroxides burn vigorously.

2.5.3.1.2 Contact of organic peroxides with the eyes is to be avoided. Some organic peroxides will cause serious injury to the cornea, even after brief contact, or will be corrosive to the skin.

2.5.3.2 Classification of organic peroxides
2.5.3.2.1 Any organic peroxide must be considered for classification in Division 5.2, unless the organic peroxide formulation contains:

(a) not more than 1.0% available oxygen from the organic peroxides when containing not more than 1.0% hydrogen peroxide; or

(b) not more than 0.5% available oxygen from the organic peroxides when containing more than 1.0% but not more than 7.0% hydrogen peroxide.

NOTE: The available oxygen content (%) of an organic peroxide formulation is given by the formula:

\[16 \times \sum (n_i \times c_i / m_i)\]

where:

- \(n_i\) = number of peroxygen groups per molecule of organic peroxide \(i\);
- \(c_i\) = concentration (mass %) of organic peroxide \(i\);
- \(m_i\) = molecular mass of organic peroxide \(i\).

2.5.3.2.2 Organic peroxides are classified into seven types according to the degree of danger they present. The types of organic peroxide range from type A, which may not be accepted for transport in the packaging in which it is tested, to type G, which is not subject to the provisions for organic peroxides of Division 5.2. The classification of types B to F is directly related to the maximum quantity allowed in one packaging.

2.5.3.2.3 Organic peroxides permitted for transport in packagings are listed in 2.5.3.2.4, those permitted for transport in IBCs are listed in packing instruction IBC520 and those permitted for transport in portable tanks are listed in portable tank instruction T23. For each permitted substance listed, the generic entry of the Dangerous Goods List (UN Nos. 3101 to 3120) is assigned, appropriate subsidiary hazards and remarks providing relevant transport information are given.

The generic entries specify:

(a) organic peroxide type (B to F);

(b) physical state (liquid or solid); and

(c) temperature control, when required (see 2.5.3.4).

2.5.3.2.3.1 Mixtures of the listed formulations may be classified as the same type of organic peroxide as that of the most dangerous component and be transported under the conditions of transport given for this type. However, as two stable components can form a thermally less stable mixture, the self-accelerating decomposition temperature (SADT) of the mixture must be determined and, if necessary, temperature control applied as required by 2.5.3.4.

2.5.3.2.4 List of currently assigned organic peroxides in packagings

In the following table “Packing Method” codes “OP1” to “OP8” refer to packing methods in packing instruction P520. Peroxides to be transported should fulfil the classification and the control and emergency temperatures (derived from the SADT) as listed. For substances permitted in IBCs see packing instruction IBC520, and for those permitted in tanks, see portable tank instruction T23. The
formulations listed in packing instruction IBC520 of 4.1.4.2 and in portable tank instruction T23 of 4.2.5.2.6 may also be transported packed in accordance with packing method OP8 of packing instruction P520 of 4.1.4.1, with the same control and emergency temperatures, if applicable.
PART 2: CLASSIFICATION

Table 2.5.3.2.4: Assigned organic peroxides in packagings

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACETYL ACETONE PEROXIDE</td>
<td>≤ 42</td>
<td>≥ 48</td>
<td>≥ 8</td>
<td>OP7</td>
<td></td>
<td></td>
<td></td>
<td>3105</td>
<td>2)</td>
</tr>
<tr>
<td></td>
<td>≤ 32 as a paste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td>20)</td>
</tr>
<tr>
<td>ACETYL CYCLOHEXANESULPHONYL PEROXIDE</td>
<td>≤ 82</td>
<td></td>
<td>≥ 12</td>
<td>OP4</td>
<td>-10</td>
<td>0</td>
<td></td>
<td>3112</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>≤ 32</td>
<td>≥ 68</td>
<td></td>
<td>OP7</td>
<td>-10</td>
<td>0</td>
<td></td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td>tert-AMYL HYDROPEROXIDE</td>
<td>≤ 88</td>
<td>≥ 6</td>
<td>≥ 6</td>
<td>OP8</td>
<td></td>
<td></td>
<td></td>
<td>3107</td>
<td></td>
</tr>
<tr>
<td>tert-AMYL PEROXYACETATE</td>
<td>≤ 62</td>
<td>≥ 38</td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>tert-AMYL PEROXYBENZOATE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td></td>
<td></td>
<td>3103</td>
<td></td>
</tr>
<tr>
<td>tert-AMYL PEROXY-2-ETHYLHEXANOATE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td>OP7</td>
<td>+20</td>
<td>+25</td>
<td></td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td>tert-AMYL PEROXY-2-ETHYLHEXYL CARBONATE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>tert-AMYL PEROXY ISOPROPYL CARBONATE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td>OP5</td>
<td></td>
<td></td>
<td></td>
<td>3103</td>
<td></td>
</tr>
<tr>
<td>tert-AMYL PEROXYNEODECANOATE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td>OP7</td>
<td>0</td>
<td>+10</td>
<td></td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 47</td>
<td>≥ 53</td>
<td></td>
<td>OP8</td>
<td>0</td>
<td>+10</td>
<td></td>
<td>3119</td>
<td></td>
</tr>
<tr>
<td>tert-AMYL PEROXYPIVALATE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td>OP5</td>
<td>+10</td>
<td>+15</td>
<td></td>
<td>3113</td>
<td></td>
</tr>
<tr>
<td>tert-AMYLPEROXY-3,5,5-TRIMETHYLHEXANOATE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL CUMYL PEROXIDE</td>
<td>> 42 – 100</td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td></td>
<td></td>
<td>3109</td>
<td></td>
</tr>
</tbody>
</table>
ORGANIC PEROXIDE

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-BUTYL-4,4-DI-(tert-BUTYLPEROXY)VALERATE</td>
<td>> 52 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td>3108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3108</td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL HYDROPEROXIDE</td>
<td>> 79 – 90</td>
<td></td>
<td>≥ 10</td>
<td></td>
<td>OP5</td>
<td>3103</td>
<td>13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 80</td>
<td>≥ 20</td>
<td></td>
<td></td>
<td>OP7</td>
<td>3105</td>
<td>4) 13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 79</td>
<td>> 14</td>
<td></td>
<td></td>
<td>OP8</td>
<td>3107</td>
<td>13) 23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL HYDROPEROXIDE + DI-tert-BUTYLPEROXIDE</td>
<td>< 82</td>
<td>≥ 7</td>
<td></td>
<td></td>
<td>OP5</td>
<td>3103</td>
<td>13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL MONOPEROXYMALEATE</td>
<td>> 52 – 100</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>3102</td>
<td>3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP6</td>
<td>3103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP8</td>
<td>3108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL PEROXYACETATE</td>
<td>> 52 – 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td>OP5</td>
<td>3101</td>
<td>3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 32 – 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP6</td>
<td>3103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 32</td>
<td>≥ 68</td>
<td></td>
<td></td>
<td>OP8</td>
<td>3109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL PEROXYBENZOATE</td>
<td>> 77 – 100</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>3103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 52 – 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td>OP7</td>
<td>3105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP7</td>
<td>3106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL PEROXYBUTYL FUMARATE</td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP7</td>
<td>3105</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%) 1)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tert-BUTYL PEROXYCROTONATE</td>
<td>(\leq 77)</td>
<td>(\geq 23)</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL PEROXYDIETHYLACETATE</td>
<td>(\leq 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>+20</td>
<td>+25</td>
<td>3113</td>
</tr>
<tr>
<td>tert-BUTYL PEROXY-2-ETHYLHEXANOATE</td>
<td>(> 52 - 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP6</td>
<td>+20</td>
<td>+25</td>
<td>3113</td>
</tr>
<tr>
<td></td>
<td>(> 32 - 52)</td>
<td>(\geq 48)</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>+30</td>
<td>+35</td>
<td>3117</td>
</tr>
<tr>
<td></td>
<td>(\leq 52)</td>
<td>(\geq 48)</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>+20</td>
<td>+25</td>
<td>3118</td>
</tr>
<tr>
<td></td>
<td>(\leq 32)</td>
<td>(\geq 68)</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>+40</td>
<td>+45</td>
<td>3119</td>
</tr>
<tr>
<td>tert-BUTYL PEROXY-2-ETHYLHEXANOATE + 2,2-DI-(tert-BUTYLPEROXY) BUTANE</td>
<td>(\leq 12 + \leq 14)</td>
<td>(\geq 14)</td>
<td>(\geq 60)</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq 31 + \leq 36)</td>
<td>(\geq 33)</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>+35</td>
<td>+40</td>
<td>3115</td>
</tr>
<tr>
<td>tert-BUTYL PEROXY-2-ETHYLHEXYLCARBONATE</td>
<td>(\leq 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL PEROXYISOBUTYRATE</td>
<td>(> 52 - 77)</td>
<td>(\geq 23)</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>+15</td>
<td>+20</td>
<td>3111</td>
</tr>
<tr>
<td></td>
<td>(\leq 52)</td>
<td>(\geq 48)</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>+15</td>
<td>+20</td>
<td>3115</td>
</tr>
<tr>
<td>tert-BUTYLPEROXY ISOPROPYLCARBONATE</td>
<td>(\leq 77)</td>
<td>(\geq 23)</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td>3103</td>
<td></td>
</tr>
<tr>
<td>1-(2-tert-BUTYLPEROXY ISOPROPYL)-3-ISOPROPENYLBENZENE</td>
<td>(\leq 77)</td>
<td>(\geq 23)</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq 42)</td>
<td>(\geq 58)</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3108</td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL PEROXY-2-METHYLBENZOATE</td>
<td>(\leq 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td>3103</td>
<td></td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>Organic Peroxide</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tert-BUTYL PEROXYNEODECANOATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 77 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>-5</td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>0</td>
<td>+10 3115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52 as a stable dispersion in water</td>
<td>OP8</td>
<td>0</td>
<td>+10</td>
<td>3119</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 42 as a stable dispersion in water (frozen)</td>
<td>OP8</td>
<td>0</td>
<td>+10</td>
<td>3118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 32</td>
<td>≥ 68</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>0</td>
<td>+10 3119</td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL PEROXYNEOHEPTANOATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>0</td>
<td>+10 3115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>0</td>
<td>+10 3115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 42 as a stable dispersion in water</td>
<td>OP8</td>
<td>0</td>
<td>+10</td>
<td>3117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL PEROXYPIVALATE</td>
<td>> 67 – 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>0</td>
<td>+10 3113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 27 – 67</td>
<td>≥ 33</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>0</td>
<td>+10 3115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 27</td>
<td>≥ 73</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>+30</td>
<td>+35 3119</td>
<td></td>
</tr>
<tr>
<td>tert-BUTYLPEROXY STEARYL CARBONATE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td>tert-BUTYL PEROXY-3,5,5-TRIMETHYL HEXANOATE</td>
<td>> 37 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 37</td>
<td>≥ 63</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 42</td>
<td>≥ 58</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
</tbody>
</table>
ORGANIC PEROXIDE

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>Emergency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-CHLOROPEROXYBENZOIC ACID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 57 – 86</td>
<td></td>
<td>≥ 14</td>
<td></td>
<td></td>
<td></td>
<td>OP1</td>
<td></td>
<td>3102</td>
<td></td>
</tr>
<tr>
<td>≤ 57</td>
<td></td>
<td>≥ 3</td>
<td>≥ 40</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td>≤ 77</td>
<td></td>
<td>≥ 6</td>
<td>≥ 17</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CUMYL HYDROPEROXIDE</td>
<td>> 90 – 98</td>
<td>≤ 10</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3107</td>
<td></td>
</tr>
<tr>
<td>≤ 90</td>
<td></td>
<td>≥ 10</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3109</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CUMYL PEROXYNEODECANOATE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>-10</td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 87</td>
<td>≥ 13</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 72</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>-10</td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td>CUMYL PEROXYNEOHEPTANOATE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>-10</td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td>CUMYL PEROXYPIVALATE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>-5</td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td>CYCLOHEXANONE PEROXIDE(S)</td>
<td>≤ 91</td>
<td>≥ 9</td>
<td></td>
<td></td>
<td></td>
<td>OP6</td>
<td></td>
<td>3104</td>
<td></td>
</tr>
<tr>
<td>≤ 72</td>
<td>≥ 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>≤ 72 as a paste</td>
<td>≥ 68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 32</td>
<td>≥ 68</td>
<td></td>
<td></td>
<td></td>
<td>Exempt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>((3R-(3S,5aS,8aS,9R,10R,12S,12aR**))-DECAHYDRO-10-METHOXY-3,6,9-TRIMETHYL-3,12-EPoxy-12H-PYRANO[4,3-j]-1,2-BENZODIOXEPIN)</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td>DIACETONE ALCOHOL PEROXIDES</td>
<td>≤ 57</td>
<td>≥ 26</td>
<td>≥ 8</td>
<td></td>
<td></td>
<td>OP7</td>
<td>+40</td>
<td>3115</td>
<td></td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIACETYL PEROXIDE</td>
<td>≤ 27</td>
<td>≥ 73</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>+20</td>
<td>3115</td>
<td>7) 13)</td>
</tr>
<tr>
<td>Di-tert-AMYL PEROXIDE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3107</td>
<td></td>
</tr>
<tr>
<td>2,2-Di-(tert-AMYLPEROXY) BUTANE</td>
<td>≤ 57</td>
<td>≥ 43</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>1,1-Di-(tert-AMYLPEROXY) CYCLOHEXANE</td>
<td>≤ 82</td>
<td>≥ 18</td>
<td></td>
<td></td>
<td></td>
<td>OP6</td>
<td></td>
<td>3103</td>
<td></td>
</tr>
<tr>
<td>DIBENZOYL PEROXIDE</td>
<td>> 52 – 100</td>
<td>≤ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP2</td>
<td></td>
<td>3102</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>> 77 – 94</td>
<td>≥ 6</td>
<td></td>
<td></td>
<td></td>
<td>OP4</td>
<td></td>
<td>3102</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP6</td>
<td></td>
<td>3104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 62</td>
<td>≥ 28</td>
<td>≥ 10</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 52 – 62 as a paste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td>20)</td>
</tr>
<tr>
<td></td>
<td>> 35 – 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 36 – 42</td>
<td>≥ 18</td>
<td>≤ 40</td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 56.5 as a paste</td>
<td></td>
<td>≥ 15</td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52 as a paste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3108</td>
<td>20)</td>
</tr>
<tr>
<td></td>
<td>≤ 42 as a stable dispersion in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 35</td>
<td>≥ 65</td>
<td></td>
<td></td>
<td></td>
<td>Exempt</td>
<td></td>
<td></td>
<td>29)</td>
</tr>
</tbody>
</table>
ORGANIC PEROXIDE

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI-(4-tert-BUTYLCYCLOHEXYL) PEROXYDICARBONATE</td>
<td>(\leq 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP6</td>
<td>(+30)</td>
<td>(+35)</td>
<td>3114</td>
</tr>
<tr>
<td></td>
<td>(\leq 42) as a stable dispersion in water</td>
<td>OP8</td>
<td>(+30)</td>
<td>(+35)</td>
<td></td>
<td></td>
<td></td>
<td>3119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq 42) (as a paste)</td>
<td>OP8</td>
<td>(35)</td>
<td>(40)</td>
<td></td>
<td></td>
<td></td>
<td>3118</td>
<td></td>
</tr>
<tr>
<td>DI-tert-BUTYL PEROXIDE</td>
<td>(> 52 – 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq 52)</td>
<td>(\geq 48)</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3109 (25)</td>
<td></td>
</tr>
<tr>
<td>DI-tert-BUTYL PEROXAZELATE</td>
<td>(\leq 52)</td>
<td>(\geq 48)</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>2,2-DI-(tert-BUTYLPEROXY) BUTANE</td>
<td>(\leq 52)</td>
<td>(\geq 48)</td>
<td></td>
<td></td>
<td></td>
<td>OP6</td>
<td></td>
<td>3103</td>
<td></td>
</tr>
<tr>
<td>1,6-DI-(tert-BUTYLPEROXYCARBONYLOXY) HEXANE</td>
<td>(\leq 72)</td>
<td>(\geq 28)</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td>3103</td>
<td></td>
</tr>
<tr>
<td>1,1-DI-(tert-BUTYLPEROXY) CYCLOHEXANE</td>
<td>(> 80 – 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td>3101 (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(> 52 – 80)</td>
<td>(\geq 20)</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td>3103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(> 42 – 52)</td>
<td>(\geq 48)</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq 72)</td>
<td>(\geq 28)</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td>3103 (30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq 42)</td>
<td>(\geq 13)</td>
<td>(\geq 45)</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\leq 42)</td>
<td>(\geq 58)</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3109</td>
<td></td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%) 1</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 27</td>
<td>≥ 25</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3107</td>
<td>21)</td>
</tr>
<tr>
<td></td>
<td>≤ 13</td>
<td>≥ 13</td>
<td>≥ 74</td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3109</td>
<td></td>
</tr>
<tr>
<td>1,1-DI-(tert-BUTYLPEROXY)-CYCLOHEXANE + tert-BUTYL PEROXY-2-ETHYLHEXANOATE</td>
<td>≤ 43 + ≤ 16</td>
<td>≥ 41</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>DI-n-BUTYL PEROXYDICARBONATE</td>
<td>> 27 – 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>-15</td>
<td>-5</td>
<td>3115</td>
</tr>
<tr>
<td></td>
<td>≤ 42 as a stable dispersion in water (frozen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>-15</td>
<td>-5</td>
<td>3118</td>
</tr>
<tr>
<td></td>
<td>≤ 27</td>
<td>≥ 73</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>-10</td>
<td>0</td>
<td>3117</td>
</tr>
<tr>
<td>DI-sec-BUTYL PEROXYDICARBONATE</td>
<td>> 52 – 100</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP4</td>
<td>-20</td>
<td>-10</td>
<td>3113</td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>-15</td>
<td>-5</td>
<td>3115</td>
</tr>
<tr>
<td>DI-(tert-BUTYLPEROXYISOPROPYL) BENZENE(S)</td>
<td>> 42 – 100</td>
<td>≤ 57</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 42</td>
<td>≥ 58</td>
<td></td>
<td></td>
<td></td>
<td>Exempt</td>
<td></td>
<td></td>
<td>Exempt 29)</td>
</tr>
<tr>
<td>DI-(tert-BUTYLPEROXY) PHTHALATE</td>
<td>> 42 – 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52 as a paste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td>20)</td>
</tr>
<tr>
<td></td>
<td>≤ 42</td>
<td>≥ 58</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3107</td>
<td></td>
</tr>
<tr>
<td>2,2-DI-(tert-BUTYLPEROXY)PROPANE</td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 42</td>
<td>≥ 13</td>
<td>≥ 45</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-Di-(tert-BUTYLPEROXY)-3,3,5-TRIMETHYLCYCLOHEXANE</td>
<td>> 90 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>3101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 90</td>
<td>≥ 10</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>3103</td>
<td>30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 57 – 90</td>
<td>≥ 10</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>3103</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>3103</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 57</td>
<td>≥ 43</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>3110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 57</td>
<td>≥ 43</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>3107</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 32</td>
<td>≥ 26</td>
<td>≥ 42</td>
<td></td>
<td></td>
<td>OP8</td>
<td>3107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DICETYL PEROXYDICARBONATE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>+30</td>
<td>+35</td>
<td>3120</td>
</tr>
<tr>
<td></td>
<td>≤ 42 as a stable dispersion in water</td>
<td>OP8</td>
<td>+30</td>
<td>+35</td>
<td>3119</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI-4-CHLOROBENZOYL PEROXIDE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>3102</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52 as a paste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>3106</td>
<td>20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 32</td>
<td>≥ 68</td>
<td></td>
<td></td>
<td></td>
<td>Exempt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DICUMYL PEROXIDE</td>
<td>> 52 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>3110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>Exempt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DICYCLOHEXYL PEROXYDICARBONATE</td>
<td>> 91 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP3</td>
<td>+10</td>
<td>+15</td>
<td>3112</td>
</tr>
<tr>
<td></td>
<td>≤ 91</td>
<td>≥ 9</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>+10</td>
<td>+15</td>
<td>3114</td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIDECANOYL PEROXIDE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP6</td>
<td>+30</td>
<td>+35</td>
<td>3114</td>
</tr>
<tr>
<td>2,2-DI-(4,4-DI (tert-BUTYLPEROXY)CYCLOHEXYL) PROPANE</td>
<td>≤ 42</td>
<td>≥ 58</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td>3106</td>
</tr>
<tr>
<td></td>
<td>≤ 22</td>
<td>≥ 78</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td></td>
<td>3107</td>
</tr>
<tr>
<td>DI-2,4-DICHLOROBENZOYL PEROXIDE</td>
<td>≤ 77</td>
<td></td>
<td>≥ 23</td>
<td></td>
<td></td>
<td>OP5</td>
<td>+20</td>
<td>+25</td>
<td>3102 3)</td>
</tr>
<tr>
<td></td>
<td>≤ 52 as a paste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td></td>
<td>3118</td>
</tr>
<tr>
<td></td>
<td>≤ 52 as a paste with silicon oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td>3106</td>
</tr>
<tr>
<td>DI-(2-ETHOXYETHYL) PEROXYDICARBONATE</td>
<td>≤ 52</td>
<td></td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP7</td>
<td>-10</td>
<td>0</td>
<td>3115</td>
</tr>
<tr>
<td>DI-(2-ETHYLHEXYL) PEROXYDICARBONATE</td>
<td>> 77 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>-20</td>
<td>-10</td>
<td>3113</td>
</tr>
<tr>
<td></td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>-15</td>
<td>-5</td>
<td>3115</td>
</tr>
<tr>
<td></td>
<td>≤ 62 as a stable dispersion in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>-15</td>
<td>-5</td>
<td>3117</td>
</tr>
<tr>
<td></td>
<td>≤ 52 as a stable dispersion in water (frozen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td></td>
<td>3120</td>
</tr>
</tbody>
</table>
ORGANIC PEROXIDE

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,2-DIHYDROPEROXYPROPANE</td>
<td>≤ 27</td>
<td></td>
<td>≥ 73</td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td>3102</td>
<td>3)</td>
</tr>
<tr>
<td>DI-(1-HYDROXYCYCLOHEXYL) PEROXIDE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td>DIISOBUTYRYL PEROXIDE</td>
<td>> 32 – 52</td>
<td>≤ 42 (as a stable dispersion in water)</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP5</td>
<td>-20</td>
<td>-10</td>
<td>3111 3119 3)</td>
</tr>
<tr>
<td></td>
<td>≤ 32</td>
<td></td>
<td>≥ 68</td>
<td></td>
<td></td>
<td>OP7</td>
<td>-20</td>
<td>-10</td>
<td>3115</td>
</tr>
<tr>
<td>DIISOPROPYLBENZENE DIHYDROPEROXIDE</td>
<td>≤ 82</td>
<td>≥ 5</td>
<td>≥ 5</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106 24)</td>
<td></td>
</tr>
<tr>
<td>DIISOPROPYL PEROXYDICARBONATE</td>
<td>> 52 – 100</td>
<td></td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP7</td>
<td>-20</td>
<td>-10</td>
<td>3112 3)</td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td></td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP7</td>
<td>-20</td>
<td>-10</td>
<td>3115</td>
</tr>
<tr>
<td></td>
<td>≤ 32</td>
<td></td>
<td>≥ 68</td>
<td></td>
<td></td>
<td>OP7</td>
<td>-15</td>
<td>-5</td>
<td>3115</td>
</tr>
<tr>
<td>DILAUROYL PEROXIDE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 42 as a stable dispersion in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3109</td>
<td></td>
</tr>
<tr>
<td>DI-(3-METHOXYBUTYL) PEROXYDICARBONATE</td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>-5</td>
<td>+5</td>
<td>3115</td>
</tr>
<tr>
<td>DI-(2-METHYLBENZOYL) PEROXIDE</td>
<td>≤ 87</td>
<td></td>
<td>≥ 13</td>
<td></td>
<td></td>
<td>OP5</td>
<td>+30</td>
<td>+35</td>
<td>3112 3)</td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

| ORGANIC PEROXIDE | Concentration (%) | Diluent type A (%) | Diluent type B (%) 1 | Inert solid (%) | Water (%) | Packing Method | Temperature (°C) | UN No. (Generic entry) | Subsidiary hazards and remarks
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DI-(3-METHYLBENZOYL) PEROXIDE + BENZOYL (3-METHYLBENZOYL) PEROXIDE + DIBENZOYL PEROXIDE</td>
<td>≤ 20
+ ≤ 18
+ ≤ 4</td>
<td>≥ 58</td>
<td>OP7</td>
<td>+35</td>
<td>+40</td>
<td>3115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI-(4-METHYLBENZOYL) PEROXIDE</td>
<td>≤ 52 as a paste with silicon oil</td>
<td>OP7</td>
<td>3106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-DIMETHYL-2,5-DI-(BENZOYLPEROXY)HEXANE</td>
<td>> 82 – 100</td>
<td>OP5</td>
<td>3102 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 82</td>
<td>≥ 18</td>
<td>OP7</td>
<td>3106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 82</td>
<td>≥ 18</td>
<td>OP5</td>
<td>3104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-DIMETHYL-2,5-DI-(tert-BUTYLPEROXY)HEXANE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td>OP8</td>
<td>3108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td>≥ 48</td>
<td>OP8</td>
<td>3109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 47 as a paste</td>
<td>OP8</td>
<td>3108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-DIMETHYL-2,5-DI-(tert-BUTYLPEROXY)HEXANE</td>
<td>> 90 – 100</td>
<td>OP5</td>
<td>3103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-DIMETHYL-2,5-DI-(tert-BUTYLPEROXY)HEXANE</td>
<td>> 52 – 90</td>
<td>≥ 10</td>
<td>OP7</td>
<td>3105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-DIMETHYL-2,5-DI-(tert-BUTYLPEROXY)HEXYNE-3</td>
<td>> 86 – 100</td>
<td>OP5</td>
<td>3101 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 52 – 86</td>
<td>≥ 14</td>
<td>OP5</td>
<td>3103 26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td>≥ 48</td>
<td>OP7</td>
<td>3106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5-DIMETHYL-2,5-DI-(2-ETHYLHEXANOYLPEROXY) HEXANE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td>+20</td>
<td>+25</td>
<td>3113</td>
<td></td>
</tr>
<tr>
<td>2,5-DIMETHYL-2,5-DIHYDROPEROXYHEXANE</td>
<td>≤ 82</td>
<td></td>
<td>≥ 18</td>
<td>OP6</td>
<td></td>
<td></td>
<td></td>
<td>3104</td>
<td></td>
</tr>
<tr>
<td>2,5-DIMETHYL-2,5-DI-(3,5,5-TRIMETHYLHEXANOYLPEROXY) HEXANE</td>
<td>≤ 77</td>
<td></td>
<td>≥ 23</td>
<td>OP7</td>
<td></td>
<td></td>
<td></td>
<td>3105</td>
<td></td>
</tr>
<tr>
<td>1,1-DIMETHYL-3-HYDROXYBUTYL PEROXYNEOHEPTANOATE</td>
<td>≤ 52</td>
<td></td>
<td>≥ 48</td>
<td>OP8</td>
<td>0</td>
<td>+10</td>
<td></td>
<td>3117</td>
<td></td>
</tr>
<tr>
<td>DIMYRISTYL PEROXYDICARBONATE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td>OP7</td>
<td>+20</td>
<td>+25</td>
<td></td>
<td>3116</td>
<td>≤ 42 as a stable dispersion in water</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DI-(2-NEODECANOYLPEROXYISOPROPYL) BENZENE</td>
<td>≤ 52</td>
<td></td>
<td>≥ 48</td>
<td>OP7</td>
<td>-10</td>
<td>0</td>
<td></td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td>DI-n-NONANOYL PEROXIDE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td>OP7</td>
<td>0</td>
<td>+10</td>
<td></td>
<td>3116</td>
<td></td>
</tr>
<tr>
<td>DI-n-OCTANOYL PEROXIDE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td>OP5</td>
<td>+10</td>
<td>+15</td>
<td></td>
<td>3114</td>
<td></td>
</tr>
<tr>
<td>DI-(2-PHENOXYETHYL) PEROXYDICARBONATE</td>
<td>> 85 – 100</td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td></td>
<td></td>
<td>3102</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>≤ 85</td>
<td></td>
<td>≥ 15</td>
<td>OP7</td>
<td></td>
<td></td>
<td></td>
<td>3106</td>
<td></td>
</tr>
<tr>
<td>DIPROPIONYL PEROXIDE</td>
<td>≤ 27</td>
<td></td>
<td>≥ 73</td>
<td>OP8</td>
<td>+15</td>
<td>+20</td>
<td></td>
<td>3117</td>
<td></td>
</tr>
</tbody>
</table>
ORGANIC PEROXIDE

<table>
<thead>
<tr>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI-n-PROPYL PEROXYDICARBONATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP3</td>
<td>-25</td>
<td>-15</td>
<td>3113</td>
</tr>
<tr>
<td>≤ 77</td>
<td></td>
<td>≥ 23</td>
<td></td>
<td></td>
<td>OP5</td>
<td>-20</td>
<td>-10</td>
<td>3113</td>
</tr>
<tr>
<td>DISUCCINIC ACID PEROXIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 72 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP4</td>
<td></td>
<td></td>
<td>3102 3) 17)</td>
</tr>
<tr>
<td>≤ 72</td>
<td></td>
<td>≥ 28</td>
<td></td>
<td></td>
<td>OP7</td>
<td>+10</td>
<td>+15</td>
<td>3116</td>
</tr>
<tr>
<td>DI-(3,5,5-TRIMETHYLHEXANOYL) PEROXIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 52 – 82</td>
<td></td>
<td>≥ 18</td>
<td></td>
<td></td>
<td>OP7</td>
<td>0</td>
<td>+10</td>
<td>3115</td>
</tr>
<tr>
<td>≤ 52 as a stable dispersion in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>+10</td>
<td>+15</td>
<td>3119</td>
</tr>
<tr>
<td>> 38 – 52</td>
<td></td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP8</td>
<td>+10</td>
<td>+15</td>
<td>3119</td>
</tr>
<tr>
<td>≤ 38</td>
<td></td>
<td>≥ 62</td>
<td></td>
<td></td>
<td>OP8</td>
<td>+20</td>
<td>+25</td>
<td>3119</td>
</tr>
<tr>
<td>ETHYL 3,3-DI-(tert-AMYLPEROXY)BUTYRATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 67</td>
<td></td>
<td>≥ 33</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td>3105</td>
</tr>
<tr>
<td>ETHYL 3,3-DI-(tert-BUTYLPEROXY)BUTYRATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 77 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td></td>
<td>3103</td>
</tr>
<tr>
<td>≤ 77</td>
<td></td>
<td>≥ 23</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td>3105</td>
</tr>
<tr>
<td>≤ 52</td>
<td></td>
<td>≥ 48</td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td>3106</td>
</tr>
<tr>
<td>1-(2-ETHYLHEXANOYLPEROXY)-1,3-DIMETHYLBUTYLPEROXY PIVALATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 52</td>
<td></td>
<td>≥ 45</td>
<td></td>
<td></td>
<td>OP7</td>
<td>-20</td>
<td>-10</td>
<td>3115</td>
</tr>
<tr>
<td>tert-HEXYL PEROXYNEODECANOATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 71</td>
<td></td>
<td>≥ 29</td>
<td></td>
<td></td>
<td>OP7</td>
<td>0</td>
<td>+10</td>
<td>3115</td>
</tr>
<tr>
<td>tert-HEXYL PEROXYPIVALATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 72</td>
<td></td>
<td>≥ 28</td>
<td></td>
<td></td>
<td>OP7</td>
<td>+10</td>
<td>+15</td>
<td>3115</td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-HYDROXY-1,1-DIMETHYLBUTYL PEROXYNEODECANOATE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP 7</td>
<td>- 5</td>
<td>+ 5</td>
<td>3115</td>
</tr>
<tr>
<td></td>
<td>≤ 52 as a stable dispersion in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP 8</td>
<td>- 5</td>
<td>+ 5</td>
<td>3119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP 8</td>
<td>- 5</td>
<td>+ 5</td>
<td>3117</td>
</tr>
<tr>
<td>ISOPROPYL sec-BUTYL PEROXYDICARBONATE + DI-sec-BUTYL PEROXYDICARBONATE + DI-ISOPROPYL PEROXYDICARBONATE</td>
<td>≤ 32</td>
<td>≥ 38</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>-20</td>
<td>-10</td>
<td>3115</td>
</tr>
<tr>
<td></td>
<td>≤ 52</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>-20</td>
<td>-10</td>
<td>3111 3)</td>
</tr>
<tr>
<td>ISOPROPYLCUMYL HYDROPEROXIDE</td>
<td>≤ 72</td>
<td>≥ 28</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td></td>
<td>3109 13)</td>
</tr>
<tr>
<td>p-MENTHYL HYDROPEROXIDE</td>
<td>> 72 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td>3105 13)</td>
</tr>
<tr>
<td></td>
<td>≤ 72</td>
<td>≥ 28</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td></td>
<td>3109 27)</td>
</tr>
<tr>
<td>METHYL CYCLOHEXANONE PEROXIDE(S)</td>
<td>≤ 67</td>
<td>≥ 33</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>+35</td>
<td>+40</td>
<td>3115</td>
</tr>
<tr>
<td>METHYL ETHYL KETONE PEROXIDE(S)</td>
<td>See remark 8)</td>
<td>≥ 48</td>
<td></td>
<td></td>
<td></td>
<td>OP5</td>
<td></td>
<td></td>
<td>3101 3) 8) 13)</td>
</tr>
<tr>
<td></td>
<td>See remark 9)</td>
<td>≥ 55</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td></td>
<td>3105 9)</td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks (see notes at end of table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGANIC PEROXIDE</td>
<td>See remark 10)</td>
<td>≥ 60</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3107</td>
<td>10)</td>
</tr>
<tr>
<td>Methyl Isobutyl Ketone Peroxide(s)</td>
<td>≤ 62</td>
<td>≥ 19</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td>22)</td>
</tr>
<tr>
<td>Methyl Isopropyl Ketone Peroxide(s)</td>
<td>See remark 31)</td>
<td>≥ 70</td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3109</td>
<td>31)</td>
</tr>
<tr>
<td>Organic Peroxide, Liquid, Sample</td>
<td>OP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3103</td>
<td>11)</td>
</tr>
<tr>
<td>Organic Peroxide, Liquid, Sample, Temperature Controlled</td>
<td>OP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3113</td>
<td>11)</td>
</tr>
<tr>
<td>Organic Peroxide, Solid, Sample</td>
<td>OP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3104</td>
<td>11)</td>
</tr>
<tr>
<td>Organic Peroxide, Solid, Sample, Temperature Controlled</td>
<td>OP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3114</td>
<td>11)</td>
</tr>
<tr>
<td>3,3,5,7,7-Pentamethyl-1,2,4-Trioxepane</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3107</td>
<td></td>
</tr>
<tr>
<td>Peroxyacetic Acid, Type D, stabilised</td>
<td>≤ 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3105</td>
<td>13) 14) 19)</td>
</tr>
<tr>
<td>Peroxyacetic Acid, Type E, stabilised</td>
<td>≤ 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3107</td>
<td>13) 15) 19)</td>
</tr>
<tr>
<td>Peroxyacetic Acid, Type F, stabilised</td>
<td>≤ 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3109</td>
<td>13) 16) 19)</td>
</tr>
<tr>
<td>Peroxylauric Acid</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3118</td>
<td></td>
</tr>
<tr>
<td>1-Phenylethyl Hydroperoxide</td>
<td>≤ 38</td>
<td>≥ 62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3109</td>
<td></td>
</tr>
<tr>
<td>Pinanyl Hydroperoxide</td>
<td>> 56 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3105</td>
<td>13)</td>
</tr>
</tbody>
</table>

ORGANIC PEROXIDE

<table>
<thead>
<tr>
<th>ORGANIC PEROXIDE</th>
<th>Concentration (%)</th>
<th>Diluent type A (%)</th>
<th>Diluent type B (%)</th>
<th>Inert solid (%)</th>
<th>Water (%)</th>
<th>Packing Method</th>
<th>Temperature (°C)</th>
<th>UN No. (Generic entry)</th>
<th>Subsidiary hazards and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYETHER POLY-tert-BUTYLPEROXYCARBONATE</td>
<td>≤ 52</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3109</td>
<td></td>
</tr>
<tr>
<td>1,1,3,3-TETRAMETHYLIBUTYL HYDROPEROXIDE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3107</td>
<td></td>
</tr>
<tr>
<td>1,1,3,3-TETRAMETHYLIBUTYL PEROXY-2 ETHYL-HEXANOATE</td>
<td>≤ 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>+15</td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td>1,1,3,3- TETRAMETHYLIBUTYL PEROXYNEODECANOATE</td>
<td>≤ 72</td>
<td>≥ 28</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>+5</td>
<td>3115</td>
<td></td>
</tr>
<tr>
<td>≤ 52 as a stable dispersion in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OP8</td>
<td>-5</td>
<td>3119</td>
<td></td>
</tr>
<tr>
<td>1,1,3,3-TETRAMETHYLIBUTYL PEROXYPIVALATE</td>
<td>≤ 77</td>
<td>≥ 23</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td>0</td>
<td>3315</td>
<td></td>
</tr>
<tr>
<td>(Listing transferred to correct alphabetical position)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,6,9-TRIETHYL-3,6,9-TRIMETHYL-1,4,7 TRIPEROXONANE</td>
<td>≤ 42</td>
<td>≥ 58</td>
<td></td>
<td></td>
<td></td>
<td>OP7</td>
<td></td>
<td>3105</td>
<td>28)</td>
</tr>
<tr>
<td>3,6,9-TRIETHYL-3,6,9-TRIMETHYL-1,4,7 TRIPEROXONANE</td>
<td>≥ 17</td>
<td>≥ 18</td>
<td>≥ 65</td>
<td></td>
<td></td>
<td>OP8</td>
<td></td>
<td>3110</td>
<td></td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

Notes on 2.5.3.2.4:

1) Diluent type B may always be replaced by diluent type A. The boiling point of diluent type B should be at least 60 °C higher than the SADT of the organic peroxide.

2) Available oxygen ≤ 4.7 %.

3) “EXPLOSIVE” subsidiary hazard label required (Model No.1, see 5.2.2.2.2).

4) Diluent may be replaced by di-tert-butyl peroxide.

5) Available oxygen ≤ 9 %.

6) With ≤ 9 % hydrogen peroxide; available oxygen ≤ 10 %.

7) Only non-metallic packagings allowed.

8) Available oxygen > 10 % and ≤ 10.7 %, with or without water.

9) Available oxygen ≤ 10 %, with or without water.

10) Available oxygen ≤ 8.2 %, with or without water.

11) See 2.5.3.2.5.1.

12) Up to 2 000 kg per receptacle assigned to ORGANIC PEROXIDE TYPE F on the basis of large scale trials.

13) “CORROSIVE” subsidiary hazard label required (Model No 8, see 5.2.2.2.2).

14) Peroxyacetic acid formulations which fulfil the criteria of 2.5.3.3.2 (d).

15) Peroxyacetic acid formulations which fulfil the criteria of 2.5.3.3.2 (e).

16) Peroxyacetic acid formulations which fulfil the criteria of 2.5.3.3.2 (f).

17) Addition of water to this organic peroxide will decrease its thermal stability.

18) No “CORROSIVE” subsidiary hazard label required for concentrations below 80 %.

19) Mixtures with hydrogen peroxide, water and acid(s).

20) With diluent type A, with or without water.

21) With ≥ 25 % diluent type A by mass, and in addition ethylbenzene.

22) With ≥ 19 % diluent type A by mass, and in addition methyl isobutyl ketone.

23) With < 6 % di-tert-butyl peroxide.

24) With ≤ 8 % 1-isopropylhydroperoxy-4-isopropylhydroxybenzene.

25) Diluent type B with boiling point > 110 °C.

26) With < 0.5 % hydroperoxides content.

27) For concentrations more than 56 %, “CORROSIVE” subsidiary hazard label (Model No 8, see 5.2.2.2.2) required.

28) Available active oxygen ≤ 7.6 % in diluent Type A having a 95 % boil-off point in the range of 200 - 260 °C.

29) Not subject to the requirements of this Code for Division 5.2.

30) Diluent type B with boiling point > 130 °C.

31) Active oxygen ≤ 6.7 %.
2.5.3.2.5 Classification of organic peroxides not listed in 2.5.3.2.4, packing instruction IBC520 or portable tank instruction T23 and assignment to a generic entry must be made by the competent authority of the country or jurisdiction of origin on the basis of a test report. Principles applying to the classification of such substances are provided in 2.5.3.3. The applicable classification procedures, test methods and criteria, and an example of a suitable test report, are given in the current edition of the Manual of Tests and Criteria, Part II. The determination must contain the classification and the relevant transport conditions.

2.5.3.2.5.1 Samples of new organic peroxides or new formulations of organic peroxides not listed in 2.5.3.2.4, for which complete test data are not available and which are to be transported for further testing or evaluation, may be assigned to one of the appropriate entries for ORGANIC PEROXIDE TYPE C provided the following conditions are met:

(a) The available data indicate that the sample would be no more dangerous than ORGANIC PEROXIDE TYPE B;
(b) The sample is packaged in accordance with packing method OP2 (see applicable packing instruction) and the quantity per cargo transport unit is limited to 10 kg;
(c) The available data indicate that the control temperature, if any, is sufficiently low to prevent any dangerous decomposition and sufficiently high to prevent any dangerous phase separation.

2.5.3.3 Principles for classification of organic peroxides

NOTE: This section refers only to those properties of organic peroxides which are decisive for their classification. A flow chart, presenting the classification principles in the form of a graphically arranged scheme of questions concerning the decisive properties together with the possible answers, is given in Figure 2.5.1. These properties must be determined experimentally. Suitable test methods with pertinent evaluation criteria are given in the Manual of Tests and Criteria, Part II.

2.5.3.3.1 An organic peroxide formulation must be regarded as possessing explosive properties when in laboratory testing the formulation is liable to detonate, to deflagrate rapidly or to show a violent effect when heated under confinement.

2.5.3.3.2 The following principles apply to the classification of organic peroxide formulations not listed in 2.5.3.2.4:

(a) Any organic peroxide formulation which can detonate or deflagrate rapidly, as packaged for transport, is prohibited from transport in that packaging under Division 5.2 (defined as ORGANIC PEROXIDE TYPE A, exit box A of Figure 2.5.1);
(b) Any organic peroxide formulation possessing explosive properties and which, as packaged for transport, neither detonates nor deflagrates rapidly, but is liable to undergo a thermal explosion in that package, must bear an “EXPLOSIVE” subsidiary hazard label (Model No.1, see 5.2.2.2.2). Such an organic peroxide may be packaged in amounts of up to 25 kg unless the maximum quantity has to be limited to a lower amount to preclude detonation or rapid deflagration in the package (defined as ORGANIC PEROXIDE TYPE B, exit box B of Figure 2.5.1);
PART 2: CLASSIFICATION

(c) Any organic peroxide formulation possessing explosive properties may be transported without an “EXPLOSIVE” subsidiary hazard label when the substance as packaged (maximum 50 kg) for transport cannot detonate or deflagrate rapidly or undergo a thermal explosion (defined as ORGANIC PEROXIDE TYPE C, exit box C of Figure 2.5.1);

(d) Any organic peroxide formulation which in laboratory testing:

(i) detonates partially, does not deflagrate rapidly and shows no violent effect when heated under confinement; or

(ii) does not detonate at all, deflagrates slowly and shows no violent effect when heated under confinement; or

(iii) does not detonate or deflagrate at all and shows a medium effect when heated under confinement;

is acceptable for transport in packages of not more than 50 kg net mass (defined as ORGANIC PEROXIDE TYPE D, exit box D of Figure 2.5.1);

(e) Any organic peroxide formulation which, in laboratory testing, neither detonates nor deflagrates at all and shows low or no effect when heated under confinement is acceptable for transport in packages of not more than 400 kg/450 litres (defined as ORGANIC PEROXIDE TYPE E, exit box E of Figure 2.5.1);

(f) Any organic peroxide formulation which, in laboratory testing, neither detonates in the cavitated state nor deflagrates at all and shows only a low or no effect when heated under confinement as well as low or no explosive power may be considered for transport in IBCs or tanks (defined as ORGANIC PEROXIDE TYPE F, exit box F of Figure 2.5.1); for additional requirements see 4.1.7 and 4.2.1.13;

Any organic peroxide formulation which, in laboratory testing, neither detonates in the cavitated state nor deflagrates at all and shows no effect when heated under confinement nor any explosive power is exempted from Division 5.2, provided that the formulation is thermally stable (self-accelerating decomposition temperature is 60 °C or higher for a 50 kg package) and for liquid formulations diluent type A is used for desensitisation (defined as ORGANIC PEROXIDE TYPE G, exit box G of Figure 2.5.1). If the formulation is not thermally stable or a diluent other than type A is used for desensitisation, the formulation must be defined as ORGANIC PEROXIDE TYPE F.
PART 2: CLASSIFICATION

Figure 2.5.1: Flow chart scheme for organic peroxides

[Diagram of flow chart scheme for organic peroxides]
Figure 2.5.1: FLOW CHART SCHEME FOR ORGANIC PEROXIDES (cont’d)
2.5.3.4 **Temperature control requirements**

2.5.3.4.1 The following organic peroxides must be subjected to temperature control during transport:

(a) Organic peroxides type B and C with an SADT ≤ 50 °C; and

(b) Organic peroxides type D showing a medium effect when heated under confinement\(^1\) with an SADT ≤ 50 °C or showing a low or no effect when heated under confinement with an SADT ≤ 45 °C; and

(c) Organic peroxides types E and F with an SADT ≤ 45 °C.

2.5.3.4.2 Test methods for determining the SADT are given in the Manual of Tests and Criteria, Part II, section 28. The test selected must be conducted in a manner which is representative, both in size and material, of the package to be transported.

2.5.3.4.3 Test methods for determining the flammability are given in the Manual of Tests and Criteria, Part III, sub-section 32.4. Because organic peroxides may react vigorously when heated it is recommended to determine their flash point using small sample sizes such as described in ISO 3679.

2.5.3.5 **Desensitisation of organic peroxides**

2.5.3.5.1 In order to ensure safety during transport, organic peroxides are in many cases desensitised by organic liquids or solids, inorganic solids or water. Where a percentage of a substance is stipulated, this refers to the percentage by mass, rounded to the nearest whole number. In general, desensitisation must be such that, in case of spillage or fire, the organic peroxide will not concentrate to a dangerous extent.

2.5.3.5.2 Unless otherwise stated for the individual organic peroxide formulation, the following definitions apply for diluents used for desensitisation:

(a) Diluents type A are organic liquids which are compatible with the organic peroxide and which have a boiling point of not less than 150 °C. Type A diluents may be used for desensitising all organic peroxides;

(b) Diluents type B are organic liquids which are compatible with the organic peroxide and which have a boiling point of not less than 150 °C but not less than 60 °C and a flash point of not less than 5 °C. Type B diluents may be used for desensitisation of all organic peroxides provided that the boiling point is at least 60 °C higher than the SADT in a 50 kg package.

2.5.3.5.3 Diluents, other than type A or type B, may be added to organic peroxide formulations as listed in 2.5.3.2.4 provided that they are compatible. However, replacement of all or part of a type A or type B diluent by another diluent with differing properties requires that the organic peroxide formulation be re-assessed in accordance with the normal acceptance procedure for Division 5.2.

2.5.3.5.4 Water may only be used for the desensitisation of organic peroxides which are shown in 2.5.3.2.4 or in the determination according to 2.5.3.2.5 as being with water or as a stable dispersion in water.

\(^1\) As determined by test series E as prescribed in the Manual of Tests and Criteria, Part II.
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.3.5.5</td>
<td>Organic and inorganic solids may be used for desensitisation of organic peroxides provided that they are compatible.</td>
</tr>
<tr>
<td>2.5.3.5.6</td>
<td>Compatible liquids and solids are those which have no detrimental influence on the thermal stability and hazard type of the organic peroxide formulation.</td>
</tr>
</tbody>
</table>
CHAPTER 2.6 - CLASS 6 – TOXIC SUBSTANCES AND INFECTIOUS SUBSTANCES

Introductory Notes

NOTE 1: Genetically modified micro-organisms and organisms (GMMOs and GMOs) which do not meet the definition of a toxic or an infectious substance should be considered for classification in Class 9 and assignment to UN 3245. This Code does not apply to the transport of GMMOs and GMOs to which 2.9.2.2 applies.

NOTE 2: Toxins from plant, animal or bacterial sources which do not contain any infectious substances, or toxins that are contained in substances which are not infectious substances, should be considered for classification in Division 6.1 and assignment to UN 3172.

2.6.1 DEFINITIONS

Class 6 is divided into two divisions as follows:

(a) Division 6.1 Toxic substances

These are substances liable either to cause death or serious injury or to harm human health if swallowed or inhaled or by skin contact;

(b) Division 6.2 Infectious substances

These are substances known or reasonably expected to contain pathogens. Pathogens are defined as micro-organisms (including bacteria, viruses, parasites, fungi) and other agents such as prions, which can cause disease in humans or animals.

2.6.2 DIVISION 6.1 - TOXIC SUBSTANCES

2.6.2.1 Definitions

For the purposes of this Code:

2.6.2.1.1 LD$_{50}$ (median lethal dose) for acute oral toxicity is the statistically derived single dose of a substance that can be expected to cause death within 14 days in 50 per cent of young adult albino rats when administered by the oral route. The LD$_{50}$ value is expressed in terms of mass of test substance per mass of test animal (mg/kg).

2.6.2.1.2 LD$_{50}$ for acute dermal toxicity is that dose of the substance which, administered by continuous contact for 24 hours with the bare skin of albino rabbits, is most likely to cause death within 14 days in one half of the animals tested. The number of animals tested must be sufficient to give a statistically significant result and be in conformity with good pharmacological practice. The result is expressed in milligrams per kg body mass.

2.6.2.1.3 LC$_{50}$ for acute toxicity on inhalation is that concentration of vapour, mist or dust which, administered by continuous inhalation to both male and female young adult albino rats for one hour, is most likely to cause death within 14 days in one half of the animals tested. A solid substance must be tested if at least 10% (by mass) of its total mass is likely to be dust in a respirable range, e.g. the aerodynamic diameter of that particle-fraction is 10 microns or less. A liquid substance must be tested if a mist is likely to be generated in a leakage of the transport containment.
Both for solid and liquid substances more than 90% (by mass) of a specimen prepared for inhalation toxicity must be in the respirable range as defined above.

The result is expressed in milligrams per litre of air for dusts and mists or in millilitres per cubic metre of air (parts per million) for vapours.

2.6.2.2 Assignment of packing groups

2.6.2.2.1 Substances of Division 6.1, including pesticides, are allocated among the three packing groups according to their degree of toxic hazard in transport as follows:

(a) **Packing group I**: Substances and preparations presenting a very severe toxicity hazard;

(b) **Packing group II**: Substances and preparations presenting a serious toxicity hazard;

(c) **Packing group III**: Substances and preparations presenting a relatively low toxicity hazard.

2.6.2.2 In making this grouping, account must be taken of human experience in instances of accidental poisoning and of special properties possessed by any individual substance, such as liquid state, high volatility, any special likelihood of penetration, and special biological effects.

2.6.2.3 In the absence of human experience the grouping must be based on data obtained from animal experiments. Three possible routes of administration must be examined. These routes are exposure through:

(a) Oral ingestion; and

(b) Dermal contact; and

(c) Inhalation of dusts, mists, or vapours.

2.6.2.3.1 Appropriate animal tests for the various routes of exposure are described in 2.6.2.1. When a substance exhibits a different order of toxicity by two or more of these routes of administration, the highest degree of danger indicated by the tests must be assigned.

2.6.2.4 The criteria to be applied for grouping a substance according to the toxicity it exhibits by all three routes of administration are presented in the following paragraphs.

2.6.2.4.1 The grouping criteria for the oral and dermal routes as well as for inhalation of dusts and mists are as shown in the following table.
Table 2.6.2.4.1: Grouping criteria for administration through oral ingestion, dermal contact and inhalation of dusts and mists

<table>
<thead>
<tr>
<th>Packing group</th>
<th>Oral toxicity LD_{50} (mg/kg)</th>
<th>Dermal toxicity LD_{50} (mg/kg)</th>
<th>Inhalation toxicity by dusts and mists LC_{50} (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>≤ 5.0</td>
<td>≤ 50</td>
<td>≤ 0.2</td>
</tr>
<tr>
<td>II</td>
<td>> 5 and ≤ 50</td>
<td>> 50 and ≤ 200</td>
<td>> 0.2 and ≤ 2.0</td>
</tr>
<tr>
<td>III a.</td>
<td>> 50 and ≤ 300</td>
<td>> 200 and ≤ 1000</td>
<td>> 2.0 and ≤ 4.0</td>
</tr>
</tbody>
</table>

Tables note: a Tear gas substances are included in packing group II even if their toxicity data correspond to packing group III values.

NOTE: Substances meeting the criteria of Class 8 and with an inhalation toxicity of dusts and mists (LC_{50}) leading to packing group I are only accepted for an allocation to Division 6.1 if the toxicity through oral ingestion or dermal contact is at least in the range of packing group I or II. Otherwise an allocation to Class 8 is made when appropriate (see 2.8.2.4).

2.6.2.2.4.2 The criteria for inhalation toxicity of dusts and mists in 2.6.2.2.4.1 are based on LC_{50} data relating to 1 hour exposures and where such information is available it must be used. However, where only LC_{50} data relating to 4 hours exposures to dusts and mists are available, such figures can be multiplied by four and the product substituted in the above criteria, i.e. LC_{50} (4 hours) × 4 is considered the equivalent of LC_{50} (1 hour).

2.6.2.2.4.3 Liquids having toxic vapours must be assigned to the following packing groups, where “V” is the saturated vapour concentration in millilitres per cubic metre of air (volatility) at 20 °C and standard atmospheric pressure:
(a) Packing group I:
 If V ≥ 10 LC_{50} and LC_{50} ≤ 1,000 ml/m³;
(b) Packing group II:
 If V ≥ LC_{50} and LC_{50} ≤ 3,000 ml/m³, and not meeting the criteria for packing group I;
(c) Packing group III:
 If V ≥ 1/5 LC_{50} and LC_{50} ≤ 5,000 ml/m³, and not meeting the criteria for packing groups I or II.

2.6.2.2.4.4 In Figure 2.6.1, the criteria according to 2.6.2.2.4.3 are expressed in graphical form, as an aid to easy classification. However, because of approximations inherent in the use of graphs, substances on or near packing group borderlines must be checked using numerical criteria.

1 Tear gas substances are included in packing group II even if their toxicity data correspond to packing group III values.
2.6.2.2.4.5 The criteria for inhalation toxicity of vapours in 2.6.2.2.4.3 are based on LC50 data relating to 1 hour exposure, and where such information is available it must be used. However, where only LC50 data relating to 4 hours exposures to the vapours are available, such figures can be multiplied by two and the product substituted in the above criteria, i.e. LC50 (4 hours) \times 2 is considered to be the equivalent of LC50 (1 hour).
PART 2: CLASSIFICATION

2.6.2.2.4.6 Mixtures of liquids that are toxic by inhalation must be assigned to packing groups according to 2.6.2.2.4.7 or 2.6.2.2.4.8.

2.6.2.2.4.7 If LC50 data are available for each of the toxic substances comprising a mixture, the packing group may be determined as follows:

(a) Estimate the LC50 of the mixture using the formula:

\[
LC_{50}^{(\text{mixture})} = \frac{1}{\sum_{i=1}^{n} \left(\frac{f_i}{LC_{50i}} \right)}
\]

where:
- \(f_i \) = mole fraction of the \(i^{th} \) component substance of the liquid;
- \(LC_{50i} \) = mean lethal concentration of the \(i^{th} \) component substance in ml/m³;

(b) Estimate the volatility of each component substance using the formula:

\[
V_i = \left(\frac{P_i \times 10^6}{101.3} \right) \text{ml/m}^3
\]

where:
- \(P_i \) = partial pressure of the \(i^{th} \) component substance in kPa at 20 °C and one atmosphere pressure;

(c) Calculate the ratio of the volatility to the LC50 using the formula:

\[
R = \sum_{i=1}^{n} \left(\frac{V_i}{LC_{50i}} \right);
\]

(d) Using the calculated values LC50 (mixture) and R, the packing group for the mixture is determined:

(i) Packing group I: \(R \geq 10 \) and \(LC_{50}^{(\text{mixture})} \leq 1000 \text{ ml/m}^3 \);
(ii) Packing group II: \(R \geq 1 \) and \(LC_{50}^{(\text{mixture})} \leq 3000 \text{ ml/m}^3 \) and not meeting criteria for packing group I;
(iii) Packing group III: \(R \geq 1/5 \) and \(LC_{50}^{(\text{mixture})} \leq 5000 \text{ ml/m}^3 \) and not meeting criteria for packing groups I or II.

2.6.2.2.4.8 In the absence of LC50 data on the toxic constituent substances, the mixture may be assigned a packing group based on the following simplified threshold toxicity tests. When these threshold tests are used, the most restrictive packing group determined is used for transporting the mixture.
PART 2: CLASSIFICATION

(a) A mixture is assigned to packing group I only if it meets both of the following criteria:

(i) A sample of the liquid mixture is vapourised and diluted with air to create a test atmosphere of 1000 ml/m3 vapourised mixture in air. Ten albino rats (five male and five female) are exposed to the test atmosphere for one hour and observed for fourteen days. If five or more of the animals die within the fourteen day observation period, the mixture is presumed to have an LC$_{50}$ equal to or less than 1000 ml/m3;

(ii) A sample of the vapour in equilibrium with the liquid mixture at 20 °C is diluted with 9 equal volumes of air to form a test atmosphere. Ten albino rats (five male and five female) are exposed to the test atmosphere for one hour and observed for fourteen days. If five or more of the animals die within the fourteen day observation period, the mixture is presumed to have a volatility equal to or greater than 10 times the mixture LC$_{50}$;

(b) A mixture is assigned to packing group II only if it meets both of the following criteria, and the mixture does not meet the criteria for packing group I:

(i) A sample of the liquid mixture is vapourised and diluted with air to create a test atmosphere of 3000 ml/m3 vapourised mixture in air. Ten albino rats (five male and five female) are exposed to the test atmosphere for one hour and observed for fourteen days. If five or more of the animals die within the fourteen day observation period, the mixture is presumed to have an LC$_{50}$ equal to or less than 3000 ml/m3;

(ii) A sample of the vapour in equilibrium with the liquid mixture at 20 °C is used to form a test atmosphere. Ten albino rats (five male and five female) are exposed to the test atmosphere for one hour and observed for fourteen days. If five or more of the animals die within the fourteen day observation period, the mixture is presumed to have a volatility equal to or greater than the mixture LC$_{50}$;

(c) A mixture is assigned to packing group III only if it meets both of the following criteria, and the mixture does not meet the criteria for packing groups I or II:

(i) A sample of the liquid mixture is vapourised and diluted with air to create a test atmosphere of 5000 ml/m3 vapourised mixture in air. Ten albino rats (five male and five female) are exposed to the test atmosphere for one hour and observed for fourteen days. If five or more of the animals die within the fourteen day observation period, the mixture is presumed to have an LC$_{50}$ equal to or less than 5000 ml/m3;

(ii) The vapour pressure of the liquid mixture is measured and if the vapour concentration is equal to or greater than 1000 ml/m3, the mixture is presumed to have a volatility equal to or greater than 1/5 the mixture LC$_{50}$.

PART 2: CLASSIFICATION

2.6.2.3.1 When classifying and assigning the appropriate packing group to mixtures in Division 6.1, in accordance with the oral and dermal toxicity criteria in 2.6.2.2, it is necessary to determine the acute LD$_{50}$ of the mixture.

2.6.2.3.2 If a mixture contains only one active substance, and the LD$_{50}$ of that constituent is known, in the absence of reliable acute oral and dermal toxicity data on the actual mixture to be transported, the oral or dermal LD$_{50}$ may be obtained by the following method:

\[
LD_{50} \text{ value of preparation} = \frac{LD_{50} \text{ value of active substance} \times 100}{\text{percentage of active substance by mass}}
\]

2.6.2.3.3 If a mixture contains more than one active constituent, there are three possible approaches that may be used to determine the oral or dermal LD$_{50}$ of the mixture. The preferred method is to obtain reliable acute oral and dermal toxicity data on the actual mixture to be transported. If reliable, accurate data is not available, then either of the following methods may be performed:

(a) Classify the formulation according to the most hazardous constituent of the mixture as if that constituent were present in the same concentration as the total concentration of all active constituents; or

(b) Apply the formula:

\[
\frac{C_A}{T_A} + \frac{C_B}{T_B} + \ldots + \frac{C_Z}{T_Z} = \frac{100}{T_M}
\]

where:
- \(C\) = the % concentration of constituent A, B ... Z in the mixture;
- \(T\) = the oral LD$_{50}$ values of constituent A, B ... Z;
- \(T_M\) = the oral LD$_{50}$ value of the mixture.

NOTE: This formula can also be used for dermal toxicities provided that this information is available on the same species for all constituents. The use of this formula does not take into account any potentiation or protective phenomena.

2.6.2.4 Classification of pesticides

2.6.2.4.1 All active pesticide substances and their preparations for which the LC$_{50}$ and/or LD$_{50}$ values are known and which are classified in Division 6.1 must be classified under appropriate packing groups in accordance with the criteria given in 2.6.2.2. Substances and preparations which are characterised by subsidiary hazards must be classified according to the precedence of hazard table in Chapter 2.0 with the assignment of appropriate packing groups.
2.6.2.4.2 If the oral or dermal LD$_{50}$ value for a pesticide preparation is not known, but the LD$_{50}$ value of its active substance(s) is known, the LD$_{50}$ value for the preparation may be obtained by applying the procedures in 2.6.2.3.

NOTE 1: LD$_{50}$ toxicity data for a number of common pesticides may be obtained from the most current edition of the document “The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification” available from the International Programme on Chemical Safety, World Health Organisation (WHO), 1211 Geneva 27, Switzerland. While that document may be used as a source of LD$_{50}$ data for pesticides, its classification system must not be used for purposes of transport classification of, or assignment of packing groups to, pesticides, which must be in accordance with this Code.

2.6.2.4.3 The proper shipping name used in the transport of the pesticide must be selected on the basis of the active ingredient, of the physical state of the pesticide and any subsidiary hazards it may exhibit.

NOTE: Pesticide substances and their preparations that are not specifically named in the Dangerous Goods List in 3.2.5, must be assigned to the most appropriate generic pesticide name and its corresponding UN number which are listed for pesticides of Class 3 or Division 6.1 in Table 3.3 in 3.2.6.

2.6.2.5 Substances not accepted for transport

Chemically unstable substances of Division 6.1 shall not be accepted for transport unless the necessary precautions have been taken to prevent the possibility of a dangerous decomposition or polymerization under normal conditions of transport. For the precautions necessary to prevent polymerization, see special provision 386 of Chapter 3.3. To this end particular care shall be taken to ensure that receptacles and tanks do not contain any substances liable to promote these reactions.

2.6.3 DIVISION 6.2 - INFECTIOUS SUBSTANCES

NOTE 1: Guidance on the transport of pathological samples may be found in the latest edition of “Requirements for the Packaging and Transport of Pathology Specimens and Associated Materials” from National Pathology Accreditation Advisory Council (NPAAC). at <www.health.gov.au/internet/main/publishing.nsf/Content/health-npaac-publication.htm>.

2.6.3.1 Definitions

For the purposes of this Code:

2.6.3.1.1 **Infectious substances** are substances which are known or are reasonably expected to contain pathogens. Pathogens are defined as micro-organisms (including bacteria, viruses, parasites, fungi) and other agents such as prions, which can cause disease in humans or animals.

2.6.3.1.2 **Biological products** are those products derived from living organisms which are manufactured and distributed in accordance with the requirements of appropriate national authorities, which may have special licensing requirements, and are used either for prevention, treatment, or diagnosis of disease in humans or animals, or for development,
experimental or investigational purposes related thereto. They include, but are not limited to, finished or unfinished products such as vaccines.

2.6.3.1.3 **Cultures** (laboratory stocks) are the result of a process by which pathogens are intentionally propagated. This definition does not include human or animal patient specimens as defined in 2.6.3.1.4.

2.6.3.1.4 **Patient specimens** are those, collected directly from humans or animals, including, but not limited to, excreta, secretions, blood and its components, tissue and tissue fluid swabs, and body parts being transported for purposes such as research, diagnosis, investigational activities, disease treatment and prevention.

2.6.3.1.5 <Deleted>

2.6.3.1.6 **Medical or clinical wastes** are wastes derived from the veterinary treatment of animals, the medical treatment of humans or from bio-research.

NOTE: An exposure occurs when an infectious substance is released outside of the protective packaging, resulting in physical contact with humans or animals.

2.6.3.2 **Classification of infectious substances**

2.6.3.2.1 Infectious substances must be classified in Division 6.2 and assigned to UN 2814, UN 2900, UN 3291, UN 3373 or UN 3549 as appropriate.

2.6.3.2.2 Infectious substances are divided into the following categories:

2.6.3.2.2.1 **Category A:** An infectious substance which is transported in a form that, when exposure to it occurs, is capable of causing permanent disability, life-threatening or fatal disease in otherwise healthy humans or animals. Indicative examples of substances that meet these criteria are given in the table in this paragraph.

NOTE: An exposure occurs when an infectious substance is released outside of the protective packaging, resulting in physical contact with humans or animals.

(a) Infectious substances meeting these criteria which cause disease in humans or both in humans and animals must be assigned to UN 2814. Infectious substances which cause disease only in animals must be assigned to UN 2900.

(b) Assignment to UN 2814 or UN 2900 must be based on the known medical history and symptoms of the source human or animal, endemic local conditions, or professional judgement concerning individual circumstances of the source human or animal.

NOTE 1: The proper shipping name for UN 2814 is INFECTIOUS SUBSTANCE, AFFECTING HUMANS. The proper shipping name for UN 2900 is INFECTIOUS SUBSTANCE, AFFECTING ANIMALS only.

NOTE 2: The following table is not exhaustive. Infectious substances, including new or emerging pathogens, which do not appear in the table but which meet the same criteria must be assigned to Category A. In addition, if there is doubt as to whether or not a substance meets the criteria it must be included in Category A.
NOTE 3:

In the following table, the micro-organisms written in italics are bacteria or fungi.

<table>
<thead>
<tr>
<th>UN Number and Proper Shipping Name</th>
<th>Micro-organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Infectious substances affecting humans</td>
<td>Bacillus anthracis (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Brucella abortus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Brucella melitensis (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Brucella suis (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Burkholderia mallei - Pseudomonas mallei – Glanders (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Burkholderia pseudomallei – Pseudomonas pseudomallei (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Chlamydia psittaci - avian strains (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Clostridium botulinum (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Coccidioides immitis (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Coxiella burnetii (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Crimean-Congo hemorrhagic fever virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Dengue virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Eastern equine encephalitis virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Escherichia coli, verotoxigenic (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Ebola virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Flexal virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Francisella tularensis (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Guanarito virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Hantaan virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Hantaviruses causing hemorrhagic fever with renal syndrome</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Hendra virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Hepatitis B virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Herpes B virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Human immunodeficiency virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Highly pathogenic avian influenza virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Japanese Encephalitis virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Junin virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Kyasanur Forest disease virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Lassa virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Machupo virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Marburg virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Monkeypox virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Mycobacterium tuberculosis (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Nipah virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Omsk hemorrhagic fever virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Poliovirus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Rabies virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Rickettsia prowazekii (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Rickettsia rickettsii (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Rift Valley fever virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Russian spring-summer encephalitis virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Sabia virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Shigella dysenteriae type 1 (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Tick-borne encephalitis virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Variola virus</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Venezuelan equine encephalitis virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>West Nile virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Yellow fever virus (cultures only)</td>
</tr>
<tr>
<td>UN 2814</td>
<td>Yersinia pestis (cultures only)</td>
</tr>
<tr>
<td>UN 2900</td>
<td>African swine fever virus (cultures only)</td>
</tr>
</tbody>
</table>
Indicative examples of infectious substances included in category A in any form unless otherwise indicated (2.6.3.2.2.1 (a))

<table>
<thead>
<tr>
<th>UN Number and Proper Shipping Name</th>
<th>Micro-organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious substances affecting animals only</td>
<td>Avian paramyxovirus Type 1 - Velogenic Newcastle disease virus (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Classical swine fever virus (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Foot and mouth disease virus (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Lumpy skin disease virus (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Mycoplasma mycoides - Contagious bovine pleuropneumonia (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Peste des petits ruminants virus (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Rinderpest virus (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Sheep-pox virus (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Goatpox virus (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Swine vesicular disease virus (cultures only)</td>
</tr>
<tr>
<td></td>
<td>Vesicular stomatitis virus (cultures only)</td>
</tr>
</tbody>
</table>

2.6.3.2.2
- **Category B:** An infectious substance which does not meet the criteria for inclusion in Category A. Infectious substances in Category B must be assigned to UN 3373, except for medical or clinical wastes containing infectious substances in Category B (see 2.6.3.5).

NOTE: The proper shipping name of UN 3373 is “BIOLOGICAL SUBSTANCE, CATEGORY B.”

2.6.3.2.3
- **Exemptions**
 1. **Substances which do not contain infectious substances or substances which are unlikely to cause disease in humans or animals are not subject to this Code unless they meet the criteria for inclusion in another class.**

 NOTE: Examples of such substances not subject to this Code are Diagnostic specimens resulting from medical practice (specimens being transported from a doctor's office or surgery to a laboratory, from a hospital to a diagnostic laboratory or from one laboratory to another, except where it is being transported to determine if an infectious substance is present) medical research, veterinary practice or plant material being transported to a diagnostic laboratory.

 2. **Substances containing microorganisms which are non-pathogenic to humans or animals are not subject to this Code unless they meet the criteria for inclusion in another class.**

 NOTE: Medical equipment that has been drained of free liquid meets the requirements of this paragraph and is not subject to this Code.

 3. **Substances in a form that any present pathogens have been neutralised or inactivated such that they no longer pose a health risk are not subject to this Code unless they meet the criteria for inclusion in another class.**

 NOTE: Environmental samples (including food and water samples) which are not considered to pose a significant risk of infection are not subject to this Code unless they meet the criteria for inclusion in another class.
PART 2: CLASSIFICATION

2.6.3.2.3.5 Dried blood spots, collected by applying a drop of blood onto absorbent material, are not subject to this Code.

2.6.3.2.3.6 Faecal occult blood screening tests, are not subject to this Code.

2.6.3.2.3.7 Blood or blood components which have been collected for the purposes of transfusion or for the preparation of blood products to be used for transfusion or transplantation and any tissues or organs intended for use in transplantation as well as samples drawn in connection with such purpose are not subject to this Code.

2.6.3.2.3.8 Human or animal specimens for which there is minimal likelihood that pathogens are present are not subject to this Code if the specimen is transported in a packaging which will prevent any leakage and which is marked with the words “Exempt human specimen” or “Exempt animal specimen”, as appropriate. The packaging should meet the following conditions:

(a) The packaging should consist of three components:
 (i) a leak-proof primary receptacle(s);
 (ii) a leak-proof secondary packaging; and
 (iii) an outer packaging of adequate strength for its capacity, mass and intended use, and with at least one surface having minimum dimensions of 100 mm × 100 mm;

(b) For liquids, absorbent material in sufficient quantity to absorb the entire contents should be placed between the primary receptacle(s) and the secondary packaging so that, during transport, any release or leak of a liquid substance will not reach the outer packaging and will not compromise the integrity of the cushioning material;

(c) When multiple fragile primary receptacles are placed in a single secondary packaging, they should be either individually wrapped or separated to prevent contact between them.

NOTE 1: An element of professional judgment is required to determine if a substance is exempt under this paragraph. That judgment should be based on the known medical history, symptoms and individual circumstances of the source, human or animal, and endemic local conditions. Examples of specimens which may be transported under this paragraph include the blood or urine tests to monitor cholesterol levels, blood glucose levels, hormone levels, or prostate specific antibodies (PSA); those required to monitor organ function such as heart, liver or kidney function for humans or animals with non-infectious diseases, or therapeutic drug monitoring; those conducted for insurance or employment purposes and are intended to determine the presence of drugs or alcohol; pregnancy test; biopsies to detect cancer; and antibody detection in humans or animals, in the absence of any concern for infection (e.g. evaluation of vaccine induced immunity, diagnosis of autoimmune disease, etc.).

NOTE 2: For air transport, packagings for specimens exempted under this paragraph must meet the conditions in (a) to (c).

2.6.3.2.3.9 Except for:

(a) medical waste (UN 3291 and UN 3549);
(b) medical devices or equipment contaminated with or containing infectious substances in Category A (UN 2814 or UN 2900); and

c) medical devices or equipment contaminated with or containing other dangerous goods that meet the definition of another hazard class;

medical devices or equipment potentially contaminated with or containing infectious substances which are being transported for disinfection, cleaning, sterilisation, repair, or equipment evaluation are not subject to the provisions of this Code if packed in packagings designed and constructed in such a way that, under normal conditions of transport, they cannot break, be punctured or leak their contents. Packagings must be designed to meet the construction requirements listed in 6.1.4 or 6.6.5.

These packagings must meet the general packing requirements of 4.1.1.1 and 4.1.1.2 and be capable of retaining the medical devices and equipment when dropped from a height of 1.2 m. For air transport, additional requirements may apply.

The packagings must be marked "USED MEDICAL DEVICE" or "USED MEDICAL EQUIPMENT". When using overpacks, these must be marked in the same way, except when the inscription remains visible.

2.6.3.3 Biological products

2.6.3.3.1 For the purposes of this Code, biological products are divided into the following groups:

(a) Those which are manufactured and packaged in accordance with the requirements of appropriate national authorities and transported for the purposes of final packaging or distribution, and use for personal health care by medical professionals or individuals. Substances in this group are not subject to this Code.

(b) Those which do not fall under paragraph (a) and are known or reasonably believed to contain infectious substances and which meet the criteria for inclusion in Category A or Category B. Substances in this group must be assigned to UN 2814, UN 2900 or UN 3373, as appropriate.

NOTE: Some licensed biological products may present a biohazard only in certain parts of the world. In that case, competent authorities may require these biological products to be in compliance with local requirements for infectious substances or may impose other restrictions.

2.6.3.4 Genetically modified micro-organisms and organisms

2.6.3.4.1 Genetically modified micro-organisms not meeting the definition of infectious substance must be classified according to Chapter 2.9.

2.6.3.5 Medical or clinical wastes

2.6.3.5.1 Medical or clinical waste containing:

(a) Category A infectious substances shall be assigned to UN 2814, UN 2900 or UN 3549 as appropriate. Solid medical waste containing Category A infectious substances generated from the medical treatment of humans or veterinary treatment of animals may be assigned to UN 3549. The UN 3549 entry shall not be used for waste from bio-research or liquid waste;

(b) Category B infectious substances shall be assigned to UN 3291
PART 2: CLASSIFICATION

2.6.3.5.2 Medical or clinical wastes which are reasonably believed to have a low probability of containing infectious substances must be assigned to UN 3291. For the assignment, international, regional or national waste catalogues may be taken into account.

NOTE: The proper shipping name for UN 3291 is “CLINICAL WASTE, UNSPECIFIED, N.O.S.” or “(BIO) MEDICAL WASTE, N.O.S.” or “REGULATED MEDICAL WASTE, N.O.S.”

2.6.3.5.3 Decontaminated medical or clinical wastes which previously contained infectious substances are not subject to this Code unless they meet the criteria for inclusion in another class.

2.6.3.6 Infected animals

2.6.3.6.1 Unless an infectious substance cannot be consigned by any other means, live animals must not be used to consign such a substance. A live animal which has been intentionally infected and is known or suspected to contain an infectious substance must only be transported under terms and conditions approved by the relevant health authority.

2.6.3.6.2 <Deleted>
PART 2: CLASSIFICATION

CHAPTER 2.7 – CLASS 7 - RADIOACTIVE MATERIAL

Introductory Notes

NOTE 1: Much of chapter 2.7 has been deleted from the previous editions of the ADG Code. This was determined at a meeting of Standing Council on Transport and Infrastructure (SCOTI) as part of the Transport of Dangerous Goods (TPG) Amendment Package (AP) Number 2. The reasons for this change are explained in Note 1 below.

The following information from the Australian Radiation Protection and Nuclear Safety Authority (ARPANSA) now replaces the information found in earlier editions of the ADG Code.

RPS 2 Code of Practice for the Safe Transport of Radioactive Material
RPS No. 2.1 - Safety Guide for the Safe Transport of Radioactive Material

NOTE 2: THE TRANSPORT OF CLASS 7 IS NOT SUBJECT TO THIS CODE except when it is being transported on the same road vehicle or train as dangerous goods of other classes. When Class 7 dangerous goods are being transported with other dangerous goods, the segregation requirements of Part 9 apply.

Transport of Class 7 by road or rail in Australia is subject to separate state and territory legislation and the Code of Practice for the Safe Transport of Radioactive Substances.

2.7.2.1.1 and Table 2.7.2.1.1 are provided for information only.

NOTE 3: For Class 7, the type of packaging may have a decisive effect on classification.

2.7.1 <DELETED>

2.7.2 CLASSIFICATION

2.7.2.1 General provisions
2.7.2.1.1 Radioactive material must be assigned to one of the UN number specified in Table 2.7.2.1.1 in accordance with state and territory legislation and the code of practice for the safe transport of radioactive substance that implements 2.7.2.2 to 2.7.2.5 taking into account the material characteristics determined in 2.7.2.3.

Table 2.7.2.1.1: Assignment of UN Numbers

<table>
<thead>
<tr>
<th>UN Nos</th>
<th>Proper Shipping Name and Description^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exected packages (1.5.1.5 of UN20)</td>
<td></td>
</tr>
<tr>
<td>UN 2908</td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - EMPTY PACKAGING</td>
</tr>
</tbody>
</table>

PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>UN Nos</th>
<th>Proper Shipping Name and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN 2909</td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - ARTICLES MANUFACTURED FROM NATURAL URANIUM or DEPLETED URANIUM or NATURAL THORIUM</td>
</tr>
<tr>
<td>UN 2910</td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - LIMITED QUANTITY OF MATERIAL</td>
</tr>
<tr>
<td>UN 2911</td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - INSTRUMENTS or ARTICLES</td>
</tr>
<tr>
<td>UN 3507</td>
<td>URANIUM HEXAFLOURIDE, RADIOACTIVE MATERIAL, EXCEPTED PACKAGE less than 0.1 Kg per package, non-fissile or fissile-excepted</td>
</tr>
</tbody>
</table>

Low specific activity radioactive material (2.7.2.3.1)

UN 2912	RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-I), non-fissile or fissile-excepted
UN 3321	RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-II), non fissile or fissile-excepted
UN 3322	RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-III), non fissile or fissile-excepted
UN 3324	RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-II), FISSILE
UN 3325	RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY, (LSA-III), FISSILE

Surface contaminated objects (2.7.2.3.2)

| UN 2913 | RADIOACTIVE MATERIAL, SURFACE CONTAMINATED OBJECTS (SCO-I, SCO-II or SCO-III), non-fissile or fissile-excepted |
| UN 3326 | RADIOACTIVE MATERIAL, SURFACE CONTAMINATED OBJECTS (SCO-I or SCO-II), FISSILE |

Type A packages (2.7.2.4.4)

UN 2915	RADIOACTIVE MATERIAL, TYPE A PACKAGE, non-special form, non-fissile or fissile-excepted
UN 3327	RADIOACTIVE MATERIAL, TYPE A PACKAGE, FISSILE, non-special form
UN 3332	RADIOACTIVE MATERIAL, TYPE A PACKAGE, SPECIAL FORM, non-fissile or fissile-excepted
UN 3333	RADIOACTIVE MATERIAL, TYPE A PACKAGE, SPECIAL FORM, FISSILE

Type B(U) package (2.7.2.4.6)

| UN 2916 | RADIOACTIVE MATERIAL, TYPE B(U) PACKAGE, non-fissile or fissile-excepted |
| UN 3328 | RADIOACTIVE MATERIAL, TYPE B(U) PACKAGE, FISSILE |

Type B(M) package (2.7.2.4.6)

| UN 2917 | RADIOACTIVE MATERIAL, TYPE B(M) PACKAGE, non-fissile or fissile-excepted |
| UN 3329 | RADIOACTIVE MATERIAL, TYPE B(M) PACKAGE, FISSILE |

Type C package (2.7.2.4.6)

| UN 3323 | RADIOACTIVE MATERIAL, TYPE C PACKAGE, non fissile or fissile-excepted |

PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>UN Nos</th>
<th>Proper Shipping Name and Description<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>UN 3330</td>
<td>RADIOACTIVE MATERIAL, TYPE C PACKAGE, FISSION</td>
</tr>
</tbody>
</table>

Special arrangement (2.7.2.5)

<table>
<thead>
<tr>
<th>UN Nos</th>
<th>Proper Shipping Name and Description<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>UN 2919</td>
<td>RADIOACTIVE MATERIAL, TRANSPORTED UNDER SPECIAL ARRANGEMENT, non-fissile or fissile-excepted<sup>b</sup></td>
</tr>
<tr>
<td>UN 3331</td>
<td>RADIOACTIVE MATERIAL, TRANSPORTED UNDER SPECIAL ARRANGEMENT, FISSION</td>
</tr>
</tbody>
</table>

Uranium hexafluoride (2.7.2.4.5)

<table>
<thead>
<tr>
<th>UN Nos</th>
<th>Proper Shipping Name and Description<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>UN 2977</td>
<td>RADIOACTIVE MATERIAL, URANIUM HEXAFLUORIDE, FISSION</td>
</tr>
<tr>
<td>UN 2978</td>
<td>RADIOACTIVE MATERIAL, URANIUM HEXAFLUORIDE, non-fissile or fissile-excepted<sup>b</sup></td>
</tr>
<tr>
<td>UN 3507</td>
<td>URANIUM HEXAFLUORIDE, RADIOACTIVE MATERIAL, EXCEPTED PACKAGE less than 0.1 Kg per package, non-fissile or fissile-excepted<sup>b</sup>,<sup>c</sup></td>
</tr>
</tbody>
</table>

Table notes:

- ^a The proper shipping name is found in the column “proper shipping name and description” and is restricted to that part shown in CAPITAL LETTERS. In the cases of UN Nos. 2909, 2911, 2913 and 3326, where alternative proper shipping names are separated by the word “or” only the relevant shipping name must be used.
- ^b The term “fissile-excepted” refers only to material excepted under UN 21 2.7.2.3.5.
- ^c For UN No. 3507, see also special provision 369 in Chapter 3.3.

Deletions:

- 2.7.2.2 <Deleted>
- 2.7.2.3 <Deleted>
- 2.7.2.4 <Deleted>
- 2.7.2.5 <Deleted>
CHAPTER 2.8 – CLASS 8 - CORROSIVE SUBSTANCES

2.8.1 DEFINITION AND GENERAL PROVISIONS

For the purposes of this Code:

2.8.1.1 Corrosive substances are substances which, by chemical action, will cause irreversible damage to the skin, or, in the case of leakage, will materially damage, or even destroy, other goods or the means of transport.

2.8.1.2 For substances and mixtures that are corrosive to skin, general classification provisions are provided in section 2.8.2. Skin corrosion refers to the production of irreversible damage to the skin, namely, visible necrosis through the epidermis and into the dermis occurring after exposure to a substance or mixture.

2.8.1.3 Liquids and solids which may become liquid during transport, which are judged not to be skin corrosive shall still be considered for their potential to cause corrosion to certain metal surfaces in accordance with the criteria in 2.8.3.3 (c) (ii).

2.8.2 GENERAL CLASSIFICATION PROVISIONS

2.8.2.1 Substances and preparations of Class 8 are divided among the three packing groups according to their degree of danger in transport:

(a) Packing group I: Very dangerous substances and mixtures;
(b) Packing group II: Substances and mixtures presenting medium danger;
(c) Packing group III: Substances and mixtures presenting minor danger.

2.8.2.2 Allocation of substances listed in the Dangerous Goods List in Chapter 3.2 to the packing groups in Class 8 has been made on the basis of experience taking into account such additional factors as inhalation risk (see 2.8.2.4) and reactivity with water (including the formation of dangerous decomposition products).

2.8.2.3 New substances and mixtures, can be assigned to packing groups on the basis of the length of time of contact necessary to produce irreversible damage of intact skin tissue in accordance with the criteria in 2.8.3. Alternatively, for mixtures, the criteria in 2.8.4 can be used.

2.8.2.4 A substance or mixture meeting the criteria of Class 8 having an inhalation toxicity of dusts and mists (LC50) in the range of packing group I, but toxicity through oral ingestion or dermal contact only in the range of packing group III or less, must be allocated to Class 8 (see note under 2.6.2.2.4.1).

2.8.3 PACKING GROUP ASSIGNMENT FOR SUBSTANCES AND MIXTURES
PART 2: CLASSIFICATION

2.8.3.1 Existing human and animal data including information from single or repeated exposure shall be the first line of evaluation, as they give information directly relevant to effects on the skin.

2.8.3.2 In assigning the packing group to a substance in accordance with 2.8.2.3, account shall be taken of human experience in instances of accidental exposure. In the absence of human experience the classification must be based on data obtained from experiments in accordance with OECD Test Guidelines\(^1\,\!^{2}\,\!^{3}\,\!^{4}\). A substance or mixture which is determined not to be corrosive in accordance with OECD Test Guidelines\(^1\,\!^{2}\,\!^{3}\,\!^{4}\), may be considered not to be corrosive to skin for the purposes of this Code without further testing. If the *in vitro* test results indicate that the substance or mixture is corrosive and not assigned to packing group I, but the test method does not allow discrimination between packing groups II and III, it shall be considered to be packing group II.

2.8.3.3 Packing groups are assigned to corrosive substances in accordance with the following criteria (see table 2.8.3.4):

(a) Packing group I is assigned to substances that cause irreversible damage of intact skin tissue within an observation period up to 60 minutes starting after the exposure time of three minutes or less;

(b) Packing group II is assigned to substances that cause irreversible damage of intact skin tissue within an observation period up to 14 days starting after the exposure time of more than three minutes but not more than 60 minutes;

(c) Packing group III is assigned to substances that:

(i) cause irreversible damage of intact skin tissue within an observation period up to 14 days starting after the exposure time of more than 60 minutes but not more than 4 hours; or

(ii) are judged not to cause irreversible damage of intact skin tissue but which exhibit a corrosion rate on either steel or aluminium surfaces exceeding 6.25 mm a year at a test temperature of 55 °C, when tested on both materials. For the purposes of testing steel, type S235JR+CR (1.0037 resp. St 37-2), S275J2G3+CR (1.0144 resp. St 44-3), ISO 3574 or Unified Numbering System (UNS) G10200 or a similar type or SAE 1020, and for testing aluminium, non-clad, types 7075–T6 or AZ5GU-T6 shall be used. An acceptable test is prescribed in the Manual of Tests and Criteria, Part III, Section 37.

NOTE 1: Where an initial test on either steel or aluminium indicates the substance being tested is corrosive the follow up test on the other metal is not required.

\(^1\) OECD Guideline for the testing of chemicals No. 404 “Acute Dermal Irritation/Corrosion” 2015
\(^2\) OECD Guideline for the testing of chemicals No. 435 “In Vitro Membrane Barrier Test Method for Skin Corrosion” 2015
\(^3\) OECD Guideline for the testing of chemicals No. 431 “In Vitro skin corrosion: reconstructed human epidermis (RHE) test method” 2016
\(^4\) OECD Guideline for the testing of chemicals No. 430 In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test Method (TER)” 2015
NOTE 2: In the absence of corrosive test data, liquid waste substances that have a pH less than 2.0 or greater than 12.5 should be assigned to packing group II.

Table 2.8.3.4: Table summarising the criteria in 2.8.3.3

<table>
<thead>
<tr>
<th>Packing Group</th>
<th>Exposure Time</th>
<th>Observation Period</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>≤ 3 min</td>
<td>≤ 60 min</td>
<td>Irreversible damage of intact skin</td>
</tr>
<tr>
<td>II</td>
<td>> 3 min ≤ 1 h</td>
<td>≤ 14 d</td>
<td>Irreversible damage of intact skin</td>
</tr>
<tr>
<td>III</td>
<td>> 1 h ≤ 4 h</td>
<td>≤ 14 d</td>
<td>Irreversible damage of intact skin</td>
</tr>
<tr>
<td>III</td>
<td>–</td>
<td>–</td>
<td>Corrosion rate on either steel or aluminium surfaces exceeding 6.25 mm a year at a test temperature of 55 °C when tested on both materials</td>
</tr>
</tbody>
</table>

2.8.4 ALTERNATIVE PACKING GROUP ASSIGNMENT METHODS FOR MIXTURES: STEP-WISE APPROACH

2.8.4.1 General provisions

2.8.4.1.1 For mixtures it is necessary to obtain or derive information that allows the criteria to be applied to the mixture for the purpose of classification and assignment of packing groups. The approach to classification and assignment of packing groups is tiered, and is dependent upon the amount of information available for the mixture itself, for similar mixtures and/or for its ingredients. The flow chart of Figure 2.8.4.1 below outlines the process to be followed:

Figure 2.8.4.1: Step-wise approach to classify and assign packing group of corrosive mixtures

1 This is NOT a general rule that can be applied to non-waste substances where corrosive test data must be obtained.
2.8.4.2 Bridging principles

2.8.4.2.1 Where a mixture has not been tested to determine its skin corrosion potential, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately classify and assign a packing group for the mixture, these data will be used in accordance with the following bridging principles. This ensures that the classification process uses the available data to the greatest extent possible in characterizing the hazards of the mixture.

(a) Dilution: If a tested mixture is diluted with a diluent which does not meet the criteria for Class 8 and does not affect the packing group of other ingredients, then the new diluted mixture may be assigned to the same packing group as the original tested mixture.

NOTE: in certain cases, diluting a mixture or substance may lead to an increase in the corrosive properties. If this is the case, this bridging principle cannot be used.

(b) Batching: The skin corrosion potential of a tested production batch of a mixture can be assumed to be substantially equivalent to that of another untested production batch of the same commercial product when produced by or under the control of the same manufacturer, unless there is reason to believe there is significant variation such that the skin corrosion potential of the untested batch has changed. If the latter occurs, a new classification is necessary.

(c) Concentration of mixtures of packing group I: If a tested mixture meeting the criteria for inclusion in packing group I is concentrated, the more concentrated untested mixture may be assigned to packing group I without additional testing.

(d) Interpolation within one packing group: For three mixtures (A, B and C) with identical ingredients, where mixtures A and B have been tested and are in the same skin corrosion packing group, and where untested mixture C has the same Class 8 ingredients as mixtures A and B but has concentrations of Class 8 ingredients intermediate to the concentrations in mixtures A and B, then mixture C is assumed to be in the same skin corrosion packing group as A and B.

(e) Substantially similar mixtures: Given the following:

(i) Two mixtures: (A+B) and (C+B);

(ii) The concentration of ingredient B is the same in both

(iii) The concentration of ingredient A in mixture (A+B) equals the concentration of ingredient C in mixture (C+B);

(iv) Data on skin corrosion for ingredients A and C are available and substantially equivalent, i.e. they are the same skin corrosion packing group and do not affect the skin corrosion potential of B.
PART 2: CLASSIFICATION

If mixture (A+B) or (C+B) is already classified based on test data, then the other mixture may be assigned to the same packing group.

2.8.4.3 Calculation method based on the classification of the substances

2.8.4.3.1 Where a mixture has not been tested to determine its skin corrosion potential, nor is sufficient data available on similar mixtures, the corrosive properties of the substances in the mixture shall be considered to classify and assign a packing group.

Applying the calculation method is only allowed if there are no synergistic effects that make the mixture more corrosive than the sum of its substances. This restriction applies only if packing group II or III would be assigned to the mixture.

2.8.4.3.2 When using the calculation method, all Class 8 ingredients present at a concentration of ≥ 1% shall be taken into account, or < 1% if these ingredients are still relevant for classifying the mixture to be corrosive to skin.

2.8.4.3.3 To determine whether a mixture containing corrosive substances shall be considered a corrosive mixture and to assign a packing group, the calculation method in the flow chart in Figure 2.8.4.3 shall be applied. For this calculation method, generic concentration limits apply where 1% is used in the first step for the assessment of the packing group I substances, and where 5% is used for the other steps respectively.

2.8.4.3.4 When a specific concentration limit (SCL) is assigned to a substance following its entry in the Dangerous Goods List or in a Special Provision, this limit shall be used instead of the generic concentration limits (GCL).

2.8.4.3.5 For this purpose, the summation formula for each step of the calculation method shall be adapted. This means that, where applicable, the generic concentration limit shall be substituted by the specific concentration limit assigned to the substance(s) (SCLi), and the adapted formula is a weighted average of the different concentration limits assigned to the different substances in the mixture:

\[
\frac{PG_{x_1}}{GCL} + \frac{PG_{x_2}}{SCL_2} + \cdots + \frac{PG_{x_i}}{SCL_i} \geq 1
\]

Where:

- \(PG_{x_i}\) = concentration of substance 1, 2 ...i in the mixture, assigned to packing group x (I, II or III)
- \(GCL\) = generic concentration limit
- \(SCL_i\) = specific concentration limit assigned to substance i

The criterion for a packing group is fulfilled when the result of the calculation is ≥ 1. The generic concentration limits to be used for the evaluation in each step of the calculation method are those found in Figure 2.8.4.3.
PART 2: CLASSIFICATION

Examples for the application of the above formula can be found in the note below.

NOTE: Examples for the application of the above formula

Example 1: A mixture contains one corrosive substance in a concentration of 5% assigned to packing group I without a specific concentration limit:

Calculation for packing group I:

\[
\frac{5}{5 (GCL)} = 1 \rightarrow \text{assign to class 8, packing group I.}
\]

Example 2: A mixture contains three substances corrosive to skin; two of them (A and B) have specific concentration limits; for the third one (C) the generic concentration limits applies. The rest of the mixture needs not to be taken into consideration:

<table>
<thead>
<tr>
<th>Substance X in the mixture and its packing group assignment within Class 8</th>
<th>Concentration (conc) in the mixture in %</th>
<th>Specific concentration limit (SCL) for packing group I</th>
<th>Specific concentration limit (SCL) for packing group II</th>
<th>Specific concentration limit (SCL) for packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, assigned to packing group I</td>
<td>3</td>
<td>30%</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>B, assigned to packing group I</td>
<td>2</td>
<td>20%</td>
<td>10%</td>
<td>none</td>
</tr>
<tr>
<td>C, assigned to packing group III</td>
<td>10</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

Calculation for packing group I:

\[
\frac{3 \text{ (conc } A)}{30 \text{ (SCL } PGI)} + \frac{2 \text{ (conc } B)}{20 \text{ (SCL } PGI)} = 0.2 < 1
\]

The criterion for packing group I is not fulfilled

Calculation for packing group II:

\[
\frac{3 \text{ (conc } A)}{5 \text{ (SCL } PGI)} + \frac{2 \text{ (conc } B)}{10 \text{ (SCL } PGI)} = 0.8 < 1
\]

The criterion for packing group II is not fulfilled

Calculation for packing group III:

\[
\frac{3 \text{ (conc } A)}{5 \text{ (SCL } PGI)} + \frac{2 \text{ (conc } B)}{5 \text{ (SCL } PGI)} + \frac{10 \text{ (conc } C)}{5 \text{ (GCL } PGI)} = 3 \geq 1
\]

The criterion for packing group III is fulfilled, the mixture shall be assigned to class 8, packing group III
2.8.5 SUBSTANCES NOT ACCEPTED FOR TRANSPORT

Chemically unstable substances of Class 8 shall not be accepted for transport unless the necessary precautions have been taken to prevent the possibility of a dangerous decomposition or polymerization under normal conditions of transport. For the precautions necessary to prevent polymerization, see special provision 386 of Chapter 3.3. To this end particular care shall be taken to ensure that receptacles and tanks do not contain any substances liable to promote these reactions.
PART 2: CLASSIFICATION

CHAPTER 2.9 - CLASS 9 - MISCELLANEOUS DANGEROUS SUBSTANCES AND ARTICLES, INCLUDING ENVIRONMENTALLY HAZARDOUS SUBSTANCES

2.9.1 DEFINITIONS

2.9.1.1 Class 9 substances and articles (miscellaneous dangerous substances and articles) are substances and articles which, during transport present a danger not covered by other classes.

2.9.1.2 <Deleted>

2.9.2 ASSIGNMENT TO CLASS 9

The substances and articles of Class 9 are subdivided as follows:

Substances which, on inhalation as fine dust, may endanger health

2212 ASBESTOS, AMPHIBOLE (amosite, tremolite, actinolite, anthophyllite, crocidolite)
2590 ASBESTOS, CHRYSOTILE

Substances evolving flammable vapour

2211 POLYMERIC BEADS, EXPANDABLE, evolving flammable vapour
3314 PLASTICS MOULDING COMPOUND in dough, sheet or extruded rope form evolving flammable vapour

Lithium batteries

3090 LITHIUM METAL BATTERIES (including lithium alloy batteries)
3091 LITHIUM METAL BATTERIES CONTAINED IN EQUIPMENT (including lithium alloy batteries) or
3091 LITHIUM METAL BATTERIES PACKED WITH EQUIPMENT (including lithium alloy batteries)
3480 LITHIUM ION BATTERIES (including lithium ion polymer batteries)
3481 LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT (including lithium ion polymer batteries) or
3481 LITHIUM ION BATTERIES PACKED WITH EQUIPMENT (including lithium ion polymer batteries)
3536 LITHIUM BATTERIES INSTALLED IN CARGO TRANSPORT UNIT

NOTE: See 2.9.4.

Capacitors

3499 CAPACITOR, ELECTRIC DOUBLE LAYER (with an energy storage capacity greater than 0.3 Wh)
PART 2: CLASSIFICATION

3508
CAPACITOR, ASYMMETRIC (with an energy storage capacity greater than 0.3 Wh)

Life-saving appliances

2990
LIFE SAVING APPLIANCES, SELF INFLATING

3072
LIFE SAVING APPLIANCES NOT SELF INFLATING containing dangerous goods as equipment

3268
SAFETY DEVICES, electrically initiated.

Substances and articles which, in the event of fire, may form dioxins

This group of substances includes:

2315
POLYCHLORINATED BIPHENYLS, LIQUID

3432
POLYCHLORINATED BIPHENYLS, SOLID

3151
POLYHALOGENATED BIPHENYLS, LIQUID or HALOGENATED MONOMETHYLPHENYL-DIPHENYLMETHANES, LIQUID, or

3151
POLYHALOGENATED TERPHENYLS, LIQUID

3152
POLYHALOGENATED BIPHENYLS, SOLID or HALOGENATED MONOMETHYLPHENYL-DIPHENYLMETHANES, SOLID or

3152
POLYHALOGENATED TERPHENYLS, SOLID

Examples of articles are transformers, condensers and apparatus containing those substances.

Substances transported or offered for transport at elevated temperatures

(a) Liquid

3257 ELEVATED TEMPERATURE LIQUID, N.O.S., at or above 100 °C and below its flash-point (including molten metal, molten salts, etc.)

(b) Solid

3258 ELEVATED TEMPERATURE SOLID, N.O.S., at or above 240 °C

Environmentally hazardous substances

(a) Solid

3077 ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

(b) Liquid

3082 ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

These designations are used for substances and mixtures which are dangerous to the aquatic environment that do not meet the classification criteria of any other class or another substance within Class 9. These designations may also be used for wastes not otherwise subject to this Code but which are covered under the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal and for substances designated to be environmentally hazardous substances by the competent authority of the country of origin, transit or...
PART 2: CLASSIFICATION

destination which do not meet the criteria for an environmentally hazardous substance according to this Code or for any other hazard Class. The criteria for substances which are hazardous to the aquatic environment are given in section 2.9.3.

Genetically modified micro-organisms (GMMOs) and genetically modified organisms (GMOs)

Genetically modified live animals must be transported under terms and conditions of the competent authorities of the countries of origin and destination.

Ammonium nitrate based fertilizers

Solid ammonium nitrate based fertilizers shall be classified in accordance with the procedure as set out in the Manual of Tests and Criteria, Part III, Section 39.

Other substances or articles presenting a danger during transport, but not meeting the definitions of another class:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1841</td>
<td>ACETALDEHYDE AMMONIA</td>
</tr>
<tr>
<td>1845</td>
<td>CARBON DIOXIDE, SOLID (DRY ICE)</td>
</tr>
<tr>
<td>1931</td>
<td>ZINC DITHIONITE (ZINC HYDROSULPHITE)</td>
</tr>
<tr>
<td>1941</td>
<td>DIBROMODIFLUOROMETHANE</td>
</tr>
<tr>
<td>1990</td>
<td>BENZALDEHYDE</td>
</tr>
<tr>
<td>2216</td>
<td>FISH MEAL (FISH SCRAP), STABILISED</td>
</tr>
<tr>
<td>2807</td>
<td>MAGNETISED MATERIAL</td>
</tr>
<tr>
<td>2969</td>
<td>CASTOR BEANS or</td>
</tr>
<tr>
<td>2969</td>
<td>CASTOR MEAL or</td>
</tr>
<tr>
<td>2969</td>
<td>CASTOR POMACE or</td>
</tr>
<tr>
<td>2969</td>
<td>CASTOR FLAKE</td>
</tr>
<tr>
<td>3166</td>
<td>VEHICLE, FLAMMABLE GAS POWERED or</td>
</tr>
<tr>
<td>3166</td>
<td>VEHICLE, FLAMMABLE LIQUID POWERED or</td>
</tr>
<tr>
<td>3166</td>
<td>VEHICLE, FUEL CELL, FLAMMABLE GAS POWERED or</td>
</tr>
<tr>
<td>3166</td>
<td>VEHICLE, FUEL CELL, FLAMMABLE LIQUID POWERED</td>
</tr>
<tr>
<td>3171</td>
<td>BATTERY-POWERED VEHICLE or BATTERY-POWERED EQUIPMENT</td>
</tr>
<tr>
<td>3316</td>
<td>CHEMICAL KIT or FIRST AID KIT</td>
</tr>
<tr>
<td>3334</td>
<td>AVIATION REGULATED LIQUID, N.O.S.</td>
</tr>
<tr>
<td>3335</td>
<td>AVIATION REGULATED SOLID, N.O.S.</td>
</tr>
<tr>
<td>3359</td>
<td>FUMIGATED CARGO TRANSPORT UNIT</td>
</tr>
<tr>
<td>3363</td>
<td>DANGEROUS GOODS IN ARTICLES or</td>
</tr>
<tr>
<td>3363</td>
<td>DANGEROUS GOODS IN MACHINERY or</td>
</tr>
<tr>
<td>3363</td>
<td>DANGEROUS GOODS IN APPARATUS</td>
</tr>
<tr>
<td>3509</td>
<td>PACKAGINGS DISCARDED, EMPTY, UNCLEANED</td>
</tr>
<tr>
<td>3530</td>
<td>ENGINE, INTERNAL COMBUSTION</td>
</tr>
</tbody>
</table>
PART 2: CLASSIFICATION

3530 MACHINERY, INTERNAL COMBUSTION
3548 ARTICLES CONTAINING MISCELLANEOUS DANGEROUS GOODS N.O.S.

2.9.2.1 GMMOs or GMOs are not subject to this Code when they are:
(a) licensed by the Office of the Gene Technology Regulator (OGTR); or
(b) approved by Food Standards Australia New Zealand (FSANZ); or
(c) exempt from such licences and approvals under the Gene Technology Act 2000.

2.9.3 ENVIRONMENTALLY HAZARDOUS SUBSTANCES (AQUATIC ENVIRONMENT)

2.9.3.1 General definitions

2.9.3.1.1 Environmentally hazardous substances include, inter alia, liquid or solid substances pollutant to the aquatic environment and solutions and mixtures of such substances (such as preparations and wastes).

2.9.3.1.2 The aquatic environment may be considered in terms of the aquatic organisms that live in the water, and the aquatic ecosystem of which they are part. The basis, therefore, of the identification of hazard is the aquatic toxicity of the substance or mixture, although this may be modified by further information on the degradation and bioaccumulation behaviour.

2.9.3.1.3 While the following classification procedure is intended to apply to all substances and mixtures, it is recognised that in some cases, e.g. metals or poorly soluble inorganic compounds, special guidance will be necessary.

2.9.3.1.4 The following definitions apply for acronyms or terms used in this section:

 BCF: Bioconcentration Factor
 BOD: Biochemical Oxygen Demand
 COD: Chemical Oxygen Demand
 GLP: Good Laboratory Practices
 EC_x: the concentration associated with x% response
 EC_{50}: the effective concentration of substance that causes 50% of the maximum response
 ErC_{50}: EC_{50} in terms of reduction of growth
 K_{ow}: octanol/water partition coefficient
 LC_{50} (50% lethal concentration): the concentration of a substance in water which causes the death of 50% (one half) in a group of test animals
 L(E)C_{50}: LC_{50} or EC_{50}

1 This does not address aquatic pollutants for which there may be a need to consider effects beyond the aquatic environment such as the impacts on human health etc.
2 This can be found in Annex 10 of the GHS.
PART 2: CLASSIFICATION

NOEC: (No Observed Effect Concentration): the test concentration immediately below the lowest tested concentration with statistically significant adverse effect. The NOEC has not statistically significant adverse effect compared to the control.

2.9.3.2 Definitions and data requirements

2.9.3.2.1 The basic elements for classification of environmentally hazardous substances (aquatic environment) are:
(a) acute aquatic toxicity; and
(b) chronic aquatic toxicity; and
(c) potential for or actual bioaccumulation; and
(d) degradation (biotic or abiotic) for organic chemicals.

2.9.3.2.2 While data from internationally harmonised test methods are preferred, in practice, data from national methods may also be used where they are considered as equivalent. In general, freshwater and marine species toxicity data can be considered as equivalent data and are preferably to be derived using OECD Test Guidelines or equivalent according to the principles of Good Laboratory Practices (GLP). Where such data are not available, classification must be based on the best available data.

2.9.3.2.3 Acute aquatic toxicity means the intrinsic property of a substance to be injurious to an organism in a short-term aquatic exposure to that substance.

Acute (short-term) hazard, for classification purposes, means the hazard of a chemical caused by its acute toxicity to an organism during short-term aquatic exposure to that chemical.

Acute aquatic toxicity should normally be determined using a fish 96 hour LC$_{50}$ (OECD Test Guideline 203 or equivalent), a crustacea species 48 hour EC$_{50}$ (OECD Test Guideline 202 or equivalent) and/or an algal species 72 or 96 hour EC$_{50}$ (OECD Test Guideline 201 or equivalent). These species are considered as surrogates for all aquatic organisms. Data on other species such as Lemna may also be considered if the test methodology is suitable.

2.9.3.2.4 Chronic aquatic toxicity means the intrinsic property of a substance to cause adverse effects to aquatic organisms during aquatic exposures which are determined in relation to the life-cycle of the organism.

Long-term hazard, for classification purposes, means the hazard of a chemical caused by its chronic toxicity following long-term exposure in the aquatic environment.

Chronic toxicity data are less available than acute data and the range of testing procedures less standardised. Data generated according to the OECD Test Guidelines 210 (Fish Early Life Stage) or 211 (Daphnia Reproduction) and 201 (Algal Growth Inhibition) may be accepted. Other
PART 2: CLASSIFICATION

validated and internationally accepted tests may also be used. The NOECs or other equivalent ECx must be used.

2.9.3.2.5 Bioaccumulation means net result of uptake, transformation and elimination of a substance in an organism due to all routes of exposure (i.e. air, water, sediment/soil and food).

The potential for bioaccumulation should normally be determined by using the octanol/water partition coefficient, usually reported as a log Kow determined according to OECD Test Guideline 107, 117 or 123. While this represents a potential to bioaccumulate, an experimentally determined Bioconcentration Factor (BCF) provides a better measure and must be used in preference when available. A BCF must be determined according to OECD Test Guideline 305.

2.9.3.2.6 Degradation means the decomposition of organic molecules to smaller molecules and eventually to carbon dioxide, water and salts.

Environmental degradation may be biotic or abiotic (e.g. hydrolysis) and the criteria used reflect this fact. Ready biodegradation is most easily defined using the biodegradability tests (A-F) of OECD Test Guideline 301. A pass level in these tests may be considered as indicative of rapid degradation in most aquatic environments. As these are freshwater tests, use of results from OECD Test Guideline 306, which is more suitable for the marine environment, is also included.

Where such data are not available, a BOD(5 days)/COD ratio >0.5 is considered as indicative of rapid degradation. Abiotic degradation such as hydrolysis, primary degradation, both abiotic and biotic, degradation in non-aquatic media and proven rapid degradation in the environment may all be considered in defining rapid degradability.

Substances are considered rapidly degradable in the environment if the following criteria are met:

(a) In 28-day ready biodegradation studies, the following levels of degradation are achieved:
 (i) Tests based on dissolved organic carbon: 70%;
 (ii) Tests based on oxygen depletion or carbon dioxide generation: 60% of theoretical maxima;

 These levels of biodegradation must be achieved within 10 days of the start of degradation which point is taken as the time when 10% of the substance has been degraded unless the substance is identified as a complex, multi-component substance with structurally similar constituents. In this case, and where there is sufficient justification, the 10-day window condition may be waived and the pass level applied at 28 days;

(b) In those cases where only BOD and COD data are available, when the ratio of BOD5/COD is ≥ 0.5; or

(c) If other convincing scientific evidence is available to demonstrate that the substance or mixture can be degraded (biotically and/or abiotically) in the aquatic environment to a level above 70% within a 28 day period.

1 Special guidance on data interpretation is provided in Chapter 4.1 and Annex 9 of the GHS.
2 See Chapter 4.1 and Annex 9, paragraph A9.4.2.2.3 of the GHS.
2.9.3.3 Substance classification categories and criteria

2.9.3.3.1 Substances must be classified as "environmentally hazardous substances (aquatic environment)", if they satisfy the criteria for Acute 1, Chronic 1 or Chronic 2, according to Table 2.9.1. These criteria describe in detail the classification categories. They are diagrammatically summarised in Table 2.9.2.

Table 2.9.1: Categories for substances hazardous to the aquatic environment (see Note 1 at end of table)

<table>
<thead>
<tr>
<th>Hazard type</th>
<th>Hazard category</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Acute (short-term) aquatic hazard</td>
<td>Category Acute 1: (see Note 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>96 hr LC50 (for fish)</td>
<td>≤ 1 mg/L and/or</td>
</tr>
<tr>
<td></td>
<td>48 hr EC50 (for crustacea)</td>
<td>≤ 1 mg/L and/or</td>
</tr>
<tr>
<td></td>
<td>72 or 96hr ErC50 (for algae or other aquatic plants)</td>
<td>≤ 1 mg/L (see Note 3)</td>
</tr>
<tr>
<td>(b) Long-term aquatic hazard</td>
<td>Category Chronic 1: (see Note 2)</td>
<td></td>
</tr>
<tr>
<td>(i) Non-rapidly degradable substances (see Note 4) for which there are adequate chronic toxicity data available</td>
<td>Chronic NOEC or ECX (for fish)</td>
<td>≤ 0.1 mg/l and/or</td>
</tr>
<tr>
<td></td>
<td>Chronic NOEC or ECX (for crustacea)</td>
<td>≤ 0.1 mg/l and/or</td>
</tr>
<tr>
<td></td>
<td>Chronic NOEC or ECX (for algae or other aquatic plants)</td>
<td>≤ 0.1 mg/l</td>
</tr>
<tr>
<td>(b) Long-term aquatic hazard, cont.</td>
<td>Category Chronic 2:</td>
<td></td>
</tr>
<tr>
<td>(ii) Rapidly degradable substances for which there are adequate chronic toxicity data available</td>
<td>Chronic NOEC or ECX (for fish)</td>
<td>≤ 1 mg/l and/or</td>
</tr>
<tr>
<td></td>
<td>Chronic NOEC or ECX (for crustacea)</td>
<td>≤ 1 mg/l and/or</td>
</tr>
<tr>
<td></td>
<td>Chronic NOEC or ECX (for algae or other aquatic plants)</td>
<td>≤ 1 mg/l</td>
</tr>
<tr>
<td>(iii) Substances for which adequate chronic toxicity data are not available</td>
<td>Category Chronic 1: (see Note 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>96 hr LC50 (for fish)</td>
<td>≤ 1 mg/l and/or</td>
</tr>
</tbody>
</table>

Notes:

1. [Note 1 at end of table]

(see also Figure 2.9.1)
PART 2: CLASSIFICATION

<table>
<thead>
<tr>
<th>Hazard type</th>
<th>Hazard category</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 hr EC\textsubscript{50} (for crustacea)</td>
<td>≤ 1 mg/l and/or</td>
<td></td>
</tr>
<tr>
<td>72 or 96hr ErC\textsubscript{50} (for algae or other aquatic plants)</td>
<td>≤ 1 mg/l (see Note 3)</td>
<td></td>
</tr>
</tbody>
</table>

and the substance is not rapidly degradable and/or the experimentally determined BCF is ≥ 500 (or, if absent the log K\textsubscript{OW} ≥ 4 (see Notes 4 and 5).

Category Chronic 2:

96 hr LC\textsubscript{50} (for fish)	>1 but ≤ 10 mg/l and/or
48 hr EC\textsubscript{50} (for crustacea)	>1 but ≤ 10 mg/l and/or
72 or 96hr ErC\textsubscript{50} (for algae or other aquatic plants)	>1 but ≤ 10 mg/l (see Note 3)

and the substance is not rapidly degradable and/or the experimentally determined BCF is ≥ 500 (or, if absent the log K\textsubscript{OW} ≥ 4 (see Notes 4 and 5).

Table notes:

NOTE 1: The organisms fish, crustacea and algae are tested as surrogate species covering a range of trophic levels and taxa, and the test methods are highly standardised. Data on other organisms may also be considered, however, provided they represent equivalent species and test endpoints.

NOTE 2: When classifying substances as Acute 1 and/or Chronic 1 it is necessary at the same time to indicate an appropriate M factor (see 2.9.3.4.6.4) to apply the summation method.

NOTE 3: Where the algal toxicity ErC\textsubscript{50} (= EC\textsubscript{50} (growth rate)) falls more than 100 times below the next most sensitive species and results in a classification based solely on this effect, consideration must be given to whether this toxicity is representative of the toxicity to aquatic plants. Where it can be shown that this is not the case, professional judgment must be used in deciding if classification must be applied. Classification must be based on the ErC\textsubscript{50}. In circumstances where the basis of the EC\textsubscript{50} is not specified and no ErC\textsubscript{50} is recorded, classification must be based on the lowest EC\textsubscript{50} available.

NOTE 4: Lack of rapid degradability is based on either a lack of ready biodegradability or other evidence of lack of rapid degradation. When no useful data on degradability are available, either experimentally determined or estimated data, the substance must be regarded as not rapidly degradable.

NOTE 5: Potential to bioaccumulate, based on an experimentally derived BCF ≥ 500 or, if absent, a log K\textsubscript{OW} ≥ 4 provided log K\textsubscript{OW} is an appropriate descriptor for the bioaccumulation potential of the substance. Measured log K\textsubscript{OW} values take precedence over estimated values and measured BCF values take precedence over log K\textsubscript{OW} values.

Figure 2.9.1: Categories for substances long-term hazardous to the aquatic environment
PART 2: CLASSIFICATION

2.9.3.3.2 The classification scheme in Table 2.9.2 below summarises the classification criteria for substances

<table>
<thead>
<tr>
<th>Classification categories</th>
<th>Long-term hazard (see Note 2)</th>
<th>Adequate chronic toxicity data available</th>
<th>Adequate chronic toxicity data not available (see Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate chronic toxicity data available</td>
<td>Non-rapidly degradable substances (see Note 3)</td>
<td>Rapidly degradable substances (see Note 3)</td>
<td></td>
</tr>
<tr>
<td>Category: Acute 1</td>
<td>Category: Chronic 1</td>
<td>Category: Chronic 1</td>
<td>Category: Chronic 1</td>
</tr>
<tr>
<td>L(E)C₅₀ ≤ 1.00</td>
<td>NOEC or ECₓ ≤ 0.1</td>
<td>NOEC or ECₓ ≤ 0.01</td>
<td>L(E)C₅₀ ≤ 1.00 and lack of rapid degradability and/or BCF ≥ 500 or, if absent log Kow ≥ 4</td>
</tr>
</tbody>
</table>

Table notes:
PART 2: CLASSIFICATION

NOTE 1: Acute toxicity band based on L(E)C_{50} values in mg/l for fish, crustacea and/or algae or other aquatic plants (or Quantitative Structure Activity Relationships (QSAR) estimation if no experimental data ¹).

NOTE 2: Substances are classified in the various chronic categories unless there are adequate chronic toxicity data available for all three trophic levels above the water solubility or above 1 mg/l. (“Adequate” means that the data sufficiently cover the endpoint of concern. Generally this would mean measured test data, but in order to avoid unnecessary testing it can on a case by case basis also be estimated data, e.g. (Q)SAR, or for obvious cases expert judgment).

NOTE 3: Chronic toxicity band based on NOEC or equivalent ECx values in mg/l for fish or crustacea or other recognised measures for chronic toxicity.

2.9.3.4 Mixtures classification categories and criteria

2.9.3.4.1 The classification system for mixtures covers the classification categories which are used for substances, meaning categories Acute 1 and Chronic 1 and 2. In order to make use of all available data for purposes of classifying the aquatic environmental hazards of the mixture, the following assumption is made and is applied where appropriate:

The “relevant ingredients” of a mixture are those which are present in a concentration of 1% (w/w) or greater, unless there is a presumption (e.g. in the case of highly toxic ingredients) that an ingredient present at less than 1% can still be relevant for classifying the mixture for aquatic environmental hazards.

2.9.3.4.2 The approach for classification of aquatic environmental hazards is tiered, and is dependent upon the type of information available for the mixture itself and for its ingredients. Elements of the tiered approach include:

(a) classification based on tested mixtures;
(b) classification based on bridging principles;
(c) the use of “summation of classified ingredients” and /or an “additivity formula”.

Figure 2.9.2: Tiered approach to classification of mixtures for acute and long-term aquatic environmental hazards

¹ Special guidance is provided in Chapter 4.1, paragraph 4.1.2.13 and Annex 9, Section A9.6 of the GHS.
2.9.3.4.3 Classification of Mixtures when Toxicity Data are Available for the Complete Mixture

2.9.3.4.3.1 When the Mixture as a Whole has been Tested to Determine its Aquatic Toxicity, this Information must be Used for Classifying the Mixture According to the Criteria that have been Agreed for Substances. The Classification is Normally based on the Data for Fish, Crustacea and Algae/Plants (see 2.9.3.2.3 and 2.9.3.2.4). When Adequate Acute or Chronic Data for the Mixture as a Whole are Lacking, "Bridging Principles" or "Summation Method" Must be Applied (see 2.9.3.4.4 and 2.9.3.4.5).

2.9.3.4.3.2 The Long-Term Hazard Classification of Mixtures requires Additional Information on Degradability and in Certain Cases Bioaccumulation. There are No Degradability and Bioaccumulation Data for Mixtures as a Whole. Degradability and Bioaccumulation Tests for Mixtures are Not Used as they are Usually Difficult to Interpret, and Such Tests may be Meaningful only for Single Substances.

2.9.3.4.3.3 Classification for Category Acute 1

(a) When there are adequate acute toxicity test data (LC\textsubscript{50} or EC\textsubscript{50}) available for the mixture as a whole showing L(E)C\textsubscript{50} \leq 1 mg/l:
 - classify the mixture as Acute 1 in accordance with Table 2.9.1 (a);
(b) When there are acute toxicity test data LC\textsubscript{50}(s) or EC\textsubscript{50}(s) available for the mixture as a whole showing L(E)C\textsubscript{50}(s) > 1 mg/l, or above the water solubility:
 - no need to classify for acute hazard under this Code.

2.9.3.4.3.4 Classification for Categories Chronic 1 and 2
PART 2: CLASSIFICATION

(a) When there are adequate chronic toxicity data (ECx or NOEC) available for the mixture as a whole showing ECx or NOEC of the tested mixture ≤ 1mg/l:

(i) classify the mixture as Chronic 1 or 2 in accordance with Table 2.9.1 (b) (ii) (rapidly degradable) if the available information allows the conclusion that all relevant ingredients of the mixture are rapidly degradable;

(ii) classify the mixture as Chronic 1 or 2 in all other cases in accordance with Table 2.9.1 (b) (i) (non-rapidly degradable);

(b) When there are adequate chronic toxicity data (ECx or NOEC) available for the mixture as a whole showing ECx(s) or NOEC(s) of the tested mixture > 1mg/l or above the water solubility:

– no need to classify for long-term hazard under this Code.

2.9.3.4.4 Classification of mixtures when toxicity data are not available for the complete mixture: bridging principles

2.9.3.4.4.1 Where the mixture itself has not been tested to determine its aquatic environmental hazard, but there are sufficient data on the individual ingredients and similar tested mixtures to adequately characterise the hazards of the mixture, this data must be used in accordance with the following agreed bridging rules. This ensures that the classification process uses the available data to the greatest extent possible in characterising the hazards of the mixture without the necessity for additional testing in animals.

2.9.3.4.4.2 Dilution

2.9.3.4.4.2.1 Where a new mixture is formed by diluting a tested mixture or a substance with a diluent which has an equivalent or lower aquatic hazard classification than the least toxic original ingredient and which is not expected to affect the aquatic hazards of other ingredients, then the resulting mixture must be classified as equivalent to the original tested mixture or substance. Alternatively, the method explained in 2.9.3.4.5 may be applied.

2.9.3.4.4.2.2 If a mixture is formed by diluting another classified mixture or a substance with water or other totally non-toxic material, the toxicity of the mixture must be calculated from the original mixture or substance.

2.9.3.4.4.3 Batching

2.9.3.4.4.3.1 The aquatic hazard classification of a tested production batch of a mixture must be assumed to be substantially equivalent to that of another untested production batch of the same commercial product when produced by or under the control of the same manufacturer, unless there is reason to believe there is significant variation such that the aquatic hazard classification of the untested batch has changed. If the latter occurs, new classification is necessary.

2.9.3.4.4 Concentration of mixtures which are classified with the most severe classification categories (Chronic 1 and Acute 1)

2.9.3.4.4.1 If a tested mixture is classified as Chronic 1 and/or Acute 1, and the ingredients of the mixture which are classified as Chronic 1 and/or Acute 1 are further concentrated, the more concentrated untested mixture must
PART 2: CLASSIFICATION

be classified with the same classification category as the original tested mixture without additional testing.

2.9.3.4.5 Interpolation within one toxicity category

2.9.3.4.5.1 For three mixtures (A, B and C) with identical ingredients, where mixtures A and B have been tested and are in the same toxicity category, and where untested mixture C has the same toxicologically active ingredients as mixtures A and B but has concentrations of toxicologically active ingredients intermediate to the concentrations in mixtures A and B, then mixture C is assumed to be in the same category as A and B.

2.9.3.4.6 Substantially similar mixtures

2.9.3.4.6.1 Given the following:

(a) Two mixtures:
 (i) A + B
 (ii) C + B

(b) The concentration of ingredient B is essentially the same in both mixtures;

(c) The concentration of ingredient A in mixture (i) equals that of ingredient C in mixture (ii);

(d) Data on aquatic hazards for A and C are available and are substantially equivalent, i.e. they are in the same hazard category and are not expected to affect the aquatic toxicity of B.

If mixture (i) or (ii) is already classified based on test data, then the other mixture can be assigned the same hazard category.

2.9.3.4.5 Classification of mixtures when toxicity data are available for all ingredients or only for some ingredients of the mixture.

2.9.3.4.5.1 The classification of a mixture must be based on summation of the classification of its ingredients. The percentage of ingredients classified as “Acute” or “Chronic” will feed straight into the summation method. Details of the summation method are described in 2.9.3.4.6.1 to 2.9.3.4.6.4.1.

2.9.3.4.5.2 Mixtures may be made of a combination of both ingredients that are classified (as Acute 1 and/or Chronic 1, 2) and those for which adequate toxicity test data are available. When adequate toxicity data are available for more than one ingredient in the mixture, the combined toxicity of those ingredients must be calculated using the following additivity formulas (a) or (b), depending on the nature of the toxicity data:

(a) Based on acute aquatic toxicity:

$$\sum \frac{C_i}{L(E)C_{50i}} = \sum \frac{C_i}{L(E)C_{50i}}$$

where:

- C_i = concentration of ingredient i (mass percentage);
- $L(E)C_{50i}$ = LC50 or EC50 for ingredient i (mg/l);
- n = number of ingredients, and i is running from 1 to n;
PART 2: CLASSIFICATION

L(E)C_{50m} = L(E)C_{50} \text{ of the part of the mixture with test data}

The calculated toxicity must be used to assign that portion of the mixture an acute hazard category which is then subsequently used in applying the summation method;

(b) Based on chronic aquatic toxicity:

\[
\sum \frac{C_i + \sum C_j}{\text{EqNOEC}_m} = \sum \frac{C_i}{\text{NOEC}_i} + \sum \frac{C_j}{0.1 \times \text{NOEC}_j}
\]

where:

- $C_i =$ concentration of ingredient i (mass percentage) covering the rapidly degradable ingredients;
- $C_j =$ concentration of ingredient j (mass percentage) covering the non-rapidly degradable ingredients;
- $\text{NOEC}_i =$ NOEC (or other recognised measures for chronic toxicity) for ingredient i covering the rapidly degradable ingredients, in mg/l;
- $\text{NOEC}_j =$ NOEC (or other recognised measures for chronic toxicity) for ingredient j covering the non-rapidly degradable ingredients, in mg/l;
- $n =$ number of ingredients, and i and j are running from 1 to n;
- $\text{EqNOEC}_m =$ equivalent NOEC of the part of the mixture with test data;

The equivalent toxicity thus reflects the fact that non-rapidly degrading substances are classified one hazard category level more “severe” than rapidly degrading substances.

The calculated equivalent toxicity must be used to assign that portion of the mixture a long-term hazard category, in accordance with the criteria for rapidly degradable substances (Table 2.9.1 (b) (ii)), which is then subsequently used in applying the summation method.

2.9.3.4.5.3 When applying the additivity formula for part of the mixture, it is preferable to calculate the toxicity of this part of the mixture using for each ingredient toxicity values that relate to the same taxonomic group (i.e. fish, crustacea or algae) and then to use the highest toxicity (lowest value) obtained (i.e. use the most sensitive of the three groups). However, when toxicity data for each ingredient are not available in the same taxonomic group, the toxicity value of each ingredient must be selected in the same manner that toxicity values are selected for the classification of substances, i.e. the higher toxicity (from the most sensitive test organism) is used. The calculated acute chronic toxicity must then be used to classify this part of the mixture as Acute 1 and/or Chronic 1 or 2 using the same criteria described for substances.

2.9.3.4.5.4 If a mixture is classified in more than one way, the method yielding the more conservative result must be used.

2.9.3.4.6 Summation method

2.9.3.4.6.1 Classification procedure
PART 2: CLASSIFICATION

2.9.3.4.6.1.1 In general a more severe classification for mixtures overrides a less severe classification, e.g. a classification with Chronic 1 overrides a classification with Chronic 2. As a consequence the classification procedure is already completed if the results of the classification is Chronic 1. A more severe classification than Chronic 1 is not possible and it is not necessary therefore to undergo the further classification procedure.

2.9.3.4.6.2 Classification for category Acute 1

2.9.3.4.6.2.1 First, all ingredients classified as Acute 1 are considered. If the sum of the concentrations (in %) of these ingredients is greater than or equal to 25% the whole mixture must be classified as Acute 1. If the result of the calculation is a classification of the mixture as Acute 1, the classification process is completed.

2.9.3.4.6.2.2 The classification of mixtures for acute hazards based on this summation of the concentrations of classified ingredients is summarised in Table 2.9.3 below.

Table 2.9.3: Classification of a mixture for acute hazards, based on summation of the concentrations of classified ingredients

<table>
<thead>
<tr>
<th>Sum of the concentrations (in %) of ingredients classified as:</th>
<th>Mixture is classified as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute 1 $\times M \geq 25%$ (^a)</td>
<td>Acute 1</td>
</tr>
</tbody>
</table>

Table note: \(^a\) For explanation of the M factor, see 2.9.3.4.6.4.
PART 2: CLASSIFICATION

2.9.3.4.6.3 Classification for categories Chronic 1 and 2

First, all ingredients classified as Chronic 1 are considered. If the sum of the concentration (in %) of these ingredients is greater than or equal to 25% the mixture must be classified as Chronic 1. If the result of the calculation is a classification of the mixture as Chronic 1 the classification procedure is completed.

2.9.3.4.6.3.2 In cases where the mixture is not classified as Chronic 1, classification of the mixture as Chronic 2 is considered. A mixture must be classified as Chronic 2 if 10 times the sum of the concentrations (in %) of all ingredients classified as Chronic 1 plus the sum of the concentrations (in %) of all ingredients classified as Chronic 2 is greater than 25%. If the result of the calculation is classification of the mixture as Chronic 2, the classification process is completed.

2.9.3.4.6.3.3 The classification of mixtures for long-term hazards based on this summation of the concentrations of classified ingredients is summarised in Table 2.9.4 below.

Table 2.9.4: Classification of a mixture for long-term hazards based on summation of the concentrations of classified ingredients

<table>
<thead>
<tr>
<th>Sum of the concentrations (in %) of ingredients classified as:</th>
<th>Mixture is classified as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic 1 × M(^a) ≥25%</td>
<td>Chronic 1</td>
</tr>
<tr>
<td>(M × 10 × Chronic 1)+Chronic 2 ≥25%</td>
<td>Chronic 2</td>
</tr>
</tbody>
</table>

Table note: \(a\) For explanation of the M factor, see 2.9.3.4.6.4.

2.9.3.4.6.4 Mixtures with highly toxic ingredients

2.9.3.4.6.4.1 Acute 1 or Chronic 1 ingredients with acute toxicities well below 1 mg/L and/or chronic toxicities well below 0.1 mg/L (if non-rapidly degradable) and 0.01 mg/L (if rapidly degradable) may influence the toxicity of the mixture and are given increased weight in applying the summation of classification approach. When a mixture contains ingredients classified as Acute 1 or Chronic 1, the tiered approach described in 2.9.3.4.6.2 and 2.9.3.4.6.3 must be applied using a weighted sum by multiplying the concentrations of Acute 1 and Chronic 1 ingredients by a factor, instead of merely adding up the percentages.

This means that the concentration of “Acute 1” in the left column of Table 2.9.3 and the concentration of “Chronic 1” in the left column of Table 2.9.4 are multiplied by the appropriate multiplying factor. The multiplying factors to be applied to these ingredients are defined using the toxicity value, as summarised in Table 2.9.5 below. Therefore, in order to classify a mixture containing Acute 1 and/or Chronic 1 ingredients, the classifier needs to be informed of the value of the M factor in order to apply the summation method.

Alternatively, the additivity formula (2.9.3.4.5.2) may be used when toxicity data are available for all highly toxic ingredients in the mixture and there is convincing evidence that all other ingredients, including those for which specific acute and/or chronic toxicity data are not available, are of
PART 2: CLASSIFICATION

low or no toxicity and do not significantly contribute to the environmental hazard of the mixture.

Table 2.9.5: Multiplying factors for highly toxic ingredients of mixtures

<table>
<thead>
<tr>
<th>Acute toxicity</th>
<th>M factor</th>
<th>Chronic toxicity</th>
<th>M factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>L(E)C₅₀ value</td>
<td>NOEC value</td>
<td>NRDᵃ ingredients</td>
<td>RDᵇ ingredients</td>
</tr>
<tr>
<td>0.1 < L(E)C₅₀ ≤ 1</td>
<td>1</td>
<td>0.01 < NOEC ≤ 0.1</td>
<td>1</td>
</tr>
<tr>
<td>0.01 < L(E)C₅₀ ≤ 0.1</td>
<td>10</td>
<td>0.001 < NOEC ≤ 0.01</td>
<td>10</td>
</tr>
<tr>
<td>0.001 < L(E)C₅₀ ≤ 0.001</td>
<td>100</td>
<td>0.0001 < NOEC ≤ 0.0001</td>
<td>100</td>
</tr>
<tr>
<td>0.0001 < L(E)C₅₀ ≤ 0.0001</td>
<td>1 000</td>
<td>0.00001 < NOEC ≤ 0.00001</td>
<td>1 000</td>
</tr>
<tr>
<td>0.00001 < L(E)C₅₀ ≤ 0.00001</td>
<td>10 000</td>
<td>0.000001 < NOEC ≤ 0.000001</td>
<td>10 000</td>
</tr>
</tbody>
</table>

(continue in factor 10 intervals) (continue in factor 10 intervals)

ᵃ Non-rapidly degradable.
ᵇ Rapidly degradable.

2.9.3.4.6.5 Classification of mixtures with ingredients without any useable information

2.9.3.4.6.5.1 In the event that no useable information on acute and/or chronic aquatic toxicity is available for one or more relevant ingredients, it is concluded that the mixture cannot be attributed (a) definitive hazard category(ies). In this situation the mixture must be classified based on the known ingredients only.

2.9.4 LITHIUM BATTERIES

Cells and batteries, cells and batteries contained in equipment, or cells and batteries packed with equipment, containing lithium in any form must be assigned to UN Nos. 3090, 3091, 3480 or 3481 as appropriate. They may be transported under these entries if they meet the following provisions:

(a) Each cell or battery is of the type proved to meet the requirements of each test of the Manual of Tests and Criteria, Part III, subsection 38.3; Cells and batteries manufactured according to a type meeting the requirements of subsection 38.3 of the Manual of Tests and Criteria, Revision 3, Amendment 1 or any subsequent revision and amendment applicable at the date of the type testing may continue to be transported, unless otherwise provided in this Code. Cell and battery types only meeting the requirements of the Manual of Tests and Criteria, Revision 3, are no longer valid. However, cells and batteries manufactured in conformity with such types before 1 July 2003 may continue to be transported if all other applicable requirements are fulfilled.

NOTE: Batteries are to be of a type proved to meet the testing requirements of the Manual of Tests and Criteria, part III, subsection 38.3, irrespective of whether the cells of which they are composed are of a tested type.

(b) Each cell and battery incorporates a safety venting device or is designed to preclude a violent rupture under conditions normally incident to transport;
PART 2: CLASSIFICATION

(c) Each cell and battery is equipped with an effective means of preventing external short circuits;

(d) Each battery containing cells or series of cells connected in parallel is equipped with effective means as necessary to prevent dangerous reverse current flow (e.g., diodes, fuses, etc.);

(e) Cells and batteries must be manufactured under a quality management programme that includes:
 (i) A description of the organisational structure and responsibilities of personnel with regard to design and product quality;
 (ii) The relevant inspection and test, quality control, quality assurance, and process operation instructions that will be used;
 (iii) Process controls that should include relevant activities to prevent and detect internal short circuit failure during manufacture of cells;
 (iv) Quality records, such as inspection reports, test data, calibration data and certificates. Test data must be kept and made available to the competent authority upon request;
 (v) Management reviews to ensure the effective operation of the quality management programme;
 (vi) A process for control of documents and their revision;
 (vii) A means for control of cells or batteries that are not conforming to the type tested as mentioned in (a) above;
 (viii) Training programmes and qualification procedures for relevant personnel; and
 (ix) Procedures to ensure that there is no damage to the final product.

 NOTE: In house quality management programmes may be accepted. Third party certification is not required, but the procedures listed in (i) to (ix) above must be properly recorded and traceable. A copy of the quality management programme must be made available to the competent authority upon request.

(f) Lithium batteries, containing both primary lithium metal cells and rechargeable lithium ion cells, that are not designed to be externally charged (see special provision 387 of Chapter 3.3) shall meet the following conditions:
 (i) The rechargeable lithium ion cells can only be charged from the primary lithium metal cells;
 (ii) Overcharge of the rechargeable lithium ion cells is precluded by design;
 (iii) The battery has been tested as a lithium primary battery;
 (iv) Component cells of the battery shall be of a type proved to meet the respective testing requirements of the Manual of Tests and Criteria, part III, sub-section 38.3.

(g) Manufacturers and subsequent distributors of cells or batteries manufactured after 30 June 2003 shall make available the test summary as specified in the Manual of Tests and Criteria, Part III, sub-section 38.3, paragraph 38.3.5.
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS
CHAPTER 3.1 - GENERAL

3.1.1 SCOPE AND GENERAL PROVISIONS

3.1.1.1 The Dangerous Goods List in Chapter 3.2 lists the dangerous goods most commonly carried but is not exhaustive\(^1\). It is intended that the list cover, as far as practicable, all dangerous substances of commercial importance.

3.1.1.2 Where a substance or article is specifically listed by name in the Dangerous Goods List, it must be transported in accordance with the provisions in the List which are appropriate for that substance or article. A “generic” or “not otherwise specified” entry may be used to permit the transport of substances or articles which do not appear specifically by name in the Dangerous Goods List. Such a substance or article may be transported only after its dangerous properties have been determined. The substance or article must then be classified according to the Class definitions and test criteria and the name in the Dangerous Goods List which most appropriately describes the substance or article must be used. The classification may be made by the appropriate competent authority when so required or may otherwise be made by the consignor. Once the Class of the substance or article has been so established, all conditions for dispatch and transport, as provided in this Code must be met. Any substance or article having or suspected of having explosive characteristics must first be considered for inclusion in Class 1. Some collective entries may be of the “generic” or “not otherwise specified” type provided that this Code contains provisions ensuring safety, both by excluding extremely dangerous goods from normal transport and by covering all subsidiary hazards inherent in some goods.

3.1.1.3 The Dangerous Goods List does not include goods which are so dangerous that their transport, except with special authorisation, is prohibited. Appendix A lists some goods the transport of which by road and rail in Australia is prohibited without a specific exemption or determination from the Competent Authority. It must be recognised that the list in Appendix A is not exhaustive, as it would be impossible to draw up an exhaustive list. Moreover, the list in Appendix A will, over time, become less exhaustive because of the frequent introduction of new substances. Therefore the absence of a substance from Appendix A must not be interpreted that that substance may be carried without special restrictions. Inherent instability in goods may take different dangerous forms, for example, explosion, polymerisation, with intense evolution of heat, or emission of toxic gases. In respect of most substances, such tendencies can be controlled by correct packing, dilution, stabilisation, addition of an inhibitor, refrigeration or other precautions.

3.1.1.4 Where precautionary measures are laid down in the Dangerous Goods List in respect of a given substance or article (e.g. that it must be “stabilised” or “with x% water or phlegmatiser”) such substance or article may not normally be carried when these measures have not been taken,

\(^1\) The Dangerous Goods List is non-exhaustive to the extent that not all substances that meet the criteria of Part 2 for classification as dangerous goods are individually listed by chemical name. However, all such substances that are not listed individually are included in the list under “generic” or “not otherwise specified” names covering the full spectrum of hazardous properties for which criteria have been specified. (For further details, see Sections 2.0.2, 3.1.2 and 3.1.3).
unless the item in question is listed elsewhere (e.g. Class 1) without any indication of, or with different, precautionary measures.

3.1.2 PROPER SHIPPING NAME

NOTE 1: For proper shipping names to be used for dangerous goods transported as limited quantities, see 3.4.8.

NOTE 2: For proper shipping names used for the transport of samples, see 2.0.4.

NOTE 3: For proper shipping names of dangerous goods of Class 1, 6.2 or 7, reference must also be made to the legislation applying in the State or Territory in which the goods are transported.

3.1.2.1 The proper shipping name is that portion of the entry most accurately describing the goods in the Dangerous Goods List in 3.2.3, or the Australian Specific Entries in 3.2.5, which is shown in upper case characters (plus any numbers, Greek letters, “sec”, “tert”, and the letters m, n, o, p, which form an integral part of the name). An alternative proper shipping name may be shown in brackets following the main proper shipping name [e.g., ETHANOL (ETHYL ALCOHOL)]. Portions of an entry appearing in lower case need not be considered as part of the proper shipping name but may be used.

3.1.2.2 When a combination of several distinct proper shipping names are listed under a single UN number, and these are separated by “and” or “or” in lower case or are punctuated by commas, only the most appropriate shall be shown in the transport document and package marks. Examples illustrating the selection of the proper shipping name for such entries are:

(a) UN 1057 LIGHTERS or LIGHTER REFILLS
 – The proper shipping name is the most appropriate of the following possible combinations:
 LIGHTERS; or
 LIGHTER REFILLS;

(b) UN 1481 PHOSPHORUS, WHITE or YELLOW, DRY or UNDER WATER or IN SOLUTION
 – The proper shipping name is the most appropriate of the following possible combinations:
 PHOSPHORUS, WHITE, DRY; or
 PHOSPHORUS, WHITE, UNDER WATER; or
 PHOSPHORUS, WHITE, IN SOLUTION; or
 PHOSPHORUS, YELLOW, DRY; or
 PHOSPHORUS, YELLOW, UNDER WATER; or
 PHOSPHORUS, YELLOW, IN SOLUTION;

(c) UN 2478 ISOCYANATES, FLAMMABLE, TOXIC, N.O.S. or ISOCYANATE SOLUTION, FLAMMABLE, TOXIC, N.O.S.
 – The proper shipping name is the most appropriate of the following possible combinations:
 ISOCYANATES, FLAMMABLE, TOXIC, N.O.S; or
 ISOCYANATE SOLUTION, FLAMMABLE, TOXIC, N.O.S,
 each supplemented with the technical name of the goods (see 3.1.2.8).
3.1.2.3 Proper shipping names may be used in the singular or plural as appropriate. In addition, when qualifying words are used as part of the proper shipping name, their sequence on documentation or package marks is optional.

For instance, “DIMETHYLAMINE AQUEOUS SOLUTION” may alternatively be shown “AQUEOUS SOLUTION OF DIMETHYLAMINE”. Commercial or military names for goods of Class 1 which contain the proper shipping name supplemented by additional descriptive text may be used.

3.1.2.4 Many substances have an entry for both the liquid and solid state (see definitions for liquid and solid in 1.2.1), or for the solid and solution. These are allocated separate UN numbers which are not necessarily adjacent to each other. Details are provided in the alphabetical index, e.g.:

- NITROXYLENES, LIQUID 6.1 1665
- NITROXYLENES, SOLID 6.1 3447

3.1.2.5 Unless it is already included in capital letters in the name indicated in the Dangerous Goods List, the qualifying word "MOLTEN" must be added as part of the proper shipping name when a substance, which is a solid in accordance with the definition in 1.2.1, is offered for transport in the molten state (e.g. ALKYLPHENOL, SOLID, N.O.S., MOLTEN).

3.1.2.6 Except for self-reactive substances and organic peroxides and unless it is already included in capital letters in the name indicated in the Dangerous Goods List, the word STABILISED must be added as part of the proper shipping name of a substance which, without stabilisation, would be forbidden from transport in accordance with 1.1.2 due to it being liable to dangerously react under conditions normally encountered in transport (e.g.: “TOXIC LIQUID, ORGANIC, N.O.S., STABILISED”).

When temperature control is used to stabilise such substances to prevent the development of any dangerous excess pressure, or the evolution of excessive heat, or when chemical stabilization is used in combination with temperature control then:

(a) for liquids and solids: where the SAPT (measured without or with inhibitor, when chemical stabilization is applied) is less than or equal to that prescribed in 2.4.2.5.2, special provision 386 of Chapter 3.3 and the provisions of 7.1.6 apply

(b) Unless it is already included in capital letters in the name indicated in the Dangerous Goods List, the words “TEMPERATURE CONTROLLED” shall be added as part of the proper shipping name.

(c) for gases: transport is not permitted except in accordance with a competent authority exemption.

3.1.2.7 Hydrates may be transported under the proper shipping name for the anhydrous substance.

3.1.2.8 Generic or “not otherwise specified” (N.O.S.) names

3.1.2.8.1 Generic and “not otherwise specified” proper shipping names that are assigned to special provision 274 or 318 in Column 6 of the Dangerous Goods List must be supplemented with the technical or chemical group names unless a national law or international convention prohibits its disclosure if it is a controlled substance. For explosives of Class 1, the
dangerous goods description may be supplemented by additional
descriptive text to indicate commercial or military names. Technical and
chemical group names must be entered in brackets immediately following
the proper shipping name. An appropriate modifier, such as “contains” or
“containing” or other qualifying words such as “mixture”, “solution”, etc.
and the percentage of the technical constituent may also be used. For
example: “UN 1993 FLAMMABLE LIQUID, N.O.S. (contains xylene and
benzene), 3, PG II”.

3.1.2.8.1.1 The technical name must be a recognised chemical or biological name,
or other name currently used in scientific and technical handbooks,
journals and texts. Trade names must not be used for this purpose. In the
case of pesticides, only ISO common name(s), other name(s) in the World
Health Organisation (WHO) Recommended Classification of Pesticides
by Hazard and Guidelines to Classification, or the name(s) of the active
substance(s) may be used.

3.1.2.8.1.2 When a mixture of dangerous goods or articles containing dangerous
goods are described by one of the “N.O.S.” or “generic” entries to which
special provision 274 has been allocated in the Dangerous Goods List,
not more than the two constituents which most predominantly contribute
to the hazard or hazards of the mixture or of the articles need to be shown,
excluding controlled substances when their disclosure is prohibited by
national law or international convention. If a package containing a mixture
is labelled with any subsidiary hazard label, one of the two technical
names shown in brackets must be the name of the constituent which
compels the use of the subsidiary hazard label.

3.1.2.8.1.3 Examples illustrating the selection of the proper shipping name
supplemented with the technical name of goods for such N.O.S. entries are:

UN 2902 PESTICIDE, LIQUID, TOXIC, N.O.S. (drazoxolon).
UN 3394 ORGANOMETALLIC SUBSTANCE, LIQUID,
PYROPHORIC, WATER-REACTIVE (trimethylgallium)
UN 3540 ARTICLES CONTAINING FLAMMABLE LIQUIDS N.O.S.
(pyrrolidine)

3.1.2.9 Spelling of Sulfur (Sulphur)
In this Code, in line with the usage in UN20, Sulfur compounds are spelt
with “ph” in lieu of “f” used in earlier editions. Either spelling is acceptable
in the proper shipping name on transport documentation, package
marking and placards required by this Code.

3.1.3 MIXTURES OR SOLUTIONS

NOTE: Where a substance is specifically listed by name in the Dangerous Goods
List, it must be identified in transport by the proper shipping name in the
Dangerous Goods List. Such substances may contain technical impurities
(for example those deriving from the production process) or additives for
stability or other purposes that do not affect its classification. However, a
substance listed by name containing technical impurities or additives for
stability or other purposes affecting its classification must be considered
a mixture or solution (see 2.0.2.2 and 2.0.2.5).
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

3.1.3.1 A mixture or solution is not subject to this Code if the characteristics, properties, form or physical state of the mixture or solution are such that it does not meet the criteria, including human experience criteria, for inclusion in any class.

3.1.3.2 A mixture or solution meeting the classification criteria of this Code composed of a single predominant substance identified by name in the Dangerous Goods List and one or more substances not subject to this Code and/or traces of one or more substances identified by name in the Dangerous Goods List, must be assigned the UN number and proper shipping name of the predominant substance named in the Dangerous Goods List unless:

(a) The mixture or solution is identified by name in the Dangerous Goods List;
(b) The name and description of the substance named in the Dangerous Goods List specifically indicate that they apply only to the pure substance;
(c) The hazard class or division, subsidiary hazard(s), packing group, or physical state of the mixture or solution is different from that of the substance named in the Dangerous Goods List; or
(d) The hazard characteristics and properties of the mixture or solution necessitate emergency response measures that are different from those required for the substance identified by name in the Dangerous Goods List.

3.1.3.2.1 Qualifying words such as "MIXTURE" or "SOLUTION", as appropriate, must be added as part of the proper shipping name, for example, "ACETONE SOLUTION". In addition, the concentration of the mixture or solution may also be indicated after the basic description of the mixture or solution, for example, "ACETONE 75% SOLUTION".

3.1.3.3 A mixture or solution meeting the classification criteria of this Code that is not identified by name in the Dangerous Goods List and that is composed of two or more dangerous goods must be assigned to an entry that has the proper shipping name, description, hazard class or division, subsidiary hazard(s) and packing group that most precisely describe the mixture or solution.
CHAPTER 3.2 - DANGEROUS GOODS LIST

3.2.0 INTRODUCTION

NOTE 1: Unlike earlier editions of this Code, the principal listing of dangerous goods in Section 3.2.3 is in UN Number rather than alphabetical sequence.

NOTE 2: The List includes dangerous goods of Class 1 (Explosive substances or articles) and Class 7 (Radioactive material), even though this Code does not contain substantive provisions in relation to either of those Classes, other than in an incidental way. These items have been included in the List for information purposes only.

NOTE 3: The List also includes goods that are only dangerous goods when transported by sea or air.

3.2.0.1 The Dangerous Goods List
Section 3.2.3 embodies the definitive Dangerous Goods List from UN20. This list includes all classification details and provides references to special provisions, packing and tank requirements as explained in 3.2.1.

3.2.0.2 Other Listings of Dangerous Goods
This Chapter also incorporates the following additional lists of dangerous goods:

(a) Section 3.2.4 which is an alphabetical listing incorporating the Alphabetical Index of Substances and Articles from UN20. This Index lists the Class or Division and the UN Number for each proper shipping name that is included in the Dangerous Goods List. Some commonly used synonyms are also included in lower case, providing a reference to the proper shipping name that must be used;

(b) Section 3.2.5 which lists some alternative proper shipping names that are valid for land transport within Australia only; and

(c) Section 3.2.6, which reproduces the List of Generic and N.O.S. Proper Shipping Names from Appendix A of UN14/15 as updated by later editions up to UN 19.

3.2.1 STRUCTURE OF THE DANGEROUS GOODS LIST
The Dangerous Goods List in 3.2.3 is divided into 11 columns as follows:

Column 1 “UN No.” - this column contains the serial number assigned to the article or substance under the United Nations system.

Column 2 “Name and Description” - this column contains the proper shipping names in uppercase characters, which may be followed by additional descriptive text presented in lowercase characters (see 3.1.2). In relation to Explosives, an explanation of some of the terms used appears in the Australian Explosives Code. Proper shipping names may be shown in the plural where isomers of similar classification exist. Hydrates may be included under the proper shipping name for the anhydrous substance, as appropriate.

Unless otherwise indicated for an entry in the Dangerous Goods List, the word “solution” in a proper shipping name means one or more named
dangerous goods dissolved in a liquid that is not otherwise subject to this Code.

Column 3
“Class or Division” - this column contains the Class or Division and in the case of Class 1, the compatibility group assigned to the article or substance according to the classification system described in Chapter 2.1.

Column 4
“Subsidiary Hazard” - this column contains the Class or Division number of any important subsidiary hazards which have been identified by applying the classification system described in Part 2.

Column 5
“Packing Group” - this column contains the UN packing group number (i.e. I, II or III) assigned to the article or substance. If more than one packing group is indicated for the entry, the packing group of the substance or formulation to be transported must be determined, based on its properties, through application of the hazard grouping criteria as provided in Part 2.

Column 6
“Special Provisions” - this column contains a number referring to any special provision(s) indicated in 3.3.1 that is relevant to the article or substance. Special provisions apply to all the packing groups permitted for a particular substance or article unless the wording makes it otherwise apparent.

Column 7a
“Limited Quantities” - this column provides the maximum quantity per inner packaging or article for transporting dangerous goods as limited quantities in accordance with Chapter 3.4.

Column 7b
“Excepted Quantities” - this column provides an alphanumeric code described in sub-section 3.5.1.2 which indicates the maximum quantity per inner and outer packaging for transporting dangerous goods as excepted quantities in accordance with Chapter 3.5.

Column 8
“Packing Instruction” - This column contains alpha numeric codes which refer to the relevant packing instructions specified in section 4.1.4. The packing instructions indicate the packaging (including IBCs and large packaging’s), which may be used for the transport of substances and articles.

A code including the letter “P” refers to packing instructions for the use of packaging’s described in Chapters 6.1, 6.2 or 6.3.

A code including the letters “IBC” refers to packing instructions for the use of IBCs described in Chapter 6.5.

A code including the letters “LP” refers to packing instructions for the use of large packaging’s described in Chapter 6.6.

When a particular code is not provided, it means the substance is not authorised in the type of packaging that may be used according to the packing instructions bearing that code.

When N/A is included in the column it means that the substance or article need not be packaged.

The packing instructions are listed in numerical order in section 4.1.4 as follows:
Sub-section 4.1.4.1: Packing instructions concerning the use of packaging’s (except IBCs and large packaging's) (Pxxx);
Sub-section 4.1.4.2: Packing instructions concerning the use of IBCs (IBCxxx);
Sub-section 4.1.4.3: Packing instructions concerning the use of large packaging's (LPxxx).

Column 9 **“Special Packing Provisions”** - this column contains alpha numeric codes which refer to the relevant special packing provisions specified in section 4.1.4. The special packing provisions indicate the special provisions for packaging (including IBCs and large packagings).

A special packing provision including the letters “PP” refers to special packing provision applicable to the use of packing instructions bearing the code “P” in 4.1.4.1.

A special packing provision including the letter “B” refers to special packing provision applicable to the use of packing instructions bearing the code “IBC” in 4.1.4.2.

A special provision including the letter “L” refers to special packing provision applicable to packing instructions bearing the code “LP” in 4.1.4.3.

Column 10 **“Portable Tank and Bulk Containers / Instructions”** - this column contains a number preceded by the letter “T” which refers to the relevant instruction in 4.2.5 specifying the tank type(s) required for the transport of the substance in portable tanks. A “T” entry in Column 10 is also an indication that the substance may be transported in a suitable tank vehicle in accordance with Section 4.4.2.

A code including the letters “BK” refers to types of bulk containers used for the transport of bulk goods described in Chapter 6.8.

The gases authorised for transport in MEGCs are indicated in the column “MEGC” in Tables 1 and 2 of packing instruction P200 in 4.1.4.1.

Column 11 **“Portable Tank and Bulk Containers / Special Provisions”** - this column contains a number preceded by the letters “TP” referring to any special provisions indicated in 4.2.5.3 that apply to the transport of the substance in portable tanks.
3.2.2 ABBREVIATIONS AND SYMBOLS

The following abbreviations or symbols are used in the Dangerous Goods List and have the meanings shown:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Column</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.O.S.</td>
<td>2</td>
<td>Not otherwise specified.</td>
</tr>
<tr>
<td>†</td>
<td>2</td>
<td>Entry for which there is an explanation in Appendix B of UN20 or Appendix 5 of the Australian Explosives Code.</td>
</tr>
</tbody>
</table>
3.2.3 DANGEROUS GOODS LIST

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0004</td>
<td>AMMONIUM PICRATE dry or wetted with less than 10% water, by mass †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (a), (b) or (c)</td>
<td>PP26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>CARTRIDGES FOR WEAPONS with bursting charge †</td>
<td>1.1F</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>CARTRIDGES FOR WEAPONS with bursting charge †</td>
<td>1.1E</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>CARTRIDGES FOR WEAPONS with bursting charge †</td>
<td>1.2F</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>AMMUNITION, INCENDIARY with or without burster, expelling charge or propelling charge †</td>
<td>1.2G</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td>AMMUNITION, INCENDIARY with or without burster, expelling charge or propelling charge †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0012</td>
<td>CARTRIDGES FOR WEAPONS, INERT PROJECTILE or CARTRIDGES, SMALL ARMS †</td>
<td>1.4S</td>
<td>364</td>
<td>5 kg</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0014</td>
<td>CARTRIDGES FOR WEAPONS, BLANK or CARTRIDGES, SMALL ARMS, BLANK or CARTRIDGES FOR TOOLS, BLANK †</td>
<td>1.4S</td>
<td>364</td>
<td>5 kg</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0015</td>
<td>AMMUNITION, SMOKE with or without burster, expelling charge or propelling charge †</td>
<td>1.2G</td>
<td>204</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0016</td>
<td>AMMUNITION, SMOKE with or without burster, expelling charge or propelling charge †</td>
<td>1.3G</td>
<td>204</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0018</td>
<td>AMMUNITION, TEAR-PRODUCING with burster, expelling charge or propelling charge †</td>
<td>1.2G</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0019</td>
<td>AMMUNITION, TEAR-PRODUCING with burster, expelling charge or propelling charge †</td>
<td>1.3G</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0020</td>
<td>AMMUNITION, TOXIC with burster, expelling charge or propelling charge †</td>
<td>1.2K</td>
<td>6.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0021</td>
<td>AMMUNITION, TOXIC with burster, expelling charge or propelling charge †</td>
<td>1.3K</td>
<td>6.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0027</td>
<td>BLACK POWDER (GUNPOWDER), granular or as a meal †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P113</td>
<td>PP50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0028</td>
<td>BLACK POWDER (GUNPOWDER), COMPRESSED or BLACK POWDER (GUNPOWDER), IN PELLETS †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P113</td>
<td>PP51</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0029</td>
<td>DETONATORS, NON-ELECTRIC for blasting †</td>
<td>1.1B</td>
<td>0</td>
<td>E0</td>
<td>P131</td>
<td>PP68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0030</td>
<td>DETONATORS, ELECTRIC for blasting †</td>
<td>1.1B</td>
<td>0</td>
<td>E0</td>
<td>P131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0033</td>
<td>BOMBS with bursting charge †</td>
<td>1.1F</td>
<td>0</td>
<td>E0</td>
<td>P130 (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0034</td>
<td>BOMBS with bursting charge †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0035</td>
<td>BOMBS with bursting charge †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0037</td>
<td>BOMBS, PHOTO-FLASH †</td>
<td>1.1F</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0038</td>
<td>BOMBS, PHOTO-FLASH †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0039</td>
<td>BOMBS, PHOTO-FLASH †</td>
<td>1.2G</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0042</td>
<td>BOOSTERS without detonator †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P132 (a) or (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0043</td>
<td>BURSTERS, explosive †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td>PP69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0044</td>
<td>PRIMERS, CAP TYPE †</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exceptioned Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0048</td>
<td>CHARGES, DEMOLITION †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101 LP67 L1</td>
</tr>
<tr>
<td>0049</td>
<td>CARTRIDGES, FLASH †</td>
<td>1.1G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
</tr>
<tr>
<td>0050</td>
<td>CARTRIDGES, FLASH †</td>
<td>1.3G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
</tr>
<tr>
<td>0054</td>
<td>CARTRIDGES, SIGNAL †</td>
<td>1.3G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
</tr>
<tr>
<td>0055</td>
<td>CASES, CARTRIDGE, EMPTY, WITH PRIMER †</td>
<td>1.4S</td>
<td>364</td>
<td>5 kg</td>
<td></td>
<td>E0</td>
<td></td>
<td>P136</td>
<td></td>
</tr>
<tr>
<td>0056</td>
<td>CHARGES, DEPTH †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101 LP67 L1</td>
</tr>
<tr>
<td>0059</td>
<td>CHARGES, SHAPED without detonator †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P137</td>
<td>PP70</td>
</tr>
<tr>
<td>0060</td>
<td>CHARGES, SUPPLEMENTARY, EXPLOSIVE †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P132 (a) or (b)</td>
<td></td>
</tr>
<tr>
<td>0065</td>
<td>CORD, DETONATING, flexible †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P139</td>
<td>PP71 PP72</td>
</tr>
<tr>
<td>0066</td>
<td>CORD, IGNITER †</td>
<td>1.4G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P140</td>
<td></td>
</tr>
<tr>
<td>0070</td>
<td>CUTTERS, CABLE, EXPLOSIVE †</td>
<td>1.4S</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P134</td>
<td>LP102</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0072</td>
<td>CYCLOTRIMETHYLENE-TRINITRAMINE (CYCLONITE; HEXOGEN; RDX), WETTED with not less than 15% water, by mass †</td>
<td>1.1D</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P112 (a)</td>
<td>PP45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0073</td>
<td>DETONATORS FOR AMMUNITION †</td>
<td>1.1B</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0074</td>
<td>DIAZODINITROPHENOL, WETTED with not less than 40% water, or mixture of alcohol and water, by mass †</td>
<td>1.1A</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P110 (a) or (b)</td>
<td>PP42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0075</td>
<td>DIETHYLENEGLYCOL DINITRATE, DESENSITISED with not less than 25% non-volatile, water-insoluble phlegmatiser, by mass †</td>
<td>1.1D</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P115</td>
<td>PP53, PP54, PP57, PP58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0076</td>
<td>DINITROPHENOL, dry or wetted with less than 15% water, by mass †</td>
<td>1.1D</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P112 (a), (b) or (c)</td>
<td>PP26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0077</td>
<td>DINITROPHENOLATES, alkali metals, dry or wetted with less than 15% water, by mass †</td>
<td>1.3C</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P114 (a) or (b)</td>
<td>PP26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0078</td>
<td>DINITRORESORCINOL, dry or wetted with less than 15% water, by mass †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (a), (b) or (c)</td>
<td>PP26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0079</td>
<td>HEXANITRODIPHENYLAMINE (DIPICRYLAMINE; HEXYL) †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0081</td>
<td>EXPLOSIVE, BLASTING, TYPE A †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P116</td>
<td>PP63, PP66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0082</td>
<td>EXPLOSIVE, BLASTING, TYPE B †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P116</td>
<td>PP61, PP62, B9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0083</td>
<td>EXPLOSIVE, BLASTING, TYPE C †</td>
<td>1.1D</td>
<td>267</td>
<td>0</td>
<td>E0</td>
<td>P116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0084</td>
<td>EXPLOSIVE, BLASTING, TYPE D †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0092</td>
<td>FLARES, SURFACE †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0093</td>
<td>FLARES, AERIAL †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0094</td>
<td>FLASH POWDER †</td>
<td>1.1G</td>
<td>0</td>
<td>E0</td>
<td>P113, PP49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0099</td>
<td>FRACTURING DEVICES, EXPLOSIVE without detonator, for oil wells</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P134, LP102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>FUSE, NON-DETONATING †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P140, PP74, PP75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0102</td>
<td>CORD (FUSE), DETONATING, metal clad †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P139, PP71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0103</td>
<td>FUSE, IGNITER, tubular, metal clad †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0104</td>
<td>CORD (FUSE), DETONATING, MILD EFFECT, metal clad †</td>
<td>1.4D</td>
<td>0</td>
<td>E0</td>
<td>P139, PP71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0105</td>
<td>FUSE, SAFETY †</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P140</td>
<td>PP73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0106</td>
<td>FUSES, DETONATING †</td>
<td>1.1B</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0107</td>
<td>FUSES, DETONATING †</td>
<td>1.2B</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>GRENADES, PRACTICE, hand or rifle †</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0113</td>
<td>GUANYL NITROSAMINO GUANYLIDENE HYDRAZINE, WETTED with not less than 30% water, by mass †</td>
<td>1.1A</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P110 (a) or (b)</td>
<td>PP42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0114</td>
<td>GUANYL NITROSAMINO GUANYLTETRAZENE (TETRAZENE), WETTED with not less than 30% water, or mixture of alcohol and water, by mass †</td>
<td>1.1A</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P110 (a) or (b)</td>
<td>PP42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0118</td>
<td>HEXOLITE (HEXOTOL), dry or wetted with less than 15% water, by mass †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0121</td>
<td>IGNITERS †</td>
<td>1.1G</td>
<td>0</td>
<td>E0</td>
<td>P142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0124</td>
<td>JET PERFORATING GUNS, CHARGED, oil well, without detonator †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0129</td>
<td>LEAD AZIDE, WETTED with not less than 20% water, or mixture of alcohol and water, by mass †</td>
<td>1.1A</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P110 (a) or (b)</td>
<td>PP42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0130</td>
<td>LEAD STYPHNALE (LEAD TRINITRORESORCINATE), WETTED with not less than 20% water, or mixture of alcohol and water, by mass †</td>
<td>1.1A</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P110 (a) or (b)</td>
<td>PP42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0131</td>
<td>LIGHTERS, FUSE †</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0132</td>
<td>DEFLAGRATING METAL SALTS OF AROMATIC NITRODERIVATIVES, N.O.S. †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P114 (a) or (b)</td>
<td>PP26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0133</td>
<td>MANNITOL HEXANITRATE (NITROMANNITE), WETTED with not less than 40% water, or mixture of alcohol and water, by mass †</td>
<td>1.1D</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P112 (a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0135</td>
<td>MERCURY FULMINATE, WETTED with not less than 20% water, or mixture of alcohol and water, by mass †</td>
<td>1.1A</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P110 (a) or (b)</td>
<td>PP42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0136</td>
<td>MINES with bursting charge †</td>
<td>1.1F</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0137</td>
<td>MINES with bursting charge †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0138</td>
<td>MINES with bursting charge †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0143</td>
<td>NITROGLYCERIN, DESENSITISED with not less than 40% non-volatile water-insoluble phlegmatiser, by mass †</td>
<td>1.1D</td>
<td>6.1</td>
<td>266 271</td>
<td>0</td>
<td>E0</td>
<td>P115</td>
<td>PP53 PP54 PP57 PP58</td>
<td></td>
</tr>
<tr>
<td>0144</td>
<td>NITROGLYCERIN SOLUTION IN ALCOHOL with more than 1% but not more than 10% nitroglycerin †</td>
<td>1.1D</td>
<td></td>
<td>358</td>
<td>0</td>
<td>E0</td>
<td>P115</td>
<td>PP45 PP55 PP56 PP59 PP60</td>
<td></td>
</tr>
<tr>
<td>0146</td>
<td>NITROSTARCH, dry or wetted with less than 20% water, by mass †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0147</td>
<td>NITRO UREA †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P112 (b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0150</td>
<td>PENTAERYTHRITOL TETRA-NITRATE (PENTAERYTHRITOL TETRANITRATE; PETN), WETTED with not less than 25% water, by mass, or PENTAERYTHRITOL TETRA-NITRATE (PENTAERYTHRITOL TETRANITRATE; PETN), DESENSITISED with not less than 15% phlegmatiser, by mass †</td>
<td>1.1D</td>
<td></td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P112 (a) or (b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0151</td>
<td>PENTOLITE, dry or wetted with less than 15% water, by mass †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P112</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Indicates a special provision.
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0153</td>
<td>TRINITROANILINE (PICRAMIDE) †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0154</td>
<td>TRINITROPHENOL (PICRIC ACID), dry or wetted with less than 30% water, by mass †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0155</td>
<td>TRINITROCHLORO-BENZENE (PICRYL CHLORIDE) †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0159</td>
<td>POWDER CAKE (POWDER PASTE), WETTED with not less than 25% water, by mass †</td>
<td>1.3C</td>
<td>266</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0160</td>
<td>POWDER, SMOKELESS †</td>
<td>1.1C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0161</td>
<td>POWDER, SMOKELESS †</td>
<td>1.3C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0167</td>
<td>PROJECTILES with bursting charge †</td>
<td>1.1F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0168</td>
<td>PROJECTILES with bursting charge †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0169</td>
<td>PROJECTILES with bursting charge †</td>
<td>1.2D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Exempted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0171</td>
<td>AMMUNITION, ILLUMINATING with or without burster, expelling charge or propelling charge †</td>
<td>1.2G</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0173</td>
<td>RELEASE DEVICES, EXPLOSIVE †</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P134 LP102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0174</td>
<td>RIVETS, EXPLOSIVE</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P134 LP102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0180</td>
<td>ROCKETS with bursting charge †</td>
<td>1.1F</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0181</td>
<td>ROCKETS with bursting charge †</td>
<td>1.1E</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0182</td>
<td>ROCKETS with bursting charge †</td>
<td>1.2E</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0183</td>
<td>ROCKETS with inert head †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0186</td>
<td>ROCKET MOTORS †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0190</td>
<td>SAMPLES, EXPLOSIVE, other than initiating explosive †</td>
<td></td>
<td>16 274</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Special Hazards</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Special Packing Provisions</th>
<th>Instructions</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0191</td>
<td>SIGNAL DEVICES, HAND †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0192</td>
<td>SIGNALS, RAILWAY TRACK, EXPLOSIVE †</td>
<td>1.1G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0193</td>
<td>SIGNALS, RAILWAY TRACK, EXPLOSIVE †</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0194</td>
<td>SIGNALS, DISTRESS, ship †</td>
<td>1.1G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0195</td>
<td>SIGNALS, DISTRESS, ship †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0196</td>
<td>SIGNALS, SMOKE †</td>
<td>1.1G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0197</td>
<td>SIGNALS, SMOKE †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0204</td>
<td>SOUNDING DEVICES, EXPLOSIVE †</td>
<td>1.2F</td>
<td>0</td>
<td>E0</td>
<td>P134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0207</td>
<td>TETRANITROANILINE †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0208</td>
<td>TRINITROPHENYL METHYL NITRAMINE (TETRYL) †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0209</td>
<td>TRINITROTOLUENE (TNT), dry or wetted with less than 30% water, by mass †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0212</td>
<td>TRACERS FOR AMMUNITION †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0213</td>
<td>TRINITROANISOLE †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0214</td>
<td>TRINITROBENZENE, dry or wetted with less than 30% water, by mass †</td>
<td>1.1D</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0215</td>
<td>TRINITROBENZOIC ACID, dry or wetted with less than 30% water, by mass †</td>
<td>1.1D</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0216</td>
<td>TRINITRO-m-CRESOL †</td>
<td>1.1D</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0217</td>
<td>TRINITRONAPHTHALENE †</td>
<td>1.1D</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0218</td>
<td>TRINITROPHENETOLE †</td>
<td>1.1D</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0219</td>
<td>TRINITRORESORCINOL (STYPHNIC ACID), dry or wetted with less than 20% water, or mixture of alcohol and water, by mass †</td>
<td>1.1D</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0220</td>
<td>UREA NITRATE, dry or wetted with less than 20% water, by mass †</td>
<td>1.1D</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0221</td>
<td>WARHEADS, TORPEDO with bursting charge †</td>
<td>1.1D</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0222</td>
<td>AMMONIUM NITRATE</td>
<td>1.1D</td>
<td></td>
<td>370</td>
<td>0</td>
<td>E0</td>
<td>P112 (b)</td>
<td>PP47</td>
<td>B2, B3, B17</td>
</tr>
<tr>
<td>0224</td>
<td>BARIUM AZIDE, dry or wetted with less than 50% water, by mass †</td>
<td>1.1A</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P110 (a) or (b)</td>
<td>PP42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0225</td>
<td>BOOSTERS WITH DETONATOR †</td>
<td>1.1B</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td>PP69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0226</td>
<td>CYCLOTETRAMETHYLENETETRANITRAMINE (HMX; OCTOGEN), WETTED with not less than 15% water, by mass †</td>
<td>1.1D</td>
<td></td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td>P112 (a)</td>
<td>PP45</td>
<td></td>
</tr>
<tr>
<td>0234</td>
<td>SODIUM DINITRO-o-CRESOLATE, dry or wetted with less than 15% water, by mass †</td>
<td>1.3C</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P114 (a) or (b)</td>
<td>PP26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0235</td>
<td>SODIUM PICRAMATE, dry or wetted with less than 20% water, by mass †</td>
<td>1.3C</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P114 (a) or (b)</td>
<td>PP26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0236</td>
<td>ZIRCONIUM PICRAMATE, dry or wetted with less than 20% water, by mass †</td>
<td>1.3C</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P114 (a) or (b)</td>
<td>PP26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0237</td>
<td>CHARGES, SHAPED, FLEXIBLE, LINEAR †</td>
<td>1.4D</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P138</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0238</td>
<td>ROCKETS, LINE-THROWING †</td>
<td>1.2G</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- † Indicates special provisions for explosives.
- Ref: 3.1.2
- Class or Division: 2.0
- Subsidiary Hazard: 2.0
- Packing Group: 2.0.1.3
- Special Provisions: 3.3
- Limited Quantities: 3.4
- Exempted Quantities: 3.5
- Packagings & IBCs: 4.1.4
- Special Packing Provisions: 4.1.4
- Instructions: 4.2.5
- Special Provisions: 4.3.2
- Portable Tanks & Bulk Containers: 4.2.5
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0240</td>
<td>ROCKETS, LINE-THROWING †</td>
<td>1.3G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
</tr>
<tr>
<td>0241</td>
<td>EXPLOSIVE, BLASTING, TYPE E †</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P116</td>
<td>IBC100</td>
</tr>
<tr>
<td>0242</td>
<td>CHARGES, PROPELLING, FOR CANNON †</td>
<td>1.3C</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
</tr>
<tr>
<td>0243</td>
<td>AMMUNITION, INCendiary, WHITE PHOSPHORUS with burster, expelling charge or propelling charge †</td>
<td>1.2H</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
</tr>
<tr>
<td>0244</td>
<td>AMMUNITION, INCendiary, WHITE PHOSPHORUS with burster, expelling charge or propelling charge †</td>
<td>1.3H</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
</tr>
<tr>
<td>0245</td>
<td>AMMUNITION, SMOKE, WHITE PHOSPHORUS with burster, expelling charge or propelling charge †</td>
<td>1.2H</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
</tr>
<tr>
<td>0246</td>
<td>AMMUNITION, SMOKE, WHITE PHOSPHORUS with burster, expelling charge or propelling charge †</td>
<td>1.3H</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class o/Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref 3.1.2</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>0247</td>
<td>AMMUNITION, INCENDIARY, liquid or gel, with burster, expelling charge or propelling charge †</td>
<td>1.3J</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0248</td>
<td>CONTRIVANCES, WATER-ACTIVATED with burster, expelling charge or propelling charge †</td>
<td>1.2L</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P144</td>
<td>PP77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0249</td>
<td>CONTRIVANCES, WATER-ACTIVATED with burster, expelling charge or propelling charge †</td>
<td>1.3L</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P144</td>
<td>PP77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0250</td>
<td>ROCKET MOTORS WITH HYPERGOLIC LIQUIDS with or without expelling charge †</td>
<td>1.3L</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0254</td>
<td>AMMUNITION, ILLUMINATING with or without burster, expelling charge or propelling charge †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101</td>
<td>PP67</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>0255</td>
<td>DETONATORS, ELECTRIC for blasting †</td>
<td>1.4B</td>
<td>0</td>
<td>E0</td>
<td>P131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0257</td>
<td>FUSES, DETONATING †</td>
<td>1.4B</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0266</td>
<td>OCTOLITE (OCTOL), dry or wetted with less than 15% water, by mass †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0267</td>
<td>DETONATORS, NON-ELECTRIC for blasting †</td>
<td>1.4B</td>
<td>0</td>
<td>E0</td>
<td>P131</td>
<td>PP68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0268</td>
<td>BOOSTERS WITH DETONATOR †</td>
<td>1.2B</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td>PP69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0271</td>
<td>CHARGES, PROPELLING †</td>
<td>1.1C</td>
<td>0</td>
<td>E0</td>
<td>P143</td>
<td>PP76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0272</td>
<td>CHARGES, PROPELLING †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P143</td>
<td>PP76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0275</td>
<td>CARTRIDGES, POWER DEVICE †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P134</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0276</td>
<td>CARTRIDGES, POWER DEVICE †</td>
<td>1.4C</td>
<td>0</td>
<td>E0</td>
<td>P134</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0277</td>
<td>CARTRIDGES, OIL WELL †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P134</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0278</td>
<td>CARTRIDGES, OIL WELL †</td>
<td>1.4C</td>
<td>0</td>
<td>E0</td>
<td>P134</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0279</td>
<td>CHARGES, PROPELLING, FOR CANNON †</td>
<td>1.1C</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0280</td>
<td>ROCKET MOTORS †</td>
<td>1.1C</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0281</td>
<td>ROCKET MOTORS †</td>
<td>1.2C</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0282</td>
<td>NITROGUANIDINE (PICRITE), dry or wetted with less than 20% water, by mass †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0283</td>
<td>BOOSTERS without detonator †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P132 (a) or (b)</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepied Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
</tr>
<tr>
<td>0284</td>
<td>GRENADES, hand or rifle, with bursting charge †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0285</td>
<td>GRENADES, hand or rifle, with bursting charge †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0286</td>
<td>WARHEADS, ROCKET with bursting charge †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101 PP67 L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0287</td>
<td>WARHEADS, ROCKET with bursting charge †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101 PP67 L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0288</td>
<td>CHARGES, SHAPED, FLEXIBLE, LINEAR †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0289</td>
<td>CORD, DETONATING, flexible †</td>
<td>1.4D</td>
<td>0</td>
<td>E0</td>
<td>P139 PP71 PP72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0290</td>
<td>CORD (FUSE), DETONATING, metal clad †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P139 PP71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0291</td>
<td>BOMBS with bursting charge †</td>
<td>1.2F</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0292</td>
<td>GRENADES, hand or rifle, with bursting charge †</td>
<td>1.1F</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0293</td>
<td>GRENADES, hand or rifle, with bursting charge †</td>
<td>1.2F</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0294</td>
<td>MINES with bursting charge †</td>
<td>1.2F</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0295</td>
<td>ROCKETS with bursting charge †</td>
<td>1.2F</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary</td>
<td>Hazard</td>
<td>Group</td>
<td>Limited Quantities</td>
<td>Exempted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------------------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>0296</td>
<td>SOUNDING DEVICES, EXPLOSIVE †</td>
<td>1.1F</td>
<td>0</td>
<td>E0</td>
<td>P134</td>
<td>PP67</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0297</td>
<td>AMMUNITION, ILLUMINATING with or without burster, expelling charge or propelling charge †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0299</td>
<td>BOMBS, PHOTO-FLASH †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0300</td>
<td>AMMUNITION, INCENDIARY with or without burster, expelling charge or propelling charge †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0301</td>
<td>AMMUNITION, TEAR-PRODUCING with burster, expelling charge or propelling charge †</td>
<td>1.4G</td>
<td>6.1</td>
<td>204</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>0303</td>
<td>AMMUNITION, SMOKE with or without burster, expelling charge or propelling charge †</td>
<td>1.4G</td>
<td>204</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0305</td>
<td>FLASH POWDER †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P113</td>
<td>PP49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0306</td>
<td>TRACERS FOR AMMUNITION †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td>PP69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0312</td>
<td>CARTRIDGES, SIGNAL †</td>
<td>1.4G</td>
<td>8</td>
<td>E0</td>
<td>P136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0313</td>
<td>SIGNALS, SMOKE †</td>
<td>1.2G</td>
<td>4</td>
<td>E0</td>
<td>P136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0314</td>
<td>IGNITERS †</td>
<td>1.2G</td>
<td>0</td>
<td>E0</td>
<td>P142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0315</td>
<td>IGNITERS †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excep. Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0316</td>
<td>FUSES, IGNITING †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0317</td>
<td>FUSES, IGNITING †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0318</td>
<td>GRENADES, PRACTICE, hand or rifle †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0319</td>
<td>PRIMERS, TUBULAR †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0320</td>
<td>PRIMERS, TUBULAR †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0321</td>
<td>CARTRIDGES FOR WEAPONS with bursting charge †</td>
<td>1.2E</td>
<td>0</td>
<td>E0</td>
<td>P130, LP101</td>
<td>PP67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0322</td>
<td>ROCKET MOTORS WITH HYPERGOLIC LIQUIDS with or without expelling charge †</td>
<td>1.2L</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0323</td>
<td>CARTRIDGES, POWER DEVICE †</td>
<td>1.4S</td>
<td>347</td>
<td>0</td>
<td>E0</td>
<td>P134, LP102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0324</td>
<td>PROJECTILES with bursting charge †</td>
<td>1.2F</td>
<td>0</td>
<td>E0</td>
<td>P130, LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0325</td>
<td>IGNITERS †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0326</td>
<td>CARTRIDGES FOR WEAPONS, BLANK †</td>
<td>1.1C</td>
<td>0</td>
<td>E0</td>
<td>P130, LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0327</td>
<td>CARTRIDGES FOR WEAPONS, BLANK or CARTRIDGES, SMALL ARMS, BLANK †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P130, LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exducted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0328</td>
<td>CARTRIDGES FOR WEAPONS, INERT PROJECTILE †</td>
<td>1.2C</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>TP17</td>
</tr>
<tr>
<td>0329</td>
<td>TORPEDOES with bursting charge †</td>
<td>1.1E</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>TP17</td>
</tr>
<tr>
<td>0330</td>
<td>TORPEDOES with bursting charge †</td>
<td>1.1F</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>TP17</td>
</tr>
<tr>
<td>0331</td>
<td>EXPLOSIVE, BLASTING, TYPE B † (AGENT, BLASTING, TYPE B)</td>
<td>1.5D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P116</td>
<td>T1 TP17 TP32</td>
</tr>
<tr>
<td>0332</td>
<td>EXPLOSIVE, BLASTING, TYPE E † (AGENT, BLASTING, TYPE E)</td>
<td>1.5D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P116</td>
<td>T1 TP17 TP32</td>
</tr>
<tr>
<td>0333</td>
<td>FIREWORKS †</td>
<td>1.1G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
</tr>
<tr>
<td>0334</td>
<td>FIREWORKS †</td>
<td>1.2G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
</tr>
<tr>
<td>0335</td>
<td>FIREWORKS †</td>
<td>1.3G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
</tr>
<tr>
<td>0336</td>
<td>FIREWORKS †</td>
<td>1.4G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
</tr>
<tr>
<td>0337</td>
<td>FIREWORKS †</td>
<td>1.4S</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
</tr>
<tr>
<td>0338</td>
<td>CARTRIDGES FOR WEAPONS, BLANK or CARTRIDGES, SMALL ARMS, BLANK †</td>
<td>1.4C</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
</tr>
<tr>
<td>0339</td>
<td>CARTRIDGES FOR WEAPONS, INERT PROJECTILE or CARTRIDGES, SMALL ARMS †</td>
<td>1.4C</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
</tr>
<tr>
<td>0340</td>
<td>NITROCELLULOSE, dry or wetted with less than 25% water (or alcohol), by mass †</td>
<td>1.1D</td>
<td></td>
<td>393</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P112 (a) or (b)</td>
<td></td>
</tr>
<tr>
<td>0341</td>
<td>NITROCELLULOSE, unmodified or plasticised with less than 18% plasticising substance, by mass †</td>
<td>1.1D</td>
<td></td>
<td>393</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P112 (b)</td>
<td></td>
</tr>
<tr>
<td>0342</td>
<td>NITROCELLULOSE, WETTED with not less than 25% alcohol, by mass †</td>
<td>1.3C</td>
<td></td>
<td>105 393</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P114 (a)</td>
<td>PP43</td>
</tr>
<tr>
<td>0343</td>
<td>NITROCELLULOSE, PLASTICISED with not less than 18% plasticising substance, by mass †</td>
<td>1.3C</td>
<td></td>
<td>105 393</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P111</td>
<td></td>
</tr>
<tr>
<td>0344</td>
<td>PROJECTILES with bursting charge †</td>
<td>1.4D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
</tr>
<tr>
<td>0345</td>
<td>PROJECTILES, inert with tracer †</td>
<td>1.4S</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Special Provisions Packagings & IBCs</th>
<th>Packing Instruction</th>
<th>Special Packing Provisions</th>
<th>Instructions</th>
<th>Special Provisions Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0346</td>
<td>PROJECTILES with burster or expelling charge †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td>PP67 L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0347</td>
<td>PROJECTILES with burster or expelling charge †</td>
<td>1.4D</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td>PP67 L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0348</td>
<td>CARTRIDGES FOR WEAPONS with bursting charge †</td>
<td>1.4F</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0349</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4S</td>
<td>178 274 347</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0350</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4B</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0351</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4C</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0352</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4D</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0353</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4G</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>0354</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1L</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
</tr>
<tr>
<td>0355</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2L</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
</tr>
<tr>
<td>0356</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.3L</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
</tr>
<tr>
<td>0357</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.1L</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
</tr>
<tr>
<td>0358</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.2L</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
</tr>
<tr>
<td>0359</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.3L</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
</tr>
<tr>
<td>0360</td>
<td>DETONATOR ASSEMBLIES, NON-ELECTRIC for blasting †</td>
<td>1.1B</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P131</td>
<td></td>
</tr>
<tr>
<td>0361</td>
<td>DETONATOR ASSEMBLIES, NON-ELECTRIC for blasting †</td>
<td>1.4B</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P131</td>
<td></td>
</tr>
<tr>
<td>0362</td>
<td>AMMUNITION, PRACTICE †</td>
<td>1.4G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130/LP101</td>
<td>PP67 L1</td>
</tr>
<tr>
<td>0363</td>
<td>AMMUNITION, PROOF †</td>
<td>1.4G</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130/LP101</td>
<td>PP67 L1</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>0364</td>
<td>DETONATORS FOR AMMUNITION †</td>
<td>1.2B</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0365</td>
<td>DETONATORS FOR AMMUNITION †</td>
<td>1.4B</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0366</td>
<td>DETONATORS FOR AMMUNITION †</td>
<td>1.4S</td>
<td>347</td>
<td>0 E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0367</td>
<td>FUSES, DETONATING †</td>
<td>1.4S</td>
<td>347</td>
<td>0 E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0368</td>
<td>FUSES, IGNITING †</td>
<td>1.4S</td>
<td></td>
<td>0 E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0369</td>
<td>WARHEADS, ROCKET with bursting charge †</td>
<td>1.1F</td>
<td></td>
<td>0 E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0370</td>
<td>WARHEADS, ROCKET with bursting charge †</td>
<td>1.4D</td>
<td></td>
<td>0 E0</td>
<td>P130 LP101 PP67 L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0371</td>
<td>WARHEADS, ROCKET with bursting charge †</td>
<td>1.4F</td>
<td></td>
<td>0 E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0372</td>
<td>GRENADES, PRACTICE, hand or rifle †</td>
<td>1.2G</td>
<td></td>
<td>0 E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0373</td>
<td>SIGNAL DEVICES, HAND †</td>
<td>1.4S</td>
<td></td>
<td>0 E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0374</td>
<td>Sounding Devices, EXPLOSIVE †</td>
<td>1.1D</td>
<td></td>
<td>0 E0</td>
<td>P134 LP102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0375</td>
<td>Sounding Devices, EXPLOSIVE †</td>
<td>1.2D</td>
<td></td>
<td>0 E0</td>
<td>P134 LP102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0376</td>
<td>PRIMERS, TUBULAR †</td>
<td>1.4S</td>
<td></td>
<td>0 E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0377</td>
<td>PRIMERS, CAP TYPE †</td>
<td>1.1B</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0378</td>
<td>PRIMERS, CAP TYPE †</td>
<td>1.4B</td>
<td>0</td>
<td>E0</td>
<td>P133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0379</td>
<td>CASES, CARTRIDGE, EMPTY, WITH PRIMER †</td>
<td>1.4C</td>
<td>0</td>
<td>E0</td>
<td>P136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0380</td>
<td>ARTICLES, PYROPHORIC †</td>
<td>1.2L</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0381</td>
<td>CARTRIDGES, POWER DEVICE †</td>
<td>1.2C</td>
<td>0</td>
<td>E0</td>
<td>P134 LP102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0382</td>
<td>COMPONENTS, EXPLOSIVE TRAIN, N.O.S. †</td>
<td>1.2B</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0383</td>
<td>COMPONENTS, EXPLOSIVE TRAIN, N.O.S. †</td>
<td>1.4B</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0384</td>
<td>COMPONENTS, EXPLOSIVE TRAIN, N.O.S. †</td>
<td>1.4S</td>
<td>178 347</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0385</td>
<td>5-NITROBENZOTRIAZOL †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0386</td>
<td>TRINITROBENZENESULPHONIC ACID †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c) PP26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0387</td>
<td>TRINITROFLUORENONE †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0388</td>
<td>TRINITROTOLUENE (TNT) AND TRINITROBENZENE MIXTURE or TRINITROTOLUENE (TNT) AND HEXANITROSTILBENE MIXTURE †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0389</td>
<td>TRINITROTOLUENE (TNT) MIXTURE CONTAINING TRINITROBENZENE AND HEXANITROSTILBENE †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0390</td>
<td>TRITONAL †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0391</td>
<td>CYCLOTRIMETHYLENE-TRINITRAMINE (CYCLONITE; HEXOGEN; RDX) AND CYCLOTETRAMETHYLENE- TETRANITRAMINE (HMX; OCTOGEN) MIXTURE, WETTED with not less than 15% water, by mass or CYCLOTRIMETHYLENE-TRINITRAMINE (CYCLONITE; HEXOGEN; RDX) AND CYCLOTETRAMETHYLENE-TETRANITRAMINE (HMX; OCTOGEN) MIXTURE, DESENSITISED with not less than 10% phlegmatiser, by mass †</td>
<td>1.1D</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td>P112 (a) or (b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0392</td>
<td>HEXANITROSTILBENE †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0393</td>
<td>HEXOTONAL †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0394</td>
<td>TRINITRORESORCINOL (STYPHNIC ACID), WETTED with not less than 20% water, or mixture of alcohol and water, by mass †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (a) PP26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0395</td>
<td>ROCKETS, LIQUID FUELLED †</td>
<td>1.2J</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0396</td>
<td>ROCKETS, LIQUID FUELLED †</td>
<td>1.3J</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0397</td>
<td>ROCKETS, LIQUID FUELLED with bursting charge †</td>
<td>1.1J</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0398</td>
<td>ROCKETS, LIQUID FUELLED with bursting charge †</td>
<td>1.2J</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0399</td>
<td>ROCKETS, LIQUID FUELLED with bursting charge †</td>
<td>1.1J</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0400</td>
<td>BOMBS WITH FLAMMABLE LIQUID with bursting charge †</td>
<td>1.2J</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0401</td>
<td>DIPICRYL SULPHIDE, dry or wetted with less than 10% water, by mass †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0402</td>
<td>AMMONIUM PERCHLORATE †</td>
<td>1.1D</td>
<td>152</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0403</td>
<td>FLARES, AERIAL †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0404</td>
<td>FLARES, AERIAL †</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0405</td>
<td>CARTRIDGES, SIGNAL †</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Special Provisions for Packagings & IBCs</td>
<td>Special Provisions for Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0406</td>
<td>DINITROSOBENZENE †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P114 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0407</td>
<td>TETRAZOLO-1-ACETIC ACID †</td>
<td>1.4C</td>
<td>0</td>
<td>E0</td>
<td>P114 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0408</td>
<td>FUSES, DETONATING with protective features †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0409</td>
<td>FUSES, DETONATING with protective features †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0410</td>
<td>FUSES, DETONATING with protective features †</td>
<td>1.4D</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0411</td>
<td>PENTAERYTHRITOL TETRANITRATE (PENTAERYTHRITOL TETRANITRATE; PETN) with not less than 7% wax, by mass †</td>
<td>1.1D</td>
<td>131</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0412</td>
<td>CARTRIDGES FOR WEAPONS with bursting charge †</td>
<td>1.4E</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101 PP67 L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0413</td>
<td>CARTRIDGES FOR WEAPONS, BLANK †</td>
<td>1.2C</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0414</td>
<td>CHARGES, PROPELLING, FOR CANNON †</td>
<td>1.2C</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0415</td>
<td>CHARGES, PROPELLING †</td>
<td>1.2C</td>
<td>0</td>
<td>E0</td>
<td>P143 PP76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0417</td>
<td>CARTRIDGES FOR WEAPONS, INERT PROJECTILE or CARTRIDGES, SMALL ARMS †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0418</td>
<td>FLARES, SURFACE †</td>
<td>1.1G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0419</td>
<td>FLARES, SURFACE †</td>
<td>1.2G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0420</td>
<td>FLARES, AERIAL †</td>
<td>1.1G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0421</td>
<td>FLARES, AERIAL †</td>
<td>1.2G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0424</td>
<td>PROJECTILES, inert with tracer †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0425</td>
<td>PROJECTILES, inert with tracer †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0426</td>
<td>PROJECTILES with burster or expelling charge †</td>
<td>1.2F</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0427</td>
<td>PROJECTILES with burster or expelling charge †</td>
<td>1.4F</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0428</td>
<td>ARTICLES, PYROTECHNIC for technical purposes †</td>
<td>1.1G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0429</td>
<td>ARTICLES, PYROTECHNIC for technical purposes †</td>
<td>1.2G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0430</td>
<td>ARTICLES, PYROTECHNIC for technical purposes †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0431</td>
<td>ARTICLES, PYROTECHNIC for technical purposes †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0432</td>
<td>ARTICLES, PYROTECHNIC for technical purposes †</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0433</td>
<td>POWDER CAKE (POWDER PASTE), WETTED with not less than 17% alcohol, by mass †</td>
<td>1.1C</td>
<td>266</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **†** indicates special provisions apply.
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0434</td>
<td>PROJECTILES with burster or expelling charge †</td>
<td>1.2G</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0435</td>
<td>PROJECTILES with burster or expelling charge †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0436</td>
<td>ROCKETS with expelling charge †</td>
<td>1.2C</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0437</td>
<td>ROCKETS with expelling charge †</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0438</td>
<td>ROCKETS with expelling charge †</td>
<td>1.4C</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101</td>
<td>PP67 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0439</td>
<td>CHARGES, SHAPED, without detonator †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P137</td>
<td>PP70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0440</td>
<td>CHARGES, SHAPED, without detonator †</td>
<td>1.4D</td>
<td>0</td>
<td>E0</td>
<td>P137</td>
<td>PP70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0441</td>
<td>CHARGES, SHAPED, without detonator †</td>
<td>1.4S</td>
<td>347</td>
<td>0</td>
<td>E0</td>
<td>P137</td>
<td>PP70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0442</td>
<td>CHARGES, EXPLOSIVE, COMMERCIAL without detonator †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P137</td>
<td>PP70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0443</td>
<td>CHARGES, EXPLOSIVE, COMMERCIAL without detonator †</td>
<td>1.2D</td>
<td>0</td>
<td>E0</td>
<td>P137</td>
<td>PP70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0444</td>
<td>CHARGES, EXPLOSIVE, COMMERCIAL without detonator †</td>
<td>1.4D</td>
<td>0</td>
<td>E0</td>
<td>P137</td>
<td>PP70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0445</td>
<td>CHARGES, EXPLOSIVE, COMMERCIAL without detonator †</td>
<td>1.4S</td>
<td>347</td>
<td>0</td>
<td>E0</td>
<td>P137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0446</td>
<td>CASES, COMBUSTIBLE, EMPTY, WITHOUT PRIMER †</td>
<td>1.4C</td>
<td>0</td>
<td>E0</td>
<td>P136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0447</td>
<td>CASES, COMBUSTIBLE, EMPTY, WITHOUT PRIMER †</td>
<td>1.3C</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0448</td>
<td>5-MERCAPTOTETRAZOL-1-ACETIC ACID †</td>
<td>1.4C</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P114 (b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0449</td>
<td>TORPEDOES, LIQUID FUELED with or without bursting charge †</td>
<td>1.1J</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0450</td>
<td>TORPEDOES, LIQUID FUELED with inert head †</td>
<td>1.3J</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0451</td>
<td>TORPEDOES with bursting charge †</td>
<td>1.1D</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101</td>
<td>PP67</td>
<td>L1</td>
</tr>
<tr>
<td>0452</td>
<td>GRENADEx, PRACTICE, hand or rifle †</td>
<td>1.4G</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0453</td>
<td>ROCKETS, LINE-THROWING †</td>
<td>1.4G</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0454</td>
<td>IGNITERS †</td>
<td>1.4S</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0455</td>
<td>DETONATORS, NON-ELECTRIC for blasting †</td>
<td>1.4S</td>
<td>347</td>
<td>0</td>
<td>E0</td>
<td>P131</td>
<td>PP68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0456</td>
<td>DETONATORS, ELECTRIC for blasting †</td>
<td>1.4S</td>
<td>347</td>
<td>0</td>
<td>E0</td>
<td>P131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0457</td>
<td>CHARGES, BURSTING, PLASTICS BONDED</td>
<td>1.1D</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0458</td>
<td>CHARGES, BURSTING, PLASTICS BONDED</td>
<td>1.2D</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>LP101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepcted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Packing Instruction</th>
<th>Special Packing Provisions</th>
<th>Instructions</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0459</td>
<td>CHARGES, BURSTING, PLASTICS BONDED</td>
<td>1.4D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 E0</td>
<td></td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0460</td>
<td>CHARGES, BURSTING, PLASTICS BONDED</td>
<td>1.4S</td>
<td></td>
<td></td>
<td>347</td>
<td></td>
<td>0 E0</td>
<td></td>
<td>P130 LP101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0461</td>
<td>COMPONENTS, EXPLOSIVE TRAIN, N.O.S. †</td>
<td>1.1B</td>
<td></td>
<td></td>
<td></td>
<td>178 274</td>
<td>0 E0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0462</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1C</td>
<td></td>
<td></td>
<td></td>
<td>178 274</td>
<td>0 E0</td>
<td></td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0463</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td>178 274</td>
<td>0 E0</td>
<td></td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0464</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1E</td>
<td></td>
<td></td>
<td></td>
<td>178 274</td>
<td>0 E0</td>
<td></td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0465</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1F</td>
<td></td>
<td></td>
<td></td>
<td>178 274</td>
<td>0 E0</td>
<td></td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0466</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2C</td>
<td></td>
<td></td>
<td></td>
<td>178 274</td>
<td>0 E0</td>
<td></td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0467</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2D</td>
<td></td>
<td></td>
<td></td>
<td>178 274</td>
<td>0 E0</td>
<td></td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0468</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2E</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0469</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2F</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0470</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.3C</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0471</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4E</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0472</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4F</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0473</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.1A</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0474</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.1C</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0475</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.1D</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0476</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.1G</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepied Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0477</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.3C</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0478</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.3G</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0479</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.4C</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0480</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.4D</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0481</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.4S</td>
<td>178 274 347</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0482</td>
<td>SUBSTANCES, EXPLOSIVE, VERY INSENSITIVE (SUBSTANCES, EVI), N.O.S. †</td>
<td>1.5D</td>
<td>178 274</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0483</td>
<td>CYCLOTRIMETHYLENE-TRINITRAMINE (CYCLONITE; HEXOGEN; RDX), DESENSITISED</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0484</td>
<td>CYCLOTETRAMETHYLENE-TETRANITRAMINE (HMX; OCTOGEN), DESENSITISED</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0485</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td>178</td>
<td>274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0486</td>
<td>ARTICLES, EXPLOSIVE, EXTREMELY INSENSITIVE (ARTICLES, EEI) †</td>
<td>1.6N</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0487</td>
<td>SIGNALS, SMOKE †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0488</td>
<td>AMMUNITION, PRACTICE †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P130 LP101 PP67 L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0489</td>
<td>DINITROGLYCOLURIL (DINGU) †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0490</td>
<td>NITROTRIAZOLONE (NTO) †</td>
<td>1.1D</td>
<td>0</td>
<td>E0</td>
<td>P112 (b) or (c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0491</td>
<td>CHARGES, PROPELLING †</td>
<td>1.4C</td>
<td>0</td>
<td>E0</td>
<td>P143 PP76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0492</td>
<td>SIGNALS, RAILWAY TRACK, EXPLOSIVE †</td>
<td>1.3G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0493</td>
<td>SIGNALS, RAILWAY TRACK, EXPLOSIVE †</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0494</td>
<td>JET PERFORATING GUNS, CHARGED, oil well, without detonator †</td>
<td>1.4D</td>
<td>0</td>
<td>E0</td>
<td>P101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0495</td>
<td>PROPELLANT, LIQUID †</td>
<td>1.3C</td>
<td>224</td>
<td>E0</td>
<td>P115 PP53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0496</td>
<td>OCTONAL</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P112 (b)</td>
<td>PP54, PP57, PP58</td>
</tr>
<tr>
<td>0497</td>
<td>PROPELLANT, LIQUID †</td>
<td>1.1C</td>
<td></td>
<td>224</td>
<td>0</td>
<td>E0</td>
<td>P115</td>
<td>PP53, PP54, PP57, PP58</td>
<td></td>
</tr>
<tr>
<td>0498</td>
<td>PROPELLANT, SOLID †</td>
<td>1.1C</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P114 (b)</td>
<td></td>
</tr>
<tr>
<td>0499</td>
<td>PROPELLANT, SOLID †</td>
<td>1.3C</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P114 (b)</td>
<td></td>
</tr>
<tr>
<td>0500</td>
<td>DETONATOR ASSEMBLIES, NON-ELECTRIC for blasting †</td>
<td>1.4S</td>
<td></td>
<td>347</td>
<td>0</td>
<td>E0</td>
<td>P131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0501</td>
<td>PROPELLANT, SOLID †</td>
<td>1.4C</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P114 (b)</td>
<td></td>
</tr>
<tr>
<td>0502</td>
<td>ROCKETS with inert head †</td>
<td>1.2C</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P130, LP101</td>
<td>PP67, L1</td>
</tr>
<tr>
<td>0503</td>
<td>SAFETY DEVICES, PYROTECHNIC †</td>
<td>1.4G</td>
<td></td>
<td>235, 289</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0504</td>
<td>1H-TETRAZOLE</td>
<td>1.1D</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P112 (c)</td>
<td>PP48</td>
</tr>
</tbody>
</table>

Ref 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0505</td>
<td>SIGNALS, DISTRESS, ship</td>
<td>1.4G</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0506</td>
<td>SIGNALS, DISTRESS, ship</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0507</td>
<td>SIGNALS, SMOKE</td>
<td>1.4S</td>
<td>0</td>
<td>E0</td>
<td>P135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0508</td>
<td>1-HYDROXYBENZOTRIAZOLE, ANHYDROUS, dry or wetted with less than 20% water, by mass</td>
<td>1.3C</td>
<td>0</td>
<td>E0</td>
<td>P114(b)</td>
<td>PP48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0509</td>
<td>POWDER, SMOKELESS †</td>
<td>1.4C</td>
<td>0</td>
<td>E0</td>
<td>P114(b)</td>
<td>PP48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0510</td>
<td>ROCKET MOTORS†</td>
<td>1.4C</td>
<td>0</td>
<td>E0</td>
<td>P130</td>
<td>PP67 LP101 L1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0511</td>
<td>DETONATORS, ELECTRONIC programmable for blasting†</td>
<td>1.1B</td>
<td>0</td>
<td>EO</td>
<td>P131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0512</td>
<td>DETONATORS, ELECTRONIC programmable for blasting†</td>
<td>1.4B</td>
<td>0</td>
<td>EO</td>
<td>P131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0513</td>
<td>DETONATORS, ELECTRONIC programmable for blasting†</td>
<td>1.4S</td>
<td>347</td>
<td>EO</td>
<td>P131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>ACETYLENE, DISSOLVED</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>PP23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td>AIR, COMPRESSED</td>
<td>2.2</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1003</td>
<td>AIR, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>5.1</td>
<td>0</td>
<td>E0</td>
<td>P203 T75 TP5 TP22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1005</td>
<td>AMMONIA, ANHYDROUS</td>
<td>2.3</td>
<td>8</td>
<td>23</td>
<td>379</td>
<td>E0</td>
<td>P200 T50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ref 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1006</td>
<td>ARGON, COMPRESSED</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>378</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>3.3</td>
<td>3.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1008</td>
<td>BORON TRIFLUORIDE</td>
<td>2.3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>373</td>
<td>0</td>
<td></td>
<td>E0</td>
<td>P200</td>
<td>120 ml</td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td>1009</td>
<td>BROMOTRIFLUOROMETHANE (REFRIGERANT GAS R 13B1)</td>
<td>2.2</td>
<td>386</td>
<td>0</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>BUTADIENES, STABILISED or BUTADIENES AND HYDROCARBON MIXTURE, STABILISED, containing more than 40% butadienes</td>
<td>2.1</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>BUTANE</td>
<td>2.1</td>
<td>AU03</td>
<td>0</td>
<td></td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1012</td>
<td>BUTYLENE</td>
<td>2.1</td>
<td></td>
<td>0</td>
<td></td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1013</td>
<td>CARBON DIOXIDE</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>378</td>
<td>392</td>
<td>120 ml</td>
</tr>
<tr>
<td>1016</td>
<td>CARBON MONOXIDE, COMPRESSED</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1017</td>
<td>CHLORINE</td>
<td>2.3</td>
<td>5.1</td>
<td>AU07</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td>1018</td>
<td>CHLORODIFLUOROMETHANE (REFRIGERANT GAS R 22)</td>
<td>2.2</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1020</td>
<td>CHLOROPENTAFLUORO-ETHANE (REFRIGERANT GAS R 115)</td>
<td>2.2</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1021</td>
<td>1-CHLORO-1,2,2,2-TETRAFLUOROETHANE (REFRIGERANT GAS R 124)</td>
<td>2.2</td>
<td>2.0</td>
<td>20.1</td>
<td>3.3</td>
<td>3.4</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5 4.3.2 4.2.5</td>
</tr>
<tr>
<td>1022</td>
<td>CHLOROTRIFLUOROMETHANE (REFRIGERANT GAS R 13)</td>
<td>2.2</td>
<td>2.0</td>
<td>20.1</td>
<td>3.3</td>
<td>3.4</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5 4.3.2 4.2.5</td>
</tr>
<tr>
<td>1023</td>
<td>COAL GAS, COMPRESSED</td>
<td>2.3 2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1026</td>
<td>CYANOGEN</td>
<td>2.3 2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1027</td>
<td>CYCLOPROPANE</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1028</td>
<td>DICHLORODIFLUOROMETHANE (REFRIGERANT GAS R12)</td>
<td>2.2</td>
<td>2.0</td>
<td>20.1</td>
<td>3.3</td>
<td>3.4</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5 4.3.2 4.2.5</td>
</tr>
<tr>
<td>1029</td>
<td>DICHLOROFLUOROMETHANE (REFRIGERANT GAS R 21)</td>
<td>2.2</td>
<td>2.0</td>
<td>20.1</td>
<td>3.3</td>
<td>3.4</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5 4.3.2 4.2.5</td>
</tr>
<tr>
<td>1030</td>
<td>1,1-DIFLUOROETHANE (REFRIGERANT GAS R 152a)</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1032</td>
<td>DIMETHYLAMINE, ANHYDROUS</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1033</td>
<td>DIMETHYL ETHER</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1035</td>
<td>ETHANE</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1036</td>
<td>ETHYLAMINE</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1037</td>
<td>ETHYL CHLORIDE</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1038</td>
<td>ETHYLENE, REFRIGERATED LIQUID</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P203</td>
<td>T75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1039</td>
<td>ETHYL METHYL ETHER</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1040</td>
<td>ETHYLENE OXIDE, or ETHYLENE OXIDE WITH NITROGEN up to a total pressure of 1 MPa</td>
<td>2.3</td>
<td>2.1</td>
<td>342</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50, TP20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10 bar) at 50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1041</td>
<td>ETHYLENE OXIDE AND CARBON DIOXIDE MIXTURE with more than 9% but not more than 87%</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td></td>
<td>ETHYLENE OXIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1043</td>
<td>FERTILISER AMMONIATING SOLUTION with free ammonia</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1044</td>
<td>FIRE EXTINGUISHERS with compressed or liquefied gas</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>225</td>
<td>120 ml</td>
<td>E0, PP03, PP91</td>
<td></td>
</tr>
<tr>
<td>1045</td>
<td>FLUORINE, COMPRESSED</td>
<td>2.3</td>
<td>5.1</td>
<td>8</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1046</td>
<td>HELIUM, COMPRESSED</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>378</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
</tr>
<tr>
<td>1048</td>
<td>HYDROGEN BROMIDE, ANHYDROUS</td>
<td>2.3</td>
<td>8</td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1049</td>
<td>HYDROGEN, COMPRESSED</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td>HYDROGEN CHLORIDE, ANHYDROUS</td>
<td>2.3</td>
<td>8</td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1051</td>
<td>HYDROGEN CYANIDE, STABILISED containing less than 3% water</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1052</td>
<td>HYDROGEN FLUORIDE, ANHYDROUS</td>
<td>8</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T10, TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1053</td>
<td>HYDROGEN SULPHIDE</td>
<td>2.3</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1055</td>
<td>ISOBUTYLENE</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td>T50</td>
</tr>
<tr>
<td>1056</td>
<td>KRYPTON, COMPRESSED</td>
<td>2.2</td>
<td>378</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td></td>
<td></td>
<td>P200</td>
</tr>
<tr>
<td>1057</td>
<td>LIGHTERS or LIGHTER REFILLS containing flammable gas</td>
<td>2.1</td>
<td>201</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td></td>
<td></td>
<td>PP84</td>
</tr>
<tr>
<td>1058</td>
<td>LIQUEFIED GASES, non-flammable, charged with nitrogen, carbon dioxide or air</td>
<td>2.2</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td></td>
<td></td>
<td></td>
<td>P200</td>
</tr>
<tr>
<td>1060</td>
<td>METHYLACETYLENE AND PROPADIENE MIXTURE, STABILISED</td>
<td>2.1</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td>T50</td>
</tr>
<tr>
<td>1061</td>
<td>METHYLAMINE, ANHYDROUS</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td>T50</td>
</tr>
<tr>
<td>1062</td>
<td>METHYL BROMIDE with not more than 2% chloropicrin</td>
<td>2.3</td>
<td>23</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td>T50</td>
</tr>
<tr>
<td>1063</td>
<td>METHYL CHLORIDE (REFRIGERANT GAS R 40)</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td>T50</td>
</tr>
<tr>
<td>1064</td>
<td>METHYL MERCAPTAN</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td>T50</td>
</tr>
<tr>
<td>1065</td>
<td>NEON, COMPRESSED</td>
<td>2.2</td>
<td>378</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td></td>
<td></td>
<td>P200</td>
</tr>
<tr>
<td>1066</td>
<td>NITROGEN, COMPRESSED</td>
<td>2.2</td>
<td>378</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td></td>
<td></td>
<td>P200</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1067</td>
<td>DINITROGEN TETROXIDE (NITROGEN DIOXIDE)</td>
<td>2.3</td>
<td>5.1</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td>TP21</td>
</tr>
<tr>
<td>1069</td>
<td>NITROSYL CHLORIDE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1070</td>
<td>NITROUS OXIDE</td>
<td>2.2</td>
<td>5.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1071</td>
<td>OIL GAS, COMPRESSED</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1072</td>
<td>OXYGEN, COMPRESSED</td>
<td>2.2</td>
<td>5.1</td>
<td>355</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1073</td>
<td>OXYGEN, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>5.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T75</td>
<td>TP5</td>
<td>TP22</td>
</tr>
<tr>
<td>1075</td>
<td>PETROLEUM GASES, LIQUEFIED (see 3.2.5 for relevant [AUST.] entries)</td>
<td>2.1</td>
<td>AU03</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1076</td>
<td>PHOSGENE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1077</td>
<td>PROPYLENE</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1078</td>
<td>REFRIGERANT GAS, N.O.S.</td>
<td>2.2</td>
<td>274</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1079</td>
<td>SULPHUR DIOXIDE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td>TP19</td>
<td></td>
</tr>
<tr>
<td>1080</td>
<td>SULPHUR HEXAFLUORIDE</td>
<td>2.2</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1081</td>
<td>TETRAFLUOROETHYLENE, STABILISED</td>
<td>2.1</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1082</td>
<td>TRIFLUOROCHLORO-ETHYLENE, STABILISED (REFRIGERANT GAS R 1113)</td>
<td>2.3</td>
<td>2.1</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Hazard Group</th>
<th>Limited Quantities</th>
<th>Excep. Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1083</td>
<td>TRIMETHYLAMINE, ANHYDROUS</td>
<td>2.1</td>
<td></td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td>1085</td>
<td>VINYL BROMIDE, STABILISED</td>
<td>2.1</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td>1086</td>
<td>VINYL CHLORIDE, STABILISED</td>
<td>2.1</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td>1087</td>
<td>VINYL METHYL ETHER, STABILISED</td>
<td>2.1</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td>1088</td>
<td>ACETAL</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td></td>
<td>P001 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>1089</td>
<td>ACETALDEHYDE</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P001</td>
<td>T11 TP2 TP7</td>
</tr>
<tr>
<td>1090</td>
<td>ACETONE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td></td>
<td>P001 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>1091</td>
<td>ACETONE OILS</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td></td>
<td>P001 IBC02</td>
<td>T4 TP1 TP8</td>
</tr>
<tr>
<td>1092</td>
<td>ACROLEIN, STABILISED</td>
<td>6.1</td>
<td>I</td>
<td>354 386</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T22 TP2 TP7 TP13</td>
</tr>
<tr>
<td>1093</td>
<td>ACRYLONITRILE, STABILISED</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P001 T14 TP2 TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1098</td>
<td>ALLYL ALCOHOL</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20 TP2 TP13</td>
</tr>
<tr>
<td>1099</td>
<td>ALLYL BROMIDE</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>1100</td>
<td>ALLYL CHLORIDE</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>1104</td>
<td>AMYL ACETATES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1105</td>
<td>PENTANOLS</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1 TP29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>1106</td>
<td>AMYLAMINE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td>Ref 3.1.2</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>20.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1107</td>
<td>AMYL CHLORIDE</td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
</tr>
<tr>
<td>1108</td>
<td>1-PENTENE (n-AMYLENE)</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1109</td>
<td>AMYL FORMATES</td>
<td>3</td>
<td>II</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>n-AMYL METHYL KETONE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>AMYL MERCAPTAN</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1112</td>
<td>AMYL NITRATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td>AMYL NITRITE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packing & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1114</td>
<td>BENZENE</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>BUTANOLS</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td>TP29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1123</td>
<td>BUTYL ACETATES</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1125</td>
<td>n-BUTYLAMINE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1126</td>
<td>1-BROMOBUTANE</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1127</td>
<td>CHLOROBUTANES</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1128</td>
<td>n-BUTYL FORMATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1129</td>
<td>BUTYRALDEHYDE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1130</td>
<td>CAMPHOR OIL</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1131</td>
<td>CARBON DISULPHIDE</td>
<td>3</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P001 PP31</td>
<td>T14</td>
<td>TP2</td>
<td>TP7</td>
</tr>
<tr>
<td>1133</td>
<td>ADHESIVES containing flammable liquid</td>
<td>3</td>
<td>I</td>
<td>500 ml</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP8</td>
<td>TP27</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Ref 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1134</td>
<td>CHLOROBENZENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1135</td>
<td>ETHYLENE CHLOROHYDRIN</td>
<td>6.1</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>1136</td>
<td>COAL TAR DISTILLATES, FLAMMABLE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1 TP29</td>
</tr>
<tr>
<td>1139</td>
<td>COATING SOLUTION (includes surface treatments or coatings used for industrial or other purposes such as vehicle undercoating, drum or barrel lining)</td>
<td>3</td>
<td>I</td>
<td>500 ml</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP1 TP8 TP27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>5 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1 TP8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

| UN No. | Name and Description | Class or Division | Subsidiary Hazard | Packing Group | Special Provisions | Limited Quantities | Excepted Quantities | Packaging & IBCs | Portable Tanks & Bulk Containers | Packing Instruction | Special Packing Provisions | Instructions | Special Provisions |
|--------|----------------------|-------------------|-------------------|---------------|-------------------|-------------------|--------------------|-----------------|-------------------------------|-----------------|------------------------|-------------|----------------|}
1143	CROTONALDEHYDE, or CROTONALDEHYDE, STABILISED	6.1	3	I	324 354 386	0	E0	P602	T20	TP2 TP13
1144	CROTONYLENE	3	I	I	0	E3	P001	T11	TP2	
1145	CYCLOHEXANE	3	II	1 L	E2	P001 IBC02	T4	TP1		
1146	CYCLOPENTANE	3	II	1 L	E2	P001 IBC02	T7	TP1		
1147	DECAHYDRONAPHTHALENE	3	III	5 L	E1	P001 IBC03 LP01	T2	TP1		
1148	DIACETONE ALCOHOL	3	II	1 L	E2	P001 IBC02	T4	TP1		

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1149</td>
<td>DIBUTYL ETHERS</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
</tr>
<tr>
<td>1150</td>
<td>1,2-DICHLOROETHYLENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1152</td>
<td>DICHLOROPENTANES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1153</td>
<td>ETHYLENE GLYCOL DIETHYL ETHER</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1154</td>
<td>DIETHYLAMINE</td>
<td>3</td>
<td>8</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1155</td>
<td>DIETHYL ETHER (ETHYL ETHER)</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>2.0</td>
<td>2.0</td>
<td>T11</td>
</tr>
<tr>
<td>1156</td>
<td>DIETHYL KETONE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1157</td>
<td>DIISOBUTYL KETONE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1158</td>
<td>DIISOPROPYLAMINE</td>
<td>3</td>
<td>8</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1159</td>
<td>DIISOPROPYL ETHER</td>
<td>3</td>
<td>III</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1160</td>
<td>DIMETHYLAMINE AQUEOUS SOLUTION</td>
<td>3</td>
<td>8</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1161</td>
<td>DIMETHYL CARBONATE</td>
<td>3</td>
<td>III</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1162</td>
<td>DIMETHYLDICHLORO-SILANE</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2 TP7 TP13</td>
<td></td>
</tr>
<tr>
<td>1163</td>
<td>DIMETHYLHYDRAZINE, UNSYMMETRICAL</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>E0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>1164</td>
<td>DIMETHYL SULPHIDE</td>
<td>3</td>
<td>III</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>B8</td>
<td>T7</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
</tr>
<tr>
<td>1165</td>
<td>DIOXANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1166</td>
<td>DIOXOLANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1167</td>
<td>DIVINYL ETHER, STABILISED</td>
<td>3</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td>1169</td>
<td>EXTRACTS, AROMATIC, LIQUID</td>
<td>3</td>
<td>II</td>
<td>5 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td>TP8</td>
</tr>
<tr>
<td>1170</td>
<td>ETHANOL (ETHYL ALCOHOL) or ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION)</td>
<td>3</td>
<td>II</td>
<td>144</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1171</td>
<td>ETHYLENE GLYCOL MONOETHYL ETHER</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1172</td>
<td>ETHYLENE GLYCOL MONOETHYL ETHER ACETATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>IBC03</td>
<td>LP01</td>
</tr>
<tr>
<td>1173</td>
<td>ETHYL ACETATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td>1175</td>
<td>ETHYLBENZENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td>1176</td>
<td>ETHYL BORATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td>1177</td>
<td>2-ETHYL BUTYL ACETATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>IBC03</td>
<td>LP01</td>
</tr>
<tr>
<td>1178</td>
<td>2-ETHYL BUTYRALDEHYDE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td>1179</td>
<td>ETHYL BUTYL ETHER</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>IBC02</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1180</td>
<td>ETHYL BUTYRATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1181</td>
<td>ETHYL CHLOROACETATE</td>
<td>6.1</td>
<td>3</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1182</td>
<td>ETHYL CHLOROFORMATE</td>
<td>6.1</td>
<td>3 8</td>
<td>354 0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>1183</td>
<td>ETHYLDICHLOROSILANE</td>
<td>4.3</td>
<td>3 8</td>
<td>0</td>
<td>E0</td>
<td>P401</td>
<td>T14</td>
<td>TP2 TP7 TP13</td>
<td></td>
</tr>
<tr>
<td>1184</td>
<td>ETHYLENE DICHLORIDE</td>
<td>3</td>
<td>6.1</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1185</td>
<td>ETHYLENEIMINE, STABILISED</td>
<td>6.1</td>
<td>3</td>
<td>354 386</td>
<td>0 E0</td>
<td>P601</td>
<td>T22</td>
<td>TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>1188</td>
<td>ETHYLENE GLYCOL MONOMETHYL ETHER</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>

Ref 3.1.2

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1189</td>
<td>ETHYLENE GLYCOL MONOMETHYL ETHER ACETATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1190</td>
<td>ETHYL FORMATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1191</td>
<td>OCTYL ALDEHYDES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1192</td>
<td>ETHYL LACTATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1193</td>
<td>ETHYL METHYL KETONE (METHYL ETHYL KETONE)</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1194</td>
<td>ETHYL NITRITE SOLUTION</td>
<td>3</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1195</td>
<td>ETHYL PROPIONATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1196</td>
<td>ETHYLTRICHLOROSILANE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td>TP7, TP13</td>
</tr>
<tr>
<td>1197</td>
<td>EXTRACTS, FLAVOURING, LIQUID</td>
<td>3</td>
<td>II</td>
<td>5 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td>TP8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1198</td>
<td>FORMALDEHYDE SOLUTION, FLAMMABLE</td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1199</td>
<td>FURALDEHYDES</td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>FUSEL OIL</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1202</td>
<td>GAS OIL or DIESEL FUEL or HEATING OIL, LIGHT</td>
<td>3</td>
<td>III</td>
<td>AU02</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>1203</td>
<td>MOTOR SPIRIT or GASOLINE or PETROL (see 3.2.5 for relevant [AUST.] entries)</td>
<td>3</td>
<td>II</td>
<td>243</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1204</td>
<td>NITROGLYCERIN SOLUTION IN ALCOHOL with not more than 1% nitroglycerin</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>PP5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td>HEPTANES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1207</td>
<td>HEXALDEHYDE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1208</td>
<td>HEXANES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td>PRINTING INK, flammable or</td>
<td>3</td>
<td>I</td>
<td>163 367</td>
<td>500 ml</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP1 TP8</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRINTING INK RELATED MATERIAL (including printing ink thinning or reducing compound), flammable</td>
<td>3</td>
<td>II</td>
<td>163</td>
<td>5 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>PP1</td>
<td>T4 T8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>163 223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>PP1</td>
<td>T2 T1</td>
</tr>
<tr>
<td>1212</td>
<td>ISOBUTANOL (ISOBUTYL ALCOHOL)</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>PP1</td>
<td>T2 T1</td>
<td></td>
</tr>
<tr>
<td>1213</td>
<td>ISOBUTYL ACETATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1214</td>
<td>ISOBUTYLAMINE</td>
<td>3</td>
<td>8</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1216</td>
<td>ISOCTENES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1218</td>
<td>ISOPRENE, STABILISED</td>
<td>3</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E3</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td>1219</td>
<td>ISOPROPANOL (ISOPROPYL ALCOHOL)</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1220</td>
<td>ISOPROPYL ACETATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td></td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1221</td>
<td>ISOPROPYLAMINE</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td></td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td>1222</td>
<td>ISOPROPYL NITRATE</td>
<td>3</td>
<td>II</td>
<td>26</td>
<td>1 L</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1223</td>
<td>KEROSENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td>T2</td>
<td>TP2</td>
</tr>
<tr>
<td>1224</td>
<td>KETONES, LIQUID, N.O.S.</td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>P001 IBC02</td>
<td></td>
<td>T7</td>
<td>TP1 TP8 TP28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td>T4</td>
<td>TP1 TP29</td>
</tr>
<tr>
<td>1228</td>
<td>MERCAPTANS, LIQUID, FLAMMABLE, TOXIC, N.O.S. or MERCAPTAN MIXTURE, LIQUID, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>6.1</td>
<td>274</td>
<td>1 L</td>
<td>P001 IBC02</td>
<td></td>
<td>T11</td>
<td>TP2 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>223 274</td>
<td>5 L</td>
<td>P001 IBC03</td>
<td></td>
<td>T7</td>
<td>TP1 TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1229</td>
<td>MESITYL OXIDE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>2.0</td>
<td></td>
<td>P001 IBC03 LP01</td>
<td>T2 TP1</td>
</tr>
<tr>
<td>1230</td>
<td>METHANOL</td>
<td>3</td>
<td>6.1</td>
<td>279</td>
<td>1 L</td>
<td>2.0</td>
<td></td>
<td>P001 IBC02</td>
<td>T7 TP2</td>
</tr>
<tr>
<td>1231</td>
<td>METHYL ACETATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>3.3</td>
<td></td>
<td>P001 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>1233</td>
<td>METHYLAMYL ACETATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>3.4</td>
<td></td>
<td>P001 IBC03 LP01</td>
<td>T2 TP1</td>
</tr>
<tr>
<td>1234</td>
<td>METHYLAL</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>3.5</td>
<td></td>
<td>P001 IBC02</td>
<td>B8 T7 TP2</td>
</tr>
<tr>
<td>1235</td>
<td>METHYLAMINE, AQUEOUS SOLUTION</td>
<td>3</td>
<td>8</td>
<td>1 L</td>
<td>E2</td>
<td>4.1.4</td>
<td></td>
<td>P001 IBC02</td>
<td>T7 TP1</td>
</tr>
<tr>
<td>1237</td>
<td>METHYL BUTYRATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>4.1.4</td>
<td></td>
<td>P001 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>1238</td>
<td>METHYL CHLOROFORMATE</td>
<td>6.1</td>
<td>8</td>
<td>354</td>
<td>0 E0</td>
<td>4.2.5</td>
<td>4.3.2</td>
<td>P602 T22</td>
<td>TP2 TP13</td>
</tr>
</tbody>
</table>

Ref 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excep. Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ref 3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1239</td>
<td>METHYL CHLOROMETHYL ETHER</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T22 TP2 TP13</td>
</tr>
<tr>
<td>1242</td>
<td>METHYLDICHLOROSILANE</td>
<td>4.3</td>
<td>3</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P401</td>
<td>T14 TP2 TP7 TP13</td>
</tr>
<tr>
<td>1243</td>
<td>METHYL FORMATE</td>
<td>3</td>
<td>I</td>
<td>386</td>
<td>1 L</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td>1244</td>
<td>METHYLHYDRAZINE</td>
<td>6.1</td>
<td>3</td>
<td>8</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602 T22 TP2 TP13</td>
</tr>
<tr>
<td>1245</td>
<td>METHYL ISOBUTYL KETONE</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1246</td>
<td>METHYL ISOPROPENYL KETONE, STABILISED</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1247</td>
<td>METHYL METHACRYLATE MONOMER, STABILISED</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1248</td>
<td>METHYL PROPIONATE</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1249</td>
<td>METHYL PROPYL KETONE</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250</td>
<td>METHYLTRICHLOROSILANE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
</tr>
<tr>
<td>1251</td>
<td>METHYL VINYL KETONE, STABILISED</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354 386</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T22</td>
</tr>
<tr>
<td>1259</td>
<td>NICKEL CARBONYL</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1261</td>
<td>NITROMETHANE</td>
<td>3</td>
<td>II</td>
<td>26</td>
<td>1 L</td>
<td>E0</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1262</td>
<td>OCTANES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1263</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
<td>3</td>
<td>I</td>
<td>163 367</td>
<td>500 ml</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>163 367</td>
<td>5 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>PP1</td>
<td>T4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>163 223 367</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>PP1</td>
<td>T2</td>
</tr>
</tbody>
</table>

Ref 3.1.2

2.0 2.0 2.0.1.3 3.3 3.4 3.5 4.1.4 4.1.4 4.2.5 4.2.5 4.3.2

Packagings & IBCs

Portable Tanks & Bulk Containers
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1264</td>
<td>PARALDEHYDE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1265</td>
<td>PENTANES, liquid</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02 B8</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1266</td>
<td>PERFUMERY PRODUCTS with flammable solvents</td>
<td>3</td>
<td>II</td>
<td>163</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1 TP8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223 163</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1267</td>
<td>PETROLEUM CRUDE OIL</td>
<td>3</td>
<td>I</td>
<td>357</td>
<td>500 ml</td>
<td>E3</td>
<td>P001</td>
<td>T11 TP1 TP8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>357</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4 TP1 TP8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223 357</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2 TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1268</td>
<td>PETROLEUM DISTILLATES, N.O.S. or PETROLEUM PRODUCTS, N.O.S. (see 3.2.5 for relevant [AUST.] entries)</td>
<td>3</td>
<td>I</td>
<td>500 ml</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP1</td>
<td>TP8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td>TP8 TP28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223 AU02</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1 TP29</td>
</tr>
<tr>
<td>1270</td>
<td>PETROLEUM FUEL [AUST.]</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1272</td>
<td>PINE OIL</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1274</td>
<td>n-PROPANOL (PROPYL ALCOHOL, NORMAL)</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1275</td>
<td>PROPIONALDEHYDE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1276</td>
<td>n-PROPYL ACETATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1277</td>
<td>PROPYLAMINE</td>
<td>3</td>
<td>8</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1278</td>
<td>1-CHLOROPROPALE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>B8</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1279</td>
<td>1,2-DICHLOROPROPALE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1280</td>
<td>PROPYLENE OXIDE</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
<td>TP7</td>
</tr>
<tr>
<td>1281</td>
<td>PROPYL FORMATES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1282</td>
<td>PYRIDINE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1286</td>
<td>ROSIN OIL</td>
<td>3</td>
<td>II</td>
<td>5 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2.5</td>
<td>4.3.2</td>
<td>4.2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>1287</td>
<td>RUBBER SOLUTION</td>
<td>3</td>
<td>II</td>
<td>5 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1 TP8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1288</td>
<td>SHALE OIL</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1 TP8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>1289</td>
<td>SODIUM METHYLATE SOLUTION in alcohol</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1 TP8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Special Provisions Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1292</td>
<td>TETRAETHYL SILICATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>1293</td>
<td>TINCTURES, MEDICINAL</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1 TP8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T2 TP1</td>
</tr>
<tr>
<td>1294</td>
<td>TOLUENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1295</td>
<td>TRICHLOROSILANE</td>
<td>4.3</td>
<td>3</td>
<td>1 L</td>
<td>0</td>
<td>E0</td>
<td>P401</td>
<td>T14</td>
<td>TP2 TP7 TP13</td>
</tr>
<tr>
<td>1296</td>
<td>TRIETHYLAMINE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>1297</td>
<td>TRIMETHYLAMINE, AQUEOUS SOLUTION, not more than 50% trimethylamine, by mass</td>
<td>3</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T11</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
</tr>
<tr>
<td>1298</td>
<td>TRIMETHYLCHELOROSILANE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
</tr>
<tr>
<td>1299</td>
<td>TURPENTINE</td>
<td>3</td>
<td></td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
</tr>
<tr>
<td>1299</td>
<td>TURPENTINE SUBSTITUTE (see 3.2.5 for relevant [AUST.] entries)</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1300</td>
<td>TURPENTINE SUBSTITUTE (see 3.2.5 for relevant [AUST.] entries)</td>
<td>3</td>
<td></td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
</tr>
<tr>
<td>1301</td>
<td>VINYL ACETATE, STABILISED</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
</tr>
<tr>
<td>1302</td>
<td>VINYL ETHYL ETHER, STABILISED</td>
<td>3</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td>1303</td>
<td>VINYLDIENE CHLORIDE, STABILISED</td>
<td>3</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T12</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1304</td>
<td>VINYL ISOBUTYL ETHER, STABILISED</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1305</td>
<td>VINYLTRICHLOROSILANE</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP2 TP7 TP13</td>
</tr>
<tr>
<td>1306</td>
<td>WOOD PRESERVATIVES, LIQUID</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1 TP8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>1307</td>
<td>XYLENES</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>1308</td>
<td>ZIRCONIUM SUSPENDED IN A FLAMMABLE LIQUID</td>
<td>3</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>PP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>PP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>386</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subdivision</td>
<td>Hazards</td>
<td>Packing Group</td>
<td>Limited Quantities</td>
<td>Exempted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>1309</td>
<td>ALUMINIUM POWDER, COATED</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>PP38 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>PP11 B3</td>
<td>T1</td>
</tr>
<tr>
<td>1310</td>
<td>AMMONIUM PICRATE, WETTED with not less than 10% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
<td></td>
</tr>
<tr>
<td>1312</td>
<td>BORNEOL</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1313</td>
<td>CALCIUM RESINATE</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC06</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1314</td>
<td>CALCIUM RESINATE, FUSED</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC04</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1318</td>
<td>COBALT RESINATE, PRECIPITATED</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC06</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>DINITROPHENOL, WETTED with not less than 15% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

Ref: 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>20.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1321</td>
<td>DINITROPHENOLATES, WETTED with not less than 15% water, by mass</td>
<td>4.1</td>
<td>6.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
</tr>
<tr>
<td>1322</td>
<td>DINITRORESORCINOL, WETTED with not less than 15% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
<td></td>
</tr>
<tr>
<td>1323</td>
<td>FERRO Cerium</td>
<td>4.1</td>
<td>II</td>
<td>249</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
<tr>
<td>1324</td>
<td>FILMS, NITROCELLULOSE BASE, gelatin coated, except scrap</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>PP15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1325</td>
<td>FLAMMABLE SOLID, ORGANIC, N.O.S.</td>
<td>4.1</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>1326</td>
<td>HAFNIUM POWDER, WETTED with not less than 25% water (a visible excess of water must be present) (a) mechanically produced, particle size less than 53 microns; (b) chemically produced, particle size less than 840 microns</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>PP40 B2</td>
<td>T3 TP33</td>
<td></td>
</tr>
<tr>
<td>1327</td>
<td>HAY, STRAW or BHUSA Usually not subject to this Code (see SP 281)</td>
<td>4.1</td>
<td>281</td>
<td>3 kg</td>
<td>E0</td>
<td>P003 IBC08</td>
<td>PP19 B6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1328</td>
<td>HEXAMETHYLENETETRAMINE</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3 T1</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330</td>
<td>MANGANESE RESINATE</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC06</td>
<td>T1</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1331</td>
<td>MATCHES, "STRIKE ANYWHERE"</td>
<td>4.1</td>
<td>III</td>
<td>293</td>
<td>5 kg</td>
<td>E0</td>
<td>P407</td>
<td>PP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1332</td>
<td>METALDEHYDE</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1333</td>
<td>CERIUM, slabs, ingots or rods</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1334</td>
<td>NAPHTHALENE, CRUDE or NAPHTHALENE, REFINED</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3 T1 BK1 BK2 BK3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1336</td>
<td>NITROGUANIDINE (PICRITE), WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28 0</td>
<td>E0</td>
<td>P406</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1337</td>
<td>NITROSTARCH, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28 0</td>
<td>E0</td>
<td>P406</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>20.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
<td>4.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td>1338</td>
<td>PHOSPHORUS, AMORPHOUS</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P410 IBC08</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1339</td>
<td>PHOSPHORUS HEPTASULPHIDE, free from yellow and white phosphorus</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P410 IBC04</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1340</td>
<td>PHOSPHORUS PENTASULPHIDE, free from yellow and white phosphorus</td>
<td>4.3</td>
<td>4.1</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC04</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1341</td>
<td>PHOSPHORUS SESQUISULPHIDE, free from yellow and white phosphorus</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P410 IBC04</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1343</td>
<td>PHOSPHORUS TRISULPHIDE, free from yellow and white phosphorus</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P410 IBC04</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1344</td>
<td>TRINITROPHENOL (PICRIC ACID), WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
<td></td>
</tr>
<tr>
<td>1345</td>
<td>RUBBER SCRAP or RUBBER SHODDY, powdered or granulated, not exceeding 840 microns and rubber content exceeding 45%</td>
<td>4.1</td>
<td>II</td>
<td>223</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>TP33</td>
</tr>
<tr>
<td>1346</td>
<td>SILICON POWDER, AMORPHOUS</td>
<td>4.1</td>
<td>III</td>
<td>32</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1347</td>
<td>SILVER PICRATE, WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP25</td>
<td>PP26</td>
</tr>
<tr>
<td>1348</td>
<td>SODIUM DINITRO-o-CRESOLATE, WETTED with not less than 15% water, by mass</td>
<td>4.1</td>
<td>6.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
</tr>
<tr>
<td>1349</td>
<td>SODIUM PICRAMATE, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
<td></td>
</tr>
<tr>
<td>1350</td>
<td>SULPHUR</td>
<td>4.1</td>
<td>III</td>
<td>242</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1 BK1 BK2 BK3 TP33</td>
</tr>
<tr>
<td>1352</td>
<td>TITANIUM POWDER, WETTED with not less than 25% water (a visible excess of water must be present) (a) mechanically produced, particle size less than 53 microns; (b) chemically produced particle size less than 840 microns</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P410</td>
<td>PP40 B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1353</td>
<td>FIBRES or FABRICS IMPREGNATED WITH WEAKLY NITRATED NITROCELLULOSE, N.O.S.</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P410</td>
<td>IBC08</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>1354</td>
<td>TRINITROBENZENE, WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1355</td>
<td>TRINITROBENZOIC ACID, WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1356</td>
<td>TRINITROTOLUENE (TNT), WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1357</td>
<td>UREA NITRATE, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>227</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1358</td>
<td>ZIRCONIUM POWDER, WETTED with not less than 25% water (a visible excess of water must be present) (a) mechanically produced, particle size less than 53 microns; (b) chemically produced particle size less than 840 microns</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>PP40 B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1360</td>
<td>CALCIUM PHOSPHIDE</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1361</td>
<td>CARBON, animal or vegetable origin</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC06</td>
<td>PP12</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1362</td>
<td>CARBON, ACTIVATED</td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>PP11 B3</td>
<td>T1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepcted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1363</td>
<td>COPRA</td>
<td>4.2</td>
<td>III</td>
<td>29</td>
<td>0</td>
<td>E0</td>
<td>PP03 IBC08 LP02</td>
<td>PP20 B3, B6</td>
<td>BK2</td>
</tr>
<tr>
<td>1364</td>
<td>COTTON WASTE, OILY</td>
<td>4.2</td>
<td>III</td>
<td>0</td>
<td>E0</td>
<td>PP03 IBC08 LP02</td>
<td>PP19 B3, B6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1365</td>
<td>COTTON, WET</td>
<td>4.2</td>
<td>III</td>
<td>29</td>
<td>0</td>
<td>E0</td>
<td>PP03 IBC08 LP02</td>
<td>PP19 B3, B6</td>
<td></td>
</tr>
<tr>
<td>1369</td>
<td>p-NITROSODIMETHYLANILINE</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1372</td>
<td>FIBRES, ANIMAL or FIBRES, VEGETABLE burnt, wet or damp Not subject to this Code (see SP 117)</td>
<td>4.2</td>
<td>III</td>
<td>123</td>
<td>0</td>
<td>E1</td>
<td>P410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1373</td>
<td>FIBRES or FABRICS, ANIMAL or VEGETABLE or SYNTHETIC, N.O.S., with oil</td>
<td>4.2</td>
<td>III</td>
<td>AU04</td>
<td>0</td>
<td>E0</td>
<td>P410 IBC08</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1374</td>
<td>FISH MEAL (FISH SCRAP), UNSTABILISED</td>
<td>4.2</td>
<td>II</td>
<td>300</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exceptioned Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1376</td>
<td>IRON OXIDE, SPENT or IRON SPONGE, SPENT obtained from coal gas purification</td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P002 IBC08 LP02</td>
<td>B3 T1 BK2 TP33</td>
</tr>
<tr>
<td>1378</td>
<td>METAL CATALYST, WETTED with a visible excess of liquid</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P410 IBC01</td>
<td>PP39 T3 TP33</td>
</tr>
<tr>
<td>1379</td>
<td>PAPER, UNSATURATED OIL TREATED, incompletely dried (including carbon paper)</td>
<td>4.2</td>
<td>III</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P410 IBC01</td>
<td>B3</td>
</tr>
<tr>
<td>1380</td>
<td>PENTABORANE</td>
<td>4.2</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P601</td>
<td></td>
</tr>
<tr>
<td>1381</td>
<td>PHOSPHORUS, WHITE or YELLOW, DRY or UNDER WATER or IN SOLUTION</td>
<td>4.2</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P405</td>
<td>T9 TP3 TP31</td>
</tr>
<tr>
<td>1382</td>
<td>POTASSIUM SULPHIDE, ANHYDROUS or POTASSIUM SULPHIDE with less than 30% water of crystallisation</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>0</td>
<td>E2</td>
<td></td>
<td>P410 IBC06</td>
<td>B2 T3 TP33</td>
</tr>
<tr>
<td>1383</td>
<td>PYROPHORIC METAL, N.O.S. or PYROPHORIC ALLOY, N.O.S.</td>
<td>4.2</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P404</td>
<td>T21 TP7 TP33</td>
</tr>
<tr>
<td>1384</td>
<td>SODIUM DITHIONITE (SODIUM HYDROSULPHITE)</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>0</td>
<td>E2</td>
<td></td>
<td>P410 IBC06</td>
<td>B2 T3 TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1385</td>
<td>SODIUM SULPHIDE, ANHYDROS or SODIUM SULPHIDE with less than 30% water of crystallisation</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1386</td>
<td>SEED CAKE with more than 1.5% oil and not more than 11% moisture</td>
<td>4.2</td>
<td>III</td>
<td>29</td>
<td>E0</td>
<td>P003 IBC08 LP02</td>
<td>PP20 B3, B6</td>
<td>BK2</td>
<td></td>
</tr>
<tr>
<td>1387</td>
<td>WOOL WASTE, WET Not subject to this Code (see SP 117)</td>
<td>4.2</td>
<td>III</td>
<td>123</td>
<td>E1</td>
<td>P410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1389</td>
<td>ALKALI METAL AMALGAM, LIQUID</td>
<td>4.3</td>
<td>I</td>
<td>182</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1390</td>
<td>ALKALI METAL AMIDES</td>
<td>4.3</td>
<td>II</td>
<td>182</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td>1391</td>
<td>ALKALI METAL DISPERSION or ALKALINE EARTH METAL DISPERSION</td>
<td>4.3</td>
<td>I</td>
<td>182 183</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1392</td>
<td>ALKALINE EARTH METAL AMALGAM, LIQUID</td>
<td>4.3</td>
<td>I</td>
<td>183</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1393</td>
<td>ALKALINE EARTH METAL ALLOY, N.O.S.</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1394</td>
<td>ALUMINIUM CARBIDE</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Ref</td>
<td>Packagings & IBCs</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>1395</td>
<td>ALUMINIUM FERROSILICON POWDER</td>
<td>4.3</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>2.0</td>
<td>3.1.2</td>
<td>P410 IBC05</td>
</tr>
<tr>
<td>1396</td>
<td>ALUMINIUM POWDER, UNCOATED</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>3.1.2</td>
<td>T3 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>III</td>
<td>223</td>
<td>1 kg</td>
<td>E1</td>
<td>P410 IBC08</td>
<td>B1 T9</td>
<td>BK2 TP33</td>
</tr>
<tr>
<td>1397</td>
<td>ALUMINIUM PHOSPHIDE</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>3.1.2</td>
<td></td>
</tr>
<tr>
<td>1398</td>
<td>ALUMINIUM SILICON POWDER, UNCOATED</td>
<td>4.3</td>
<td>III</td>
<td>37 223</td>
<td>1 kg</td>
<td>E1</td>
<td>P410 IBC08</td>
<td>B4 T1</td>
<td>BK2 TP33</td>
</tr>
<tr>
<td>1400</td>
<td>BARIUM</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>3.1.2</td>
<td>T3 TP33</td>
</tr>
<tr>
<td>1401</td>
<td>CALCIUM</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>3.1.2</td>
<td>T3 TP33</td>
</tr>
<tr>
<td>1402</td>
<td>CALCIUM CARBIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403 IBC04</td>
<td>B1</td>
<td>3.1.2</td>
<td>T9 TP7 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>3.1.2</td>
<td>T3 TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class o of Hazard</th>
<th>Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1403</td>
<td>CALCIUM CYANAMIDE with more than 0.1% calcium carbide</td>
<td>4.3</td>
<td>III</td>
<td>38</td>
<td>1 kg</td>
<td>E1</td>
<td>P410 IBC08</td>
<td>B4</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1404</td>
<td>CALCIUM HYDRIDE</td>
<td>4.3</td>
<td>I</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1405</td>
<td>CALCIUM SILICIDE</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1407</td>
<td>CAESIUM</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403 IBC04</td>
<td>B1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1408</td>
<td>FERROSILICON with 30% or more but less than 90% silicon</td>
<td>4.3</td>
<td>III</td>
<td>39</td>
<td>1 kg</td>
<td>E1</td>
<td>P003 IBC08</td>
<td>PP20 B4, B6</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1409</td>
<td>METAL HYDRIDES, WATER-REACTIVE, N.O.S.</td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1410</td>
<td>LITHIUM ALUMINIUM HYDRIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1411</td>
<td>LITHIUM ALUMINIUM HYDRIDE, ETHEREAL</td>
<td>4.3</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1413</td>
<td>LITHIUM BOROHYDRIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1414</td>
<td>LITHIUM HYDRIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1415</td>
<td>LITHIUM</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>B1</td>
<td>T9</td>
<td>TP7 TP33</td>
</tr>
<tr>
<td>1417</td>
<td>LITHIUM SILICON</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1418</td>
<td>MAGNESIUM POWDER or MAGNESIUM ALLOYS POWDER</td>
<td>4.3</td>
<td>4.2</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1419</td>
<td>MAGNESIUM ALUMINIUM PHOSPHIDE</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1420</td>
<td>POTASSIUM METAL ALLOYS, LIQUID</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1421</td>
<td>ALKALI METAL ALLOY, LIQUID, N.O.S.</td>
<td>4.3</td>
<td>I</td>
<td>182</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1422</td>
<td>POTASSIUM SODIUM ALLOYS, LIQUID</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1423</td>
<td>RUBIDIUM</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>B1</td>
<td>T9</td>
<td>TP3 TP7 TP31</td>
</tr>
<tr>
<td>1426</td>
<td>SODIUM BOROHYDRIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1427</td>
<td>SODIUM HYDRIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>1428</td>
<td>SODIUM</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>B1</td>
<td>T9</td>
<td>TP7</td>
</tr>
<tr>
<td>1431</td>
<td>SODIUM METHYLATE</td>
<td>4.2</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td>1432</td>
<td>SODIUM PHOSPHIDE</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1433</td>
<td>STANNIC PHOSPHIDES</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1435</td>
<td>ZINC ASHES</td>
<td>4.3</td>
<td>III</td>
<td>223</td>
<td>1 kg</td>
<td>E1</td>
<td>P002</td>
<td>B4</td>
<td>T1</td>
</tr>
<tr>
<td>1436</td>
<td>ZINC POWDER or ZINC DUST</td>
<td>4.3</td>
<td>4.2</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>E1</td>
<td>P410</td>
<td>B4</td>
<td>T1</td>
</tr>
<tr>
<td>1437</td>
<td>ZIRCONIUM HYDRIDE</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P410</td>
<td>PP40</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1438</td>
<td>ALUMINIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>BK1, BK2, TP33</td>
</tr>
<tr>
<td>1439</td>
<td>AMMONIUM DICHROMATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1442</td>
<td>AMMONIUM PERCHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>152</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td>1444</td>
<td>AMMONIUM PERSULPHATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1445</td>
<td>BARIUM CHLORATE, SOLID</td>
<td>5.1</td>
<td>6.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td>1446</td>
<td>BARIUM NITRATE</td>
<td>5.1</td>
<td>6.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td>1447</td>
<td>BARIUM PERCHLORATE, SOLID</td>
<td>5.1</td>
<td>6.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td>1448</td>
<td>BARIUM PERMANGANATE</td>
<td>5.1</td>
<td>6.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1449</td>
<td>BARIUM PEROXIDE</td>
<td>5.1</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2, T3</td>
</tr>
<tr>
<td>1450</td>
<td>BROMATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>274 350</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3, TP33</td>
</tr>
<tr>
<td>1451</td>
<td>CAESIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td></td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1, TP33</td>
</tr>
<tr>
<td>1452</td>
<td>CALCIUM CHLORATE</td>
<td>5.1</td>
<td>II</td>
<td></td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3, TP33</td>
</tr>
<tr>
<td>1453</td>
<td>CALCIUM CHLORITE</td>
<td>5.1</td>
<td>II</td>
<td></td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3, TP33</td>
</tr>
<tr>
<td>1454</td>
<td>CALCIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>208</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 BK1 BK2 BK3, TP33</td>
</tr>
<tr>
<td>1455</td>
<td>CALCIUM PERCHLORATE</td>
<td>5.1</td>
<td>II</td>
<td></td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3, TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1456</td>
<td>CALCIUM PERNANGANATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1457</td>
<td>CALCIUM PEROXIDE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1458</td>
<td>CHLORATE AND BORATE MIXTURE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1459</td>
<td>CHLORATE AND MAGNESIUM CHLORIDE MIXTURE, SOLID</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1461</td>
<td>CHLORATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>274 351</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
</tbody>
</table>

Ref 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1462</td>
<td>CHLORITES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>274 352</td>
<td>1 kg</td>
<td>E2</td>
<td>002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td>1463</td>
<td>CHROMIUM TRIOXIDE, ANHYDROUS</td>
<td>5.1</td>
<td>6.1 8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td>1465</td>
<td>DIDYMIIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>002 IBC08</td>
<td>LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1466</td>
<td>FERRIC NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>002 IBC08</td>
<td>LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1467</td>
<td>GUANIDINE NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>002 IBC08</td>
<td>LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1469</td>
<td>LEAD NITRATE</td>
<td>5.1</td>
<td>6.1 II</td>
<td>1 kg</td>
<td>E2</td>
<td>002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1470</td>
<td>LEAD PERCHLORATE, SOLID</td>
<td>5.1</td>
<td>6.1 II</td>
<td>1 kg</td>
<td>E2</td>
<td>002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1471</td>
<td>LITHIUM HYPOCHLORITE, DRY or LITHIUM HYPOCHLORITE MIXTURE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1472</td>
<td>LITHIUM PEROXIDE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2, T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1473</td>
<td>MAGNESIUM BROMATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1474</td>
<td>MAGNESIUM NITRATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
<td>BK1, BK2, BK3, TP33</td>
</tr>
<tr>
<td>1475</td>
<td>MAGNESIUM PERCHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2, T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1476</td>
<td>MAGNESIUM PEROXIDE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2, T3</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1477</td>
<td>NITRATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>LP02</td>
<td>B3</td>
</tr>
<tr>
<td>1479</td>
<td>OXIDISING SOLID, N.O.S.</td>
<td>5.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P503 IBC05</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>LP02</td>
<td>B3</td>
</tr>
<tr>
<td>1481</td>
<td>PERCHLORATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>LP02</td>
<td>B3</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1482</td>
<td>PERMANGANATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>III</td>
<td>206 274 353</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>206 223 274 353</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1483</td>
<td>PEROXIDES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1484</td>
<td>POTASSIUM BROMATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1485</td>
<td>POTASSIUM CHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1486</td>
<td>POTASSIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3 T1 BK1 BK2 BK3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1487</td>
<td>POTASSIUM NITRATE AND SODIUM NITRITE MIXTURE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4 T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1488</td>
<td>POTASSIUM NITRITE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4 T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1489</td>
<td>POTASSIUM PERCHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2 T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1490</td>
<td>POTASSIUM PERMANGANATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4 T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1491</td>
<td>POTASSIUM PEROXIDE</td>
<td>5.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P503 IBC06</td>
<td>B1 T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1492</td>
<td>POTASSIUM PERSULPHATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3 T1</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1493</td>
<td>SILVER NITRATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1494</td>
<td>SODIUM BROMATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1495</td>
<td>SODIUM CHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>BK1, BK2, TP33</td>
</tr>
<tr>
<td>1496</td>
<td>SODIUM CHLORITE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1498</td>
<td>SODIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>BK1, BK2, BK3, TP33</td>
</tr>
<tr>
<td>1499</td>
<td>SODIUM NITRATE AND POTASSIUM NITRATE MIXTURE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>BK1, BK2, BK3, TP33</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packing Group & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1500</td>
<td>SODIUM NITRITE</td>
<td>5.1</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>1502</td>
<td>SODIUM PERCHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1503</td>
<td>SODIUM PERMANGANATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1504</td>
<td>SODIUM PEROXIDE</td>
<td>5.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P503 IBC05</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1505</td>
<td>SODIUM PERSULPHATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1506</td>
<td>STRONTIUM CHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1507</td>
<td>STRONTIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1508</td>
<td>STRONTIUM PERCHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1509</td>
<td>STRONTIUM PEROXIDE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1510</td>
<td>TETRANITROMETHANE</td>
<td>6.1</td>
<td>5.1</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1511</td>
<td>UREA HYDROGEN PEROXIDE</td>
<td>5.1</td>
<td>8</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1512</td>
<td>ZINC AMMONIUM NITRITE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1513</td>
<td>ZINC CHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1514</td>
<td>ZINC NITRATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1515</td>
<td>ZINC PERMANGANATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1516</td>
<td>ZINC PEROXIDE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1517</td>
<td>ZIRCONIUM PICRAMATE, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exposed Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1541</td>
<td>ACETONE CYANOHYDRIN, STABILISED</td>
<td>6.1</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>T20</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>1544</td>
<td>ALKALOIDS, SOLID, N.O.S. or ALKALOID SALTS, SOLID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07 B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2 B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02 B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1545</td>
<td>ALLYL ISOTHIOCYANATE, STABILISED</td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>100 ml</td>
<td>E0</td>
<td>P002 IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>1546</td>
<td>AMMONIUM ARSENATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2 B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1547</td>
<td>ANILINE</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1548</td>
<td>ANILINE HYDROCHLORIDE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02 B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1549</td>
<td>ANTIMONY COMPOUND, INORGANIC, SOLID, N.O.S.</td>
<td>6.1</td>
<td>III</td>
<td>45 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3 T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1550</td>
<td>ANTIMONY LACTATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3 T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1551</td>
<td>ANTIMONY POTASSIUM TARTRATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3 T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1553</td>
<td>ARSENIC ACID, LIQUID</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T20 TP2</td>
<td>TP7 TP13</td>
<td></td>
</tr>
<tr>
<td>1554</td>
<td>ARSENIC ACID, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2 B4 T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1555</td>
<td>ARSENIC BROMIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2 B4 T3</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exposed Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exposed Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1556</td>
<td>ARSENIC COMPOUND, LIQUID, N.O.S., inorganic, including: Arsenates, n.o.s.; Arsenites, n.o.s.; and Arsenic sulphides, n.o.s.</td>
<td>6.1</td>
<td>I</td>
<td>43 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP2 TP28</td>
</tr>
<tr>
<td>1557</td>
<td>ARSENIC COMPOUND, SOLID, N.O.S., inorganic, including: Arsenates, n.o.s.; Arsenites, n.o.s.; and Arsenic sulphides, n.o.s.</td>
<td>6.1</td>
<td>I</td>
<td>43 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1558</td>
<td>ARSENIC</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1559</td>
<td>ARSENIC PENTOXIDE</td>
<td>6.1 II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1560</td>
<td>ARSENIC TRICHLORIDE</td>
<td>6.1 I</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T14</td>
<td>TP2, TP13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1561</td>
<td>ARSENIC TRIOXIDE</td>
<td>6.1 II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1562</td>
<td>ARSENICAL DUST</td>
<td>6.1 II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1564</td>
<td>BARIUM COMPOUND, N.O.S.</td>
<td>6.1 II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1565</td>
<td>BARIUM CYANIDE</td>
<td>6.1 I</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1566</td>
<td>BERYLLIUM COMPOUND, N.O.S.</td>
<td>6.1 II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1567</td>
<td>BERYLLIUM POWDER</td>
<td>6.1</td>
<td>4.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td>1569</td>
<td>BROMOACETONE</td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>1570</td>
<td>BRUCINE</td>
<td>6.1</td>
<td>I</td>
<td>43</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td>1571</td>
<td>BARIUM AZIDE, WETTED with not less than 50% water, by mass</td>
<td>4.1</td>
<td>6.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td></td>
</tr>
<tr>
<td>1572</td>
<td>CACODYLIC ACID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1573</td>
<td>CALCIUM ARSENATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1574</td>
<td>CALCIUM ARSENATE AND CALCIUM ARSENITE MIXTURE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1575</td>
<td>CALCIUM CYANIDE</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td></td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1 T6 TP33</td>
</tr>
<tr>
<td>1577</td>
<td>CHLORODINITROBENZENES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1578</td>
<td>CHLORONITROBENZENES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
<tr>
<td>1579</td>
<td>4-CHLORO-o-TOLUIDINE HYDROCHLORIDE, SOLID</td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>1580</td>
<td>CHLOROPICRIN</td>
<td>6.1</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T22</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>1581</td>
<td>CHLOROPICRIN AND METHYL BROMIDE MIXTURE with more than 2% chloropicrin</td>
<td>2.3</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1582</td>
<td>CHLOROPICRIN AND METHYL CHLORIDE MIXTURE</td>
<td>2.3</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1583</td>
<td>CHLOROPICRIN MIXTURE, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>315 274</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E0</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1585</td>
<td>COPPER ACETOARSENITE</td>
<td>6.1</td>
<td>II</td>
<td>223</td>
<td>5 L</td>
<td>E0</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1586</td>
<td>COPPER ARSENITE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1587</td>
<td>COPPER CYANIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1588</td>
<td>CYANIDES, INORGANIC, SOLID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>47</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1589</td>
<td>CYANOGEN CHLORIDE, STABILISED</td>
<td>2.3</td>
<td>8</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Division</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1590</td>
<td>DICHLOROANILINES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1591</td>
<td>o-DICHLOROBENZENE</td>
<td>6.1</td>
<td>III</td>
<td>279</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1593</td>
<td>DICHLOOROMETHANE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>B8</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1594</td>
<td>DIETHYL SULPHATE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1595</td>
<td>DIMETHYL SULPHATE</td>
<td>6.1</td>
<td>8</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>1596</td>
<td>DINITROANILINES</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1597</td>
<td>DINITROBENZENES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1598</td>
<td>DINITRO-o-CRESOL</td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
<tr>
<td>1599</td>
<td>DINITROPHENOL SOLUTION</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
<td>T7 TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4 TP1</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>DINITROTOLUENES, MOLTEN</td>
<td>6.1</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>None</td>
<td></td>
<td>T7 TP3</td>
<td></td>
</tr>
<tr>
<td>1601</td>
<td>DISINFECTANT, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1 T6 TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4 T3 TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3 T1 TP33</td>
<td></td>
</tr>
<tr>
<td>1602</td>
<td>DYE, LIQUID, TOXIC, N.O.S. or DYE INTERMEDIATE, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P001 IBC07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1603</td>
<td>ETHYL BROMOACETATE</td>
<td>6.1</td>
<td>III 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1604</td>
<td>ETHYLENEDIAMINE</td>
<td>8</td>
<td>3 II 100 ml</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1605</td>
<td>ETHYLENE DIBROMIDE</td>
<td>6.1</td>
<td>I 354 0</td>
<td>E0</td>
<td>P602</td>
<td>T20 TP2 TP13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1606</td>
<td>FERRIC ARSENATE</td>
<td>6.1</td>
<td>II 500 g</td>
<td>E4</td>
<td>P002 IBC08 B2 B4</td>
<td>T3 TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1607</td>
<td>FERRIC ARSENITE</td>
<td>6.1</td>
<td>II 500 g</td>
<td>E4</td>
<td>P002 IBC08 B2 B4</td>
<td>T3 TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1608</td>
<td>FERROUS ARSENATE</td>
<td>6.1</td>
<td>II 500 g</td>
<td>E4</td>
<td>P002 IBC08 B2 B4</td>
<td>T3 TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1611</td>
<td>HEXAETHYL TETRAPHOSPHATE</td>
<td>6.1</td>
<td>II 100 ml</td>
<td>E4</td>
<td>P001 IBC02 T7</td>
<td>TP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1612</td>
<td>HEXAETHYL TETRAPHOSPHATE AND COMPRESSED GAS MIXTURE</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1613</td>
<td>HYDROCYANIC ACID, AQUEOUS SOLUTION (HYDROGEN CYANIDE, AQUEOUS SOLUTION) with not more than 20% hydrogen cyanide</td>
<td>6.1</td>
<td>I</td>
<td>48</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T14</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>1614</td>
<td>HYDROGEN CYANIDE, STABILISED, containing less than 3% water and absorbed in a porous inert material</td>
<td>6.1</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1616</td>
<td>LEAD ACETATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1617</td>
<td>LEAD ARSENATES</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1618</td>
<td>LEAD ARSENITES</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1620</td>
<td>LEAD CYANIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1621</td>
<td>LONDON PURPLE</td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1622</td>
<td>MAGNESIUM ARSENATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1623</td>
<td>MERCURIC ARSENATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1624</td>
<td>MERCURIC CHLORIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1625</td>
<td>MERCURIC NITRATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1626</td>
<td>MERCURIC POTASSIUM CYANIDE</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1627</td>
<td>MERCURIOUS NITRATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1629</td>
<td>MERCURY ACETATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1630</td>
<td>MERCURY AMMONIUM CHLORIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1631</td>
<td>MERCURY BENZOATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1634</td>
<td>MERCURY BROMIDES</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1636</td>
<td>MERCURY CYANIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1637</td>
<td>MERCURY GLUCONATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1638</td>
<td>MERCURY IODIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1639</td>
<td>MERCURY NUCLEATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1640</td>
<td>MERCURY OLEATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1641</td>
<td>MERCURY OXIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1642</td>
<td>MERCURY OXYCYANIDE, DESENSITISED</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1643</td>
<td>MERCURY POTASSIUM IODIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Class</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1644</td>
<td>MERCURY SALICYLATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1645</td>
<td>MERCURY SULPHATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1646</td>
<td>MERCURY THIOCYANATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1647</td>
<td>METHYL BROMIDE AND ETHYLENE DIBROMIDE MIXTURE, LIQUID</td>
<td>6.1</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1648</td>
<td>ACETONITRILE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02 B2</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1649</td>
<td>MOTOR FUEL ANTI-KNOCK MIXTURE</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T14</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td>beta-NAPHTHYLAMINE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1651</td>
<td>NAPHTHYLTHIOUREA</td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1652</td>
<td>NAPHTHYLUREA</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging Instruction</th>
<th>Special Packing Provisions</th>
<th>Instructions</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1653</td>
<td>NICKEL CYANIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1654</td>
<td>NICOTINE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1655</td>
<td>NICOTINE COMPOUND, SOLID, N.O.S. or NICOTINE PREPARATION, SOLID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1656</td>
<td>NICOTINE HYDROCHLORIDE, LIQUID or SOLUTION</td>
<td>6.1</td>
<td>II</td>
<td>43 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43 223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1657</td>
<td>NICOTINE SALICYLATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1658</td>
<td>NICOTINE SULPHATE SOLUTION</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1659</td>
<td>NICOTINE TARTRATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1660</td>
<td>NITRIC OXIDE, COMPRESSED</td>
<td>2.3</td>
<td>5.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1661</td>
<td>NITROANILINES (o-, m-, p-)</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td>1662</td>
<td>NITROBENZENE</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1663</td>
<td>NITROPHENOLS (o-, m-, p-)</td>
<td>6.1</td>
<td>III</td>
<td>279</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1664</td>
<td>NITROTOLUENES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1665</td>
<td>NITROXYLENES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1669</td>
<td>PENTACHLOROETHANE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1670</td>
<td>PERCHLOROMETHYL MERCAPTAN</td>
<td>6.1</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>1671</td>
<td>PHENOL, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
<tr>
<td>1672</td>
<td>PHENYLISOCYANATE</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T14</td>
<td>TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>1673</td>
<td>PHENYLENEDIAMINES (o-, m-, p-)</td>
<td>6.1</td>
<td>III</td>
<td>279</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>1674</td>
<td>PHENYLMERCURIC ACETATE</td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
<tr>
<td>1677</td>
<td>POTASSIUM ARSENATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1678</td>
<td>POTASSIUM ARSENITE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1679</td>
<td>POTASSIUM CUPROCYANIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1680</td>
<td>POTASSIUM CYANIDE, SOLID</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td>1683</td>
<td>SILVER ARSENITE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1684</td>
<td>SILVER CYANIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1685</td>
<td>SODIUM ARSENATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1686</td>
<td>SODIUM ARSENITE, AQUEOUS SOLUTION</td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>43</td>
<td>223</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1687</td>
<td>SODIUM AZIDE</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1688</td>
<td>SODIUM CACODYLATE</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1689</td>
<td>SODIUM CYANIDE, SOLID</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td>1690</td>
<td>SODIUM FLUORIDE, SOLID</td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1691</td>
<td>STRONTIUM ARSENITE</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1692</td>
<td>STRYCHNINE or STRYCHNINE SALTS</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td>1693</td>
<td>TEAR GAS SUBSTANCE, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1694</td>
<td>BROMOBENZYL CYANIDES, LIQUID</td>
<td>6.1</td>
<td>I</td>
<td>138</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td>1695</td>
<td>CHLOROACETONE, STABILISED</td>
<td>6.1</td>
<td>3</td>
<td>8</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
</tr>
<tr>
<td>1697</td>
<td>CHLOROACETOPHENONE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>IBC08</td>
<td>B2, B4</td>
</tr>
<tr>
<td>1698</td>
<td>DIPHENYLAMINE CHLOROARSINE</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>IBC08</td>
<td>B2, B4</td>
</tr>
<tr>
<td>1699</td>
<td>DIPHENYLCHLOROARSINE, LIQUID</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>IBC08</td>
<td>B2, B4</td>
</tr>
<tr>
<td>1700</td>
<td>TEAR GAS CANDLES</td>
<td>6.1</td>
<td>4.1</td>
<td>0</td>
<td>E0</td>
<td>0</td>
<td>E0</td>
<td>P600</td>
<td>IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>1701</td>
<td>XYLYL BROMIDE, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>1702</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>1704</td>
<td>TETRAETHYL DITHIOPYROPHOSPHATE</td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>100 ml</td>
<td>0</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>1707</td>
<td>THALLIUM COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>IBC08</td>
<td>B2, B4</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1708</td>
<td>TOLUIDINES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1709</td>
<td>2,4-TOLUYLENEDIAMINE, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1710</td>
<td>TRICHLOROETHYLENE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1711</td>
<td>XYLIDINES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1712</td>
<td>ZINC ARSENATE, ZINC ARSENITE or ZINC ARSENATE AND ZINC ARSENITE MIXTURE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1713</td>
<td>ZINC CYANIDE</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td>1714</td>
<td>ZINC PHOSPHIDE</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1715</td>
<td>ACETIC ANHYDRIDE</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1716</td>
<td>ACETYL BROMIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1717</td>
<td>ACETYL CHLORIDE</td>
<td>3 8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1718</td>
<td>BUTYL ACID PHOSPHATE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1719</td>
<td>CAUSTIC ALKALI LIQUID, N.O.S.</td>
<td>8</td>
<td>II</td>
<td>274 1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223 274 5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1722</td>
<td>ALLYL CHLOROFORMATE</td>
<td>6.1 3 8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1723</td>
<td>ALLYL IODIDE</td>
<td>3 8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1724</td>
<td>ALLYLTRICHLOROSILANE, STABILISED</td>
<td>8 3</td>
<td>II</td>
<td>386 0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1725</td>
<td>ALUMINIUM BROMIDE, ANHYDROUS</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1726</td>
<td>ALUMINIUM CHLORIDE, ANHYDROUS</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1727</td>
<td>AMMONIUM HYDROGEN difluoride, SOLID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1728</td>
<td>AMYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1729</td>
<td>ANISOYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1730</td>
<td>ANTIMONY PENTACHLORIDE, LIQUID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1731</td>
<td>ANTIMONY PENTACHLORIDE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 LT002</td>
<td>T4</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1732</td>
<td>ANTIMONY PENTAFLUORIDE</td>
<td>8</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1733</td>
<td>ANTIMONY TRICHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1736</td>
<td>BENZOYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td>1737</td>
<td>BENZYL BROMIDE</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
</tr>
<tr>
<td>1738</td>
<td>BENZYL CHLORIDE</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
</tr>
<tr>
<td>1739</td>
<td>BENZYL CHLOROFORMATE</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td>1740</td>
<td>HYDROGENDIFFLUORIDES, SOLID, N.O.S.</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1741</td>
<td>BORON TRICHLORIDE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1742</td>
<td>BORON TRIFLUORIDE ACETIC ACID COMPLEX, LIQUID</td>
<td>8</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8 TP2</td>
</tr>
<tr>
<td>1743</td>
<td>BORON TRIFLUORIDE PROPIONIC ACID COMPLEX, LIQUID</td>
<td>8</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8 TP2</td>
</tr>
<tr>
<td>1744</td>
<td>BROMINE or BROMINE SOLUTION</td>
<td>8</td>
<td>6.1</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P804</td>
<td>T22 TP2 TP10 TP13</td>
</tr>
<tr>
<td>1745</td>
<td>BROMINE PENTAFLUORIDE</td>
<td>5.1</td>
<td>6.1</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T22 TP2 TP13</td>
</tr>
<tr>
<td>1746</td>
<td>BROMINE TRIFLUORIDE</td>
<td>5.1</td>
<td>6.1</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T22 TP2 TP13</td>
</tr>
<tr>
<td>1747</td>
<td>BUTYLTRICHLOROSILANE</td>
<td>8</td>
<td>3</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10 TP2 TP7 TP13</td>
</tr>
<tr>
<td>1748</td>
<td>CALCIUM HYPOCHLORITE, DRY or CALCIUM HYPOCHLORITE MIXTURE, DRY with more than 39% available chlorine (8.8% available oxygen)</td>
<td>5.1</td>
<td>II</td>
<td></td>
<td>314</td>
<td>1 kg</td>
<td>P002 IBC08 PP85 B2 B4 B13</td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Exepted Quantities</td>
<td>Packagings & IBCs</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1749</td>
<td>CHLORINE TRIFLUORIDE</td>
<td>2.3</td>
<td>5.1</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750</td>
<td>CHLOROACETIC ACID SOLUTION</td>
<td>6.1</td>
<td>8</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1751</td>
<td>CHLOROACETIC ACID, SOLID</td>
<td>6.1</td>
<td>8</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1752</td>
<td>CHLOROACETYL CHLORIDE</td>
<td>6.1</td>
<td>8</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td>1753</td>
<td>CHLOROPHENYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td>TP7</td>
</tr>
<tr>
<td>1754</td>
<td>CHLOROSULPHONIC ACID (with or without sulphur trioxide)</td>
<td>8</td>
<td>I</td>
<td>E0</td>
<td>P001</td>
<td>T20</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1755</td>
<td>CHROMIC ACID SOLUTION</td>
<td>8</td>
<td>II</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exceptional Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756</td>
<td>CHROMIC FLUORIDE, SOLID</td>
<td>8</td>
<td>II</td>
<td></td>
<td></td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>B2, B4</td>
</tr>
<tr>
<td>1757</td>
<td>CHROMIC FLUORIDE SOLUTION</td>
<td>8</td>
<td>II</td>
<td></td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T7</td>
</tr>
<tr>
<td>1758</td>
<td>CHROMIUM OXYCHLORIDE</td>
<td>8</td>
<td>I</td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
</tr>
<tr>
<td>1759</td>
<td>CORROSIVE SOLID, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>B1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1760</td>
<td>CORROSIVE LIQUID, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1761</td>
<td>CUPRIETHYLENEDIAMINE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP1, TP28</td>
</tr>
<tr>
<td>1762</td>
<td>CYCLOHEXENYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2, TP7, TP13</td>
<td></td>
</tr>
<tr>
<td>1763</td>
<td>CYCLOHEXYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2, TP7, TP13</td>
<td></td>
</tr>
<tr>
<td>1764</td>
<td>DICHLOROACETIC ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1765</td>
<td>DICHLOROACETYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1766</td>
<td>DICHLOROPHENYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T7</td>
<td>TP2</td>
<td>TP7 TP13</td>
</tr>
<tr>
<td>1767</td>
<td>DIETHYLDICHLOROSILANE</td>
<td>8</td>
<td>III</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T7</td>
<td>TP2</td>
<td>TP7 TP13</td>
</tr>
<tr>
<td>1768</td>
<td>DIFLUOROPHOSPHORIC ACID, ANHYDROUS</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1769</td>
<td>DIPHENYLDICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T7</td>
<td>TP2</td>
<td>TP7 TP13</td>
</tr>
<tr>
<td>1770</td>
<td>DIPHENYLMETHYL BROMIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1771</td>
<td>DODECYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T7</td>
<td>TP2</td>
<td>TP7 TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Special Provisions & IBCs</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1773</td>
<td>FERRIC CHLORIDE, ANHYDROUS</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>B3</td>
<td>T1</td>
<td>P002, IBC08, LP02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1774</td>
<td>FIRE EXTINGUISHER CHARGES, corrosive liquid</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001</td>
<td>PP4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1775</td>
<td>FLUOROBORIC ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>TP2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1776</td>
<td>FLUOROPHOSPHORIC ACID, ANHYDROUS</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>TP2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1777</td>
<td>FLUOROSULPHONIC ACID</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1778</td>
<td>FLUOROSILIC ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1779</td>
<td>FORMIC ACID with more than 85% acid by mass</td>
<td>8</td>
<td>3</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1780</td>
<td>FUMARYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1781</td>
<td>HEXADECYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1782</td>
<td>HEXAFLUOROPHOSPHORIC ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1783</td>
<td>HEXAMETHYLENEDIAMINE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1784</td>
<td>HEXYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1786</td>
<td>HYDROFLUORIC ACID AND SULPHURIC ACID MIXTURE</td>
<td>8</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
<td>TP2, TP13</td>
<td></td>
</tr>
<tr>
<td>1787</td>
<td>HYDRIODIC ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1788</td>
<td>HYDROBROMIC ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1789</td>
<td>HYDROCHLORIC ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1790</td>
<td>HYDROFLUORIC ACID, with more than 60% hydrogen fluoride</td>
<td>8</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P802</td>
<td>PP79 PP81</td>
<td>T10</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td></td>
<td>HYDROFLUORIC ACID, with not more than 60% hydrogen fluoride</td>
<td>8</td>
<td>6.1</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1791</td>
<td>HYPOCHLORITE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>PP10 B5</td>
<td>T7</td>
<td>TP2 TP24</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1792</td>
<td>IODINE MONOCHLORIDE, SOLID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E0</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
</tr>
<tr>
<td>1793</td>
<td>ISOPROPYL ACID PHOSPHATE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1794</td>
<td>LEAD SULPHATE with more than 3% free acid</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1796</td>
<td>NITRATING ACID MIXTURE with more than 50% nitric acid</td>
<td>8</td>
<td>5.1</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NITRATING ACID MIXTURE with not more than 50% nitric acid</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1798</td>
<td>NITROHYDROCHLORIC ACID</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class</th>
<th>Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Special Provisions for Packagings & IBCs</th>
<th>Special Provisions for Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1799</td>
<td>NONYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td>TP7 TP13</td>
<td>TP2 TP7 TP13</td>
</tr>
<tr>
<td>1800</td>
<td>OCTADECYL-TRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td>TP7 TP13</td>
<td>TP2 TP7 TP13</td>
</tr>
<tr>
<td>1801</td>
<td>OCTYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td>TP7 TP13</td>
<td>TP2 TP7 TP13</td>
</tr>
<tr>
<td>1802</td>
<td>PERCHLORIC ACID with not more than 50% acid, by mass</td>
<td>8</td>
<td>5.1</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1803</td>
<td>PHENOLSULPHONIC ACID, LIQUID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1804</td>
<td>PHENYLTRICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td>TP7 TP13</td>
<td>TP2 TP7 TP13</td>
</tr>
</tbody>
</table>
Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1805</td>
<td>PHOSPHORIC ACID, SOLUTION</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T4 TP1</td>
<td>3.1.2</td>
</tr>
<tr>
<td>1806</td>
<td>PHOSPHORUS PENTACHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E0</td>
<td>P002</td>
<td>IBC08 B2 B4</td>
<td>T3 TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1807</td>
<td>PHOSPHORUS PENTOXIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>IBC08 B2 B4</td>
<td>T3 TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1808</td>
<td>PHOSPHORUS TRIBROMIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001</td>
<td>IBC02</td>
<td>T7 TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1809</td>
<td>PHOSPHORUS TRICHLORIDE</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20 TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>1810</td>
<td>PHOSPHORUS OXYCHLORIDE</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20 TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>1811</td>
<td>POTASSIUM HYDROGEN DIFLUORIDE SOLID</td>
<td>8</td>
<td>6.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>IBC08 B2 B4</td>
<td>T3 TP33</td>
<td></td>
</tr>
<tr>
<td>1812</td>
<td>POTASSIUM FLUORIDE, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08 LP02</td>
<td>B3 T1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepied Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1813</td>
<td>POTASSIUM HYDROXIDE, SOLID</td>
<td>8</td>
<td>II</td>
<td></td>
<td></td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
</tr>
<tr>
<td>1814</td>
<td>POTASSIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>II</td>
<td></td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P001 IBC03 LP01</td>
<td></td>
</tr>
<tr>
<td>1815</td>
<td>PROPIONYL CHLORIDE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td></td>
</tr>
<tr>
<td>1816</td>
<td>PROPYLTRICHLOROSILANE</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td></td>
</tr>
<tr>
<td>1817</td>
<td>PYROSULPHURYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td></td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td></td>
</tr>
<tr>
<td>1818</td>
<td>SILICON TETRACHLORIDE</td>
<td>8</td>
<td>II</td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1819</td>
<td>SODIUM ALUMINATE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1823</td>
<td>SODIUM HYDROXIDE, SOLID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1824</td>
<td>SODIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1825</td>
<td>SODIUM MONOXIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1826</td>
<td>NITRATING ACID MIXTURE, SPENT, with more than 50% nitric acid</td>
<td>8</td>
<td>5.1</td>
<td>113</td>
<td>0</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T10</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td></td>
<td>NITRATING ACID MIXTURE, SPENT, with not more than 50% nitric acid</td>
<td>8</td>
<td>II</td>
<td>113</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1827</td>
<td>STANNIC CHLORIDE, ANHYDROUS</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1828</td>
<td>SULPHUR CHLORIDES</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1829</td>
<td>SULPHUR TRIOXIDE, STABILISED</td>
<td>8</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T20</td>
<td>TP4</td>
</tr>
<tr>
<td>1830</td>
<td>SULPHURIC ACID with more than 51% acid</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1831</td>
<td>SULPHURIC ACID, FUMING</td>
<td>8</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2</td>
</tr>
<tr>
<td>1832</td>
<td>SULPHURIC ACID, SPENT</td>
<td>8</td>
<td>II</td>
<td>113</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
</tr>
<tr>
<td>1833</td>
<td>SULPHUROUS ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1834</td>
<td>SULPHURYL CHLORIDE</td>
<td>8</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2</td>
</tr>
</tbody>
</table>

Ref 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1835</td>
<td>TETRAMETHYLAMMONIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1836</td>
<td>THIONYL CHLORIDE</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P802</td>
<td>T10</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td>1837</td>
<td>THIOPHOSPHORYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>1838</td>
<td>TITANIUM TETRACHLORIDE</td>
<td>6.1</td>
<td>8</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2</td>
</tr>
<tr>
<td>1839</td>
<td>TRICHLOROACETIC ACID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1840</td>
<td>ZINC CHLORIDE SOLUTION</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1841</td>
<td>ACETALDEHYDE AMMONIA</td>
<td>9</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3, B6</td>
<td>T1</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref 3.1.2</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1843</td>
<td>AMMIONIUM DINITRO-o-CRESOLATE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1845</td>
<td>CARBON DIOXIDE, SOLID (DRY ICE)</td>
<td>9</td>
<td>0</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>B2, B4</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>1846</td>
<td>CARBON TETRACHLORIDE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1847</td>
<td>POTASSIUM SULPHIDE, HYDRATED with not less than 30% water of crystallisation</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1848</td>
<td>PROPIONIC ACID with not less than 10% and less than 90% acid by mass</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1849</td>
<td>SODIUM SULPHIDE, HYDRATED with not less than 30% water</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1851</td>
<td>MEDICINE, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>II</td>
<td>221 100 ml</td>
<td>E4</td>
<td>P001 IBC08</td>
<td>B2, B4</td>
<td>T21</td>
<td>T3</td>
</tr>
<tr>
<td>1854</td>
<td>BARIUM ALLOYS, PYROPHORIC</td>
<td>4.2</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td>T21</td>
<td>TP7</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1855</td>
<td>CALCIUM, PYROPHORIC or CALCIUM ALLOYS, PYROPHORIC</td>
<td>4.2</td>
<td>I</td>
<td>123</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1856</td>
<td>RAGS, OILY Not subject to this Code (see SP 117)</td>
<td>4.2</td>
<td>29</td>
<td>123</td>
<td>0</td>
<td>E0</td>
<td>P003 IBC08 PP19 B6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1857</td>
<td>TEXTILE WASTE, WET Not subject to this Code (see SP 117)</td>
<td>4.2</td>
<td>III</td>
<td>123</td>
<td>0</td>
<td>E1</td>
<td>P410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1858</td>
<td>HEXAFLUOROPROPYLENE (REFRIGERANT GAS R1216)</td>
<td>2.2</td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1859</td>
<td>SILICON TETRAFLUORIDE</td>
<td>2.3</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1860</td>
<td>VINYL FLUORIDE, STABILISED</td>
<td>2.1</td>
<td></td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1862</td>
<td>ETHYL CROTONATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4 TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1863</td>
<td>FUEL, AVIATION, TURBINE ENGINE (see 3.2.5 for relevant [AUST.] entries)</td>
<td>3</td>
<td>I</td>
<td>500 ml</td>
<td>E3</td>
<td>P001</td>
<td>T11 TP1 TP8 TP28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5 4.3.2 4.2.5</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepred Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref 3.1.2</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1865</td>
<td>n-PROPYL NITRATE</td>
<td>3</td>
<td>II</td>
<td>26</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>B7</td>
<td></td>
</tr>
<tr>
<td>1866</td>
<td>RESIN SOLUTION, flammable</td>
<td>3</td>
<td>I</td>
<td>500 ml</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>5 L</td>
<td>E2</td>
<td>P001</td>
<td>PP1</td>
<td>T4</td>
<td>TP1, TP8, TP28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>PP1</td>
<td>T2, TP1</td>
</tr>
<tr>
<td>1868</td>
<td>DECABORANE</td>
<td>4.1</td>
<td>6.1</td>
<td>II</td>
<td>1 kg</td>
<td>E0</td>
<td>P002</td>
<td>B2</td>
<td>T3, TP33</td>
</tr>
<tr>
<td>1869</td>
<td>MAGNESIUM or MAGNESIUM ALLOYS with more than 50% magnesium in pellets, turnings or ribbons</td>
<td>4.1</td>
<td>III</td>
<td>59</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1, TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging Instruction</th>
<th>Special Packing Provisions</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1870</td>
<td>POTASSIUM BOROHYDRIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1871</td>
<td>TITANIUM HYDRIDE</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P410 IBC04</td>
<td>PP40</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1872</td>
<td>LEAD DIOXIDE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1873</td>
<td>PERCHLORIC ACID with more than 50% but not more than 72% acid, by mass</td>
<td>5.1</td>
<td>8</td>
<td>60</td>
<td>0</td>
<td>E0</td>
<td>P502</td>
<td>PP28</td>
<td>T10</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1884</td>
<td>BARIUM OXIDE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>BENZIDINE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1886</td>
<td>BENZYLIDENE CHLORIDE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>IBC02</td>
<td>T7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>BROMOCHLOROMETHANE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>IBC03 LP01</td>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Expted Quantities</th>
<th>Packagings & IBCs</th>
<th>Special Packing Provisions</th>
<th>Packaging Instruction</th>
<th>Special Provisions</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1888</td>
<td>CHLOROFORM</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>E0</td>
<td>IBC03</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>CYANOGEN BROMIDE</td>
<td>6.1</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>T6</td>
<td>IBC02</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1891</td>
<td>ETHYL BROMIDE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>B8</td>
<td>IBC02</td>
<td>TP7</td>
<td>TP2</td>
<td>TP13</td>
<td></td>
</tr>
<tr>
<td>1892</td>
<td>ETHYLDICHLOROARSINE</td>
<td>6.1</td>
<td>I</td>
<td>354</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>IBC02</td>
<td>T7</td>
<td>TP2</td>
<td>TP13</td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td>PHENYLMERCURIC HYDROXIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>IBC08</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1895</td>
<td>PHENYLMERCURIC NITRATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>IBC08</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1897</td>
<td>TETRACHLOROETHYLENE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>B8</td>
<td>IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1898</td>
<td>ACETYL IODIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T7</td>
<td>IBC02</td>
<td>TP2</td>
<td>TP13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ref 3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1902</td>
<td>DIISOOCTYL ACID PHOSPHATE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1903</td>
<td>DISINFECTANT, LIQUID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274 L</td>
<td>E0</td>
<td>P001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1905</td>
<td>SELENIC ACID</td>
<td>8</td>
<td>I</td>
<td>0 kg</td>
<td>E0</td>
<td>P002 IBC07 B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>1906</td>
<td>SLUDGE ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02 T8</td>
<td>TP2</td>
<td>TP28</td>
<td></td>
</tr>
<tr>
<td>1907</td>
<td>SODA LIME with more than 4% sodium hydroxide</td>
<td>8</td>
<td>III</td>
<td>62 L</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>1908</td>
<td>CHLORITE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02 T7</td>
<td>TP2</td>
<td>TP24</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
</tr>
<tr>
<td>1910</td>
<td>CALCIUM OXIDE</td>
<td>8</td>
<td>III</td>
<td>106</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08</td>
<td>LP02</td>
</tr>
<tr>
<td></td>
<td>Not subject to this Code (see SP 106)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TB000</td>
<td></td>
</tr>
<tr>
<td>1911</td>
<td>DIBORANE</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td>TB000</td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td>METHYL CHLORIDE AND METHYLENE CHLORIDE MIXTURE</td>
<td>2.1</td>
<td>228</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td>T75</td>
<td>TP5</td>
</tr>
<tr>
<td>1913</td>
<td>NEON, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>120 ml</td>
<td></td>
<td></td>
<td>E1</td>
<td>P203</td>
<td>IBC08</td>
<td>LP01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TB000</td>
<td></td>
</tr>
<tr>
<td>1914</td>
<td>BUTYL PROPIONATES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TB000</td>
<td></td>
</tr>
<tr>
<td>1915</td>
<td>CYCLOHEXANONE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TB000</td>
<td></td>
</tr>
<tr>
<td>1916</td>
<td>2,2'-DICHLORODIETHYL ETHER</td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TB000</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1917</td>
<td>ETHYL ACRYLATE, STABILISED</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1, TP13</td>
</tr>
<tr>
<td>1918</td>
<td>ISOPROPYLBENZENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1919</td>
<td>METHYL ACRYLATE, STABILISED</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1, TP13</td>
</tr>
<tr>
<td>1920</td>
<td>NONANES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1921</td>
<td>PROPYLENEIMINE, STABILISED</td>
<td>3</td>
<td>6.1</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>1922</td>
<td>PYRROLIDINE</td>
<td>3</td>
<td>8</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>1923</td>
<td>CALCIUM DITHIONITE (CALCIUM HYDROSULPHITE)</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1928</td>
<td>METHYL MAGNESIUM BROMIDE IN ETHYL ETHER</td>
<td>4.3</td>
<td>3</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1929</td>
<td>POTASSIUM DITHIONITE (POTASSIUM HYDROSULPHITE)</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>1931</td>
<td>ZINC DITHIONITE (ZINC HYDROSULPHITE)</td>
<td>9</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1932</td>
<td>ZIRCONIUM SCRAP</td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>0</td>
<td>E0</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>1935</td>
<td>CYANIDE SOLUTION, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>T11</td>
<td>TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T7</td>
<td>TP2 TP13 TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1938</td>
<td>BROMOACETIC ACID SOLUTION</td>
<td>8</td>
<td>II</td>
<td></td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7, TP2</td>
</tr>
<tr>
<td>1939</td>
<td>PHOSPHORUS OXYBROMIDE</td>
<td>8</td>
<td>II</td>
<td></td>
<td></td>
<td>1 kg</td>
<td>E0</td>
<td>P002 IBC08</td>
<td>B2, B4, T3, TP33</td>
</tr>
<tr>
<td>1940</td>
<td>THIOGLYCOLIC ACID</td>
<td>8</td>
<td>II</td>
<td></td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7, TP2</td>
</tr>
<tr>
<td>1941</td>
<td>DIBROMODIFLUOROMETHANE</td>
<td>9</td>
<td>III</td>
<td></td>
<td></td>
<td>5 L</td>
<td>E1</td>
<td>P001 LP01</td>
<td>T11, TP2</td>
</tr>
<tr>
<td>1942</td>
<td>AMMONIUM NITRATE, with not more than 0.2% total combustible material, including any organic substance calculated as carbon, to the exclusion of any other added substance.</td>
<td>5.1</td>
<td>III</td>
<td>306</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 BK1 BK2 BK3, TP33</td>
</tr>
<tr>
<td>1944</td>
<td>MATCHES, SAFETY (book, card or strike on box)</td>
<td>4.1</td>
<td>III</td>
<td>293, 294</td>
<td>5 kg</td>
<td>E1</td>
<td></td>
<td>P407</td>
<td></td>
</tr>
<tr>
<td>1945</td>
<td>MATCHES, WAX “VESTA”</td>
<td>4.1</td>
<td>III</td>
<td>293, 294</td>
<td>5 kg</td>
<td>E1</td>
<td></td>
<td>P407</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>AEROSOLS</td>
<td>2</td>
<td></td>
<td>63</td>
<td>See SP 277</td>
<td>E0</td>
<td></td>
<td>P207</td>
<td>T87 L2</td>
</tr>
<tr>
<td>1951</td>
<td>ARGON, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P203</td>
<td>T75</td>
<td>TP5</td>
</tr>
<tr>
<td>1952</td>
<td>ETHYLENE OXIDE AND CARBON DIOXIDE MIXTURE with not more than 9% ethylene oxide</td>
<td>2.2</td>
<td></td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S.</td>
<td>2.3</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>COMPRESSED GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td></td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>COMPRESSED GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td></td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>COMPRESSED GAS, N.O.S.</td>
<td>2.2</td>
<td></td>
<td>274</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>DEUTERIUM, COMPRESSED</td>
<td>2.1</td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1958</td>
<td>1,2-DICHLORO-1,1,2,2-TETRAFLUOROETHANE (REFRIGERANT GAS R 114)</td>
<td>2.2</td>
<td></td>
<td>120 ml E1</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>1,1-DIFLUOROETHYLENE (REFRIGERANT GAS R 1132a)</td>
<td>2.1</td>
<td></td>
<td>0 E0 P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961</td>
<td>ETHANE, REFRIGERATED LIQUID</td>
<td>2.1</td>
<td></td>
<td>0 E0 P203</td>
<td>T75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>ETHYLENE</td>
<td>2.1</td>
<td></td>
<td>0 E0 P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963</td>
<td>HELIUM, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>120 ml E1</td>
<td>P203</td>
<td>T75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>HYDROCARBON GAS MIXTURE, COMPRESSED, N.O.S.</td>
<td>2.1</td>
<td>274</td>
<td>0 E0 P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td>HYDROCARBON GAS MIXTURE, LIQUEFIED, N.O.S.</td>
<td>2.1</td>
<td>274</td>
<td>0 E0 P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>HYDROGEN, REFRIGERATED LIQUID</td>
<td>2.1</td>
<td></td>
<td>0 E0 P203</td>
<td>T75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>INSECTICIDE GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td>274</td>
<td>0 E0 P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>INSECTICIDE GAS, N.O.S.</td>
<td>2.2</td>
<td>274</td>
<td>120 ml E1</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>ISOBUTANE</td>
<td>2.1</td>
<td></td>
<td>0 E0 P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>KRYPTON, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>120 ml E1</td>
<td>P203</td>
<td>T75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>METHANE, COMPRESSED or NATURAL GAS, COMPRESSED with high methane content</td>
<td>2.1</td>
<td></td>
<td>0 E0 P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excecpted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>METHANE, REFRIGERATED LIQUID or NATURAL GAS, REFRIGERATED LIQUID with high methane content</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>2.0</td>
<td>P203</td>
<td>0</td>
<td>T75</td>
<td>TP5</td>
</tr>
<tr>
<td>1973</td>
<td>CHLORODIFLUOROMETHANE AND CHLOROPENTAFLUORO-ETHANE MIXTURE with fixed boiling point, with approximately 49% chlorodifluoromethane (REFRIGERANT GAS R 502)</td>
<td>2.2</td>
<td>120 ml</td>
<td>E1</td>
<td>2.0</td>
<td>P200</td>
<td>120 ml</td>
<td>T50</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>CHLORODIFLUOROBROMO-METHANE (REFRIGERANT GAS R 12B1)</td>
<td>2.2</td>
<td>120 ml</td>
<td>E1</td>
<td>2.0</td>
<td>P200</td>
<td>120 ml</td>
<td>T50</td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>NITRIC OXIDE AND DINITROGEN TETROXIDE MIXTURE (NITRIC OXIDE AND NITROGEN DIOXIDE MIXTURE)</td>
<td>2.3</td>
<td>5.1</td>
<td>0</td>
<td>3.3</td>
<td>E0</td>
<td>345</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>OCTAFLUOROCYCLOBUTANE (REFRIGERANT GAS RC 318)</td>
<td>2.2</td>
<td>120 ml</td>
<td>E1</td>
<td>3.3</td>
<td>346</td>
<td>120 ml</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>NITROGEN, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>345</td>
<td>0</td>
<td>3.3</td>
<td>E0</td>
<td>346</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>PROPANE</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>2.0</td>
<td>P200</td>
<td>0</td>
<td>T50</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>TETRAFLUOROMETHANE (REFRIGERANT GAS R 14)</td>
<td>2.2</td>
<td>120 ml</td>
<td>E1</td>
<td>2.0</td>
<td>P200</td>
<td>120 ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>1983</td>
<td>1-CHLORO-2,2,2-TRIFLUOROETHANE (REFRIGERANT GAS R133a)</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td>1984</td>
<td>TRIFLUOROMETHANE (REFRIGERANT GAS R 23)</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>ALCOHOLS, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>ALCOHOLS, N.O.S.</td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP1 IBC28</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>1988</td>
<td>ALDEHYDES, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
</tr>
<tr>
<td>1989</td>
<td>ALDEHYDES, N.O.S.</td>
<td>3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>1990</td>
<td>BENZALDEHYDE</td>
<td>9</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>CHLOROPRENE, STABILISED</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14, TP2, TP6, TP13</td>
</tr>
<tr>
<td>1992</td>
<td>FLAMMABLE LIQUID, TOXIC, N.O.S.</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14, TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7, TP2, TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7, TP1, TP28</td>
</tr>
<tr>
<td>1993</td>
<td>FLAMMABLE LIQUID, N.O.S.</td>
<td>3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP1, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7, TP1, TP8, TP28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4, TP1, TP29</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepied Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>IRON PENTACARBONYL</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T22</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>1999</td>
<td>TARS, LIQUID, including road oils, and cutback bitumens</td>
<td>3</td>
<td>II</td>
<td>5 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T3</td>
<td>TP3, TP29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>CELLULOID in block, rods, rolls, sheets, tubes, etc., except scrap</td>
<td>4.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>LP02</td>
<td>PP7</td>
</tr>
<tr>
<td>2001</td>
<td>COBALT NAPHTHENATES, POWDER</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08</td>
<td>LP02</td>
<td>B3</td>
</tr>
<tr>
<td>2002</td>
<td>CELLULOID, SCRAP</td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>IBC08</td>
<td>LP02, PP8, B3</td>
</tr>
<tr>
<td>2004</td>
<td>MAGNESIUM DIAMIDE</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410</td>
<td>IBC06</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepioned Quantities</td>
<td>Packaging & IBCs</td>
<td>Special Packing Provisions</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2006</td>
<td>PLASTICS, NITROCELLULOSE-BASED, SELF-HEATING, N.O.S.</td>
<td>4.2</td>
<td>III</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>ZIRCONIUM POWDER, DRY</td>
<td>4.2</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td>T21</td>
<td>TP7</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P410</td>
<td>B2</td>
<td>IBC06</td>
<td>B3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>0</td>
<td>E1</td>
<td>P002/IBC08</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>2009</td>
<td>ZIRCONIUM, DRY, finished sheets, strip or coiled wire</td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>0</td>
<td>E1</td>
<td>P002/LP02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>MAGNESIUM HYDRIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>MAGNESIUM PHOSPHIDE</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>POTASSIUM PHOSPHIDE</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>STRONTIUM PHOSPHIDE</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>HYDROGEN PEROXIDE, AQUEOUS SOLUTION with not less than 20% but not</td>
<td>5.1</td>
<td>8</td>
<td>1 L</td>
<td>E2</td>
<td>P504/IBC02</td>
<td>PP10</td>
<td>T7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>more than 60% hydrogen peroxide (stabilised as necessary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>HYDROGEN PEROXIDE, STABILISED or HYDROGEN PEROXIDE, AQUEOUS SOLUTION, STABILISED with more than 60% hydrogen peroxide</td>
<td>5.1</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P501</td>
<td>T9</td>
<td>TP2 TP6 TP24</td>
</tr>
<tr>
<td>2016</td>
<td>AMMUNITION, TOXIC, NON-EXPLOSIVE without burster or expelling charge, non-fused</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>AMMUNITION, TEAR-PRODUCING, NON-EXPLOSIVE without burster or expelling charge, non-fused</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>CHLOROANILINES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td>2019</td>
<td>CHLOROANILINES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
<td>T7</td>
</tr>
<tr>
<td>2020</td>
<td>CHLOROPHENOLS, SOLID</td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>205</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
</tr>
<tr>
<td>2021</td>
<td>CHLOROPHENOLS, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td>T4</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>20.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>2022</td>
<td>CRESYLIC ACID</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>T7</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2023</td>
<td>EPICHLOORHYDRIN</td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>279</td>
<td>E4</td>
<td>P001</td>
<td>T7</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2024</td>
<td>MERCURY COMPOUND, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43 66 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43 66 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43 66 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>MERCURY COMPOUND, SOLID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43 66 274</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>B1</td>
<td>T6 TP33</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2026</td>
<td>PHENYLMERCURIC COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>2027</td>
<td>SODIUM ARSENITE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>43 500 g</td>
<td>0</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td>2028</td>
<td>BOMBS, SMOKE, NON-EXPLOSIVE with corrosive liquid, without initiating device</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P803</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2029</td>
<td>HYDRAZINE, ANHYDROUS</td>
<td>8</td>
<td>3.1.2</td>
<td>3.1.2</td>
<td>3.1.2</td>
<td>3.1.2</td>
<td>3.1.2</td>
<td>3.1.2</td>
<td>3.1.2</td>
</tr>
<tr>
<td>2030</td>
<td>HYDRAZINE AQUEOUS SOLUTION with more than 37% hydrazine, by mass</td>
<td>8</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2031</td>
<td>NITRIC ACID, other than red fuming, with more than 70% nitric acid</td>
<td>8</td>
<td>5.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td>NITRIC ACID, other than red fuming, with at least 65%, but not more than 70% nitric acid</td>
<td>8</td>
<td>5.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T8</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td>NITRIC ACID, other than red fuming, with less than 65% nitric acid</td>
<td>8</td>
<td>5.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T8</td>
<td>TP2</td>
</tr>
<tr>
<td>2032</td>
<td>NITRIC ACID, RED FUMING</td>
<td>8</td>
<td>5.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2033</td>
<td>POTASSIUM MONOXIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2034</td>
<td>HYDROGEN AND METHANE MIXTURE, COMPRESSED</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>1,1,1-TRIFLUOROETHANE (REFRIGERANT GAS R143a)</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2036</td>
<td>XENON</td>
<td>2.2</td>
<td>378 392</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2037</td>
<td>RECEPTACLES, SMALL, CONTAINING GAS (GAS CARTRIDGES) without a release device, non-refillable</td>
<td>2</td>
<td></td>
<td>191 277 303 327 344</td>
<td>See SP 277</td>
<td>E0</td>
<td>P003</td>
<td>PP17, PP96</td>
<td>L2</td>
</tr>
<tr>
<td>2038</td>
<td>DINITROTOLUENES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2044</td>
<td>2,2-DIMETHYLPROPANE</td>
<td>2.1</td>
<td>0</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td>ISOBUTYRALDEHYDE (ISOBUTYL ALDEHYDE)</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ref 3.1.2</td>
</tr>
<tr>
<td>2046</td>
<td>CYMENES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2047</td>
<td>DICHLOROPROPENES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2</td>
</tr>
<tr>
<td>2048</td>
<td>DICYCLOPENTADIENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2049</td>
<td>DIETHYLBENZENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2050</td>
<td>DIISOBUTYLENE, ISOMERIC COMPOUNDS</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2051</td>
<td>2-DIMETHYLAMINOETHANOL</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Special Provisions of Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2052</td>
<td>DIPENTENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2053</td>
<td>METHYL ISOBUTYL CARBINOL</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2054</td>
<td>MORPHOLINE</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>E0</td>
<td>P001 IBC03 LP01</td>
<td>T10</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2055</td>
<td>STYRENE MONOMER, STABILISED</td>
<td>3</td>
<td>III</td>
<td>386</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2056</td>
<td>TETRAHYDROFURAN</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2057</td>
<td>TRIPROPYLENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2058</td>
<td>VALERALDEHYDE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2059</td>
<td>NITROCELLULOSE SOLUTION, FLAMMABLE with not more than 12.6% nitrogen, by dry mass, and not more than 55% nitrocellulose</td>
<td>3</td>
<td>I</td>
<td>198</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T11</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>198</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>198</td>
<td>5 L L</td>
<td>E0</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2067</td>
<td>AMMONIUM NITRATE BASED FERTILISER</td>
<td>5.1</td>
<td>III</td>
<td>306</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>2071</td>
<td>AMMONIUM NITRATE BASED FERTILISER</td>
<td>9</td>
<td>III</td>
<td>193</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>BK2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2073</td>
<td>AMMONIA SOLUTION, relative density less than 0.880 at 15°C in water, with more than 35% but not more than 50% ammonia</td>
<td>2.2</td>
<td>120 ml</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2074</td>
<td>ACRYLAMIDE, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08, LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2075</td>
<td>CHLORAL, ANHYDROUS, STABILISED</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2076</td>
<td>CRESOLS, LIQUID</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2077</td>
<td>alpha-NAPHTHYLAMIN</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08, LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2078</td>
<td>TOLUENE DIISOCYANATE</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>2079</td>
<td>DIETHYLENETRIAMINE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2186</td>
<td>HYDROGEN CHLORIDE, REFRIGERATED LIQUID</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P099 P200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Limited Quantities</th>
<th>Special Provisions</th>
<th>Subsidiary</th>
<th>Exceptional Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2187</td>
<td>CARBON DIOXIDE, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td></td>
<td></td>
<td>P203</td>
<td>T75 TP5</td>
</tr>
<tr>
<td>2188</td>
<td>ARSINE</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2189</td>
<td>DICHLOROSILANE</td>
<td>2.3</td>
<td>2.1</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>2190</td>
<td>OXYGEN DIFLUORIDE, COMPRESSED</td>
<td>2.3</td>
<td>5.1</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>2191</td>
<td>SULPHURYL FLUORIDE</td>
<td>2.3</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2192</td>
<td>GERMANE</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2193</td>
<td>HEXAFLUOROETHANE (REFRIGERANT GAS R116)</td>
<td>2.2</td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2194</td>
<td>SELENIUM HEXAFLUORIDE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2195</td>
<td>TELLURIUM HEXAFLUORIDE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2196</td>
<td>TUNGSTEN HEXAFLUORIDE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2197</td>
<td>HYDROGEN IODIDE, ANHYDROUS</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2198</td>
<td>PHOSPHORUS PENTAFLUORIDE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2199</td>
<td>PHOSPHINE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>PROPADIENE, STABILISED</td>
<td>2.1</td>
<td></td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td>P200</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>2201</td>
<td>NITROUS OXIDE, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>5.1</td>
<td>0</td>
<td>E0</td>
<td>P203</td>
<td>T75</td>
<td>TP5</td>
<td>TP22</td>
</tr>
<tr>
<td>2202</td>
<td>HYDROGEN SELENIDE, ANHYDROUS</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2203</td>
<td>SILANE</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2204</td>
<td>CARBONYL SULPHIDE</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2205</td>
<td>ADIPONITRILE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2206</td>
<td>ISOCYANATES, TOXIC, N.O.S. or ISOCYANATE SOLUTION, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td>T7 TP13 TP28</td>
</tr>
<tr>
<td>2208</td>
<td>CALCIUM HYPOCHLORITE MIXTURE, DRY with more than 10% but not more than 39% available chlorine</td>
<td>5.1</td>
<td>III</td>
<td>314</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02 L3</td>
<td>PP85 B3, B13</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>2209</td>
<td>FORMALDEHYDE SOLUTION with not less than 25% formaldehyde</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>E1 P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td>3.1.2</td>
</tr>
<tr>
<td>2210</td>
<td>MANEB or MANEB PREPARATION with not less than 60% maneb</td>
<td>4.2</td>
<td>4.3</td>
<td>273</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC06</td>
<td>E1 P002 IBC06</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2211</td>
<td>POLYMERIC BEADS, EXPANDABLE, evolving flammable vapour</td>
<td>9</td>
<td>III</td>
<td>382</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 PP14 B3, B6</td>
<td>E1 P002 IBC08 PP14 B3, B6</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2212</td>
<td>ASBESTOS, AMPHIBOLE (amosite, tremolite, actinolite, anthophyllite, crocidolite)</td>
<td>9</td>
<td>II</td>
<td>168 274</td>
<td>1 kg</td>
<td>E0</td>
<td>P002 IBC08 PP37 B2, B4</td>
<td>E0 P002 IBC08 PP37 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2213</td>
<td>PARAFORMALDEHYDE</td>
<td>4.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02 PP12 B3</td>
<td>E1 P002 IBC08 LP02 PP12 B3</td>
<td>T1 BK1 BK2 BK3</td>
<td>TP33</td>
</tr>
<tr>
<td>2214</td>
<td>PHTHALIC ANHYDRIDE with more than 0.05% of maleic anhydride</td>
<td>8</td>
<td>III</td>
<td>169</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02 B3</td>
<td>E1 P002 IBC08 LP02 B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2215</td>
<td>MALEIC ANHYDRIDE</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 B3</td>
<td>E1 P002 IBC08 B3</td>
<td>T1</td>
<td>TP33</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Table 3.2.3: **Dangerous Goods List**

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2216</td>
<td>MALEIC ANHYDRIDE, MOLTEN</td>
<td>8</td>
<td>III</td>
<td>0</td>
<td>E0</td>
<td>None</td>
<td>T4</td>
<td>TP3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FISH MEAL (FISH SCRAP), STABILISED</td>
<td>9</td>
<td>III</td>
<td>29 117 300 308</td>
<td>0</td>
<td>E1</td>
<td>P900 IBC08</td>
<td>B3</td>
<td>T1 BK2</td>
</tr>
<tr>
<td></td>
<td>Not subject to this Code (see SP 117)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2217</td>
<td>SEED CAKE with not more than 1.5% oil and not more than 11% moisture</td>
<td>4.2</td>
<td>III</td>
<td>29 142</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC08 LP02</td>
<td>PP20 B3, B6</td>
<td>BK2</td>
</tr>
<tr>
<td>2218</td>
<td>ACRYLIC ACID, STABILISED</td>
<td>8</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2219</td>
<td>ALLYL GLYCIDYL ETHER</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2222</td>
<td>ANISOLE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2224</td>
<td>BENZONITRILE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2225</td>
<td>BENZENESULPHONYL CHLORIDE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2226</td>
<td>BENZOTRICHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2227</td>
<td>n-BUTYL METHACRYLATE, STABILISED</td>
<td>3</td>
<td>III</td>
<td>386</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2232</td>
<td>2-CHLOROETHANAL</td>
<td>6.1</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2</td>
</tr>
<tr>
<td>2233</td>
<td>CHLOROANISIDINES</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2234</td>
<td>CHLOROBENZOTRIFLUORIDES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2235</td>
<td>CHLOROBENZYL CHLORIDES, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2236</td>
<td>3-CHLORO-4-METHYLPHENYL ISOCYANATE, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2237</td>
<td>CHLORONITROANILINES</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08</td>
<td>LP02</td>
<td>B3 T1 TP33</td>
</tr>
<tr>
<td>2238</td>
<td>CHLOROTOLUENES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2 TP1</td>
</tr>
<tr>
<td>2239</td>
<td>CHLOROTOLIDINES, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08</td>
<td>LP02</td>
<td>B3 T1 TP33</td>
</tr>
<tr>
<td>2240</td>
<td>CHROMOSULPHURIC ACID</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td></td>
<td>T10 TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>2241</td>
<td>CYCLOHEPTANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
<td>T4 TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2242</td>
<td>CYCLOHEPTENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2243</td>
<td>CYCLOHEXYL ACETATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2244</td>
<td>CYCLOPENTANOL</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2245</td>
<td>CYCLOPENTANONE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2246</td>
<td>CYCLOPENTENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>B8</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2247</td>
<td>n-DECANE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2248</td>
<td>DI-n-BUTYLAMINE</td>
<td>8</td>
<td>3</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>2249</td>
<td>DICHLORODIMETHYL ETHER, SYMMETRICAL</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2250</td>
<td>DICHLOROPHENYL ISOCYANATES</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2251</td>
<td>BICYCLO[2.2.1]HEPTA-2,5-DIENE, STABILISED (2,5-NORBORNADIENE, STABILISED)</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2252</td>
<td>1,2-DIMETHYOXYETHANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2253</td>
<td>N,N-DIMETHYLANILINE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2254</td>
<td>MATCHES, FUSEE</td>
<td>4.1</td>
<td>III</td>
<td>293</td>
<td>5 kg</td>
<td>E0</td>
<td>P407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2256</td>
<td>CYCLOHEXENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2257</td>
<td>POTASSIUM</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403 IBC04</td>
<td>B1</td>
<td>T9</td>
<td>TP7 TP33</td>
</tr>
<tr>
<td>2258</td>
<td>1,2-PROPYLENEDIAMINE</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2259</td>
<td>TRIETHYLENETETRAMINE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2260</td>
<td>TRIPROPYLAMINE</td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2261</td>
<td>XYLENOLS, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2262</td>
<td>DIMETHYLCARBAMOYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2263</td>
<td>DIMETHYLCYCLOHEXANES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2264</td>
<td>N,N-DIMETHYL-CYCLOHEXYLAMINE</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2265</td>
<td>N,N-DIMETHYLFORMAMIDE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2266</td>
<td>DIMETHYL-N-PROPYLAMINE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2267</td>
<td>DIMETHYL THIOPHOSPHORYL CHLORIDE</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excluded Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>2269</td>
<td>3,3'-IMINODIPROPYLAMINE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td></td>
<td>T4</td>
<td>TP2</td>
</tr>
<tr>
<td>2270</td>
<td>ETHYLAMINE, AQUEOUS SOLUTION with not less than 50% but not more than 70% ethylamine</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td>2271</td>
<td>ETHYL AMYL KETONE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td></td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2272</td>
<td>N-ETHYLANILINE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td></td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2273</td>
<td>2-ETHYLANILINE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td></td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2274</td>
<td>N-ETHYL-N-BENZYLAMINE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td></td>
<td>T4</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2275</td>
<td>2-ETHYLBUTANOL</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2276</td>
<td>2-ETHYLHEXYLAMINE</td>
<td>3 8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2277</td>
<td>ETHYL METHACRYLATE, STABILISED</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2278</td>
<td>n-HEPTENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2279</td>
<td>HEXACHLOROBUTADIENE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2280</td>
<td>HEXAMETHYLENEDIAMINE, SOLID</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2281</td>
<td>HEXAMETHYLENE- DIISOCYANATE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td>TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2282</td>
<td>HEXANOLS</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2283</td>
<td>ISOBUTYL METHACRYLATE, STABILISED</td>
<td>3</td>
<td>III</td>
<td>386</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2284</td>
<td>ISOBUTYRONITRILE</td>
<td>3</td>
<td>6.1</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2, TP13</td>
<td></td>
</tr>
<tr>
<td>2285</td>
<td>ISOCYANATOBENZO-TRIFLUORIDES</td>
<td>6.1</td>
<td>3</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2286</td>
<td>PENTAMETHYLHEPTANE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2287</td>
<td>ISOHEPTENES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2288</td>
<td>ISOHEXENES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>B8</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2289</td>
<td>ISOPHORONEDIAMINE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2290</td>
<td>ISOPHORONE DIISOCYANATE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>T4</td>
<td>TP2</td>
</tr>
<tr>
<td>2291</td>
<td>LEAD COMPOUND, SOLUBLE, N.O.S.</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P002</td>
<td>IBC03</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2293</td>
<td>4-METHOXY-4-METHYLPENTAN-2-ONE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2294</td>
<td>N-METHYLANILINE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2295</td>
<td>METHYL CHLOROACETATE</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2296</td>
<td>METHYLCYCLOHEXANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2297</td>
<td>METHYLCYCLOHEXANONE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2298</td>
<td>METHYLCYCLOPENTANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2299</td>
<td>METHYL DICHLOROACETATE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2300</td>
<td>2-METHYL-5-ETHYL Pyridine</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2301</td>
<td>2-METHYL FURAN</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2302</td>
<td>5-METHYL HEXAN-2-ONE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2303</td>
<td>ISOPROPENYLBENZENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2304</td>
<td>NAPHTHALENE, MOLTEN</td>
<td>4.1</td>
<td>III</td>
<td>0</td>
<td>E0</td>
<td>None</td>
<td>T1</td>
<td>TP3</td>
<td></td>
</tr>
<tr>
<td>2305</td>
<td>NITROBENZENESULPHONIC ACID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2306</td>
<td>NITROBENZOTRIFLUORIDES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2307</td>
<td>3-NITRO-4-CHLOROBENZOTRIFLUORIDE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2308</td>
<td>NITROSYLSULPHURIC ACID, LIQUID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2309</td>
<td>OCTADIENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2310</td>
<td>PENTANE-2,4-DIONE</td>
<td>3</td>
<td>6.1</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepied Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2311</td>
<td>PHENETIDINES</td>
<td>6.1</td>
<td>III</td>
<td>279</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>T4</td>
</tr>
<tr>
<td>2312</td>
<td>PHENOL, MOLTEN</td>
<td>6.1</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>None</td>
<td>None</td>
<td>T7</td>
<td>TP3</td>
</tr>
<tr>
<td>2313</td>
<td>PICOLINES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T4</td>
</tr>
<tr>
<td>2315</td>
<td>POLYCHLORINATED BIPHENYLS, LIQUID</td>
<td>9</td>
<td>II</td>
<td>305</td>
<td>1L</td>
<td>E2</td>
<td>P906</td>
<td>IBC02</td>
<td>T4</td>
</tr>
<tr>
<td>2316</td>
<td>SODIUM CUPROCYANIDE, SOLID</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td>2317</td>
<td>SODIUM CUPROCYANIDE SOLUTION</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td></td>
<td>T14</td>
<td>TP2</td>
</tr>
<tr>
<td>2318</td>
<td>SODIUM HYDROSULPHIDE with less than 25% water of crystallisation</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410</td>
<td>IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td>2319</td>
<td>TERPENE HYDROCARBONS, N.O.S.</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T4</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2320</td>
<td>TETRAETHYLENEPENTAMINE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2321</td>
<td>TRICHLOROBENZENES, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2322</td>
<td>TRICHLOROBUTENE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2323</td>
<td>TRIETHYL PHOSPHITE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2324</td>
<td>TRIISOBUTYLENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2325</td>
<td>1,3,5-TRIMETHYL BENZENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5</td>
</tr>
<tr>
<td>2326</td>
<td>TRIMETHYL-CYCLOHEXYLAMINE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td></td>
<td>P001</td>
<td>IBC03</td>
<td>T4</td>
</tr>
<tr>
<td>2327</td>
<td>TRIMETHYL-HEXAMETHYLENEDIAMINES</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td></td>
<td>P001</td>
<td>IBC03</td>
<td>T4</td>
</tr>
<tr>
<td>2328</td>
<td>TRIMETHYLHEXA-METHYLENEDIISOCYANATE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td></td>
<td>P001</td>
<td>IBC03</td>
<td>T4</td>
</tr>
<tr>
<td>2329</td>
<td>TRIMETHYL PHOSPHITE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td></td>
<td>P001</td>
<td>IBC03</td>
<td>T2</td>
</tr>
<tr>
<td>2330</td>
<td>UNDECANE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td></td>
<td>P001</td>
<td>IBC03</td>
<td>T2</td>
</tr>
<tr>
<td>2331</td>
<td>ZINC CHLORIDE, ANHYDROUS</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td></td>
<td></td>
<td>P002</td>
<td>IBC08</td>
<td>B3</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2332</td>
<td>ACETALDEHYDE OXIME</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2333</td>
<td>ALLYL ACETATE</td>
<td>3</td>
<td>6.1</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td>TP13</td>
</tr>
<tr>
<td>2334</td>
<td>ALLYLAMINE</td>
<td>6.1</td>
<td>3 I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2335</td>
<td>ALLYL ETHYL ETHER</td>
<td>3</td>
<td>6.1</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td>TP13</td>
</tr>
<tr>
<td>2336</td>
<td>ALLYL FORMATE</td>
<td>3</td>
<td>6.1</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>2337</td>
<td>PHENYL MERCAPTAN</td>
<td>6.1</td>
<td>3 I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2338</td>
<td>BENZOTRIFLUORIDE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2339</td>
<td>2-BROMOBUTANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Special Provisions</td>
<td>Packagings & IBCs</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>2340</td>
<td>2-BROMOETHYL ETHYL ETHER</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2341</td>
<td>1-BROMO-3-METHYLBUTANE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2342</td>
<td>BROMOMETHYLPROPANES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2343</td>
<td>2-BROMOPENTANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2344</td>
<td>BROMOPROPANES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2345</td>
<td>3-BROMOPROPYNE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2346</td>
<td>BUTANEDIONE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>20.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>2347</td>
<td>BUTYL MERCAPTAN</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2348</td>
<td>BUTYL ACRYLATES, STABILISED</td>
<td>3</td>
<td>III</td>
<td>386</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2350</td>
<td>BUTYL METHYL ETHER</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2351</td>
<td>BUTYL NITRITES</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2352</td>
<td>BUTYL VINYL ETHER, STABILISED</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2353</td>
<td>BUTYRYL CHLORIDE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2354</td>
<td>CHLOROMETHYL ETHYL ETHER</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1 TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Hazard Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Instructions</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2356</td>
<td>2-CHLOROPROPAINE</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
<td>TP13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2357</td>
<td>CYCLOHEXYLAMINE</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2358</td>
<td>CYCLOOCTATETRAENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2359</td>
<td>DIALLYLAMINE</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC99</td>
<td>T7</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2360</td>
<td>DIALYL ETHER</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1 TP13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2361</td>
<td>DIISOBUTYLAMINE</td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2362</td>
<td>1,1-DICHLOROETHANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2363</td>
<td>ETHYL MERCAPTAN</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T11</td>
<td>TP2 TP13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2364</td>
<td>n-PROPYLENETHENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2366</td>
<td>DIETHYL CARBONATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2367</td>
<td>ALPHA-METHYLVALERAL-DEHYDE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2368</td>
<td>ALPHA-PINENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2370</td>
<td>1-HEXENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2371</td>
<td>ISOPENTENES</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2372</td>
<td>1,2-DI-(DIMETHYLAMINO) ETHANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2373</td>
<td>DIETHOXYMETHANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2374</td>
<td>3,3-DIETHOXYPROPENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2375</td>
<td>DIETHYL SULPHIDE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1, TP13</td>
<td></td>
</tr>
<tr>
<td>2376</td>
<td>2,3-DIHYDROPYRAN</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2377</td>
<td>1,1-DIMETHOXYETHANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2378</td>
<td>2-DIMETHYLAMINOACETONITRILE</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td>2379</td>
<td>1,3-DIMETHYLBUTYLAMINE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td>2380</td>
<td>DIMETHYLDIETHOXYXILANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2381</td>
<td>DIMETHYL DISULPHIDE</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>2382</td>
<td>DIMETHYLHYDRAZINE, SYMMETRICAL</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2383</td>
<td>DIPROPYLAMINE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td>2384</td>
<td>DI-n-PROPYL ETHER</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2385</td>
<td>ETHYL ISOBUTYRATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2386</td>
<td>1-ETHYLPIPERIDINE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td>2387</td>
<td>FLUOROBENZENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2388</td>
<td>FLUOROTOLUENES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2389</td>
<td>FURAN</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T12</td>
<td>TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>2390</td>
<td>2-IODOBUTANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2391</td>
<td>IODOMETHYLPROPANES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2392</td>
<td>IODOPROPANES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2393</td>
<td>ISOBUTYL FORMATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2394</td>
<td>ISOBUTYL PROPIONATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2395</td>
<td>ISOBUTYRYL CHLORIDE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2396</td>
<td>METHACRYLALDEHYDE, STABILISED</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>2397</td>
<td>3-METHYLIBUTAN-2-ONE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2398</td>
<td>METHYL tert-BUTYL ETHER</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2399</td>
<td>1-METHYLPiperidine</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>METHYL ISOVALERATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2401</td>
<td>PIPERIDINE</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2402</td>
<td>PROPANETHIOLS</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td>TP13</td>
</tr>
<tr>
<td>2403</td>
<td>ISOPROPENYL ACETATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2404</td>
<td>PROPIONITRILE</td>
<td>3</td>
<td>6.1</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td>TP13</td>
</tr>
<tr>
<td>2405</td>
<td>ISOPROPYL BUTYRATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2406</td>
<td>ISOPROPYL ISOBUTYRATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2407</td>
<td>ISOPROPYL CHLOROFORMATE</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2409</td>
<td>ISOPROPYL PROPIONATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2410</td>
<td>1,2,3,6-TETRAHYDROPYRIDINE</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2411</td>
<td>BUTYRONITRILE</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7 TP1 TP13</td>
</tr>
<tr>
<td>2412</td>
<td>TETRAHYDROTHIOPHENE</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2413</td>
<td>TETRAPROPYL ORTHOTITANATE</td>
<td>3</td>
<td>III</td>
<td></td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2414</td>
<td>THIOPHENE</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2416</td>
<td>TRIMETHYL BORATE</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7 TP1</td>
</tr>
<tr>
<td>2417</td>
<td>CARBONYL FLUORIDE</td>
<td>2.3</td>
<td>8</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>2418</td>
<td>SULPHUR TETRAFLUORIDE</td>
<td>2.3</td>
<td>8</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>2419</td>
<td>BROMOTRIFLUOROETHYLENE</td>
<td>2.1</td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>2420</td>
<td>HEXAFLUOROACETONE</td>
<td>2.3</td>
<td>8</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2421</td>
<td>NITROGEN TRIOXIDE</td>
<td>2.3</td>
<td>5.1</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2422</td>
<td>OCTAFLUOROBUT-2-ENE (REFRIGERANT GAS R1318)</td>
<td>2.2</td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2424</td>
<td>OCTAFLUOROPROPANE (REFRIGERANT GAS R218)</td>
<td>2.2</td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td>T50</td>
</tr>
<tr>
<td>2426</td>
<td>AMMONIUM NITRATE, LIQUID (hot concentrated solution)</td>
<td>5.1</td>
<td></td>
<td></td>
<td>252</td>
<td>0</td>
<td>E0</td>
<td>None</td>
<td>T7 TP1 TP16 TP17</td>
</tr>
<tr>
<td>2427</td>
<td>POTASSIUM CHLORATE, AQUEOUS SOLUTION</td>
<td>5.1</td>
<td></td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td></td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P504 IBC02</td>
<td>T4</td>
</tr>
<tr>
<td>2428</td>
<td>SODIUM CHLORATE, AQUEOUS SOLUTION</td>
<td>5.1</td>
<td></td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td></td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P504 IBC02</td>
<td>T4</td>
</tr>
<tr>
<td>2429</td>
<td>CALCIUM CHLORATE, AQUEOUS SOLUTION</td>
<td>5.1</td>
<td></td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2430</td>
<td>ALKYLPHENOLS, SOLID, N.O.S. (including C2-C12 homologues)</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>2431</td>
<td>ANISIDINES</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2432</td>
<td>N,N-DIETHYLANILINE</td>
<td>6.1</td>
<td>III</td>
<td>279</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2433</td>
<td>CHLORONITROTOLUENES, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>包装容器</th>
<th>Special Packing Instructions</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2434</td>
<td>DIBENZYLDICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td>TP7</td>
<td>TP13</td>
</tr>
<tr>
<td>2435</td>
<td>ETHYLPHENYL-DICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td>TP7</td>
<td>TP13</td>
</tr>
<tr>
<td>2436</td>
<td>THIOACETIC ACID</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2437</td>
<td>METHYLPHENYL DICHLOROSILANE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T10</td>
<td>TP2</td>
<td>TP7</td>
<td>TP13</td>
</tr>
<tr>
<td>2438</td>
<td>TRIMETHYLACETYL CHLORIDE</td>
<td>6.1</td>
<td>3</td>
<td>0</td>
<td>E0</td>
<td>P001 IBC08</td>
<td>T14</td>
<td>TP2</td>
<td>TP13</td>
<td></td>
</tr>
<tr>
<td>2439</td>
<td>SODIUM HYDROGEN-DIFLUORIDE</td>
<td>8</td>
<td>II</td>
<td>1kg</td>
<td>E2</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2440</td>
<td>STANNIC CHLORIDE PENTAHYDRATE</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02 B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Special Provisions & IBCs</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2441</td>
<td>TITANIUM TRICHLORIDE, PYROPHORIC or TITANIUM TRICHLORIDE MIXTURE, PYROPHORIC</td>
<td>4.2</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2442</td>
<td>TRICHLOROACETYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2443</td>
<td>VANADIUM OXYTRICHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P001</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2444</td>
<td>VANADIUM TETRACHLORIDE</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P802</td>
<td>T10</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2446</td>
<td>NITROCREOSOLS, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2447</td>
<td>PHOSPHORUS, WHITE, MOLTEN</td>
<td>4.2</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>None</td>
<td>T21</td>
<td>TP3</td>
<td>TP7</td>
</tr>
<tr>
<td>2448</td>
<td>SULPHUR, MOLTEN</td>
<td>4.1</td>
<td>III</td>
<td>0</td>
<td>E0</td>
<td>IBC01</td>
<td>T1</td>
<td>TP3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2451</td>
<td>NITROGEN TRIFLUORIDE</td>
<td>2.2</td>
<td>5.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2452</td>
<td>ETHYLACETYLENE, STABILISED</td>
<td>2.1</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2453</td>
<td>ETHYL FLUORIDE (REFRIGERANT GAS R161)</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2454</td>
<td>METHYL FLUORIDE (REFRIGERANT GAS R41)</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2455</td>
<td>METHYL NITRITE</td>
<td>2.2</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packaging Instruction</th>
<th>Special Packing Instructions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2456</td>
<td>2-CHLOROPROPENE</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2457</td>
<td>2,3-DIMETHYL BUTANE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001, IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2458</td>
<td>HEXADIENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001, IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2459</td>
<td>2-METHYL-1-BUTENE</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2460</td>
<td>2-METHYL-2-BUTENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001, IBC02</td>
<td>B8</td>
<td>T7</td>
<td>TP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2461</td>
<td>METHYL PENTADIENE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001, IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2463</td>
<td>ALUMINIUM HYDRIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2464</td>
<td>BERYLLIUM NITRATE</td>
<td>5.1</td>
<td>6.1</td>
<td>1 kg</td>
<td>E2</td>
<td>P002, IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2465</td>
<td>DICHLOROISOCYANURIC ACID, DRY or DICHLOROISOCYANURIC ACID SALTS</td>
<td>5.1</td>
<td>II</td>
<td>135</td>
<td>1 kg</td>
<td>E2</td>
<td>P002, IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2466</td>
<td>POTASSIUM SUPEROXIDE</td>
<td>5.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P503, IBC06</td>
<td>B1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2468</td>
<td>TRICHLOROISOCYANURIC ACID, DRY</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2469</td>
<td>ZINC BROMATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2470</td>
<td>PHENYLACETONITRILE, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2471</td>
<td>OSMIUM TETROXIDE</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>PP30 B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td>2473</td>
<td>SODIUM ARSANILATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2474</td>
<td>THIOPHOSGENE</td>
<td>6.1</td>
<td>I</td>
<td>279 354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2475</td>
<td>VANADIUM TRICHLORIDE</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>2477</td>
<td>METHYL ISOTHIOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2478</td>
<td>ISOCYANATES, FLAMMABLE, TOXIC, N.O.S or ISOCYANATE SOLUTION, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
<td>TP1 TP13 TP28</td>
</tr>
<tr>
<td>2480</td>
<td>METHYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T22</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2481</td>
<td>ETHYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2482</td>
<td>n-PROPYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2483</td>
<td>ISOPROPYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2484</td>
<td>tert-BUTYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Special Provisions Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2485</td>
<td>n-BUTYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20 TP2 TP13</td>
</tr>
<tr>
<td>2486</td>
<td>ISOBUTYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20 TP2 TP13</td>
</tr>
<tr>
<td>2487</td>
<td>PHENYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20 TP2 TP13</td>
</tr>
<tr>
<td>2488</td>
<td>CYCLOHEXYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20 TP2 TP13</td>
</tr>
<tr>
<td>2490</td>
<td>DICHLOROISOPROPYL ETHER</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>100 ml</td>
<td></td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7 TP2</td>
</tr>
<tr>
<td>2491</td>
<td>ETHANOLAMINE or ETHANOLAMINE SOLUTION</td>
<td>8</td>
<td>III</td>
<td></td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2493</td>
<td>HEXAMETHYLENEIMINE</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td></td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7 TP1</td>
</tr>
<tr>
<td>2495</td>
<td>IODINE PENTAFLUORIDE</td>
<td>5.1</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td></td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ref 3.1.2</td>
</tr>
<tr>
<td>2496</td>
<td>PROPIONIC ANHYDRIDE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2498</td>
<td>1,2,3,6-TETRAHYDROBENZALDEHYDE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2 TP1</td>
</tr>
<tr>
<td>2501</td>
<td>TRIS-(1-AZIRIDINYL) PHOSPHINE OXIDE SOLUTION</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
<td>T7 TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2502</td>
<td>VALERYL CHLORIDE</td>
<td>8</td>
<td>3</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
<td>T7 TP2</td>
</tr>
<tr>
<td>2503</td>
<td>ZIRCONIUM TETRACHLORIDE</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08 LP02</td>
<td></td>
<td>B3 T1 TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class</th>
<th>Division</th>
<th>Subsidiary</th>
<th>Hazard</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2504</td>
<td>TETRABROMOETHANE</td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td>P001 IBC03 LP01</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2505</td>
<td>AMMONIUM FLUORIDE</td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>5 kg</td>
<td>E1</td>
<td></td>
<td>P002 IBC08 LP02</td>
<td>B3 T1 TP33</td>
</tr>
<tr>
<td>2506</td>
<td>AMMONIUM HYDROGEN SULPHATE</td>
<td>8</td>
<td>II</td>
<td></td>
<td>1 kg</td>
<td>E2</td>
<td></td>
<td>P002 IBC08</td>
<td>B2 B4 T3 TP33</td>
</tr>
<tr>
<td>2507</td>
<td>CHLOROPLATINIC ACID, SOLID</td>
<td>8</td>
<td>III</td>
<td></td>
<td>5 kg</td>
<td>E1</td>
<td></td>
<td>P002 IBC08 LP02</td>
<td>B3 T1 TP33</td>
</tr>
<tr>
<td>2508</td>
<td>MOLYBDENUM PENTACHLORIDE</td>
<td>8</td>
<td>III</td>
<td></td>
<td>5 kg</td>
<td>E1</td>
<td></td>
<td>P002 IBC08 LP02</td>
<td>B3 T1 TP33</td>
</tr>
<tr>
<td>2509</td>
<td>POTASSIUM HYDROGEN SULPHATE</td>
<td>8</td>
<td>II</td>
<td></td>
<td>1 kg</td>
<td>E2</td>
<td></td>
<td>P002 IBC08</td>
<td>B2 B4 T3 TP33</td>
</tr>
</tbody>
</table>

Ref: 3.1.2

2.0 2.0 2.0.1 3.3 3.4 3.5 4.1.4 4.1.4 4.2.5 4.3.2 4.2.5
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511</td>
<td>2-CHLOROPROPIONIC ACID</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T4 TP2</td>
</tr>
<tr>
<td>2512</td>
<td>AMINOPHENOLS (o-, m-, p-)</td>
<td>6.1</td>
<td>III</td>
<td>279</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08 LP02</td>
<td>B3 T1 TP33</td>
</tr>
<tr>
<td>2513</td>
<td>BROMOACETYL BROMIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>5 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T8 TP2</td>
</tr>
<tr>
<td>2514</td>
<td>BROMOBENZENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T2 TP1</td>
<td></td>
</tr>
<tr>
<td>2515</td>
<td>BROMOFORM</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T4 TP1</td>
<td></td>
</tr>
<tr>
<td>2516</td>
<td>CARBON TETRABROMIDE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08 LP02</td>
<td>B3 T1 TP33</td>
<td></td>
</tr>
</tbody>
</table>

Ref: 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2517</td>
<td>1-CHLORO-1,1-DIFLUOROETHANE (REFRIGERANT GAS R142b)</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2518</td>
<td>1,5,9-CYCLODODECATRIENE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2520</td>
<td>CYCLOOCTADIENES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2521</td>
<td>DIKETENE, STABILISED</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354 386</td>
<td>0 E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2522</td>
<td>2-DIMETHYLAMINOETHYL METHACRYLATE, STABILISED</td>
<td>6.1</td>
<td>II</td>
<td>386 100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2524</td>
<td>ETHYL ORTHOFORMATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2525</td>
<td>ETHYL OXALATE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2526</td>
<td>FURFURYLAMINE</td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2527</td>
<td>ISOBUTYL ACRYLATE, STABILISED</td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>386 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2528</td>
<td>ISOBUTYL ISOBUTYRATE</td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2529</td>
<td>ISOBUTYRIC ACID</td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2531</td>
<td>METHACRYLIC ACID, STABILISED</td>
<td>8</td>
<td>8</td>
<td>III</td>
<td>386 L</td>
<td>E1</td>
<td>P001 IBC02 LP01</td>
<td>T7</td>
<td>TP2 TP18 TP30</td>
</tr>
<tr>
<td>2533</td>
<td>METHYL TRICHLOROACETATE</td>
<td>6.1</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2534</td>
<td>METHYLCHLOROSILANE</td>
<td>2.3</td>
<td>2.1</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2535</td>
<td>4-METHYL MORPHOLINE (N-METHYL MORPHOLINE)</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td>2536</td>
<td>METHYL TETRAHYDROFURAN</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2538</td>
<td>NITRONAPHTHALENE</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2541</td>
<td>TERPINOLENE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2542</td>
<td>TRIBUTYLAMINE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2545</td>
<td>HAFNIUM POWDER, DRY</td>
<td>4.2</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2546</td>
<td>TITANIUM POWDER, DRY</td>
<td>4.2</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2547</td>
<td>SODIUM SUPEROXIDE</td>
<td>5.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P503</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2548</td>
<td>CHLORINE PENTAFLUORIDE</td>
<td>2.3</td>
<td>5.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2552</td>
<td>HEXAFLUOROACETONE HYDRATE, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2554</td>
<td>METHYLALLYL CHLORIDE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
<td>TP13</td>
<td></td>
</tr>
<tr>
<td>2555</td>
<td>NITROCELLULOSE WITH WATER (not less than 25% water, by mass)</td>
<td>4.1</td>
<td>II</td>
<td>394</td>
<td>E0</td>
<td>P406</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5 4.3.2 4.2.5</td>
</tr>
<tr>
<td>2556</td>
<td>NITROCELLULOSE WITH ALCOHOL (not less than 25% alcohol, by mass, and not more than 12.6% nitrogen, by dry mass)</td>
<td>4.1</td>
<td>II</td>
<td>395</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2557</td>
<td>NITROCELLULOSE, with not more than 12.6% nitrogen, by dry mass, MIXTURE WITH or WITHOUT PLASTICISER, WITH or WITHOUT PIGMENT</td>
<td>4.1</td>
<td>II</td>
<td>241-394</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2558</td>
<td>EPIBROMOHYDRIN</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2560</td>
<td>2-METHYL-PENTAN-2-OL</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2561</td>
<td>3-METHYL-1-BUTENE</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2564</td>
<td>TRICHLOROACETIC ACID SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223-5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ref</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>2565</td>
<td>DICYCLOHEXYLAMINE</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2567</td>
<td>SODIUM PENTACHLORO-PHenate</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2570</td>
<td>CADMIUM COMPOUND</td>
<td>6.1</td>
<td>I</td>
<td>274 0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274 500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274 5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>2571</td>
<td>ALKYSULPHURIC ACIDS</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td>2572</td>
<td>PHENYLHYDRAZINE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2573</td>
<td>THALLIUM CHLORATE</td>
<td>5.1</td>
<td>6.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>B2</td>
<td>P002 IBC06</td>
<td>T3 TP33</td>
</tr>
<tr>
<td>2574</td>
<td>TRICRESYL PHOSPHATE with more than 3% ortho isomer</td>
<td>6.1</td>
<td></td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2576</td>
<td>PHOSPHORUS OXYBROMIDE, MOLTEN</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td></td>
<td>E0</td>
<td>None</td>
<td>T7</td>
<td>TP3 TP13</td>
</tr>
<tr>
<td>2577</td>
<td>PHENYLACETYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td></td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2578</td>
<td>PHOSPHORUS TRIOXIDE</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td></td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>TP33</td>
</tr>
<tr>
<td>2579</td>
<td>PIPERAZINE</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td></td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>2580</td>
<td>ALUMINIUM BROMIDE SOLUTION</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581</td>
<td>ALUMINIUM CHLORIDE SOLUTION</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2582</td>
<td>FERRIC CHLORIDE SOLUTION</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2583</td>
<td>ALKYSULPHONIC ACIDS, SOLID or ARYLSULPHONIC ACIDS, SOLID with more than 5% free sulphuric acid</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2584</td>
<td>ALKYSULPHONIC ACIDS, LIQUID or ARYLSULPHONIC ACIDS, LIQUID with more than 5% free sulphuric acid</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>2585</td>
<td>ALKYSULPHONIC ACIDS, SOLID or ARYLSULPHONIC ACIDS, SOLID with not more than 5% free sulphuric acid</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2586</td>
<td>ALKYSULPHONIC ACIDS, LIQUID or ARYLSULPHONIC ACIDS, LIQUID with not more than 5% free sulphuric acid</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2587</td>
<td>BENZOQUINONE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
<tr>
<td>2588</td>
<td>PESTICIDE, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC99</td>
<td>T6 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2589</td>
<td>VINYL CHLOROACETATE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2590</td>
<td>ASBESTOS, CHRYSOTILE</td>
<td>9</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>PP37 B2, B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>2591</td>
<td>XENON, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P023</td>
<td>T75</td>
<td>TP5</td>
</tr>
<tr>
<td>2599</td>
<td>CHLOROTRIFLUOROMETHANE AND TRIFLUOROMETHANE AZEOTROPIC MIXTURE with approximately 60% chlorotrifluoromethane (REFRIGERANT GAS R 503)</td>
<td>2.2</td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2601</td>
<td>CYCLOBUTANE</td>
<td>2.1</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2602</td>
<td>DICHLORODIFLUORO-METHANE AND DIFLUROETHANE AZEOTROPIC MIXTURE with approximately 74% dichlorodifluoromethane (REFRIGERANT GAS R 500)</td>
<td>2.2</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2603</td>
<td>CYCLOHEPTATRIENE</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1 TP13</td>
</tr>
<tr>
<td>2604</td>
<td>BORON TRIFLUORIDE DIETHYL ETHERATE</td>
<td>8</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
<td>TP2</td>
</tr>
<tr>
<td>2605</td>
<td>METHOXYMETHYL ISOCYANATE</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
</tr>
<tr>
<td>2606</td>
<td>METHYL ORTHOSILICATE</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
</tr>
<tr>
<td>2607</td>
<td>ACROLEIN DIMER, STABILISED</td>
<td>3</td>
<td>III</td>
<td>386</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>2608</td>
<td>NITROPROPANES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2609</td>
<td>TRIALLYL BORATE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td></td>
<td>IBC03 LP01</td>
<td></td>
</tr>
<tr>
<td>2610</td>
<td>TRIALLYLAMINE</td>
<td>3</td>
<td>8</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td></td>
<td>IBC03</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2611</td>
<td>PROPYLENE CHLOROHYDRIN</td>
<td>6.1</td>
<td>3</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td></td>
<td>IBC02</td>
<td>T7 TP2 TP13</td>
</tr>
<tr>
<td>2612</td>
<td>METHYL PROPYL ETHER</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td></td>
<td>IBC02</td>
<td>B8 T7 TP2</td>
</tr>
<tr>
<td>2614</td>
<td>METHALLYL ALCOHOL</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td></td>
<td>IBC03 LP01</td>
<td>T2 TP1</td>
</tr>
<tr>
<td>2615</td>
<td>ETHYL PROPYL ETHER</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td></td>
<td>IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2616</td>
<td>TRIISOPROPYL BORATE</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td></td>
<td>IBC02</td>
<td>T4 TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
</tr>
<tr>
<td>2617</td>
<td>METHYLCYCLOHEXANOLS, flammable</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2</td>
</tr>
<tr>
<td>2618</td>
<td>VINYLTOUENES, STABILISED</td>
<td>3</td>
<td>III</td>
<td>386</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
</tr>
<tr>
<td>2619</td>
<td>BENZYLDIMETHYLAMINE</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>2620</td>
<td>AMYL BUTYRATES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2</td>
</tr>
<tr>
<td>2621</td>
<td>ACETYL METHYL CARBINOL</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5</td>
</tr>
<tr>
<td>2622</td>
<td>GLYCIDALDEHYDE</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>B8</td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td>2623</td>
<td>FIRELIGHTERS, SOLID with flammable liquid</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2624</td>
<td>MAGNESIUM SILICIDE</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2626</td>
<td>CHLORIC ACID, AQUEOUS SOLUTION with not more than 10% chloric acid</td>
<td>5.1</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>P504</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2627</td>
<td>NITRITES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>103 274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2628</td>
<td>POTASSIUM FLUOROACETATE</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2629</td>
<td>SODIUM FLUOROACETATE</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2630</td>
<td>SELENATES or SELENITES</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td>2642</td>
<td>FLUOROACETIC ACID</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packing Group & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2643</td>
<td>METHYL BROMOACETATE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2644</td>
<td>METHYL IODIDE</td>
<td>6.1</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>2645</td>
<td>PHENACYL BROMIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2646</td>
<td>HEXACHLOROCYCLO-PENTADIENE</td>
<td>6.1</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>2647</td>
<td>MALONONITRILE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2648</td>
<td>1,2-DIBROMOBUTAN-3-ONE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2649</td>
<td>1,3-DICHLOROACETONE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2650</td>
<td>1,1-DICHLORO-1-NITROETHANE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2651</td>
<td>4,4’-DIAMINODIPHENYL-METHANE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2653</td>
<td>BENZYL IODIDE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2655</td>
<td>POTASSIUM FLUOROSILICATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2656</td>
<td>QUINOLINE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2657</td>
<td>SELENIUM DISULPHIDE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2659</td>
<td>SODIUM CHLOROACETATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2660</td>
<td>NITROTOLUIDINES (MONO)</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2661</td>
<td>HEXACHLOROACETONE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2664</td>
<td>DIBROMOMETHANE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2667</td>
<td>BUTYLTOULUenes</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2668</td>
<td>CHLOROACETONITRILE</td>
<td>6.1</td>
<td>3</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP13</td>
<td></td>
</tr>
<tr>
<td>2669</td>
<td>CHLOROCRESOLS SOLUTION</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td></td>
<td>4.3.2</td>
</tr>
<tr>
<td></td>
<td>4.2.5</td>
</tr>
</tbody>
</table>

Ref 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2670</td>
<td>CYANURIC CHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2671</td>
<td>AMINOPYRIDINES (o-, m-, p,)</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2672</td>
<td>AMMONIA SOLUTION, relative density between 0.880 and 0.957 at 15°C in water, with more than 10% but not more than 35% ammonia</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01 B11</td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td>2673</td>
<td>2-AMINO-4-CHLOROPHENOL</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2674</td>
<td>SODIUM FLUOROSILICATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02 B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2676</td>
<td>STIBINE</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2677</td>
<td>RUBIDIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02 T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01 T4</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2678</td>
<td>RUBIDIUM HYDROXIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2679</td>
<td>LITHIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP2</td>
</tr>
<tr>
<td>2680</td>
<td>LITHIUM HYDROXIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2681</td>
<td>CAESIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2682</td>
<td>CAESIUM HYDROXIDE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2683</td>
<td>AMMONIUM SULPHIDE SOLUTION</td>
<td>8</td>
<td>3 6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC01</td>
<td>T7</td>
<td>TP2 TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>2684</td>
<td>3-DIETHYLAMINO-PROPYLAMINE</td>
<td>3</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2685</td>
<td>N,N-DIETHYLETHYLENE-DIAMINE</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2686</td>
<td>2-DIETHYLAMINOETHANOL</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2687</td>
<td>DICYCLOHEXYLAMMONIUM NITRITE</td>
<td>4.1</td>
<td></td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>2688</td>
<td>1-BROMO-3-CHLOROPROPANE</td>
<td>6.1</td>
<td></td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2689</td>
<td>GLYCEROL alpha-MONOCHLOROHYDRIN</td>
<td>6.1</td>
<td></td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2690</td>
<td>N,n-BUTYLIMIDAZOLE</td>
<td>6.1</td>
<td></td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2691</td>
<td>PHOSPHORUS PENTABROMIDE</td>
<td>8</td>
<td>II</td>
<td></td>
<td>1 kg</td>
<td>E0</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td>2692</td>
<td>BORON TRIBROMIDE</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td></td>
<td>E0</td>
<td>P602</td>
<td></td>
<td>T20</td>
</tr>
<tr>
<td>2693</td>
<td>BISULPHITES, AQUEOUS SOLUTION, N.O.S.</td>
<td>8</td>
<td>III</td>
<td>274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td>T7</td>
</tr>
<tr>
<td>2698</td>
<td>TETRAHYDROPHTHALIC ANHYDRIDES with more than 0.05% of maleic anhydride</td>
<td>8</td>
<td>III</td>
<td>29 169</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>PP14 B3</td>
<td>T1</td>
</tr>
<tr>
<td>2699</td>
<td>TRIFLUOROACETIC ACID</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td></td>
<td>E0</td>
<td>P001</td>
<td></td>
<td>T10</td>
</tr>
<tr>
<td>2705</td>
<td>1-PENTOL</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td></td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2707</td>
<td>DIMETHYLDIOXANES</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td></td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2709</td>
<td>BUTYLBENZENES</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2710</td>
<td>DIPROPYL KETONE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2713</td>
<td>ACRIDINE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2714</td>
<td>ZINC RESINATE</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2715</td>
<td>ALUMINIUM RESINATE</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2716</td>
<td>1,4-BUTYNYEDIOL</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2717</td>
<td>CAMPHOR, synthetic</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2719</td>
<td>BARIUM BROMATE</td>
<td>5.1</td>
<td>6.1</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2720</td>
<td>CHROMIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2721</td>
<td>COPPER CHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2722</td>
<td>LITHIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2723</td>
<td>MAGNESIUM CHLORATE</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2724</td>
<td>MANGANESE NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2725</td>
<td>NICKEL NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2726</td>
<td>NICKEL NITRITE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2727</td>
<td>THALLIUM NITRATE</td>
<td>6.1 5.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2728</td>
<td>ZIRCONIUM NITRATE</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2729</td>
<td>HEXACHLOROBENZENE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2730</td>
<td>NITROANISOLES, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>

Ref: 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2732</td>
<td>NITROBROMOBENZENES, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2733</td>
<td>AMINES, FLAMMABLE, CORROSIVE, N.O.S. or POLYAMINES, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>3</td>
<td>I</td>
<td>274</td>
<td>0 E0</td>
<td>P001 IBC02</td>
<td>T14</td>
<td>TP1 TP27</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2734</td>
<td>AMINES, LIQUID, CORROSIVE, FLAMMABLE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, FLAMMABLE, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0 E0</td>
<td>P001 IBC03</td>
<td>T14</td>
<td>TP2 TP27</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2735</td>
<td>AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0 E0</td>
<td>P001 IBC02</td>
<td>T14</td>
<td>TP2 TP27</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packaging & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2738</td>
<td>N-BUTYLANILINE</td>
<td>6.1</td>
<td>II</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP1 TP28</td>
</tr>
<tr>
<td>2739</td>
<td>BUTYRIC ANHYDRIDE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2740</td>
<td>n-PROPYL CHLOROFORMATE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2741</td>
<td>BARIUM HYPOCHLORITE with more than 22% available chlorine</td>
<td>5.1</td>
<td>6.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>IBC08</td>
<td>B2, B4</td>
</tr>
<tr>
<td>2742</td>
<td>CHLOROFORMATES, TOXIC, CORROSIVE, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC01</td>
</tr>
<tr>
<td>2743</td>
<td>n-BUTYL CHLOROFORMATE</td>
<td>6.1</td>
<td>III</td>
<td>100 ml</td>
<td>E0</td>
<td>P001</td>
<td>IBC01</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2744</td>
<td>CYCLOBUTYL CHLOROFORMATE</td>
<td>6.1</td>
<td>III</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC01</td>
<td>T7</td>
<td>TP2 TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2745</td>
<td>CHLOROMETHYL CHLOROFORMATE</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2746</td>
<td>PHENYL CHLOROFORMATE</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2747</td>
<td>tert-BUTYLCYCLOHEXYL CHLOROFORMATE</td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>2748</td>
<td>2-ETHYLHEXYL CHLOROFORMATE</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>2749</td>
<td>TETRAMETHYSILANE</td>
<td>3</td>
<td>I</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
</tr>
<tr>
<td>2750</td>
<td>1,3-DICHLOROPROPANOL-2</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2751</td>
<td>DIETHYLTHIOPHOSPHORYL CHLORIDE</td>
<td>8</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2752</td>
<td>1,2-EPOXY-3-ETHOXY-PROPANE</td>
<td>3</td>
<td>III</td>
<td></td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Special Provisions</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Special Provisions</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2753</td>
<td>N-ETHYLBENZYLXOLUIDINES, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2754</td>
<td>N-ETHYLTOLUIDINES</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2757</td>
<td>CARBAMATE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2758</td>
<td>CARBAMATE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash</td>
<td>3</td>
<td>6.1</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td>TP13, TP27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>point less than 23°C</td>
<td></td>
<td></td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td></td>
<td>T11</td>
<td>TP2, TP13, TP27</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2759</td>
<td>ARSENICAL PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>2760</td>
<td>ARSENICAL PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23°C</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14 TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11 TP2 TP13 TP27</td>
</tr>
<tr>
<td>2761</td>
<td>ORGANOCHLORINE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
</tr>
<tr>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5</td>
<td>4.3.2</td>
<td>4.2.5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2762</td>
<td>ORGANOCHLORINE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23°C</td>
<td>61, 223, 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002, IBC08, LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.1 I</td>
<td>61, 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td>TP13</td>
<td>TP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.1 II</td>
<td>61, 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001, IBC02</td>
<td>T11</td>
<td>TP2</td>
<td>TP13</td>
<td>TP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2763</td>
<td>TRIAZINE PESTICIDE, SOLID, TOXIC</td>
<td>61, 274</td>
<td>0</td>
<td>E5</td>
<td>P002, IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>II</td>
<td>61, 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002, IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>III</td>
<td>61, 223, 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002, IBC08</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2764</td>
<td>TRIAZINE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3 6.1 I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13, TP27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 6.1 II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP13, TP27</td>
<td></td>
</tr>
<tr>
<td>2771</td>
<td>THIOCARBAMATE PESTICIDE, SOLID, TOXIC</td>
<td>6.1 I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 III</td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2772</td>
<td>THIOCARBAMATE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3 6.1 I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13, TP27</td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary</td>
<td>Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------------------</td>
<td>------------</td>
<td>--------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2775</td>
<td>COPPER BASED PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>2776</td>
<td>COPPER BASED PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td>2777</td>
<td>MERCURY BASED PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>MERCURY BASED PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>II</td>
<td>61 274</td>
<td>500 g E4</td>
<td>6.1</td>
<td>2.0</td>
<td>2.0 20.1.3</td>
<td>3.3 3.4 3.5</td>
<td>4.1.4 4.1.4 4.2.5 4.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III</td>
<td>61 223 274</td>
<td>5 kg E1</td>
<td>6.1</td>
<td>2.0</td>
<td>2.0 20.1.3</td>
<td>3.3 3.4 3.5</td>
<td>4.1.4 4.1.4 4.2.5 4.2.5</td>
</tr>
<tr>
<td>2778</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>MERCURY BASED PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>I</td>
<td>61 274</td>
<td>0 E0</td>
<td>2778</td>
<td>3</td>
<td>6.1</td>
<td>2.0 20.1.3</td>
<td>3.3 3.4 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II</td>
<td>61 223 274</td>
<td>1 L E2</td>
<td>2778</td>
<td>3</td>
<td>6.1</td>
<td>2.0 20.1.3</td>
<td>3.3 3.4 3.5</td>
</tr>
<tr>
<td>2779</td>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, SOLID, TOXIC</td>
<td>I</td>
<td>61 274</td>
<td>0 E5</td>
<td>2779</td>
<td>6.1</td>
<td>I</td>
<td>2.0 20.1.3</td>
<td>3.3 3.4 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II</td>
<td>61 223 274</td>
<td>500 g E4</td>
<td>2779</td>
<td>6.1</td>
<td>II</td>
<td>2.0 20.1.3</td>
<td>3.3 3.4 3.5</td>
</tr>
<tr>
<td>6.1</td>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, SOLID, TOXIC</td>
<td>I</td>
<td>61 223 274</td>
<td>5 kg E1</td>
<td>2779</td>
<td>6.1</td>
<td>III</td>
<td>2.0 20.1.3</td>
<td>3.3 3.4 3.5</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2780</td>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3</td>
<td>6.1</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP13 TP27</td>
</tr>
<tr>
<td>2781</td>
<td>BIPYRIDILUM PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07 B1</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>2782</td>
<td>BIPYRIDILUM PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3</td>
<td>6.1</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2783</td>
<td>ORGANOPHOSPHORUS PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>2784</td>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
</tbody>
</table>

Ref: 3.1.2

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td>2783</td>
<td>ORGANOPHOSPHORUS PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>2784</td>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
</tbody>
</table>

Ref: 3.1.2
Table 3.2.3: Dangerous Goods List

| UN No. | Name and Description | Class or Division | Subsidiary Division | Hazard | Packing Group | Special Provisions | Limited Quantities | Excepted Quantities | Packagings & IBCs | Portable Tanks & Bulk Containers | Ref
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2785</td>
<td>4-THIAPENTANAL</td>
<td>6.1</td>
<td>III</td>
<td>6.1</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td>3.3.2</td>
<td>3.4.1.4</td>
</tr>
<tr>
<td>2786</td>
<td>ORGANOTIN PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07 B1</td>
<td>T6</td>
<td>TP33</td>
<td>4.2.5 4.3.2</td>
<td>4.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2 B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2787</td>
<td>ORGANOTIN PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP13 TP27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2788</td>
<td>ORGANO Tin COMPOUND, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>100 ml</td>
<td>E4</td>
<td>P001, IBC02</td>
<td>T11,</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43</td>
<td>5 L</td>
<td>E1</td>
<td>P001, IBC03, LP01</td>
<td>T7</td>
<td>TP2, TP28</td>
</tr>
<tr>
<td>2789</td>
<td>ACETIC ACID, GLACIAL or ACETIC ACID SOLUTION, more than 80% acid, by mass</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001, IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2790</td>
<td>ACETIC ACID SOLUTION, not less than 50% but not more than 80% acid, by mass</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001, IBC02</td>
<td>T7,</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACETIC ACID SOLUTION, more than 10% and less than 50% acid, by mass</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001, IBC03, LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5</td>
</tr>
<tr>
<td>2793</td>
<td>FERROUS METAL BORINGS, SHAVINGS, TURNINGS or CUTTINGS in a form liable to self-heating</td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>0</td>
<td>E1</td>
<td>P003 IBC08 LP02</td>
<td>PP20 B3, B6</td>
<td>BK2</td>
</tr>
<tr>
<td>2794</td>
<td>BATTERIES, WET, FILLED WITH ACID, electric storage</td>
<td>8</td>
<td>295</td>
<td>1 L</td>
<td>E0</td>
<td>1 L</td>
<td>E0</td>
<td>1 L</td>
<td>E0</td>
</tr>
<tr>
<td>2795</td>
<td>BATTERIES, WET, FILLED WITH ALKALI, electric storage</td>
<td>8</td>
<td>295</td>
<td>1 L</td>
<td>E0</td>
<td>1 L</td>
<td>E0</td>
<td>1 L</td>
<td>E0</td>
</tr>
<tr>
<td>2796</td>
<td>SULPHURIC ACID with not more than 51% acid or BATTERY FLUID, ACID</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>1 L</td>
<td>E2</td>
<td>E2</td>
<td>T8</td>
</tr>
<tr>
<td>2797</td>
<td>BATTERY FLUID, ALKALI</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>1 L</td>
<td>E2</td>
<td>E2</td>
<td>T7</td>
</tr>
<tr>
<td>2798</td>
<td>PHENYLPHOSPHORUS DICHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>2799</td>
<td>PHENYLPHOSPHORUS THIODICHLORIDE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E0</td>
<td>1 L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T7</td>
</tr>
<tr>
<td>2800</td>
<td>BATTERIES, WET, NON-SPILLABLE, electric storage</td>
<td>8</td>
<td>238</td>
<td>1 L</td>
<td>E0</td>
<td>1 L</td>
<td>E0</td>
<td>P003</td>
<td>PP16</td>
</tr>
<tr>
<td>2801</td>
<td>DYE, LIQUID, CORROSIVE, N.O.S. or DYE INTERMEDIATE, LIQUID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP28</td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2802</td>
<td>COPPER CHLORIDE</td>
<td>8</td>
<td>III</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td></td>
<td>P001</td>
<td>IBC02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td>P001</td>
<td>IBC03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T7</td>
</tr>
<tr>
<td>2803</td>
<td>GALLIUM</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td></td>
<td></td>
<td>P002</td>
<td>IBC08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B3</td>
</tr>
<tr>
<td>2805</td>
<td>LITHIUM HYDRIDE, FUSED SOLID</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td></td>
<td></td>
<td>P410</td>
<td>IBC04</td>
</tr>
<tr>
<td>2806</td>
<td>LITHIUM NITRIDE</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td>P403</td>
<td>IBC04</td>
</tr>
<tr>
<td>2807</td>
<td>MAGNETISED MATERIAL</td>
<td>9</td>
<td>III</td>
<td>106</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2809</td>
<td>MERCURY</td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>365</td>
<td>5 kg</td>
<td>E0</td>
<td>P800</td>
<td></td>
</tr>
</tbody>
</table>

Reference: 3.1.2

Note: Not subject to this Code (see SP 106)
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref 3.1.2</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5</td>
</tr>
<tr>
<td>2810 TOXIC LIQUID, ORGANIC, N.O.S.</td>
<td></td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>315</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td>(see 3.2.5 for relevant [AUST.] entries)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03 LP01</td>
<td>T7</td>
</tr>
<tr>
<td>2811 TOXIC SOLID, ORGANIC, N.O.S.</td>
<td></td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>IBC99</td>
<td>T6</td>
<td>TP3</td>
</tr>
<tr>
<td></td>
<td>(see 3.2.5 for relevant [AUST.] entries)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>IBC08 B2, B4</td>
<td>T3</td>
<td>TP3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08 LP02 B3</td>
<td>T1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2812</td>
<td>SODIUM ALUMINATE, SOLID</td>
<td>8</td>
<td>III</td>
<td>106</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td></td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2813</td>
<td>WATER-REACTIVE SOLID, N.O.S.</td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td>T9</td>
<td>TP7</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E2</td>
<td>P410</td>
<td></td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>1 kg</td>
<td>E1</td>
<td>P410</td>
<td>B4</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2814</td>
<td>INFECTIOUS SUBSTANCE, AFFECTING HUMANS</td>
<td>6.2</td>
<td></td>
<td>318</td>
<td>341</td>
<td>0</td>
<td>E0</td>
<td>P620</td>
<td>BK1</td>
<td>BK2</td>
<td></td>
</tr>
<tr>
<td>2815</td>
<td>N-AMINOETHYLPIPERAZINE</td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td></td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2817</td>
<td>AMMONIUM HYDROGEN-DIFLUORIDE SOLUTION</td>
<td>8</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td></td>
<td>T8</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T4</td>
<td>TP1</td>
<td>TP13</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepied Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2818</td>
<td>AMMONIUM POLYSULPHIDE SOLUTION</td>
<td>8</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2 TP13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4 TP1 TP13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2819</td>
<td>AMYL ACID PHOSPHATE</td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2820</td>
<td>BUTYRIC ACID</td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2821</td>
<td>PHENOL SOLUTION</td>
<td>6.1</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2822</td>
<td>2-CHLOROPYRIDINE</td>
<td>6.1</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Ref</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2823</td>
<td>CROTONIC ACID, SOLID</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2826</td>
<td>ETHYL CHLOROTHIOFORMATE</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2829</td>
<td>CAPROIC ACID</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2830</td>
<td>LITHIUM FERROSILICON</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2831</td>
<td>1,1,1-TRICHLOROETHANE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2834</td>
<td>PHOSPHOROUS ACID</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2835</td>
<td>SODIUM ALUMINIUM HYDRIDE</td>
<td>4.3</td>
<td>II</td>
<td>500 g</td>
<td>E0</td>
<td>P410 IBC04</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2837</td>
<td>BISULPHATES, AQUEOUS SOLUTION</td>
<td>8</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td>T7 TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td></td>
<td></td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2838</td>
<td>VINYL BUTYRATE, STABILISED</td>
<td>3</td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2839</td>
<td>ALDOL</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td>T7 TP2</td>
</tr>
<tr>
<td>2840</td>
<td>BUTYRALDOXIME</td>
<td>3</td>
<td>III</td>
<td></td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td></td>
<td></td>
<td>T2 TP1</td>
</tr>
<tr>
<td>2841</td>
<td>DI-n-AMYLAMINE</td>
<td>3</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td></td>
<td></td>
<td>T4 TP1</td>
</tr>
<tr>
<td>2842</td>
<td>NITROETHANE</td>
<td>3</td>
<td>III</td>
<td></td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td></td>
<td></td>
<td>T2 TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excep. Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2844</td>
<td>CALCIUM MANGANESE SILICON</td>
<td>4.3</td>
<td>III</td>
<td>1 kg</td>
<td>E1</td>
<td>P410 IBC08</td>
<td>B4</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2845</td>
<td>PYROPHOtic LIQUID, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P400</td>
<td>T22</td>
<td>TP2, TP7</td>
</tr>
<tr>
<td>2846</td>
<td>PYROPHOtic SOLID, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2849</td>
<td>3-CHLORO-PROPANOL-1</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2850</td>
<td>PROPYLENE TETRAMER</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2851</td>
<td>BORON TRIFLUORIDE DIHYDRATE</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2852</td>
<td>DIPICRYL SULPHIDE, WETTED with not less than 10% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP24</td>
<td></td>
</tr>
<tr>
<td>2853</td>
<td>MAGNESIUM FLUOROSILICATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2854</td>
<td>AMMONIUM FLUOROSILICATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2855</td>
<td>ZINC FLUOROSILICATE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2856</td>
<td>FLUOROSILICATES, N.O.S.</td>
<td>6.1</td>
<td>III</td>
<td>274 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2857</td>
<td>REFRIGERATING MACHINES containing non-flammable, non-toxic, gases or ammonia solutions (UN 2872)</td>
<td>2.2</td>
<td>119</td>
<td>0</td>
<td>E0</td>
<td>P003</td>
<td>PP32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2858</td>
<td>ZIRCONIUM, DRY, coiled wire, finished metal sheets, strip (thinner than 254 microns but not thinner than 18 microns)</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2859</td>
<td>AMMONIUM METAVANADATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2861</td>
<td>AMMONIUM POLYVANADATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2862</td>
<td>VANADIUM PENTOXIDE, non-fused form</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2863</td>
<td>SODIUM AMMONIUM VANADATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2864</td>
<td>POTASSIUM META-VANADATE</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2865</td>
<td>HYDROXYLAMINE SULPHATE</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2869</td>
<td>TITANIUM TRICHLORIDE MIXTURE</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>2870</td>
<td>ALUMINIUM BOROHYDRIDE</td>
<td>4.2</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P400</td>
<td>T21</td>
<td>TP7 TP33</td>
</tr>
<tr>
<td></td>
<td>ALUMINIUM BOROHYDRIDE IN DEVICES</td>
<td>4.2</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>PP13</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Expted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2871</td>
<td>ANTIMONY POWDER</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2872</td>
<td>DIBROMOCHLOROPROPANES</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T7</td>
<td>4.2.5</td>
</tr>
<tr>
<td>2873</td>
<td>DIBUTYLAMINOETHANOL</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T4</td>
<td>4.2.5</td>
<td></td>
</tr>
<tr>
<td>2874</td>
<td>FURFURYL ALCOHOL</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T4</td>
<td>4.2.5</td>
<td></td>
</tr>
<tr>
<td>2875</td>
<td>HEXACHLOROPHENE</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2876</td>
<td>RESORCINOL</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2878</td>
<td>TITANIUM SPONGE GRANULES or TITANIUM SPONGE POWDERS</td>
<td>4.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2879</td>
<td>SELENIUM OXYCHLORIDE</td>
<td>8, 6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td>2880</td>
<td>CALCIUM HYPOCHLORITE, HYDRATED or CALCIUM HYPOCHLORITE, HYDRATED MIXTURE, with not less than 5.5% but not more than 16% water</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>PP85 B2, B4, B13</td>
<td>T21</td>
<td>TP7, TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B4, B13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2881</td>
<td>METAL CATALYST, DRY</td>
<td>4.2</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td>T21</td>
<td>TP7</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P410 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td>2900</td>
<td>INFECTIOUS SUBSTANCE, AFFECTING ANIMALS only</td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>0</td>
<td>E1</td>
<td>P002</td>
<td>B3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IBC08</td>
<td>TP33</td>
</tr>
<tr>
<td>2901</td>
<td>BROMINE CHLORIDE</td>
<td>6.2</td>
<td>318</td>
<td>341</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P200</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP13</td>
</tr>
<tr>
<td>2902</td>
<td>PESTICIDE, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>61</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IBC02</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP27</td>
</tr>
<tr>
<td></td>
<td>PESTICIDE, LIQUID, TOXIC, N.O.S. cont.</td>
<td>6.1</td>
<td>II</td>
<td>61</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IBC02</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2903</td>
<td>PESTICIDE, LIQUID, TOXIC, FLAMMABLE, N.O.S., flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>2904</td>
<td>CHLOROPHENOLATES, LIQUID or PHENOLATES, LIQUID</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T01</td>
<td>TP01</td>
<td></td>
</tr>
<tr>
<td>2905</td>
<td>CHLOROPHENOLATES, SOLID or PHENOLATES, SOLID</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2907</td>
<td>ISOSORBIDE DINITRATE MIXTURE with not less than 60% lactose, mannose, starch or calcium hydrogen phosphate</td>
<td>4.1</td>
<td>II</td>
<td>127</td>
<td>0</td>
<td>E0</td>
<td>P406 IBC06</td>
<td>PP26 PP80 B2 B12</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>2908</td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - EMPTY PACKAGING</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>290 368</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2909</td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - ARTICLES MANUFACTURED FROM NATURAL URANIUM or DEPLETED URANIUM or NATURAL THORIUM</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>290 368</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2910</td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - LIMITED QUANTITY OF MATERIAL</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>290 368</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2911</td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - INSTRUMENTS or ARTICLES</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>290 368</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2912</td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-I), non-fissile or fissile-excepted</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>172 317 325</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2913</td>
<td>RADIOACTIVE MATERIAL, SURFACE CONTAMINATED OBJECTS (SCO-I or SCO-II), non-fissile or fissile-excepted</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>172 317 325</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2915</td>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, non-special form, non-fissile or fissile-excepted</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>172 317 325</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2916</td>
<td>RADIOACTIVE MATERIAL, TYPE B(U) PACKAGE, non-fissile or fissile-excepted</td>
<td>7</td>
<td></td>
<td>172</td>
<td>317</td>
<td>337</td>
<td>325</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2917</td>
<td>RADIOACTIVE MATERIAL, TYPE B(M) PACKAGE, non-fissile or fissile-excepted</td>
<td>7</td>
<td></td>
<td>172</td>
<td>317</td>
<td>337</td>
<td>325</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2919</td>
<td>RADIOACTIVE MATERIAL, TRANSPORTED UNDER SPECIAL ARRANGEMENT, non-fissile or fissile-excepted</td>
<td>7</td>
<td></td>
<td>172</td>
<td>317</td>
<td>337</td>
<td>325</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2920</td>
<td>CORROSIVE LIQUID, FLAMMABLE, N.O.S.</td>
<td>8</td>
<td>3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP27</td>
</tr>
<tr>
<td>2921</td>
<td>CORROSIVE SOLID, FLAMMABLE, N.O.S.</td>
<td>8</td>
<td>4.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC99</td>
<td>T6</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class</th>
<th>Division</th>
<th>Subsidiary</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5</td>
<td>4.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td>2922</td>
<td>CORROSIVE LIQUID, TOXIC, N.O.S.</td>
<td>8</td>
<td>4.1</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td>TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
<td>TP1</td>
<td>TP13</td>
</tr>
<tr>
<td>2923</td>
<td>CORROSIVE SOLID, TOXIC, N.O.S.</td>
<td>8</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC99</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2924</td>
<td>FLAMMABLE LIQUID, CORROSIVE, N.O.S.</td>
<td>3</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
<td>TP27</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2925</td>
<td>FLAMMABLE SOLID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>4.1 8 II</td>
<td>274 1 kg</td>
<td>E2</td>
<td>5.0</td>
<td>E1</td>
<td>223</td>
<td>274</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td>2926</td>
<td>FLAMMABLE SOLID, TOXIC, ORGANIC, N.O.S.</td>
<td>4.1 6.1 II</td>
<td>274 1 kg</td>
<td>E2</td>
<td>0.0</td>
<td>E1</td>
<td>223</td>
<td>274</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td>2927</td>
<td>TOXIC LIQUID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>6.1 8 I</td>
<td>274 0</td>
<td>E5</td>
<td>315</td>
<td>E5</td>
<td>274</td>
<td>315</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
</tr>
<tr>
<td>2928</td>
<td>TOXIC SOLID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>6.1 8 I</td>
<td>274 0</td>
<td>E5</td>
<td>274</td>
<td>E5</td>
<td>274</td>
<td>E5</td>
<td>P002 IBC99</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2929</td>
<td>TOXIC LIQUID, FLAMMABLE, ORGANIC, N.O.S.</td>
<td>6.1 8 II 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 3 I 274 315</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td>TP13</td>
<td>TP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2930</td>
<td>TOXIC SOLID, FLAMMABLE, ORGANIC, N.O.S.</td>
<td>6.1 4.1 I 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC99</td>
<td>T6</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 4.1 II 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2931</td>
<td>VANADYL SULPHATE</td>
<td>6.1 II 500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2933</td>
<td>METHYL 2-CHLOROPROPIONATE</td>
<td>3 III 5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2934</td>
<td>ISOPROPYL 2-CHLORO-PROPIONATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2935</td>
<td>ETHYL 2-CHLORO-PROPIONATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2936</td>
<td>THIOLACTIC ACID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2937</td>
<td>alpha-METHYLBENZYL ALCOHOL, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2940</td>
<td>9-PHOSPHABICYCLONANANES (CYCLOOCTADIENE PHOSPHINES)</td>
<td>4.2</td>
<td>II</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC06 B2</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2941</td>
<td>FLUOROANILINES</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excep. Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2942</td>
<td>2-TRIFLUOROMETHYLANILINE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2943</td>
<td>TETRAHYDROFURFURYL-AMINE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2945</td>
<td>N-METHYLBUTYLAMINE</td>
<td>3</td>
<td>8</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2946</td>
<td>2-AMINO-5-DIETHYL-AMINOPENTANE</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2947</td>
<td>ISOPROPYL CHLOROACETATE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>2948</td>
<td>3-TRIFLUOROMETHYLANILINE</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>2949</td>
<td>SODIUM HYDROSULPHIDE, HYDRATED with not less than 25% water of crystallisation</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>TP2</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5</td>
</tr>
<tr>
<td>2950</td>
<td>MAGNESIUM GRANULES, COATED, particle size not less than 149 microns</td>
<td>4.3</td>
<td>III</td>
<td>1 kg</td>
<td>E1</td>
<td>P410 IBC08</td>
<td>B4</td>
<td>T1BK2</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2956</td>
<td>5-tert-BUTYL-2,4,6-TRINITRO-m-XYLENE (MUSK XYLENE)</td>
<td>4.1</td>
<td>III</td>
<td>132</td>
<td>133</td>
<td>5 kg</td>
<td>E0</td>
<td>P409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2965</td>
<td>BORON TRIFLUORIDE DIMETHYL ETHERATE</td>
<td>4.3</td>
<td>3</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P401</td>
<td>T10</td>
<td>TP2TP7TP13</td>
</tr>
<tr>
<td>2966</td>
<td>THIOGLYCOL</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2967</td>
<td>SULPHAMIC ACID</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>2968</td>
<td>MANEB, STABILISED or MANEB PREPARATION, STABILISED against self-heating</td>
<td>4.3</td>
<td>III</td>
<td>223</td>
<td>1 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B4</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>2969</td>
<td>CASTOR BEANS or CASTOR MEAL or CASTOR POMACE or CASTOR FLAKE</td>
<td>9</td>
<td>II</td>
<td>141</td>
<td>5 kg</td>
<td>E2</td>
<td>P002 IBC08 PP34</td>
<td>B2, B4</td>
<td>T3BK1BK2</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2977</td>
<td>RADIOACTIVE MATERIAL, URANIUM HEXAFLUORIDE, FISSILE</td>
<td>7</td>
<td>6.1</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2978</td>
<td>RADIOACTIVE MATERIAL, URANIUM HEXAFLUORIDE, non-fissile or fissile-excepted</td>
<td>7</td>
<td>6.1</td>
<td>8</td>
<td>317</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>See ARPANSA Radioactive Transport Code</td>
</tr>
<tr>
<td>2983</td>
<td>ETHYLENE OXIDE AND PROPYLENE OXIDE MIXTURE, not more than 30% ethylene oxide</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP7 TP13</td>
</tr>
<tr>
<td>2984</td>
<td>HYDROGEN PEROXIDE, AQUEOUS SOLUTION with not less than 8% but less than 20% hydrogen peroxide (stabilised as necessary)</td>
<td>5.1</td>
<td>III</td>
<td>65</td>
<td>5 L</td>
<td>E1</td>
<td>P504</td>
<td>B5</td>
<td>T4 TP1 TP6 TP24</td>
</tr>
<tr>
<td>2985</td>
<td>CHLOROSILANES, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T14</td>
<td>TP2 TP7 TP13 TP27</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2986</td>
<td>CHLOROSILANES, CORROSIVE, FLAMMABLE, N.O.S.</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>TP2</td>
<td>TP13, TP27</td>
</tr>
<tr>
<td>2987</td>
<td>CHLOROSILANES, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
<td>T14</td>
<td>TP2</td>
<td>TP13, TP27</td>
</tr>
<tr>
<td>2988</td>
<td>CHLOROSILANES, WATER-REACTIVE, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>4.3</td>
<td>3</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P401</td>
<td>T14</td>
</tr>
<tr>
<td>2989</td>
<td>LEAD PHOSPHITE, DIBASIC</td>
<td>4.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>2990</td>
<td>LIFE-SAVING APPLIANCES, SELF-INFLATING</td>
<td>9</td>
<td>296</td>
<td>0</td>
<td>E0</td>
<td>P905</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2991</td>
<td>CARBAMATE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
</tr>
<tr>
<td>2992</td>
<td>CARBAMATE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>T7</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2993</td>
<td>ARSENICAL PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14 TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11 TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7 TP2 TP28</td>
</tr>
<tr>
<td>2994</td>
<td>ARSENICAL PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14 TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11 TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7 TP2 TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2995</td>
<td>ORGANOCHLORINE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
</tr>
<tr>
<td>2996</td>
<td>ORGANOCHLORINE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2997</td>
<td>TRIAZINE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14, TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td>TRIAZINE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C cont.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11, TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7, TP2, TP28</td>
</tr>
<tr>
<td>2998</td>
<td>TRIAZINE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14, TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11, TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7, TP2, TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class of Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3005</td>
<td>THIOCARBAMATE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3 I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2/TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3 II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001/IBC02</td>
<td>T11</td>
<td>TP2/TP13/TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3 III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001/IBC03</td>
<td>T7</td>
<td>TP2/TP28</td>
</tr>
<tr>
<td>3006</td>
<td>THIOCARBAMATE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2/TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001/IBC02</td>
<td>T11</td>
<td>TP2/TP13/TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001/IBC03/LP01</td>
<td>T7</td>
<td>TP2/TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3009</td>
<td>COPPER BASED PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1 3 I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 3 II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP13 TP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 3 III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
<td>TP2 TP28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3010</td>
<td>COPPER BASED PESTICIDE, LIQUID, TOXIC</td>
<td>6.1 I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP13 TP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP2 TP28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011</td>
<td>MERCURY BASED PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
</tr>
<tr>
<td>3012</td>
<td>MERCURY BASED PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3013</td>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
</tr>
<tr>
<td>3014</td>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3015</td>
<td>BIPYRIDILIUM PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
<td>TP2, TP28</td>
</tr>
<tr>
<td>3016</td>
<td>BIPYRIDILIUM PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E1</td>
<td>P001 IBC03, LP01</td>
<td>T7</td>
<td>TP2, TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3017</td>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3 I</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP12</td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3 II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP12</td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3 III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
<td>TP2</td>
<td>TP28</td>
</tr>
<tr>
<td>3018</td>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP12</td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP12</td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP2</td>
<td>TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>I</td>
<td></td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14, TP2, TP13, TP27</td>
</tr>
<tr>
<td>3019</td>
<td>ORGANOTIN PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11, TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7, TP2, TP28</td>
</tr>
<tr>
<td>3020</td>
<td>ORGANOTIN PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14, TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11, TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td></td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7, TP2, TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3021</td>
<td>PESTICIDE, LIQUID, FLAMMABLE, TOXIC, N.O.S., flash point less than 23 °C</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td>3022</td>
<td>1,2-BUTYLENE OXIDE, STABILISED</td>
<td>3</td>
<td></td>
<td>II</td>
<td>386</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>3023</td>
<td>2-METHYL-2-HEPTANETHIOL</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>3024</td>
<td>COUMARIN DERIVATIVE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP13, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP13, TP27</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3025</td>
<td>COUMARIN DERIVATIVE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
</tr>
<tr>
<td>3026</td>
<td>COUMARIN DERIVATIVE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td></td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td></td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td></td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3027</td>
<td>COUMARIN DERIVATIVE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>E5</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1 T6 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>E4</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2 B4 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 274</td>
<td>E1</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3 T1 TP33</td>
</tr>
<tr>
<td>3028</td>
<td>BATTERIES, DRY, CONTAINING POTASSIUM HYDROXIDE SOLID, electric storage</td>
<td>8</td>
<td></td>
<td>295 304</td>
<td>E0</td>
<td>2 kg</td>
<td>E0</td>
<td>P801</td>
<td></td>
</tr>
<tr>
<td>3048</td>
<td>ALUMINIUM PHOSPHIDE PESTICIDE</td>
<td>6.1</td>
<td>I</td>
<td>153</td>
<td>E0</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC07</td>
<td>B1 T6 TP33</td>
</tr>
<tr>
<td>3054</td>
<td>CYCLOHEXYL MERCAPTAN</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2 TP1</td>
</tr>
<tr>
<td>3055</td>
<td>2-(2-AMINOETHOXY) ETHANOL</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td></td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>3056</td>
<td>n-HEPTALDEHYDE</td>
<td>3</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>3057</td>
<td>TRIFLUOROACETYL CHLORIDE</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td>TP21</td>
<td></td>
</tr>
<tr>
<td>3064</td>
<td>NITROGLYCERIN, SOLUTION IN ALCOHOL with more than 1% but not more than 5% nitroglycerin</td>
<td>3</td>
<td>II</td>
<td>359</td>
<td>0</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>PP2</td>
<td>T4</td>
</tr>
<tr>
<td>3065</td>
<td>ALCOHOLIC BEVERAGES, with more than 70% alcohol by volume</td>
<td>3</td>
<td>II</td>
<td>146</td>
<td>5 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>PP2</td>
<td>T4</td>
</tr>
<tr>
<td></td>
<td>ALCOHOLIC BEVERAGES, with more than 24% but not more than 70% alcohol by volume</td>
<td>3</td>
<td>III</td>
<td>144</td>
<td>145 247</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td>PP2</td>
</tr>
<tr>
<td>3066</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
<td>8</td>
<td>II</td>
<td>163</td>
<td>367 1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>163 223</td>
<td>367</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3070</td>
<td>ETHYLENE OXIDE AND DICHLORODIFLUORO-METHANE MIXTURE with not more than 12.5% ethylene oxide</td>
<td>2.2</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3071</td>
<td>MERCAPHTANS, LIQUID, TOXIC, FLAMMABLE, N.O.S. or MERCAPTAN MIXTURE, LIQUID, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td>3072</td>
<td>LIFE-SAVING APPLIANCES NOT SELF-INFLATING containing dangerous goods as equipment</td>
<td>9</td>
<td>296</td>
<td>0</td>
<td>E0</td>
<td>P905</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3073</td>
<td>VINYLPYRIDINES, STABILISED</td>
<td>6.1</td>
<td>386</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>T7</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td>3077</td>
<td>ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.</td>
<td>9</td>
<td>274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>PP12</td>
<td>T1</td>
<td>BK2</td>
</tr>
<tr>
<td>3078</td>
<td>CERIUM, turnings or gritty powder</td>
<td>4.3</td>
<td>500 g</td>
<td>E2</td>
<td>P410</td>
<td>IBC07</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class</th>
<th>Division</th>
<th>Subsidiary</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exceptioned Quantities</th>
<th>Special Provisions</th>
<th>Packing Instruction</th>
<th>Packing Instruction</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3079</td>
<td>METHACRYLONITRILE, STABILISED</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>354</td>
<td>386</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3080</td>
<td>ISOXYANATES, TOXIC, FLAMMABLE, N.O.S. or ISOXYANATE SOLUTION, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP13 TP27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3082</td>
<td>ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.</td>
<td>9</td>
<td>III</td>
<td></td>
<td>274</td>
<td>331 335 375</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>PP1</td>
<td>T4 TP1 TP29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3083</td>
<td>PERCHLORYL FLUORIDE</td>
<td>2.3</td>
<td>5.1</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3084</td>
<td>CORROSIVE SOLID, OXIDISING, N.O.S.</td>
<td>8</td>
<td>5.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>T6</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>5.1</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3 TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3085</td>
<td>OXIDISING SOLID, CORROSIVE, N.O.S.</td>
<td>5.1</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P503</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3 TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3086</td>
<td>TOXIC SOLID, OXIDISING, N.O.S.</td>
<td>5.1</td>
<td>8</td>
<td>III</td>
<td>223, 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
</tr>
<tr>
<td>3087</td>
<td>OXIDISING SOLID, TOXIC, N.O.S.</td>
<td>5.1</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P503</td>
<td></td>
</tr>
<tr>
<td>3088</td>
<td>SELF-HEATING SOLID, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>II</td>
<td></td>
<td>223, 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
</tr>
<tr>
<td>3089</td>
<td>METAL POWDER, FLAMMABLE, N.O.S.</td>
<td>4.1</td>
<td>II</td>
<td></td>
<td>1 kg</td>
<td></td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08</td>
<td>B2, B4</td>
</tr>
<tr>
<td>3090</td>
<td>LITHIUM METAL BATTERIES (including lithium alloy batteries)</td>
<td>9</td>
<td>188</td>
<td>230</td>
<td>310</td>
<td>376</td>
<td>377</td>
<td>384</td>
<td>387</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3091</td>
<td>LITHIUM METAL BATTERIES PACKED WITH EQUIPMENT</td>
<td>9</td>
<td>E1</td>
<td>E0</td>
<td>P903</td>
<td>P908</td>
<td>P909</td>
<td>P910</td>
<td>P911</td>
</tr>
<tr>
<td>3092</td>
<td>1-METHOXY-2-PROPANOL</td>
<td>3</td>
<td>III</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
<td>T2</td>
<td>TP1</td>
</tr>
<tr>
<td>3093</td>
<td>CORROSIVE LIQUID, OXIDISING, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>E0</td>
<td>P001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3094</td>
<td>CORROSIVE LIQUID, WATER-REACTIVE, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>E0</td>
<td>P001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3095</td>
<td>CORROSIVE SOLID, SELF-HEATING, N.O.S.</td>
<td>8</td>
<td>4.2</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
</tr>
<tr>
<td>3096</td>
<td>CORROSIVE SOLID, WATER-REACTIVE, N.O.S.</td>
<td>8</td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>4.3</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
</tr>
<tr>
<td>3097</td>
<td>FLAMMABLE SOLID, OXIDISING, N.O.S.</td>
<td>4.1</td>
<td>5.1</td>
<td>I</td>
<td>274</td>
<td>1 kg</td>
<td>E0</td>
<td>P009</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E0</td>
<td>P009</td>
<td>T1</td>
</tr>
<tr>
<td>3098</td>
<td>OXIDISING LIQUID, CORROSIVE, N.O.S.</td>
<td>5.1</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P502</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P504 IBC02</td>
<td></td>
</tr>
<tr>
<td>3099</td>
<td>OXIDISING LIQUID, TOXIC, N.O.S.</td>
<td>5.1</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P502</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC01</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3100</td>
<td>OXIDISING SOLID, SELF-HEATING, N.O.S.</td>
<td>5.1</td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P504</td>
<td></td>
</tr>
<tr>
<td>3101</td>
<td>ORGANIC PEROXIDE TYPE B, LIQUID</td>
<td>5.2</td>
<td></td>
<td></td>
<td>122 181 195 274</td>
<td>25 ml</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
<tr>
<td>3102</td>
<td>ORGANIC PEROXIDE TYPE B, SOLID</td>
<td>5.2</td>
<td></td>
<td></td>
<td>122 181 195 274</td>
<td>100 g</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
<tr>
<td>3103</td>
<td>ORGANIC PEROXIDE TYPE C, LIQUID</td>
<td>5.2</td>
<td></td>
<td></td>
<td>122 195 274</td>
<td>25 ml</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
<tr>
<td>3104</td>
<td>ORGANIC PEROXIDE TYPE C, SOLID</td>
<td>5.2</td>
<td></td>
<td></td>
<td>122 195 274</td>
<td>100 g</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3105</td>
<td>ORGANIC PEROXIDE TYPE D, LIQUID</td>
<td>5.2</td>
<td>122 274</td>
<td>125 ml</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3106</td>
<td>ORGANIC PEROXIDE TYPE D, SOLID</td>
<td>5.2</td>
<td>122 274</td>
<td>500 g</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3107</td>
<td>ORGANIC PEROXIDE TYPE E, LIQUID</td>
<td>5.2</td>
<td>122 274</td>
<td>125 ml</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3108</td>
<td>ORGANIC PEROXIDE TYPE E, SOLID</td>
<td>5.2</td>
<td>122 274</td>
<td>500 g</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3109</td>
<td>ORGANIC PEROXIDE TYPE F, LIQUID</td>
<td>5.2</td>
<td>122 274</td>
<td>125 ml</td>
<td>E0</td>
<td>P520</td>
<td>IBC520</td>
<td>T23</td>
<td></td>
</tr>
<tr>
<td>3110</td>
<td>ORGANIC PEROXIDE TYPE F, SOLID</td>
<td>5.2</td>
<td>122 274</td>
<td>500 g</td>
<td>E0</td>
<td>P520</td>
<td>IBC520</td>
<td>T23</td>
<td>TP33</td>
</tr>
<tr>
<td>3111</td>
<td>ORGANIC PEROXIDE TYPE B, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>122 181 195 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3112</td>
<td>ORGANIC PEROXIDE TYPE B, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td></td>
<td>122</td>
<td>181 195 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
<tr>
<td>3113</td>
<td>ORGANIC PEROXIDE TYPE C, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td></td>
<td>122</td>
<td>195 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
<tr>
<td>3114</td>
<td>ORGANIC PEROXIDE TYPE C, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td></td>
<td>122</td>
<td>195 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
<tr>
<td>3115</td>
<td>ORGANIC PEROXIDE TYPE D, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td></td>
<td>122</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
<tr>
<td>3116</td>
<td>ORGANIC PEROXIDE TYPE D, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td></td>
<td>122</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
<tr>
<td>3117</td>
<td>ORGANIC PEROXIDE TYPE E, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td></td>
<td>122</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
<tr>
<td>3118</td>
<td>ORGANIC PEROXIDE TYPE E, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td></td>
<td>122</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3119</td>
<td>ORGANIC PEROXIDE TYPE F, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>122 274</td>
<td>0</td>
<td>E0</td>
<td>P520 IBC520</td>
<td>T23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3120</td>
<td>ORGANIC PEROXIDE TYPE F, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>122 274</td>
<td>0</td>
<td>E0</td>
<td>P520 IBC520</td>
<td>T23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3121</td>
<td>OXIDISING SOLID, WATER-REACTIVE, N.O.S.</td>
<td>5.1</td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>4.3</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E4</td>
<td>P001</td>
<td></td>
</tr>
<tr>
<td>3122</td>
<td>TOXIC LIQUID, OXIDISING, N.O.S.</td>
<td>6.1</td>
<td>5.1</td>
<td>I</td>
<td>274 315</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>5.1</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
</tr>
<tr>
<td>3123</td>
<td>TOXIC LIQUID, WATER-REACTIVE, N.O.S.</td>
<td>6.1</td>
<td>4.3</td>
<td>I</td>
<td>274 315</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>4.3</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
</tr>
<tr>
<td>3124</td>
<td>TOXIC SOLID, SELF-HEATING, N.O.S.</td>
<td>6.1</td>
<td>4.2</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>T6 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E4</td>
<td>P002 IBC06 B2</td>
<td>T3 TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3125</td>
<td>TOXIC SOLID, WATER-REACTIVE, N.O.S.</td>
<td>6.1</td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P099</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>4.3</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC06</td>
<td>B2</td>
</tr>
<tr>
<td>3126</td>
<td>SELF-HEATING SOLID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC05</td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08</td>
</tr>
<tr>
<td>3127</td>
<td>SELF-HEATING SOLID, OXIDISING, N.O.S.</td>
<td>4.2</td>
<td>5.1</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
</tr>
<tr>
<td>3128</td>
<td>SELF-HEATING SOLID, TOXIC, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC05</td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08</td>
</tr>
<tr>
<td>3129</td>
<td>WATER-REACTIVE LIQUID, CORROSIVE, N.O.S.</td>
<td>4.3</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td>T14</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>500 ml</td>
<td>E0</td>
<td>P402</td>
<td>IBC01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>1 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC02</td>
</tr>
<tr>
<td>3130</td>
<td>WATER-REACTIVE LIQUID, TOXIC, N.O.S.</td>
<td>4.3</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 ml</td>
<td>E0</td>
<td>P402</td>
<td>IBC01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>1 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC02</td>
</tr>
<tr>
<td>3131</td>
<td>WATER-REACTIVE SOLID, CORROSIVE, N.O.S.</td>
<td>4.3</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>T9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E2</td>
<td>P410</td>
<td>IBC06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>1 kg</td>
<td>E1</td>
<td>P410</td>
<td>IBC08</td>
</tr>
<tr>
<td>3132</td>
<td>WATER-REACTIVE SOLID, FLAMMABLE, N.O.S.</td>
<td>4.3</td>
<td>4.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>IBC99</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>4.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC04</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>4.1</td>
<td>III</td>
<td>223 274</td>
<td>1 kg</td>
<td>E1</td>
<td>P410 IBC06</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>3133</td>
<td>WATER-REACTIVE SOLID, OXIDISING, N.O.S.</td>
<td>4.3</td>
<td>5.1</td>
<td>II 274</td>
<td>500 g</td>
<td>E0</td>
<td>P099</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>5.1</td>
<td>III 223 274</td>
<td>1 kg</td>
<td>E0</td>
<td>P099</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3134</td>
<td>WATER-REACTIVE SOLID, TOXIC, N.O.S.</td>
<td>4.3</td>
<td>6.1</td>
<td>I 274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>6.1</td>
<td>II 274</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC05</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>6.1</td>
<td>III 223 274</td>
<td>1 kg</td>
<td>E1</td>
<td>P410 IBC08</td>
<td>B4</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>3135</td>
<td>WATER-REACTIVE SOLID, SELF-HEATING, N.O.S.</td>
<td>4.3</td>
<td>4.2</td>
<td>I 274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>4.2</td>
<td>II 274</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC05</td>
<td>B2</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>4.2</td>
<td>III 223 274</td>
<td>0</td>
<td>E1</td>
<td>P410 IBC08</td>
<td>B4</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>3136</td>
<td>TRIFLUOROMETHANE, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P203</td>
<td>T75</td>
<td>TP5</td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>3137</td>
<td>OXIDISING SOLID, FLAMMABLE, N.O.S.</td>
<td>5.1</td>
<td>4.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td></td>
</tr>
<tr>
<td>3138</td>
<td>ETHYLENE, ACETYLENE AND PROPYLENE MIXTURE, REFRIGERATED LIQUID containing at least 71.5% ethylene with not more than 22.5% acetylene and not more than 6% propylene</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P203</td>
<td>T75</td>
</tr>
<tr>
<td>3139</td>
<td>OXIDISING LIQUID, N.O.S.</td>
<td>5.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P502</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P504</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P504</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td>3140</td>
<td>ALKALOIDS, LIQUID, N.O.S. or ALKALOIDS SALTS, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43</td>
<td>223</td>
<td>274</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Expted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5</td>
</tr>
<tr>
<td>3141</td>
<td>ANTIMONY COMPOUND, INORGANIC, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>III</td>
<td>45 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3142</td>
<td>DISINFECTANT, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DISINFECTANT, LIQUID, TOXIC, N.O.S. cont.</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3143</td>
<td>DYE, SOLID, TOXIC, N.O.S. or DYE INTERMEDIATE, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07 B1 T6 TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4 T3 TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>I</td>
<td>43 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3144</td>
<td>NICOTINE COMPOUND, LIQUID, N.O.S. or NICOTINE PREPARATION, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>3145</td>
<td>ALKYLPHENOLS, LIQUID, N.O.S. (including C2-C12 homologues)</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T11</td>
<td>TP2, TP27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T7</td>
<td>TP1, TP28</td>
</tr>
<tr>
<td>3146</td>
<td>ORGANOTIN COMPOUND, SOLID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43 274</td>
<td>0</td>
<td>E5</td>
<td>P002</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
</tr>
<tr>
<td>3147</td>
<td>DYE, SOLID, CORROSIVE, N.O.S. or DYE INTERMEDIATE, SOLID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>3148</td>
<td>WATER-REACTIVE LIQUID, N.O.S.</td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td>T13</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>II</td>
<td>274</td>
<td>500 ml</td>
<td>E2</td>
<td>P402 IBC01</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>III</td>
<td>223 274</td>
<td>1 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3) (4) (5) (6) (7a) (7b) (8) (9) (10) (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
<td>4.2.5 4.3.2 4.2.5</td>
</tr>
<tr>
<td>3149</td>
<td>HYDROGEN PEROXIDE AND PEROXYACETIC ACID MIXTURE with acid(s), water and not more than 5% peroxyacetic acid, STABILISED</td>
<td>5.1</td>
<td>8</td>
<td>II</td>
<td>196</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>PP10 B5 T7 TP2 TP6 TP24</td>
</tr>
<tr>
<td>3150</td>
<td>DEVICES, SMALL, HYDROCARBON GAS POWERED or HYDROCARBON GAS REFILLS FOR SMALL DEVICES with release device</td>
<td>2.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>E0</td>
<td>P003</td>
<td></td>
</tr>
<tr>
<td>3151</td>
<td>POLYHALOGENATED BIPHENYLS, LIQUID or HALOGENATED MONOMETHYLDIPHENYL-METHANES, LIQUID or POLYHALOGENATED TERPHENYLS, LIQUID</td>
<td>9</td>
<td>II</td>
<td>203</td>
<td>305</td>
<td>1 L</td>
<td>E2</td>
<td>P906 IBC02</td>
<td>B2, B4 T3 TP33</td>
</tr>
<tr>
<td>3152</td>
<td>POLYHALOGENATED BIPHENYLS, SOLID or HALOGENATED MONOMETHYLDIPHENYL-METHANES, SOLID or POLYHALOGENATED TERPHENYLS, SOLID</td>
<td>9</td>
<td>II</td>
<td>203</td>
<td>305</td>
<td>1 kg</td>
<td>E2</td>
<td>P906 IBC08</td>
<td>B2, B4 T3 TP33</td>
</tr>
<tr>
<td>3153</td>
<td>PERFLUORO (METHYL VINYL ETHER)</td>
<td>2.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td>3154</td>
<td>PERFLUORO (ETHYL VINYL ETHER)</td>
<td>2.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>E0</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>3155</td>
<td>PENTACHLOROPHENOL</td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4 T3 TP33</td>
<td></td>
</tr>
<tr>
<td>3156</td>
<td>COMPRESSED GAS, OXIDISING, N.O.S.</td>
<td>2.2</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3157</td>
<td>LIQUEFIED GAS, OXIDISING, N.O.S.</td>
<td>2.2</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3158</td>
<td>GAS, REFRIGERATED LIQUID, N.O.S.</td>
<td>2.2</td>
<td>274</td>
<td>120 ml</td>
<td>E1</td>
<td>P203</td>
<td>T75</td>
<td>TP5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3159</td>
<td>1,1,1,2-TETRAFLUROETHANE (REFRIGERANT GAS R 134a)</td>
<td>2.2</td>
<td>274</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3160</td>
<td>LIQUEFIED GAS, TOXIC, FLAMMABLE, N.O.S.</td>
<td>2.3</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3161</td>
<td>LIQUEFIED GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3162</td>
<td>LIQUEFIED GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3163</td>
<td>LIQUEFIED GAS, N.O.S.</td>
<td>2.2</td>
<td>274</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3164</td>
<td>ARTICLES, PRESSURISED, PNEUMATIC or HYDRAULIC</td>
<td>2.2</td>
<td>283</td>
<td>120 ml</td>
<td>E0</td>
<td>P003</td>
<td>PP32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3165</td>
<td>AIRCRAFT HYDRAULIC POWER UNIT FUEL TANK (containing a mixture of anhydrous hydrazine and methylhydrazine) (M86 fuel)</td>
<td>3</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P301</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3166</td>
<td>VEHICLE, FLAMMABLE GAS POWERED or VEHICLE, FLAMMABLE LIQUID POWERED or VEHICLE, FUEL CELL, FLAMMABLE GAS POWERED or VEHICLE, FUEL CELL, FLAMMABLE LIQUID POWERED Not subject to this Code (see SP 106)</td>
<td>9</td>
<td>123</td>
<td>356</td>
<td>0</td>
<td>E0</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3167</td>
<td>GAS SAMPLE, NON-PRESSURISED, FLAMMABLE, N.O.S., not refrigerated liquid</td>
<td>2.1</td>
<td>209</td>
<td>0</td>
<td>E0</td>
<td>P201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3168</td>
<td>GAS SAMPLE, NON-PRESSURISED, TOXIC, FLAMMABLE, N.O.S., not refrigerated liquid</td>
<td>2.3</td>
<td>2.1</td>
<td>209</td>
<td>0</td>
<td>E0</td>
<td>P201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3169</td>
<td>GAS SAMPLE, NON-PRESSURISED, TOXIC, N.O.S., not refrigerated liquid</td>
<td>2.3</td>
<td>209</td>
<td>0</td>
<td>E0</td>
<td>P201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3170</td>
<td>ALUMINIUM SMELTING BY-PRODUCTS or ALUMINIUM REMELTING BY-PRODUCTS</td>
<td>4.3</td>
<td>II</td>
<td>244</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>223</td>
<td>244</td>
<td>1 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B4</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3171</td>
<td>BATTERY-POWERED VEHICLE or BATTERY-POWERED EQUIPMENT</td>
<td>9</td>
<td>123</td>
<td>0</td>
<td>E0</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3172</td>
<td>TOXINS, EXTRACTED FROM LIVING SOURCES, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>210</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>III</td>
<td>210</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3174</td>
<td>TITANIUM DISULPHIDE</td>
<td>4.2</td>
<td>III</td>
<td>210</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3175</td>
<td>SOLIDS CONTAINING FLAMMABLE LIQUID, N.O.S.</td>
<td>4.1</td>
<td>II</td>
<td>216</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06 PP9</td>
<td>T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3176</td>
<td>FLAMMABLE SOLID, ORGANIC, MOLTEN, N.O.S.</td>
<td>4.1</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>T3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3178</td>
<td>FLAMMABLE SOLID, INORGANIC, N.O.S.</td>
<td>4.1</td>
<td>III</td>
<td>223 274</td>
<td>0</td>
<td>E0</td>
<td>IBC01</td>
<td>T1</td>
<td>TP3, TP26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3, TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1, TP33</td>
</tr>
<tr>
<td>3179</td>
<td>FLAMMABLE SOLID, TOXIC, INORGANIC, N.O.S.</td>
<td>4.1</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC06</td>
<td>T1</td>
</tr>
<tr>
<td>3180</td>
<td>FLAMMABLE SOLID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>4.1</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC06</td>
<td>T1</td>
</tr>
<tr>
<td>3181</td>
<td>METAL SALTS OF ORGANIC COMPOUNDS, FLAMMABLE, N.O.S.</td>
<td>4.1</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3, TP33</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10)</td>
<td>(11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>20.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>6.1</td>
<td>4.2</td>
<td>6.1</td>
<td>223</td>
<td>274</td>
<td>5 kg</td>
<td>4.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3182</td>
<td>METAL HYDRIDES, FLAMMABLE, N.O.S.</td>
<td>4.1</td>
<td>II</td>
<td>274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08</td>
<td>LP02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3183</td>
<td>SELF-HEATING LIQUID, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>3184</td>
<td>SELF-HEATING LIQUID, TOXIC, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>6.1</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P402</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P001</td>
<td>IBC02</td>
</tr>
<tr>
<td>3185</td>
<td>SELF-HEATING LIQUID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>8</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P402</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3186</td>
<td>SELF-HEATING LIQUID, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>III</td>
<td>223 274</td>
<td>0</td>
<td>E1</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td>3187</td>
<td>SELF-HEATING LIQUID, TOXIC, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>6.1</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P402</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>6.1</td>
<td>223 274</td>
<td>0</td>
<td>E1</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td>3188</td>
<td>SELF-HEATING LIQUID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>8</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P402</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>8</td>
<td>223 274</td>
<td>0</td>
<td>E1</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
</tr>
<tr>
<td>3189</td>
<td>METAL POWDER, SELF-HEATING, N.O.S.</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P410</td>
<td>IBC06</td>
<td></td>
</tr>
</tbody>
</table>

Ref: 3.1.2

Packagings & IBCs: 2.0 2.0 2.0.1.3 3.3 3.4 3.5 4.1.4 4.1.4 4.2.5 4.3.2 4.2.5
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3190</td>
<td>SELF-HEATING SOLID, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>III</td>
<td>223 274</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>3191</td>
<td>SELF-HEATING SOLID, TOXIC, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>III</td>
<td>223 274</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>3192</td>
<td>SELF-HEATING SOLID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC05</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>III</td>
<td>223 274</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>3194</td>
<td>PYROPHORIC LIQUID, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3200</td>
<td>PYROPHORIC SOLID, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td>T21</td>
<td>TP7 TP33</td>
</tr>
<tr>
<td>3205</td>
<td>ALKALINE EARTH METAL ALCOHOLATES, N.O.S.</td>
<td>4.2</td>
<td>II</td>
<td>183 274</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>B2</td>
<td>T3 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>III</td>
<td>183 223 274</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>3206</td>
<td>ALKALI METAL ALCOHOLATES, SELF-HEATING, CORROSIVE, N.O.S.</td>
<td>4.2</td>
<td>8</td>
<td>II</td>
<td>182 274</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC05</td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>8</td>
<td>III</td>
<td>182 223 274</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
</tr>
<tr>
<td>3208</td>
<td>METALLIC SUBSTANCE, WATER-REACTIVE, N.O.S.</td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P403 IBC99</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E0</td>
<td>P410 IBC07</td>
<td>B2</td>
<td>T3 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>III</td>
<td>223 274</td>
<td>1 kg</td>
<td>E1</td>
<td>P410 IBC08</td>
<td>B4</td>
<td>T1 TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3209</td>
<td>METALLIC SUBSTANCE, WATER-REACTIVE, SELF-HEATING, N.O.S.</td>
<td>4.3</td>
<td>4.2</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>4.2</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC05</td>
<td>B2 T3 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>4.2</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>0</td>
<td>E1</td>
<td>P410 IBC08</td>
</tr>
<tr>
<td>3210</td>
<td>CHLORATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>274</td>
<td>351</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>351</td>
<td>5 L</td>
<td>E1</td>
<td>P504 IBC02</td>
</tr>
<tr>
<td>3211</td>
<td>PERCHLORATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P504 IBC02</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>3212</td>
<td>HYPOCHLORITES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>274</td>
<td>349</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4 T3 TP33</td>
</tr>
<tr>
<td>3213</td>
<td>BROMATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>274</td>
<td>350</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>T4 TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3214</td>
<td>PERMANGANATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>350</td>
<td>5 L</td>
<td>E1</td>
<td>P504 IBC02</td>
</tr>
<tr>
<td>3215</td>
<td>PERSULPHATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>III</td>
<td>206</td>
<td>274</td>
<td>353</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
</tr>
<tr>
<td>3216</td>
<td>PERSULPHATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>350</td>
<td>5 L</td>
<td>E1</td>
<td>P504 IBC02</td>
</tr>
<tr>
<td>3218</td>
<td>NITRATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>270</td>
<td>1 L</td>
<td></td>
<td></td>
<td>E2</td>
<td>P504 IBC02</td>
</tr>
<tr>
<td>3219</td>
<td>NITRITES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>II</td>
<td>103</td>
<td>274</td>
<td></td>
<td></td>
<td>E2</td>
<td>P504 IBC01</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Special Provisions</th>
<th>Limited Packing Group</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3220</td>
<td>PENTAFLUOROETHANE (REFRIGERANT GAS R 125)</td>
<td>5.1</td>
<td>III</td>
<td>103 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P504 IBC02</td>
<td>T4</td>
</tr>
<tr>
<td>3221</td>
<td>SELF-REACTIVE LIQUID TYPE B</td>
<td>4.1</td>
<td>181 274</td>
<td>25 ml</td>
<td>E0</td>
<td>P520</td>
<td>PP21</td>
<td></td>
</tr>
<tr>
<td>3222</td>
<td>SELF-REACTIVE SOLID TYPE B</td>
<td>4.1</td>
<td>181 274</td>
<td>100 g</td>
<td>E0</td>
<td>P520</td>
<td>PP21</td>
<td></td>
</tr>
<tr>
<td>3223</td>
<td>SELF-REACTIVE LIQUID TYPE C</td>
<td>4.1</td>
<td>274</td>
<td>25 ml</td>
<td>E0</td>
<td>P520</td>
<td>PP21 PP94 PP95</td>
<td></td>
</tr>
<tr>
<td>3224</td>
<td>SELF-REACTIVE SOLID TYPE C</td>
<td>4.1</td>
<td>274</td>
<td>100 g</td>
<td>E0</td>
<td>P520</td>
<td>PP21 PP94 PP95</td>
<td></td>
</tr>
<tr>
<td>3225</td>
<td>SELF-REACTIVE LIQUID TYPE D</td>
<td>4.1</td>
<td>274</td>
<td>125 ml</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3226</td>
<td>SELF-REACTIVE SOLID TYPE D</td>
<td>4.1</td>
<td>274</td>
<td>500 g</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3227</td>
<td>SELF-REACTIVE LIQUID TYPE E</td>
<td>4.1</td>
<td>274</td>
<td>125 ml</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3228</td>
<td>SELF-REACTIVE SOLID TYPE E</td>
<td>4.1</td>
<td>274</td>
<td>500 g</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3229</td>
<td>SELF-REACTIVE LIQUID TYPE F</td>
<td>4.1</td>
<td>274</td>
<td>125 ml</td>
<td>E0</td>
<td>P520 IBC99</td>
<td>T23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3230</td>
<td>SELF-REACTIVE SOLID TYPE F</td>
<td>4.1</td>
<td>274</td>
<td>500 g</td>
<td>E0</td>
<td>P520 IBC99</td>
<td>T23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3231</td>
<td>SELF-REACTIVE LIQUID TYPE B, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>181 194 274</td>
<td>0</td>
<td>E0</td>
<td>P520 PP21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3232</td>
<td>SELF-REACTIVE SOLID TYPE B, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>181 194 274</td>
<td>0</td>
<td>E0</td>
<td>P520 PP21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3233</td>
<td>SELF-REACTIVE LIQUID TYPE C, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>194 274</td>
<td>0</td>
<td>E0</td>
<td>P520 PP21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3234</td>
<td>SELF-REACTIVE SOLID TYPE C, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>194 274</td>
<td>0</td>
<td>E0</td>
<td>P520 PP21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3235</td>
<td>SELF-REACTIVE LIQUID TYPE D, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>194 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3236</td>
<td>SELF-REACTIVE SOLID TYPE D, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>194 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exceptional Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3237</td>
<td>SELF-REACTIVE LIQUID TYPE E, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>194 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3238</td>
<td>SELF-REACTIVE SOLID TYPE E, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>194 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3239</td>
<td>SELF-REACTIVE LIQUID TYPE F, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>194 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td>T23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3240</td>
<td>SELF-REACTIVE SOLID TYPE F, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>194 274</td>
<td>0</td>
<td>E0</td>
<td>P520</td>
<td>T23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3241</td>
<td>2-BROMO-2-NITROPROPANE-1,3-DIOL</td>
<td>4.1</td>
<td>III</td>
<td>246</td>
<td>5 kg</td>
<td>E1</td>
<td>P520</td>
<td>IBC08</td>
<td>PP22</td>
<td></td>
</tr>
<tr>
<td>3242</td>
<td>AZODICARBONAMIDE</td>
<td>4.1</td>
<td>II</td>
<td>215</td>
<td>1 kg</td>
<td>E0</td>
<td>P409</td>
<td></td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3243</td>
<td>SOLIDS CONTAINING TOXIC LIQUID, N.O.S.</td>
<td>6.1</td>
<td>II</td>
<td>217 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>IBC02</td>
<td>PP9</td>
<td>T2 BK1 BK2 TP33</td>
</tr>
<tr>
<td>3244</td>
<td>SOLIDS CONTAINING CORROSIVE LIQUID, N.O.S.</td>
<td>8</td>
<td>II</td>
<td>218 274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>IBC05</td>
<td>PP9</td>
<td>T3 BK1 BK2 TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3245</td>
<td>GENETICALLY MODIFIED MICROORGANISMS, or GENETICALLY MODIFIED ORGANISMS</td>
<td>9</td>
<td>219 AU06</td>
<td>0</td>
<td>E0</td>
<td>P904 IBC99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3246</td>
<td>METHANESULPHONYL CHLORIDE</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>354</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20 TP2 TP13</td>
</tr>
<tr>
<td>3247</td>
<td>SODIUM PEROXOBORATE, ANHYDROUS</td>
<td>5.1</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08 B2, B4</td>
<td>T3 TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3248</td>
<td>MEDICINE, LIQUID, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>220 221</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td></td>
</tr>
<tr>
<td>3249</td>
<td>MEDICINE, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>II</td>
<td>221</td>
<td>500 g</td>
<td>E4</td>
<td>P002 PP6</td>
<td>T3 TP33</td>
<td></td>
</tr>
<tr>
<td>3250</td>
<td>CHLOROACETIC ACID, MOLTEN</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>None</td>
<td>T7 TP3 TP28</td>
<td></td>
</tr>
<tr>
<td>3251</td>
<td>ISOSORBIDE-5-MONONITRATE</td>
<td>4.1</td>
<td>III</td>
<td>132 226</td>
<td>5 kg</td>
<td>E0</td>
<td>P409</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Special Provisions</th>
<th>Packing Instruction</th>
<th>Special Packing Provisions</th>
<th>Instructions</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3252</td>
<td>DIFLUOROMETHANE (REFRIGERANT GAS R 32)</td>
<td>2.1</td>
<td>III</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3253</td>
<td>DISODIUM TRIOXOSILICATE</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>B3</td>
<td>T1</td>
<td>IBC08</td>
<td>P002</td>
<td>LP02</td>
<td></td>
<td></td>
<td>TP33</td>
</tr>
<tr>
<td>3254</td>
<td>TRIBUTYLPHOSPHANE</td>
<td>4.2</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P400</td>
<td>T21</td>
<td>IBC01</td>
<td>P009</td>
<td>T29</td>
<td></td>
<td></td>
<td>TP2, TP7</td>
</tr>
<tr>
<td>3255</td>
<td>tert-BUTYL HYPOCHLORITE</td>
<td>4.2</td>
<td>8</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td>IBC07</td>
<td>T099</td>
<td>T099</td>
<td></td>
<td></td>
<td>T099</td>
</tr>
<tr>
<td>3256</td>
<td>ELEVATED TEMPERATURE LIQUID, FLAMMABLE, N.O.S. with flash point above 60°C, at or above its flash point</td>
<td>3</td>
<td>III</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td>IBC01</td>
<td>T099</td>
<td>T099</td>
<td></td>
<td></td>
<td>T099</td>
</tr>
<tr>
<td>3257</td>
<td>ELEVATED TEMPERATURE LIQUID, N.O.S., at or above 100°C and below its flash point (including molten metals, molten salts, etc.)</td>
<td>9</td>
<td>III</td>
<td>232</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td>IBC01</td>
<td>T099</td>
<td>T099</td>
<td></td>
<td></td>
<td>T099</td>
</tr>
<tr>
<td>3258</td>
<td>ELEVATED TEMPERATURE SOLID, N.O.S., at or above 240°C</td>
<td>9</td>
<td>III</td>
<td>232</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td>IBC07</td>
<td>T099</td>
<td>T099</td>
<td></td>
<td></td>
<td>T099</td>
</tr>
<tr>
<td>3259</td>
<td>AMINES, SOLID, CORROSIVE, N.O.S. or POLYAMINES, SOLID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td>IBC07</td>
<td>T099</td>
<td>T099</td>
<td></td>
<td></td>
<td>T099</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P099</td>
<td>IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td></td>
<td></td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepated Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3260</td>
<td>CORROSIVE SOLID, ACIDIC, INORGANIC, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>1 kg</td>
<td>E0</td>
<td>P002 IBC08 B1 T6 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08 B2, B4 T3 TP33</td>
</tr>
<tr>
<td>3261</td>
<td>CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>1 kg</td>
<td>E0</td>
<td>P002 IBC08 B1 T6 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08 B2, B4 T3 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 B3 T1 TP33</td>
</tr>
</tbody>
</table>

Ref: 3.1.2

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packing Instruction</th>
<th>Special Packing Provisions</th>
<th>Instructions</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3262</td>
<td>CORROSIVE SOLID, BASIC, INORGANIC, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3263</td>
<td>CORROSIVE SOLID, BASIC, ORGANIC, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3264</td>
<td>CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3265</td>
<td>CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T11</td>
<td>TP2, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP1, TP28</td>
</tr>
<tr>
<td>3266</td>
<td>CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP1, TP28</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>3267</td>
<td>CORROSIVE LIQUID, BASIC, ORGANIC, N.O.S.</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td>TP2, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2, TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP1, TP28</td>
</tr>
<tr>
<td>3268</td>
<td>SAFETY DEVICES, electronically initiated</td>
<td>9</td>
<td></td>
<td>280 289</td>
<td>0</td>
<td>E0</td>
<td>P902 LP902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3269</td>
<td>POLYESTER RESIN KIT, liquid base material</td>
<td>3</td>
<td>II</td>
<td>236</td>
<td>5 L</td>
<td>E0</td>
<td>P302</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>236</td>
<td>5 L</td>
<td>E0</td>
<td>P302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3270</td>
<td>NITROCELLULOSE MEMBRANE FILTERS, with not more than 12.6% nitrogen, by dry mass</td>
<td>4.1</td>
<td>II</td>
<td>237 286</td>
<td>1 kg</td>
<td>E2</td>
<td>P411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3271</td>
<td>ETHERS, N.O.S.</td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1, TP8, TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3272</td>
<td>ESTERS, N.O.S.</td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>274</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>LP01</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3273</td>
<td>NITRILES, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3274</td>
<td>ALCOHOLATES SOLUTION, N.O.S., in alcohol</td>
<td>3</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td></td>
</tr>
</tbody>
</table>

Australian Dangerous Goods Code, 2020, Edition 7.7
<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Ref</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3275</td>
<td>NITRILES, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1 3 I</td>
<td>274 315</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NITRILES, TOXIC, FLAMMABLE, N.O.S. cont.</td>
<td>6.1 3 II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP13 TP27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3276</td>
<td>NITRILES, LIQUID, TOXIC, N.O.S.</td>
<td>6.1 I</td>
<td>274 315</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1 III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP1 TP28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3277</td>
<td>CHLOROFORMATES, TOXIC, CORROSIVE, N.O.S.</td>
<td>6.1 8 II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T8</td>
<td>TP2 TP13 TP28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Division</th>
<th>Special Subdivision</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3278</td>
<td>ORGANOPHOSPHORUS COMPOUND, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td></td>
<td>43</td>
<td>274</td>
<td>315</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td></td>
<td></td>
<td>43</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td></td>
<td></td>
<td>43</td>
<td>223</td>
<td>274</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
</tr>
<tr>
<td>3279</td>
<td>ORGANOPHOSPHORUS COMPOUND, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td></td>
<td>43</td>
<td>274</td>
<td>315</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td></td>
<td>43</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
</tr>
<tr>
<td>3280</td>
<td>ORGANOARSENIC COMPOUND, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td></td>
<td>274</td>
<td>315</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3281</td>
<td>METAL CARBONYLS, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11 TP2 TP27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7 TP1 TP28</td>
<td></td>
</tr>
<tr>
<td>3282</td>
<td>ORGANOMETALLIC COMPOUND, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274 315</td>
<td>0</td>
<td>E5</td>
<td>P601</td>
<td>T14 TP13 TP27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11 TP2 TP27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7 TP1 TP28</td>
<td></td>
</tr>
</tbody>
</table>

Ref: 3.1.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>20.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3.2</td>
<td>4.2.5</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>III</td>
<td>223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP1</td>
<td>TP28</td>
</tr>
<tr>
<td>3283</td>
<td>SELENIUM COMPOUND, SOLID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>3284</td>
<td>TELLURIUM COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3285</td>
<td>VANADIUM COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3 TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>3286</td>
<td>FLAMMABLE LIQUID, TOXIC, CORROSIVE, N.O.S.</td>
<td>3</td>
<td>6.1 8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14 TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1 8</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC99</td>
<td>T11 TP2 TP13 TP27</td>
</tr>
<tr>
<td>3287</td>
<td>TOXIC LIQUID, INORGANIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274 315</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2 TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274 100 ml</td>
<td></td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2 TP27</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3288</td>
<td>TOXIC SOLID, INORGANIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC99</td>
<td>T6</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC8</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC8 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>3289</td>
<td>TOXIC LIQUID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>274 315</td>
<td>0</td>
<td>E5</td>
<td>P001 IBC99</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td>3290</td>
<td>TOXIC SOLID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC99</td>
<td>T6</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3291</td>
<td>CLINICAL WASTE, UNSPECIFIED, N.O.S. or (BIO) MEDICAL WASTE, N.O.S. or REGULATED MEDICAL WASTE, N.O.S.</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC06</td>
<td>B2 T3 TP33</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3292</td>
<td>BATTERIES, CONTAINING SODIUM, or CELLS, CONTAINING SODIUM</td>
<td>4.3</td>
<td></td>
<td>239</td>
<td>0</td>
<td>E0</td>
<td>P62A IBC620 LP621</td>
<td>BK2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3293</td>
<td>HYDRAZINE, AQUEOUS SOLUTION with not more than 37% hydrazine, by mass</td>
<td>6.1</td>
<td></td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4 TP1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3294</td>
<td>HYDROGEN CYANIDE, SOLUTION IN ALCOHOL with not more than 45% hydrogen cyanide</td>
<td>6.1</td>
<td></td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T14</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3295</td>
<td>HYDROCARBONS, LIQUID, N.O.S.</td>
<td>3</td>
<td></td>
<td>I</td>
<td>500 ml</td>
<td>E3</td>
<td>P001</td>
<td>T11</td>
<td>TP1 TP8 TP28</td>
</tr>
</tbody>
</table>

1 Use of bulk container BK2 for UN 3291 is subject to 4.3.2.4.2
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3296</td>
<td>HEPTAFLUOROPROPANE (REFRIGERANT GAS R 227)</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
<td>TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>IBC03</td>
<td>TP1</td>
</tr>
<tr>
<td>3297</td>
<td>ETHYLENE OXIDE AND CHLOROTETRAFLUORO-ETHANE MIXTURE with not more than 8.8% ethylene oxide</td>
<td>2.2</td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td>T50</td>
<td></td>
</tr>
<tr>
<td>3298</td>
<td>ETHYLENE OXIDE AND PENTAFLUOROETHANE MIXTURE with not more than 7.9% ethylene oxide</td>
<td>2.2</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td>T50</td>
<td></td>
</tr>
<tr>
<td>3299</td>
<td>ETHYLENE OXIDE AND TETRAFLUOROETHANE MIXTURE with not more than 5.6% ethylene oxide</td>
<td>2.2</td>
<td>392</td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td></td>
<td>T50</td>
<td></td>
</tr>
<tr>
<td>3300</td>
<td>ETHYLENE OXIDE AND CARBON DIOXIDE MIXTURE with more than 87% ethylene oxide</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3301</td>
<td>CORROSIVE LIQUID, SELF-HEATING, N.O.S.</td>
<td>8</td>
<td>4.2</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>4.2</td>
<td>274</td>
<td>0</td>
<td>E2</td>
<td>P001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3302</td>
<td>2-DIMETHYLAMINOETHYL ACRYLATE, STABILIZED</td>
<td>6.1</td>
<td>II</td>
<td>386</td>
<td>100 ml</td>
<td>E4</td>
<td>P001</td>
<td>IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3303</td>
<td>COMPRESSED GAS, TOXIC, OXIDISING, N.O.S.</td>
<td>2.3</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3304</td>
<td>COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>8</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3305</td>
<td>COMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3306</td>
<td>COMPRESSED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3307</td>
<td>LIQUEFIED GAS, TOXIC, OXIDISING, N.O.S.</td>
<td>2.3</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3308</td>
<td>LIQUEFIED GAS, TOXIC, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>8</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3309</td>
<td>LIQUEFIED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3310</td>
<td>LIQUEFIED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3311</td>
<td>GAS, REFRIGERATED LIQUID, OXIDISING, N.O.S.</td>
<td>2.2</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P203</td>
<td>T75</td>
<td>TP5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3312</td>
<td>GAS, REFRIGERATED LIQUID, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P203</td>
<td>T75</td>
<td>TP5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3313</td>
<td>ORGANIC PIGMENTS, SELF-HEATING</td>
<td>4.2</td>
<td>II</td>
<td>223</td>
<td>0</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3314</td>
<td>PLASTICS MOULDING COMPOUND in dough, sheet or extruded rope form evolving flammable vapour</td>
<td>9</td>
<td>III</td>
<td>207</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3315</td>
<td>CHEMICAL SAMPLE, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>250</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC08</td>
<td>B3, B6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3316</td>
<td>CHEMICAL KIT or FIRST AID KIT</td>
<td>9</td>
<td>251</td>
<td>See SP in chapter 3.3</td>
<td>See SP in chapter 3.3</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3317</td>
<td>2-AMINO-4,6-DINITROPHENOL, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3318</td>
<td>AMMONIA SOLUTION, relative density less than 0.880 at 15 °C in water, with more than 50% ammonia</td>
<td>2.3</td>
<td>23</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td>T50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3319</td>
<td>NITROGLYCERIN MIXTURE, DESENSITISED, SOLID, N.O.S. with more than 2% but not more than 10% nitroglycerin, by mass</td>
<td>4.1</td>
<td>II</td>
<td>272, 274</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC08</td>
<td>B3, B6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3320</td>
<td>SODIUM BOROHYDRIDE AND SODIUM HYDROXIDE SOLUTION, with not more than 12% sodium borohydride and not more than 40% sodium hydroxide by mass</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP2</td>
</tr>
<tr>
<td>3321</td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-II), non fissile or fissile-excepted</td>
<td>7</td>
<td>172 317 325 336</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td>T5</td>
<td>TP4</td>
<td></td>
</tr>
<tr>
<td>3322</td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-III), non fissile or fissile-excepted</td>
<td>7</td>
<td>172 317 325 336</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td>T5</td>
<td>TP4</td>
<td></td>
</tr>
<tr>
<td>3323</td>
<td>RADIOACTIVE MATERIAL, TYPE C PACKAGE, non fissile or fissile-excepted</td>
<td>7</td>
<td>172 317 325 336</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3324</td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-II), FISSILE</td>
<td>7</td>
<td>326</td>
<td>336</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3325</td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY, (LSA-III), FISSILE</td>
<td>7</td>
<td>326</td>
<td>336</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3326</td>
<td>RADIOACTIVE MATERIAL, SURFACE CONTAMINATED OBJECTS (SCO-I or SCO-II), FISSILE</td>
<td>7</td>
<td>326</td>
<td>336</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3327</td>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, FISSILE, non-special form</td>
<td>7</td>
<td>326</td>
<td>336</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3328</td>
<td>RADIOACTIVE MATERIAL, TYPE B(U) PACKAGE, FISSILE</td>
<td>7</td>
<td>337</td>
<td>326</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3329</td>
<td>RADIOACTIVE MATERIAL, TYPE B(M) PACKAGE, FISSILE</td>
<td>7</td>
<td>337</td>
<td>326</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3330</td>
<td>RADIOACTIVE MATERIAL, TYPE C PACKAGE, FISSILE</td>
<td>7</td>
<td>326</td>
<td>336</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3331</td>
<td>RADIOACTIVE MATERIAL, TRANSPORTED UNDER SPECIAL ARRANGEMENT, FISSILE</td>
<td>7</td>
<td>172</td>
<td>326</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3332</td>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, SPECIAL FORM, non fissile or fissile-excepted</td>
<td>7</td>
<td>172</td>
<td>317</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3333</td>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, SPECIAL FORM, FISSILE</td>
<td>7</td>
<td>172</td>
<td>0</td>
<td>E0</td>
<td>See ARPANSA Radioactive Transport Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3334</td>
<td>AVIATION REGULATED LIQUID, N.O.S. Not subject to this Code (see SP 106)</td>
<td>9</td>
<td>106</td>
<td>274</td>
<td>276</td>
<td>E1</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3335</td>
<td>AVIATION REGULATED SOLID, N.O.S. Not subject to this Code (see SP 106)</td>
<td>9</td>
<td>106</td>
<td>274</td>
<td>276</td>
<td>E1</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3336</td>
<td>MERCAPTANS, LIQUID, FLAMMABLE, N.O.S. or MERCAPTAN MIXTURE, LIQUID, FLAMMABLE, N.O.S.</td>
<td>3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP1 TP8 TP28</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10)</td>
<td>(11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td>3337</td>
<td>REFRIGERANT GAS R 404A</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td>3338</td>
<td>REFRIGERANT GAS R 407A</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td>3339</td>
<td>REFRIGERANT GAS R 407B</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td>3340</td>
<td>REFRIGERANT GAS R 407C</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>120 ml</td>
<td>E1</td>
<td>P200</td>
<td>T50</td>
</tr>
<tr>
<td>3341</td>
<td>THIOUREA DIOXIDE</td>
<td>4.2</td>
<td>II</td>
<td></td>
<td>0</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td>3342</td>
<td>XANTHATES</td>
<td>4.2</td>
<td>II</td>
<td></td>
<td>0</td>
<td>E2</td>
<td>P002 IBC06</td>
<td>B2</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.5</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3343</td>
<td>NITROGLYCERIN MIXTURE, DESENSITISED, LIQUID, FLAMMABLE, N.O.S. with not more than 30% nitroglycerin, by mass</td>
<td>3</td>
<td>II</td>
<td>272 278</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3344</td>
<td>PENTAERYTHRITOL TETRANITRATE (PENTAERYTHRITOL TETRANITRATE; PETN) MIXTURE, DESENSITISED, SOLID, N.O.S. with more than 10% but not more than 20% PETN, by mass</td>
<td>4.1</td>
<td>II</td>
<td>272 274</td>
<td>0</td>
<td>E0</td>
<td>P406 PP26 PP80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3345</td>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07 B1 T6 TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4 T3 TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02 B3 T1 TP33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3346</td>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E0</td>
<td>P001 T14 TP2 TP13 TP27</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td>3347</td>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
</tr>
<tr>
<td>3348</td>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td></td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td></td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
</tbody>
</table>

Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3349</td>
<td>PYRETHROID PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>E5</td>
<td>P002 IBC07 B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>3350</td>
<td>PYRETHROID PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point less than 23 °C</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
</tr>
<tr>
<td>3351</td>
<td>PYRETHROID PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point not less than 23 °C</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>3</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T7</td>
</tr>
<tr>
<td>3352</td>
<td>PYRETHROID PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>I</td>
<td>61 274</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>61 274</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>61 223 274</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>3354</td>
<td>INSECTICIDE GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3355</td>
<td>INSECTICIDE GAS, TOXIC, FLAMMABLE, N.O.S.</td>
<td>2.3</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3356</td>
<td>OXYGEN GENERATOR, CHEMICAL †</td>
<td>5.1</td>
<td>2.0</td>
<td></td>
<td>3.3</td>
<td>0</td>
<td>E0</td>
<td>P200</td>
</tr>
<tr>
<td>3357</td>
<td>NITROGLYCERIN MIXTURE, DESENSITISED, LIQUID, N.O.S. with not more than 30% nitroglycerin, by mass</td>
<td>3</td>
<td>II</td>
<td>274</td>
<td>288</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
</tr>
<tr>
<td>3358</td>
<td>REFRIGERATING MACHINES containing flammable, non-toxic, liquefied gas</td>
<td>2.1</td>
<td>9</td>
<td>291</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P003</td>
</tr>
<tr>
<td>3359</td>
<td>FUMIGATED CARGO TRANSPORT UNIT</td>
<td>9</td>
<td>302</td>
<td>0</td>
<td></td>
<td>E0</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>3360</td>
<td>FIBRES, VEGETABLE, DRY Not subject to this Code (see SP 117)</td>
<td>4.1</td>
<td>4.1.4</td>
<td>29</td>
<td>123</td>
<td>299</td>
<td>0</td>
<td>PP19</td>
</tr>
<tr>
<td>3361</td>
<td>CHLOROSILANES, TOXIC, CORROSIVE, N.O.S.</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
</tr>
<tr>
<td>3362</td>
<td>CHLOROSILANES, TOXIC, CORROSIVE, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P010</td>
</tr>
</tbody>
</table>

Page 511
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3363</td>
<td>DANGEROUS GOODS IN ARTICLES or DANGEROUS GOODS IN MACHINERY or DANGEROUS GOODS IN APPARATUS</td>
<td>9</td>
<td></td>
<td>301</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3364</td>
<td>TRINITROPHENOL (PICRIC ACID), WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P406</td>
<td>PP24</td>
</tr>
<tr>
<td>3365</td>
<td>TRINITROCHLOROBENZENE (PICRYL CHLORIDE), WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P406</td>
<td>PP24</td>
</tr>
<tr>
<td>3366</td>
<td>TRINITROTOLUENE (TNT), WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P406</td>
<td>PP24</td>
</tr>
<tr>
<td>3367</td>
<td>TRINITROBENZENE, WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P406</td>
<td>PP24</td>
</tr>
<tr>
<td>3368</td>
<td>TRINITROBENZOIC ACID, WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P406</td>
<td>PP24</td>
</tr>
<tr>
<td>3369</td>
<td>SODIUM DINITRO-o-CRESOLATE, WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P406</td>
<td>PP24</td>
</tr>
<tr>
<td>3370</td>
<td>UREA NITRATE, WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>E0</td>
<td></td>
<td>P406</td>
<td>PP78</td>
</tr>
<tr>
<td>3371</td>
<td>2-METHYL BUTANAL</td>
<td>3</td>
<td>II</td>
<td>1 L</td>
<td></td>
<td>E2</td>
<td></td>
<td>P001</td>
<td>IBC02</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3373</td>
<td>BIOLOGICAL SUBSTANCE, CATEGORY B</td>
<td>6.2</td>
<td></td>
<td>319 341</td>
<td>0</td>
<td>E0</td>
<td>P650</td>
<td>T1 BK1 BK2</td>
<td>TP1</td>
</tr>
<tr>
<td>3374</td>
<td>ACETYLENE, SOLVENT FREE</td>
<td>2.1</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3375</td>
<td>AMMONIUM NITRATE EMULSION or SUSPENSION or GEL, intermediate for blasting explosives</td>
<td>5.1</td>
<td>II 309</td>
<td>0</td>
<td>E2</td>
<td>P505</td>
<td>IBC02 B16</td>
<td>T1 T2</td>
<td>TP1 TP9 TP17 TP32</td>
</tr>
<tr>
<td>3376</td>
<td>4-NITROPHENYLHYDRAZINE, with not less than 30% water, by mass</td>
<td>4.1</td>
<td>I 28</td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3377</td>
<td>SODIUM PERBORATE MONOHYDRATE</td>
<td>5.1</td>
<td>III 5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 BK1 BK2 BK3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3378</td>
<td>SODIUM CARBONATE PEROXYHYDRATE</td>
<td>5.1</td>
<td>II 1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2 B4</td>
<td>T3 BK1 BK2 BK3</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepated Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3379</td>
<td>DESENSITISED EXPLOSIVE, LIQUID, N.O.S.</td>
<td>5.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002</td>
<td>IBC08</td>
<td>LP02</td>
<td>B3</td>
</tr>
<tr>
<td>3380</td>
<td>DESENSITISED EXPLOSIVE, SOLID, N.O.S.</td>
<td>3</td>
<td>I</td>
<td>274</td>
<td>311</td>
<td>0</td>
<td>E0</td>
<td>P099</td>
<td></td>
</tr>
<tr>
<td>3381</td>
<td>TOXIC BY INHALATION LIQUID, N.O.S. with an LC50 lower than or equal to 200 ml/m³ and saturated vapour concentration greater than or equal to 500 LC50</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>311</td>
<td>394</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
</tr>
<tr>
<td>3382</td>
<td>TOXIC BY INHALATION LIQUID, N.O.S. with an LC50 lower than or equal to 1000 ml/m³ and saturated vapour concentration greater than or equal to 10 LC50</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3383</td>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, N.O.S. with an LC50 lower than or equal to 200 ml/m³ and saturated vapour concentration greater than or equal to 500 LC50</td>
<td>6.1</td>
<td>3</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T22</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>3384</td>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, N.O.S. with an LC50 lower than or equal to 1000 ml/m³ and saturated vapour concentration greater than or equal to 10 LC50</td>
<td>6.1</td>
<td>3</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>3385</td>
<td>TOXIC BY INHALATION LIQUID, WATER-REACTIVE, N.O.S. with an LC50 lower than or equal to 200 ml/m³ and saturated vapour concentration greater than or equal to 500 LC50</td>
<td>6.1</td>
<td>4.3</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T22</td>
<td>TP2 TP13</td>
</tr>
<tr>
<td>3386</td>
<td>TOXIC BY INHALATION LIQUID, WATER-REACTIVE, N.O.S. with an LC50 lower than or equal to 1000 ml/m³ and saturated vapour concentration greater than or equal to 10 LC50</td>
<td>6.1</td>
<td>4.3</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T20</td>
<td>TP2 TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepcted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3387</td>
<td>TOXIC BY INHALATION LIQUID, OXIDISING, N.O.S. with an LC50 lower than or equal to 200 ml/m³ and saturated vapour concentration greater than or equal to 500 LC50</td>
<td>6.1</td>
<td>5.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
</tr>
<tr>
<td>3388</td>
<td>TOXIC BY INHALATION LIQUID, OXIDISING, N.O.S. with an LC50 lower than or equal to 1000 ml/m³ and saturated vapour concentration greater than or equal to 10 LC50</td>
<td>6.1</td>
<td>5.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
</tr>
<tr>
<td>3389</td>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC50 lower than or equal to 200 ml/m³ and saturated vapour concentration greater than or equal to 500 LC50</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
</tr>
<tr>
<td>3390</td>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC50 lower than or equal to 1000 ml/m³ and saturated vapour concentration greater than or equal to 10 LC50</td>
<td>6.1</td>
<td>8</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
</tr>
<tr>
<td>3391</td>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, PYROPHORIC</td>
<td>4.2</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P404</td>
<td>PP86</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Ref.</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group (7)</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3392</td>
<td>ORGANOMETALLIC SUBSTANCE, LIQUID, PYROPHORIC</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.2.5, 4.3.2, 4.2.5</td>
</tr>
<tr>
<td>3393</td>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, PYROPHORIC, WATER-REACTIVE</td>
<td></td>
<td>4.2</td>
<td>4.3</td>
<td>I 274</td>
<td>0</td>
<td>E0</td>
<td>P400</td>
<td>PP86</td>
<td>T21, TP7, TP36</td>
</tr>
<tr>
<td>3394</td>
<td>ORGANOMETALLIC SUBSTANCE, LIQUID, PYROPHORIC, WATER-REACTIVE</td>
<td></td>
<td>4.2</td>
<td>4.3</td>
<td>I 274</td>
<td>0</td>
<td>E0</td>
<td>P400</td>
<td>PP86</td>
<td>T21, TP7, TP36, TP41</td>
</tr>
<tr>
<td>3395</td>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, WATER-REACTIVE</td>
<td></td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>T9</td>
<td>TP7, TP33, TP36, TP41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E2</td>
<td>P410 IBC04</td>
<td>T3</td>
<td>TP33, TP36, TP41</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3396</td>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, WATER - REACTIVE, FLAMMABLE</td>
<td>4.3</td>
<td>III</td>
<td>223 274</td>
<td>1 kg</td>
<td>E1</td>
<td>P410</td>
<td>IBC06</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td>T9</td>
</tr>
<tr>
<td></td>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, WATER - REACTIVE, FLAMMABLE cont.</td>
<td>4.3</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E2</td>
<td>P410</td>
<td>IBC04</td>
<td>T3</td>
</tr>
<tr>
<td>3397</td>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, WATER-REACTIVE, SELF-HEATING</td>
<td>4.3</td>
<td>III</td>
<td>223 274</td>
<td>1 kg</td>
<td>E1</td>
<td>P410</td>
<td>IBC06</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td></td>
<td>T9</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Special Provisions</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1) (2)</td>
<td>(3) (4)</td>
<td>(5) (6)</td>
<td>(7a) (7b)</td>
<td>(8) (9)</td>
<td>(10)</td>
<td>(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td>3.1.2</td>
<td>2.0 2.0 2.0.1.3</td>
<td>3.3</td>
<td>3.4 3.5 4.1.4 4.1.4</td>
<td>4.2.5 4.3.2 4.2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3398</td>
<td>ORGANOMETALLIC SUBSTANCE, LIQUID, WATER - REACTIVE</td>
<td></td>
<td></td>
<td>E2</td>
<td>P410 IBC04</td>
<td>T3 TP33 TP36 TP41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 4.2 II 274</td>
<td>500 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 4.2 III 223</td>
<td>1 kg</td>
<td>E1</td>
<td>P410 IBC06</td>
<td>T1 TP33 TP36 TP41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 I 274 0</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
<td>T13 TP2 TP7 TP36 TP41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 II 274 500 ml</td>
<td>E2 P001 IBC01</td>
<td>T7</td>
<td>TP2 TP7 TP36 TP41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 III 223 1 l</td>
<td>E1 P001 IBC02</td>
<td>T7</td>
<td>TP2 TP7 TP36 TP41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Excepited Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3399</td>
<td>ORGANO METALLIC SUBSTANCE, LIQUID, WATER - REACTIVE, FLAMMABLE</td>
<td>4.3 3 I</td>
<td>274 0</td>
<td>E0</td>
<td>P402</td>
<td>T13</td>
<td>TP2 TP7 TP36 TP41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORGANO METALLIC SUBSTANCE, LIQUID, WATER - REACTIVE, FLAMMABLE</td>
<td>4.3 3 II</td>
<td>274 500 ml</td>
<td>E2</td>
<td>P001 IBC01</td>
<td>T7</td>
<td>TP2 TP7 TP36 TP41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORGANO METALLIC SUBSTANCE, LIQUID, WATER - REACTIVE, FLAMMABLE</td>
<td>4.3 3 III</td>
<td>223 274 1 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2 TP7 TP36 TP41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3400</td>
<td>ORGANO METALLIC SUBSTANCE, SOLID, SELF-HEATING</td>
<td>4.2 II</td>
<td>274 500 g</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>T3</td>
<td>TP33 TP36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORGANO METALLIC SUBSTANCE, SOLID, SELF-HEATING</td>
<td>4.2 III</td>
<td>223 274 1 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>T1</td>
<td>TP33 TP36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3401</td>
<td>ALKALI METAL AMALGAM, SOLID</td>
<td>4.3 I</td>
<td>182 0</td>
<td>E0</td>
<td>P403</td>
<td>T9</td>
<td>TP7 TP33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ref: 3.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ref: 3.2.5</td>
</tr>
<tr>
<td>3402</td>
<td>ALKALINE EARTH METAL AMALGAM, SOLID</td>
<td>4.3</td>
<td>I</td>
<td>183</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>T9</td>
<td>TP7, TP33</td>
</tr>
<tr>
<td>3403</td>
<td>POTASSIUM METAL ALLOYS, SOLID</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>T9</td>
<td>TP7, TP33</td>
<td></td>
</tr>
<tr>
<td>3404</td>
<td>POTASSIUM SODIUM ALLOYS, SOLID</td>
<td>4.3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P403</td>
<td>T9</td>
<td>TP7, TP33</td>
<td></td>
</tr>
<tr>
<td>3405</td>
<td>BARIUM CHLORATE SOLUTION</td>
<td>5.1, 6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1, 6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1 P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>3406</td>
<td>BARIUM PERCHLORATE SOLUTION</td>
<td>5.1, 6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1, 6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1 P001 IBC02</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>3407</td>
<td>CHLORATE AND MAGNESIUM CHLORIDE MIXTURE SOLUTION</td>
<td>5.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1 P504 IBC01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3408</td>
<td>LEAD PERCHLORATE SOLUTION</td>
<td>5.1</td>
<td>6.1</td>
<td>II</td>
<td>E2</td>
<td>1 L</td>
<td>E2</td>
<td>P504 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.1</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>3409</td>
<td>CHLORONITROBENZENES, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>100 ml</td>
<td>E4</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7 TP2</td>
</tr>
<tr>
<td>3410</td>
<td>4-CHLORO-o-TOLUIDINE HYDROCHLORIDE SOLUTION</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>3411</td>
<td>beta-NAPHTHYLAMINE SOLUTION</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>3412</td>
<td>FORMIC ACID with not less than 10% but not more than 85% acid by mass</td>
<td>8</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FORMIC ACID with not less than 5% but less than 10% acid by mass</td>
<td>8</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>20.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3413</td>
<td>POTASSIUM CYANIDE SOLUTION</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
<td>TP13 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP2</td>
<td>TP13 TP28</td>
</tr>
<tr>
<td>3414</td>
<td>SODIUM CYANIDE SOLUTION</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E5</td>
<td>P001</td>
<td>T14</td>
<td>TP2</td>
<td>TP13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T11</td>
<td>TP2</td>
<td>TP13 TP27</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T7</td>
<td>TP2 TP13 TP28</td>
</tr>
<tr>
<td>3415</td>
<td>SODIUM FLUORIDE SOLUTION</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>3416</td>
<td>CHLOROACETOPHENONE, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>0</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2 TP13</td>
<td></td>
</tr>
<tr>
<td>3417</td>
<td>XYLYL BROMIDE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>0</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3418</td>
<td>2,4-TOLUYLENEDIAMINE SOLUTION</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>3419</td>
<td>BORON TRIFLUORIDE ACETIC ACID COMPLEX, SOLID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3420</td>
<td>BORON TRIFLUORIDE PROPIONIC ACID COMPLEX, SOLID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3421</td>
<td>POTASSIUM HYDROGEN DIFLUORIDE SOLUTION</td>
<td>8</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
</tr>
<tr>
<td>3422</td>
<td>POTASSIUM FLUORIDE SOLUTION</td>
<td>6.1</td>
<td>II</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>3423</td>
<td>TETRAMETHYLAMMONIUM HYDROXIDE, SOLID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3424</td>
<td>AMMONIUM DINITRO-0-CRESOLATE, SOLUTION</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td>3425</td>
<td>BROMOACETIC ACID, SOLID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3426</td>
<td>ACRYLAMIDE SOLUTION</td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>TP1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3427</td>
<td>CHLOROBENZYL CHLORIDES, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3428</td>
<td>3-CHLORO-4-METHYLPHENYL ISOCYANATE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3429</td>
<td>CHLOROTOLUIDINES, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>T1</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td>3430</td>
<td>XYLENOLS, LIQUID</td>
<td>6.1</td>
<td>II</td>
<td>100 ml</td>
<td>E4</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>T2</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td>3431</td>
<td>NITROBENZOTRIFLUORIDES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3432</td>
<td>POLYCHLORINATED BIPHENYLs, SOLID</td>
<td>9</td>
<td>II</td>
<td>305</td>
<td>1 kg</td>
<td>P906 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3434</td>
<td>NITROCRESOLS, LIQUID</td>
<td>6.1</td>
<td>III</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03 LP01</td>
<td>T4</td>
<td>T2</td>
<td>TP1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packaging & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3436</td>
<td>HEXAFLUOROACETONE HYDRATE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3437</td>
<td>CHLOROCRESOLS, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3438</td>
<td>alpha-METHYLBENZYL ALCOHOL, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3439</td>
<td>NITRILES, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274, 0</td>
<td>E5</td>
<td>P002 B1</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274, 500 g</td>
<td>E4</td>
<td>P002 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223, 274, 5 kg</td>
<td>E1</td>
<td>P002 B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3440</td>
<td>SELENIUM COMPOUND, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274, 0</td>
<td>E5</td>
<td>P001 T14</td>
<td>TP2, TP27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274, 100 ml</td>
<td>E4</td>
<td>P001 T11</td>
<td>TP2, TP27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3441</td>
<td>CHLORODINITROBENZENES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>223</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T7</td>
<td>TP1</td>
<td>TP28</td>
</tr>
<tr>
<td>3442</td>
<td>DICHLOROANILINES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3443</td>
<td>DINITROBENZENES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3444</td>
<td>NICOTINE HYDROCHLORIDE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3445</td>
<td>NICOTINE SULPHATE, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3446</td>
<td>NITROTOLUENES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3447</td>
<td>NITROXYLENES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3448</td>
<td>TEAR GAS SUBSTANCE, SOLID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P002</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3449</td>
<td>BROMOBENZYL CYANIDES, SOLID</td>
<td>6.1</td>
<td>I</td>
<td>138</td>
<td>0</td>
<td>E5</td>
<td>P002 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3450</td>
<td>DIPHENYLCHLOROARSINE, SOLID</td>
<td>6.1</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P002 B1, B2</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3451</td>
<td>TOLUIDINES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>279</td>
<td>500 g</td>
<td>E4</td>
<td>P002 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3452</td>
<td>XYLIDINES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
</tr>
<tr>
<td>3453</td>
<td>PHOSPHORIC ACID, SOLID</td>
<td>8</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3454</td>
<td>DINITROTOLUENES, SOLID</td>
<td>6.1</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3455</td>
<td>CRESOLS, SOLID</td>
<td>6.1</td>
<td>8</td>
<td>II</td>
<td>500 g</td>
<td>E4</td>
<td>P002 B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3456</td>
<td>NITROSYLSULPHURIC ACID, SOLID</td>
<td>8</td>
<td>II</td>
<td>1 kg</td>
<td>E2</td>
<td>P002 B2, B4</td>
<td>T3</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Division</th>
<th>Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3457</td>
<td>CHLORONITROTOLUENES, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3458</td>
<td>NITROANISOLES, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3459</td>
<td>NITROBROMOBENZENES, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3460</td>
<td>N-ETHYLBENZYLTOUOLIDINES, SOLID</td>
<td>6.1</td>
<td>III</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3462</td>
<td>TOXINS, EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S.</td>
<td>6.1, 6.1</td>
<td>I, II</td>
<td>210</td>
<td>E5, E4</td>
<td>P002 IBC07 IBC08</td>
<td>B1, B2, B4</td>
<td>T6, T3</td>
<td>TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>III</td>
<td>210</td>
<td>223</td>
<td>274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP33</td>
</tr>
<tr>
<td>3463</td>
<td>PROPIONIC ACID with not less than 90% acid by mass</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td></td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP2</td>
</tr>
<tr>
<td>3464</td>
<td>ORGANOPHOSPHORUS COMPOUND, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>43</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>43</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>43</td>
<td>223</td>
<td>274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP33</td>
</tr>
<tr>
<td>3465</td>
<td>ORGANOARSENIC COMPOUND, SOLID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td></td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP33</td>
</tr>
<tr>
<td>UN No.</td>
<td>Name and Description</td>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>Packing Group</td>
<td>Special Provisions</td>
<td>Limited Quantities</td>
<td>Exempted Quantities</td>
<td>Packagings & IBCs</td>
<td>Portable Tanks & Bulk Containers</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>3466</td>
<td>METAL CARBONYLS, SOLID, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
<tr>
<td>3467</td>
<td>ORGANOMETALLIC COMPOUND, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E5</td>
<td>P002 IBC07</td>
<td>B1</td>
<td>T6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>II</td>
<td>274</td>
<td>500 g</td>
<td>E4</td>
<td>P002 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>III</td>
<td>223 274</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3</td>
<td>T1 TP33</td>
</tr>
<tr>
<td>3468</td>
<td>HYDROGEN IN A METAL HYDRIDE STORAGE SYSTEM or HYDROGEN IN A METAL HYDRIDE STORAGE SYSTEM CONTAINED IN EQUIPMENT or HYDROGEN IN A METAL HYDRIDE STORAGE SYSTEM PACKED WITH EQUIPMENT</td>
<td>2.1</td>
<td></td>
<td>321 356</td>
<td>0</td>
<td>E0</td>
<td>P205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3469</td>
<td>PAINT, FLAMMABLE, CORROSIVE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL, FLAMMABLE, CORROSIVE (including paint thinning or reducing compound)</td>
<td>3 8 I</td>
<td></td>
<td>163 367</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T11</td>
<td>TP2 TP27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 8 II</td>
<td></td>
<td>163 367</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2 TP8 TP28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 8 III</td>
<td></td>
<td>163 223</td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1 TP29</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3470</td>
<td>PAINT, CORROSIVE, FLAMMABLE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL CORROSIVE, FLAMMABLE (including paint thinning or reducing compound)</td>
<td>8</td>
<td>3</td>
<td>II</td>
<td>163 367</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7 TP2 TP8 TP28</td>
</tr>
<tr>
<td>3471</td>
<td>HYDROGEN DIFLUORIDES SOLUTION, N.O.S.</td>
<td>8</td>
<td>6.1</td>
<td>II</td>
<td>1 L</td>
<td>E2</td>
<td>P001 IBC02</td>
<td>T7</td>
<td>TP2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IBC03</td>
<td>T4 TP1</td>
</tr>
<tr>
<td>3472</td>
<td>CROTONIC ACID, LIQUID</td>
<td>8</td>
<td>III</td>
<td></td>
<td>5 L</td>
<td>E1</td>
<td>P001 IBC03</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>3473</td>
<td>FUEL CELL CARTRIDGES or FUEL CELL CARTRIDGES CONTAINED IN EQUIPMENT or FUEL CELL CARTRIDGES PACKED WITH EQUIPMENT, containing flammable liquids</td>
<td>3</td>
<td></td>
<td></td>
<td>328</td>
<td>1 L</td>
<td>E0</td>
<td>P004</td>
<td></td>
</tr>
<tr>
<td>3474</td>
<td>1-HYDROXYBENZOTRIAZOLE MONOHYDRATE with not less than 20% water, by mass</td>
<td>4.1</td>
<td>I</td>
<td></td>
<td>0</td>
<td>E0</td>
<td>P406</td>
<td>PP48</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3475</td>
<td>ETHANOL AND GASOLINE MIXTURE or ETHANOL AND MOTOR SPIRIT MIXTURE or ETHANOL AND PETROL MIXTURE, with more than 10% ethanol</td>
<td>3</td>
<td>II</td>
<td>333</td>
<td>1 L</td>
<td>E2</td>
<td>P001 [IBC02]</td>
<td>T4</td>
<td>TP1</td>
</tr>
<tr>
<td>3476</td>
<td>FUEL CELL CARTRIDGES or FUEL CELL CARTRIDGES CONTAINED IN EQUIPMENT or FUEL CELL CARTRIDGES PACKED WITH EQUIPMENT, containing water-reactive substances</td>
<td>4.3</td>
<td>328 334</td>
<td>500 ml or 500 g</td>
<td>E0</td>
<td>P004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3477</td>
<td>FUEL CELL CARTRIDGES or FUEL CELL CARTRIDGES CONTAINED IN EQUIPMENT or FUEL CELL CARTRIDGES PACKED WITH EQUIPMENT, containing corrosive substances</td>
<td>8</td>
<td>328 334</td>
<td>1 L or 1 kg</td>
<td>E0</td>
<td>P004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3478</td>
<td>FUEL CELL CARTRIDGES or FUEL CELL CARTRIDGES CONTAINED IN EQUIPMENT or FUEL CELL CARTRIDGES PACKED WITH EQUIPMENT, containing liquefied flammable gas</td>
<td>2.1</td>
<td>328 338</td>
<td>120 ml</td>
<td>E0</td>
<td>P004</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
<td>(7b)</td>
<td>(8)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3479</td>
<td>FUEL CELL CARTRIDGES or FUEL CELL CARTRIDGES CONTAINED IN EQUIPMENT or FUEL CELL CARTRIDGES PACKED WITH EQUIPMENT, containing hydrogen in metal hydride</td>
<td>2.1</td>
<td>328</td>
<td>339</td>
<td>120 ml</td>
<td>188</td>
<td>230</td>
<td>310</td>
<td>348</td>
</tr>
<tr>
<td>3480</td>
<td>LITHIUM ION BATTERIES (including lithium ion polymer batteries)</td>
<td>9</td>
<td>188</td>
<td>230</td>
<td>310</td>
<td>348</td>
<td>376</td>
<td>377</td>
<td>384</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3481</td>
<td>LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT or LITHIUM ION BATTERIES PACKED WITH EQUIPMENT</td>
<td>9</td>
<td>20.0</td>
<td>20.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3482</td>
<td>ALKALI METAL DISPERSION, FLAMMABLE or ALKALINE EARTH METAL DISPERSION, FLAMMABLE</td>
<td>4.3</td>
<td>3</td>
<td>I</td>
<td>182</td>
<td>183</td>
<td>0</td>
<td>E0</td>
<td>P402</td>
</tr>
<tr>
<td>3483</td>
<td>MOTOR FUEL ANTI-KNOCK MIXTURE, FLAMMABLE</td>
<td>6.1</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P602</td>
<td>T14</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>3484</td>
<td>HYDRAZINE AQUEOUS SOLUTION, FLAMMABLE, with more than 37% hydrazine, by mass</td>
<td>8</td>
<td>3</td>
<td>I</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T10</td>
<td>TP2, TP13</td>
</tr>
<tr>
<td>3485</td>
<td>CALCIUM HYPOCHLORITE, DRY, CORROSIVE or CALCIUM HYPOCHLORITE MIXTURE, DRY, CORROSIVE</td>
<td>5.1</td>
<td>8</td>
<td>II</td>
<td>314</td>
<td>1 kg</td>
<td>E2</td>
<td>P002</td>
<td>IBC08, PP85, B2, B4, B13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3486</td>
<td>CALCIUM HYPOCHLORITE MIXTURE, DRY, CORROSIVE with more than 10% but not more than 39% available chlorine</td>
<td>5.1</td>
<td>III</td>
<td>314</td>
<td>5 kg</td>
<td>E1</td>
<td>P002IBC08 LP02</td>
<td>PP85 B3, B13</td>
<td></td>
</tr>
<tr>
<td>3487</td>
<td>CALCIUM HYPOCHLORITE, HYDRATED, CORROSIVE or CALCIUM HYPOCHLORITE, HYDRATED MIXTURE, CORROSIVE, with not less than 5.5% but not more than 16% water</td>
<td>5.1</td>
<td>II</td>
<td>314 322</td>
<td>1 kg</td>
<td>E2</td>
<td>P002IBC08</td>
<td>PP85 B2, B4, B13</td>
<td></td>
</tr>
<tr>
<td>3487</td>
<td>CALCIUM HYPOCHLORITE, HYDRATED, CORROSIVE or CALCIUM HYPOCHLORITE, HYDRATED MIXTURE, CORROSIVE, with not less than 5.5% but not more than 16% water</td>
<td>5.1</td>
<td>III</td>
<td>223 314</td>
<td>5 kg</td>
<td>E1</td>
<td>P002IBC08</td>
<td>PP85 B4, B13</td>
<td></td>
</tr>
<tr>
<td>3488</td>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, CORROSIVE, N.O.S. with an inhalation toxicity lower than or equal to 200 ml/m³ and saturated vapour concentration greater than or equal to 500 LC50</td>
<td>6.1</td>
<td>I</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P601</td>
<td>T22</td>
<td>TP2 TP13</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ref (1)</td>
<td>Ref (2)</td>
<td>Ref (3)</td>
<td>Ref (4)</td>
<td>Ref (5)</td>
<td>Ref (6)</td>
<td>Ref (7a)</td>
<td>Ref (7b)</td>
</tr>
<tr>
<td>3489</td>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, CORROSIVE, N.O.S. with an inhalation toxicity lower than or equal to 1000 ml/m³ and saturated vapour concentration greater than or equal to 10 LC50</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3490</td>
<td>TOXIC BY INHALATION LIQUID, WATER-REACTIVE, FLAMMABLE, N.O.S. with an inhalation toxicity lower than or equal to 200 ml/m³ and saturated vapour concentration greater than or equal to 500 LC50</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3491</td>
<td>TOXIC BY INHALATION LIQUID, WATER-REACTIVE, FLAMMABLE, N.O.S. with an inhalation toxicity lower than or equal to 1000 ml/m³ and saturated vapour concentration greater than or equal to 10 LC50</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3494</td>
<td>PETROLEUM SOUR CRUDE OIL, FLAMMABLE, TOXIC</td>
<td>3</td>
<td>6.1</td>
<td>I</td>
<td>343</td>
<td>0</td>
<td>E0</td>
<td>P001</td>
<td>T14</td>
</tr>
<tr>
<td>3494</td>
<td>PETROLEUM SOUR CRUDE OIL, FLAMMABLE, TOXIC</td>
<td>3</td>
<td>6.1</td>
<td>II</td>
<td>343</td>
<td>1 L</td>
<td>E2</td>
<td>P001</td>
<td>T7</td>
</tr>
<tr>
<td>3494</td>
<td>PETROLEUM SOUR CRUDE OIL, FLAMMABLE, TOXIC</td>
<td>3</td>
<td>6.1</td>
<td>III</td>
<td>343</td>
<td>5 L</td>
<td>E1</td>
<td>P001</td>
<td>T4</td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3495</td>
<td>IODINE</td>
<td>8</td>
<td>6.1</td>
<td>III</td>
<td>279</td>
<td>5 kg</td>
<td>E1</td>
<td>P002 IBC08</td>
<td>B3 T1 TP33</td>
</tr>
<tr>
<td>3496</td>
<td>BATTERIES, NICKEL-METAL HYDRIDE</td>
<td>9</td>
<td>117</td>
<td>0</td>
<td>E0</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3497</td>
<td>KRILL MEAL</td>
<td>4.2</td>
<td>II</td>
<td>300</td>
<td>0</td>
<td>E2</td>
<td>P410 IBC06</td>
<td>B2 T3 TP33</td>
<td></td>
</tr>
<tr>
<td>3497</td>
<td>KRILL MEAL</td>
<td>4.2</td>
<td>III</td>
<td>300</td>
<td>0</td>
<td>E1</td>
<td>P002 IBC08 LP02</td>
<td>B3 T1 TP33</td>
<td></td>
</tr>
<tr>
<td>3498</td>
<td>IODINE MONOCHLORIDE, LIQUID</td>
<td>8</td>
<td>II</td>
<td>1</td>
<td>L</td>
<td>E0</td>
<td>P001 IBC02</td>
<td>T7 TP2</td>
<td></td>
</tr>
<tr>
<td>3499</td>
<td>CAPACITOR, ELECTRIC DOUBLE LAYER (with an energy storage capacity greater than 0.3Wh)</td>
<td>9</td>
<td>361</td>
<td>0</td>
<td>E0</td>
<td>P003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>CHEMICAL UNDER PRESSURE, N.O.S.</td>
<td>2.2</td>
<td>274 362</td>
<td>0</td>
<td>E0</td>
<td>P206</td>
<td>PP97</td>
<td>T50 TP4 TP40</td>
<td></td>
</tr>
<tr>
<td>3501</td>
<td>CHEMICAL UNDER PRESSURE, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td>274 362</td>
<td>0</td>
<td>E0</td>
<td>P206</td>
<td>PP89</td>
<td>T50 TP4 TP40</td>
<td></td>
</tr>
<tr>
<td>3502</td>
<td>CHEMICAL UNDER PRESSURE, TOXIC, N.O.S.</td>
<td>2.2</td>
<td>6.1 274 362</td>
<td>0</td>
<td>E0</td>
<td>P206</td>
<td>PP89</td>
<td>T50 TP4 TP40</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Limited Quantities</th>
<th>Exempted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7a)</td>
</tr>
<tr>
<td>Ref</td>
<td>3.1.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0.1.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>4.1.4</td>
</tr>
<tr>
<td>3503</td>
<td>CHEMICAL UNDER PRESSURE, CORROSIVE, N.O.S.</td>
<td>2.2</td>
<td>8</td>
<td>274</td>
<td>362</td>
<td>0</td>
<td>E0</td>
<td>P206</td>
</tr>
<tr>
<td>3504</td>
<td>CHEMICAL UNDER PRESSURE, FLAMMABLE, TOXIC, N.O.S.</td>
<td>2.1</td>
<td>6.1</td>
<td>274</td>
<td>362</td>
<td>0</td>
<td>E0</td>
<td>P206</td>
</tr>
<tr>
<td>3505</td>
<td>CHEMICAL UNDER PRESSURE, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.1</td>
<td>8</td>
<td>274</td>
<td>362</td>
<td>0</td>
<td>E0</td>
<td>P206</td>
</tr>
<tr>
<td>3506</td>
<td>MERCURY CONTAINED IN MANUFACTURED ARTICLES</td>
<td>8</td>
<td>6.1</td>
<td>366</td>
<td>0</td>
<td>5 kg</td>
<td>E0</td>
<td>P003</td>
</tr>
<tr>
<td>3507</td>
<td>URANIUM HEXAFLOURIDE, RADIOACTIVE MATERIAL, EXCEPTED PACKAGE, less than 0.1 Kg per package, non-fissile oe fissile-excepted</td>
<td>6.1</td>
<td>7</td>
<td>8</td>
<td>317</td>
<td>369</td>
<td>0</td>
<td>E0</td>
</tr>
<tr>
<td>3508</td>
<td>CAPACITOR, ASYMMETRIC (with an energy storage capacity less than 0.3 Wh)</td>
<td>9</td>
<td>372</td>
<td>0</td>
<td>E0</td>
<td>P003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3509</td>
<td>PACKAGINGS DISCARDED, EMPTY, UNCLEANED</td>
<td>9</td>
<td>374</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3510</td>
<td>ADSORBED GAS, FLAMMABLE, NOS</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3511</td>
<td>ADSORBED GAS, NOS</td>
<td>2.2</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3512</td>
<td>ADSORBED GAS, TOXIC, NOS</td>
<td>2.3</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3513</td>
<td>ADSORBED GAS, OXIDISING, NOS</td>
<td>2.2</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
</tr>
<tr>
<td>3514</td>
<td>ADSORBED GAS, TOXIC, FLAMMABLE, NOS</td>
<td>2.3</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3515</td>
<td>ADSORBED GAS, TOXIC, OXIDISING, NOS</td>
<td>2.3</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3516</td>
<td>ADSORBED GAS, TOXIC, CORROSIVE, NOS</td>
<td>2.3</td>
<td>8</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3517</td>
<td>ADSORBED GAS, TOXIC, FLAMMABLE, CORROSIVE, NOS</td>
<td>2.3</td>
<td>2.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3518</td>
<td>ADSORBED GAS, TOXIC, OXIDISING, CORROSIVE NOS</td>
<td>2.3</td>
<td>5.1</td>
<td>274</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3519</td>
<td>BORON TRIFLUORIDE, ADSORBED</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3520</td>
<td>CHLORINE, ADSORBED</td>
<td>2.3</td>
<td>5.1</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3521</td>
<td>SILICON TETRAFLUORIDE, ADSORBED</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3522</td>
<td>ARSINE, ADSORBED</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3523</td>
<td>GERMANE, ADSORBED</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3524</td>
<td>PHOSPHOROUS PENTAFLUORIDE, ADSORBED</td>
<td>2.3</td>
<td>8</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3525</td>
<td>PHOSPHINE, ADSORBED</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3526</td>
<td>HYDROGEN SELENIDE, ADSORBED</td>
<td>2.3</td>
<td>2.1</td>
<td>0</td>
<td>E0</td>
<td>P208</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3527</td>
<td>POLYESTER RESIN KIT, solid base material</td>
<td>4.1</td>
<td>II</td>
<td>236</td>
<td>340</td>
<td>5kg</td>
<td>E0</td>
<td>P412</td>
<td></td>
</tr>
<tr>
<td>3527</td>
<td>POLYESTER RESIN KIT, solid base material</td>
<td>4.1</td>
<td>III</td>
<td>236</td>
<td>340</td>
<td>5kg</td>
<td>E0</td>
<td>P412</td>
<td></td>
</tr>
<tr>
<td>3528</td>
<td>ENGINE, INTERNAL COMBUSTION, FLAMMABLE LIQUID POWERED or ENGINE, FUEL CELL, FLAMMABLE LIQUID POWERED or MACHINERY, INTERNAL COMBUSTION, FLAMMABLE LIQUID POWERED or MACHINERY, FUEL CELL, FLAMMABLE LIQUID POWERED</td>
<td>3</td>
<td></td>
<td>363</td>
<td>0</td>
<td>E0</td>
<td>P005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3529</td>
<td>ENGINE, INTERNAL COMBUSTION, FLAMMABLE GAS POWERED or ENGINE, FUEL CELL, FLAMMABLE GAS POWERED or MACHINERY, INTERNAL COMBUSTION, FLAMMABLE GAS POWERED or MACHINERY, FUEL CELL, FLAMMABLE GAS POWERED</td>
<td>2.1</td>
<td></td>
<td>356</td>
<td>363</td>
<td>0</td>
<td>E0</td>
<td>P005</td>
<td></td>
</tr>
<tr>
<td>3530</td>
<td>ENGINE, INTERNAL COMBUSTION or MACHINERY, INTERNAL COMBUSTION</td>
<td>9</td>
<td></td>
<td>363</td>
<td>0</td>
<td>E0</td>
<td>P005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3531</td>
<td>POLYMERIZING SUBSTANCE, SOLID, STABILIZED, N.O.S.</td>
<td>4.1</td>
<td>III</td>
<td>274</td>
<td>386</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC07 PP92 B18 T7 TP4 TP6 TP33</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excep. Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3532</td>
<td>POLYMERIZING SUBSTANCE, LIQUID, STABILIZED, N.O.S.</td>
<td>4.1</td>
<td>III</td>
<td>274 386</td>
<td>0</td>
<td>E0</td>
<td>P001 IBC03</td>
<td>PP3 B19</td>
<td>T7</td>
</tr>
<tr>
<td>3533</td>
<td>POLYMERIZING SUBSTANCE, SOLID, TEMPERATURE CONTROLLED, N.O.S.</td>
<td>4.1</td>
<td>III</td>
<td>274 386</td>
<td>0</td>
<td>E0</td>
<td>P002 IBC07</td>
<td>PP92 B18</td>
<td>T7</td>
</tr>
<tr>
<td>3534</td>
<td>POLYMERIZING SUBSTANCE, LIQUID, TEMPERATURE CONTROLLED, N.O.S.</td>
<td>4.1</td>
<td>III</td>
<td>274 386</td>
<td>0</td>
<td>E0</td>
<td>P001 IBC03</td>
<td>PP3 B19</td>
<td>T7</td>
</tr>
<tr>
<td>3535</td>
<td>TOXIC SOLID, FLAMMABLE, INORGANIC, N.O.S.</td>
<td>6.1</td>
<td>4.1</td>
<td>I 274 0</td>
<td>E5</td>
<td>P002 IBC99</td>
<td>T6</td>
<td>TP33</td>
<td></td>
</tr>
<tr>
<td>3536</td>
<td>LITHIUM BATTERIES INSTALLED IN CARGO TRANSPORT UNIT lithium ion batteries or lithium metal batteries</td>
<td>9</td>
<td>389</td>
<td>0</td>
<td>E0</td>
<td>P006 IBC08</td>
<td>B2, B4</td>
<td>T3</td>
<td>TP33</td>
</tr>
<tr>
<td>3537</td>
<td>ARTICLES CONTAINING FLAMMABLE GAS, N.O.S.</td>
<td>2.1</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td>P006 LP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3538</td>
<td>ARTICLES CONTAINING NON-FLAMMABLE, NON TOXIC GAS, N.O.S.</td>
<td>2.2</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td>P006 LP03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Excepted Quantities</th>
<th>Packagings & IBCs</th>
<th>Portable Tanks & Bulk Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3539</td>
<td>ARTICLES CONTAINING TOXIC GAS, N.O.S.</td>
<td>2.3</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3540</td>
<td>ARTICLES CONTAINING FLAMMABLE LIQUID, N.O.S.</td>
<td>3</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td>P006 LP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3541</td>
<td>ARTICLES CONTAINING FLAMMABLE SOLID, N.O.S.</td>
<td>4.1</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td>P006 LP03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3542</td>
<td>ARTICLES CONTAINING A SUBSTANCE LIABLE TO SPONTANEOUS COMBUSTION, N.O.S.</td>
<td>4.2</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3543</td>
<td>ARTICLES CONTAINING A SUBSTANCE WHICH IN CONTACT WITH WATER EMITS FLAMMABLE GASES, N.O.S</td>
<td>4.3</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3544</td>
<td>ARTICLES CONTAINING OXIDIZING SUBSTANCE, N.O.S.</td>
<td>5.1</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2.3: Dangerous Goods List

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and Description</th>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>Packing Group</th>
<th>Special Provisions</th>
<th>Limited Quantities</th>
<th>Exceptional Quantities</th>
<th>Packagings & IBCs</th>
<th>Special Packing Provisions</th>
<th>Instructions</th>
<th>Special Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3545</td>
<td>ARTICLES CONTAINING ORGANIC PEROXIDE, N.O.S.</td>
<td>5.2</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3546</td>
<td>ARTICLES CONTAINING TOXIC SUBSTANCE, N.O.S.</td>
<td>6.1</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td>P006 LP03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3547</td>
<td>ARTICLES CONTAINING CORROSIVE SUBSTANCE, N.O.S.</td>
<td>8</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td>P006 LP03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3548</td>
<td>ARTICLES CONTAINING MISCELLANEOUS DANGEROUS GOODS, N.O.S.</td>
<td>9</td>
<td>See 2.0.5.6</td>
<td>274 391</td>
<td>0</td>
<td>E0</td>
<td>P006 LP03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3549</td>
<td>MEDICAL WASTE, CATEGORY A, AFFECTING HUMANS, solid or MEDICAL WASTE, CATEGORY A, AFFECTING ANIMALS only, solid</td>
<td>6.2</td>
<td></td>
<td>395</td>
<td>0</td>
<td>E0</td>
<td>P622 LP622</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.4 ALPHABETICAL INDEX OF SUBSTANCES AND ARTICLES

3.2.4.1 Notes to the Index

3.2.4.1.1 This index is an alphabetical list of the substances and articles which are listed in numerical order in the Dangerous Goods List in 3.2.3.

3.2.4.1.2 For the purpose of determining the alphabetical order the following information has been ignored even when it forms part of the proper shipping name: numbers; Greek letters; the abbreviations "sec" and "tert"; and the letters "N" (nitrogen), "n" (normal), "o" (ortho) "m" (meta), "p" (para) and "N.O.S." (not otherwise specified).

3.2.4.1.3 The name of a substance or article in block capital letters indicates a proper shipping name.

3.2.4.1.4 The name of a substance or article in block capital letters followed by the word "see" indicates an alternative proper shipping name or part of a proper shipping name (except for PCBs).

3.2.4.1.5 An entry in lower case letters followed by the word "see" indicates that the entry is not a proper shipping name; it is a synonym.

3.2.4.1.6 Where an entry is partly in block capital letters and partly in lower case letters, the latter part is considered not to be part of the proper shipping name.

3.2.4.1.7 A proper shipping name may be used in the singular or plural, as appropriate, for the purposes of documentation and package marking.

3.2.4.2 Alphabetical Index of Substances and Articles

Table 3.2.4.2: Alphabetical Index of Substances and Articles

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulators, electric, —see</td>
<td>4.3</td>
<td>3292</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2794</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2795</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2800</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3028</td>
</tr>
<tr>
<td>ACETAL</td>
<td>3</td>
<td>1088</td>
</tr>
<tr>
<td>ACETALDEHYDE</td>
<td>3</td>
<td>1089</td>
</tr>
<tr>
<td>ACETALDEHYDE AMMONIA</td>
<td>9</td>
<td>1841</td>
</tr>
<tr>
<td>ACETALDEHYDE OXIME</td>
<td>3</td>
<td>2332</td>
</tr>
<tr>
<td>ACETIC ACID, GLACIAL</td>
<td>8</td>
<td>2789</td>
</tr>
<tr>
<td>ACETIC ACID SOLUTION, more than 10% but not more than 80% acid, by mass</td>
<td>8</td>
<td>2790</td>
</tr>
<tr>
<td>ACETIC ACID SOLUTION, more than 80% acid, by mass</td>
<td>8</td>
<td>2789</td>
</tr>
<tr>
<td>ACETIC ANHYDRIDE</td>
<td>8</td>
<td>1715</td>
</tr>
<tr>
<td>Acetoin, —see</td>
<td>3</td>
<td>2621</td>
</tr>
<tr>
<td>ACETONE</td>
<td>3</td>
<td>1090</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>ACETONE CYANOHYDRIN, STABILISED</td>
<td>6.1</td>
<td>1541</td>
</tr>
<tr>
<td>ACETONE OILS</td>
<td>3</td>
<td>1091</td>
</tr>
<tr>
<td>ACETONITRILE</td>
<td>3</td>
<td>1648</td>
</tr>
<tr>
<td>ACETYL BROMIDE</td>
<td>8</td>
<td>1716</td>
</tr>
<tr>
<td>ACETYL CHLORIDE</td>
<td>3</td>
<td>1717</td>
</tr>
<tr>
<td>ACETYLENE, DISSOLVED</td>
<td>2.1</td>
<td>1001</td>
</tr>
<tr>
<td>ACETYLENE, SOLVENT FREE</td>
<td>2.1</td>
<td>3374</td>
</tr>
<tr>
<td>Acetylene tetrabromide, –see</td>
<td>6.1</td>
<td>2504</td>
</tr>
<tr>
<td>Acetylene tetrachloride, –see</td>
<td>6.1</td>
<td>1702</td>
</tr>
<tr>
<td>ACETYL IODIDE</td>
<td>8</td>
<td>1898</td>
</tr>
<tr>
<td>ACETYL METHYL CARBINOL</td>
<td>3</td>
<td>2621</td>
</tr>
<tr>
<td>Acid butyl phosphate, –see</td>
<td>8</td>
<td>1718</td>
</tr>
<tr>
<td>Acid mixture, hydrofluoric and sulphuric, –see</td>
<td>8</td>
<td>1786</td>
</tr>
<tr>
<td>Acid mixture, nitrating acid, –see</td>
<td>8</td>
<td>1796</td>
</tr>
<tr>
<td>Acid mixture, spent, nitrating acid, –see</td>
<td>8</td>
<td>1826</td>
</tr>
<tr>
<td>Acraldehyde, inhibited, –see</td>
<td>6.1</td>
<td>1092</td>
</tr>
<tr>
<td>ACRIDINE</td>
<td>6.1</td>
<td>2713</td>
</tr>
<tr>
<td>ACRYLEIN DIMER, STABILISED</td>
<td>3</td>
<td>2607</td>
</tr>
<tr>
<td>ACROLEIN, STABILISED</td>
<td>6.1</td>
<td>1092</td>
</tr>
<tr>
<td>ACRYLAMIDE, SOLID</td>
<td>6.1</td>
<td>2074</td>
</tr>
<tr>
<td>ACRYLAMIDE SOLUTION</td>
<td>6.1</td>
<td>3426</td>
</tr>
<tr>
<td>ACRYLIC ACID, STABILISED</td>
<td>8</td>
<td>2218</td>
</tr>
<tr>
<td>ACRYLONITRILE, STABILISED</td>
<td>3</td>
<td>1093</td>
</tr>
<tr>
<td>Actinolite, –see</td>
<td>9</td>
<td>2212</td>
</tr>
<tr>
<td>Activated carbon, –see</td>
<td>4.2</td>
<td>1362</td>
</tr>
<tr>
<td>Activated charcoal, –see</td>
<td>4.2</td>
<td>1362</td>
</tr>
<tr>
<td>ADHESIVES containing flammable liquid</td>
<td>3</td>
<td>1133</td>
</tr>
<tr>
<td>ADIPONITRILE</td>
<td>6.1</td>
<td>2205</td>
</tr>
<tr>
<td>ADSORBED GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td>3510</td>
</tr>
<tr>
<td>ADSORBED GAS, N.O.S.</td>
<td>2.1</td>
<td>3511</td>
</tr>
<tr>
<td>ADSORBED GAS, OXIDISING, N.O.S.</td>
<td>2.2</td>
<td>3513</td>
</tr>
<tr>
<td>ADSORBED GAS, TOXIC, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>3516</td>
</tr>
<tr>
<td>ADSORBED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>3517</td>
</tr>
<tr>
<td>ADSORBED GAS, TOXIC, FLAMMABLE</td>
<td>2.3</td>
<td>3514</td>
</tr>
<tr>
<td>ADSORBED GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td>3512</td>
</tr>
<tr>
<td>ADSORBED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>3518</td>
</tr>
<tr>
<td>ADSORBED GAS, TOXIC, OXIDISING</td>
<td>2.3</td>
<td>3515</td>
</tr>
<tr>
<td>Aeroplane flares, –see</td>
<td>1.1G</td>
<td>0420</td>
</tr>
<tr>
<td></td>
<td>1.2G</td>
<td>0421</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0093</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0403</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0404</td>
</tr>
<tr>
<td>AEROSOLS</td>
<td>2</td>
<td>1950</td>
</tr>
<tr>
<td>AGENT, BLASTING, TYPE B, –see</td>
<td>1.5D</td>
<td>0331</td>
</tr>
<tr>
<td>AGENT, BLASTING, TYPE E, –see</td>
<td>1.5D</td>
<td>0332</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>–see SAFETY DEVICES, PYROTECHNIC</td>
<td>9</td>
<td>3268</td>
</tr>
<tr>
<td>–see SAFETY DEVICES, electronically initiated</td>
<td>9</td>
<td>3268</td>
</tr>
<tr>
<td>AIR, COMPRESSED</td>
<td>2.2</td>
<td>1002</td>
</tr>
<tr>
<td>Aircraft evacuation slides, –see</td>
<td>9</td>
<td>2990</td>
</tr>
<tr>
<td>AIRCRAFT HYDRAULIC POWER UNIT FUEL TANK (containing a mixture of anhydrous hydrazine and methylhydrazine) (M86 fuel)</td>
<td>3</td>
<td>3165</td>
</tr>
<tr>
<td>Aircraft survival kits, –see</td>
<td>9</td>
<td>2990</td>
</tr>
<tr>
<td>AIR, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>1003</td>
</tr>
<tr>
<td>ALCOHOLATES SOLUTION, N.O.S., in alcohol</td>
<td>3</td>
<td>3274</td>
</tr>
<tr>
<td>Alcohol, denatured, –see</td>
<td>3</td>
<td>1986</td>
</tr>
<tr>
<td>Alcohol, industrial, –see</td>
<td>3</td>
<td>1986</td>
</tr>
<tr>
<td>ALCOHOLS, N.O.S.</td>
<td>3</td>
<td>1987</td>
</tr>
<tr>
<td>ALCOHOLS, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>1986</td>
</tr>
<tr>
<td>ALCOHOLIC BEVERAGES, with more than 70% alcohol by volume</td>
<td>3</td>
<td>3065</td>
</tr>
<tr>
<td>ALCOHOLIC BEVERAGES, with more than 24% but not more than 70% alcohol by volume</td>
<td>3</td>
<td>3065</td>
</tr>
<tr>
<td>Aldehyde, –see</td>
<td>3</td>
<td>1989</td>
</tr>
<tr>
<td>ALDEHYDES, N.O.S.</td>
<td>3</td>
<td>1989</td>
</tr>
<tr>
<td>ALDEHYDES, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>1988</td>
</tr>
<tr>
<td>ALDOL</td>
<td>6.1</td>
<td>2839</td>
</tr>
<tr>
<td>ALKALI METAL ALCOHOLATES, SELF-HEATING, CORROSIVE, N.O.S.</td>
<td>4.2</td>
<td>3206</td>
</tr>
<tr>
<td>ALKALI METAL ALLOY, LIQUID, N.O.S.</td>
<td>4.3</td>
<td>1421</td>
</tr>
<tr>
<td>ALKALI METAL AMALGAM, LIQUID</td>
<td>4.3</td>
<td>1389</td>
</tr>
<tr>
<td>ALKALI METAL AMALGAM, SOLID</td>
<td>4.3</td>
<td>3401</td>
</tr>
<tr>
<td>ALKALI METAL AMIDES</td>
<td>4.3</td>
<td>1390</td>
</tr>
<tr>
<td>ALKALI METAL DISPERSION</td>
<td>4.3</td>
<td>1391</td>
</tr>
<tr>
<td>ALKALI METAL DISPERSION, FLAMMABLE</td>
<td>4.3</td>
<td>3482</td>
</tr>
<tr>
<td>Alkaline corrosive battery fluid, –see</td>
<td>8</td>
<td>2797</td>
</tr>
<tr>
<td>ALKALINE EARTH METAL ALCOHOLATES, N.O.S.</td>
<td>4.2</td>
<td>3205</td>
</tr>
<tr>
<td>ALKALINE EARTH METAL ALLOY, N.O.S.</td>
<td>4.3</td>
<td>1393</td>
</tr>
<tr>
<td>ALKALINE EARTH METAL AMALGAM, LIQUID</td>
<td>4.3</td>
<td>1392</td>
</tr>
<tr>
<td>ALKALINE EARTH METAL AMALGAM, SOLID</td>
<td>4.3</td>
<td>3402</td>
</tr>
<tr>
<td>ALKALINE EARTH METAL DISPERSION</td>
<td>4.3</td>
<td>1391</td>
</tr>
<tr>
<td>ALKALINE EARTH METAL DISPERSION, FLAMMABLE</td>
<td>4.3</td>
<td>3482</td>
</tr>
<tr>
<td>ALKALOIDS, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>3140</td>
</tr>
<tr>
<td>ALKALOIDS, SOLID, N.O.S.</td>
<td>6.1</td>
<td>1544</td>
</tr>
<tr>
<td>ALKALOIDS, LIQUID, N.O.S. (including C2-C12 homologues)</td>
<td>6.1</td>
<td>1544</td>
</tr>
<tr>
<td>ALKYLPHENOLS, LIQUID, N.O.S. (including C2-C12 homologues)</td>
<td>8</td>
<td>3145</td>
</tr>
</tbody>
</table>
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALKYLPHENOLS, SOLID, N.O.S. (including C<sub>2</sub>-C<sub>12</sub> homologues)</td>
<td>8</td>
<td>2430</td>
</tr>
<tr>
<td>ALKYL SULPHONIC ACIDS, LIQUID with more than 5% free sulphuric acid</td>
<td>8</td>
<td>2584</td>
</tr>
<tr>
<td>ALKYL SULPHONIC ACIDS, LIQUID with not more than 5% free sulphuric acid</td>
<td>8</td>
<td>2586</td>
</tr>
<tr>
<td>ALKYL SULPHONIC ACIDS, SOLID with more than 5% free sulphuric acid</td>
<td>8</td>
<td>2583</td>
</tr>
<tr>
<td>ALKYL SULPHONIC ACIDS, SOLID with not more than 5% free sulphuric acid</td>
<td>8</td>
<td>2585</td>
</tr>
<tr>
<td>ALKYSULPHURIC ACIDS</td>
<td>8</td>
<td>2571</td>
</tr>
<tr>
<td>Allene, –see</td>
<td>2.1</td>
<td>2200</td>
</tr>
<tr>
<td>ALLYL ACETATE</td>
<td>3</td>
<td>2333</td>
</tr>
<tr>
<td>ALLYL ALCOHOL</td>
<td>6.1</td>
<td>1098</td>
</tr>
<tr>
<td>ALLYLAMINE</td>
<td>6.1</td>
<td>2334</td>
</tr>
<tr>
<td>ALLYL BROMIDE</td>
<td>3</td>
<td>1099</td>
</tr>
<tr>
<td>ALLYL CHLORIDE</td>
<td>3</td>
<td>1100</td>
</tr>
<tr>
<td>Allyl chlorocarbonate, –see</td>
<td>6.1</td>
<td>1722</td>
</tr>
<tr>
<td>ALLYL CHLOROFORMATE</td>
<td>6.1</td>
<td>1722</td>
</tr>
<tr>
<td>ALLYL ETHYL ETHER</td>
<td>3</td>
<td>2335</td>
</tr>
<tr>
<td>ALLYL FORMATE</td>
<td>3</td>
<td>2336</td>
</tr>
<tr>
<td>ALLYL GLYCIDYL ETHER</td>
<td>3</td>
<td>2219</td>
</tr>
<tr>
<td>ALLYL IODIDE</td>
<td>3</td>
<td>1723</td>
</tr>
<tr>
<td>ALLYL ISOTIOCYANATE, STABILISED</td>
<td>6.1</td>
<td>1545</td>
</tr>
<tr>
<td>ALLYLTRICHLOROSILANE, STABILISED</td>
<td>8</td>
<td>1724</td>
</tr>
<tr>
<td>ALUMINIUM BOROHYDRIDE</td>
<td>4.2</td>
<td>2870</td>
</tr>
<tr>
<td>ALUMINIUM BOROHYDRIDE IN DEVICES</td>
<td>4.2</td>
<td>2870</td>
</tr>
<tr>
<td>ALUMINIUM BROMIDE, ANHYDROUS</td>
<td>8</td>
<td>1725</td>
</tr>
<tr>
<td>ALUMINIUM BROMIDE SOLUTION</td>
<td>8</td>
<td>2580</td>
</tr>
<tr>
<td>ALUMINIUM CARBIDE</td>
<td>4.3</td>
<td>1394</td>
</tr>
<tr>
<td>ALUMINIUM CHLORIDE, ANHYDROUS</td>
<td>8</td>
<td>1726</td>
</tr>
<tr>
<td>ALUMINIUM CHLORIDE SOLUTION</td>
<td>8</td>
<td>2581</td>
</tr>
<tr>
<td>Aluminium dross, –see</td>
<td>4.3</td>
<td>3170</td>
</tr>
<tr>
<td>ALUMINIUM FERROSILICON POWDER</td>
<td>4.3</td>
<td>1395</td>
</tr>
<tr>
<td>ALUMINIUM HYDRIDE</td>
<td>4.3</td>
<td>2463</td>
</tr>
<tr>
<td>ALUMINIUM NITRATE</td>
<td>5.1</td>
<td>1438</td>
</tr>
<tr>
<td>ALUMINIUM PHOSPHIDE</td>
<td>4.3</td>
<td>1397</td>
</tr>
<tr>
<td>ALUMINIUM PHOSPHIDE PESTICIDE</td>
<td>6.1</td>
<td>3048</td>
</tr>
<tr>
<td>ALUMINIUM POWDER, COATED</td>
<td>4.1</td>
<td>1309</td>
</tr>
<tr>
<td>ALUMINIUM POWDER, UNCOATED</td>
<td>4.3</td>
<td>1396</td>
</tr>
<tr>
<td>ALUMINIUM REMELTING BY-PRODUCTS</td>
<td>4.3</td>
<td>3170</td>
</tr>
<tr>
<td>ALUMINIUM RESINATE</td>
<td>4.1</td>
<td>2715</td>
</tr>
<tr>
<td>ALUMINIUM SILICON POWDER, UNCOATED</td>
<td>4.3</td>
<td>1398</td>
</tr>
<tr>
<td>ALUMINIUM SMELTING BY-PRODUCTS</td>
<td>4.3</td>
<td>3170</td>
</tr>
<tr>
<td>Amatols, –see</td>
<td>1.1D</td>
<td>0082</td>
</tr>
<tr>
<td>AMINES, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>3</td>
<td>2733</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>AMINES, LIQUID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>2735</td>
</tr>
<tr>
<td>AMINES, LIQUID, CORROSIVE, FLAMMABLE, N.O.S.</td>
<td>8</td>
<td>2734</td>
</tr>
<tr>
<td>AMINES, SOLID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>3259</td>
</tr>
<tr>
<td>Aminobenzene, –see</td>
<td>6.1</td>
<td>1547</td>
</tr>
<tr>
<td>2-Aminobenzotrifluoruride, –see</td>
<td>6.1</td>
<td>2942</td>
</tr>
<tr>
<td>3-Aminobenzotrifluoruride, –see</td>
<td>6.1</td>
<td>2948</td>
</tr>
<tr>
<td>Aminobutane, –see</td>
<td>3</td>
<td>1125</td>
</tr>
<tr>
<td>2-AMINO-4-CHLOROPHENOL</td>
<td>6.1</td>
<td>2673</td>
</tr>
<tr>
<td>2-AMINO-5-DIETHYL-AMINOPENTANE</td>
<td>6.1</td>
<td>2946</td>
</tr>
<tr>
<td>2-AMINO-4,6-DINITROPHENOL, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>3317</td>
</tr>
<tr>
<td>2-(2-AMINOETHOXY)ETHANOL</td>
<td>8</td>
<td>3055</td>
</tr>
<tr>
<td>N-AMINOETHYLPIPERAZINE</td>
<td>8</td>
<td>2815</td>
</tr>
<tr>
<td>1-Amino-2-nitrobenzene, –see</td>
<td>6.1</td>
<td>1661</td>
</tr>
<tr>
<td>1-Amino-3-nitrobenzene, –see</td>
<td>6.1</td>
<td>1661</td>
</tr>
<tr>
<td>1-Amino-4-nitrobenzene, –see</td>
<td>6.1</td>
<td>1661</td>
</tr>
<tr>
<td>AMINOPHENOLS (o-, m-, p-)</td>
<td>6.1</td>
<td>2512</td>
</tr>
<tr>
<td>AMINOPYRIDINES (o-, m-, p-)</td>
<td>6.1</td>
<td>2671</td>
</tr>
<tr>
<td>AMMONIA, ANHYDROUS</td>
<td>2.3</td>
<td>1005</td>
</tr>
<tr>
<td>AMMONIA SOLUTION relative density between 0.880 and 0.957 at 15 °C in water, with more than 10% but not more than 35% ammonia</td>
<td>8</td>
<td>2672</td>
</tr>
<tr>
<td>AMMONIA SOLUTION, relative density less than 0.880 at 15 °C in water, with more than 35% but not more than 50% ammonia</td>
<td>2.2</td>
<td>2073</td>
</tr>
<tr>
<td>AMMONIA SOLUTION, relative density less than 0.880 at 15 °C in water, with more than 50% ammonia</td>
<td>2.3</td>
<td>3318</td>
</tr>
<tr>
<td>AMMONIUM ARSENATE</td>
<td>6.1</td>
<td>1546</td>
</tr>
<tr>
<td>Ammonium bichromate, –see</td>
<td>5.1</td>
<td>1439</td>
</tr>
<tr>
<td>Ammonium bifluoride solid, –see</td>
<td>8</td>
<td>1727</td>
</tr>
<tr>
<td>Ammonium bifluoride solution, –see</td>
<td>8</td>
<td>2817</td>
</tr>
<tr>
<td>Ammonium bisulphate, –see</td>
<td>8</td>
<td>2506</td>
</tr>
<tr>
<td>Ammonium bisulphite solution, –see</td>
<td>8</td>
<td>2693</td>
</tr>
<tr>
<td>AMMONIUM DICROMATE</td>
<td>5.1</td>
<td>1439</td>
</tr>
<tr>
<td>AMMONIUM DINITRO-o- CRESOLATE, SOLID</td>
<td>6.1</td>
<td>1843</td>
</tr>
<tr>
<td>AMMONIUM DINITRO-o-CRESOLATE, SOLUTION</td>
<td>6.1</td>
<td>3424</td>
</tr>
<tr>
<td>AMMONIUM FLUORIDE</td>
<td>6.1</td>
<td>2505</td>
</tr>
<tr>
<td>AMMONIUM FLUOROSILICATE</td>
<td>6.1</td>
<td>2854</td>
</tr>
<tr>
<td>Ammonium hexafluorosilicate, –see</td>
<td>6.1</td>
<td>2854</td>
</tr>
<tr>
<td>AMMONIUM HYDROGEN- DIFLUORIDE, SOLID</td>
<td>8</td>
<td>1727</td>
</tr>
<tr>
<td>AMMONIUM HYDROGEN- DIFLUORIDE SOLUTION</td>
<td>8</td>
<td>2817</td>
</tr>
<tr>
<td>AMMONIUM HYDROGEN SULPHATE</td>
<td>8</td>
<td>2506</td>
</tr>
<tr>
<td>Ammonium hydrosulphide solution (treat as ammonium sulphide solution), –see</td>
<td>8</td>
<td>2683</td>
</tr>
<tr>
<td>AMMONIUM METAVANADATE</td>
<td>6.1</td>
<td>2859</td>
</tr>
<tr>
<td>AMMONIUM NITRATE BASED FERTILISER</td>
<td>5.1</td>
<td>2067</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2071</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>AMMONIUM NITRATE EMULSION, intermediate for blasting explosives</td>
<td>5.1</td>
<td>3375</td>
</tr>
<tr>
<td>Ammonium nitrate explosive, –see</td>
<td>1.1D</td>
<td>0082</td>
</tr>
<tr>
<td>1.5D</td>
<td>0331</td>
<td></td>
</tr>
<tr>
<td>AMMONIUM NITRATE GEL, intermediate for blasting explosives</td>
<td>5.1</td>
<td>3375</td>
</tr>
<tr>
<td>AMMONIUM NITRATE, LIQUID (hot concentrated solution)</td>
<td>5.1</td>
<td>2426</td>
</tr>
<tr>
<td>AMMONIUM NITRATE SUSPENSION, intermediate for blasting explosives</td>
<td>5.1</td>
<td>3375</td>
</tr>
<tr>
<td>AMMONIUM NITRATE</td>
<td>1.1D</td>
<td>0222</td>
</tr>
<tr>
<td>AMMONIUM NITRATE, with not more than 0.2% total combustible material, including any organic substance calculated as carbon, to the exclusion of any other added substance.</td>
<td>5.1</td>
<td>1942</td>
</tr>
<tr>
<td>AMMONIUM PERCHLORATE</td>
<td>1.1D</td>
<td>0402</td>
</tr>
<tr>
<td>5.1</td>
<td>1442</td>
<td></td>
</tr>
<tr>
<td>Ammonium permanganate, –see</td>
<td>5.1</td>
<td>1482</td>
</tr>
<tr>
<td>AMMONIUM PERSULPHATE</td>
<td>5.1</td>
<td>1444</td>
</tr>
<tr>
<td>AMMONIUM PICRATE dry or wetted with less than 10% water, by mass</td>
<td>1.1D</td>
<td>0004</td>
</tr>
<tr>
<td>AMMONIUM PICRATE, WETTED with not less than 10% water, by mass</td>
<td>4.1</td>
<td>1310</td>
</tr>
<tr>
<td>AMMONIUM POLYSULPHIDE SOLUTION</td>
<td>8</td>
<td>2818</td>
</tr>
<tr>
<td>AMMONIUM POLYVANADATE</td>
<td>6.1</td>
<td>2861</td>
</tr>
<tr>
<td>Ammonium silicofluoride, –see</td>
<td>6.1</td>
<td>2854</td>
</tr>
<tr>
<td>AMMONIUM SULPHIDE SOLUTION</td>
<td>8</td>
<td>2683</td>
</tr>
<tr>
<td>Ammunition, blank, –see</td>
<td>1.1C</td>
<td>0326</td>
</tr>
<tr>
<td>1.2C</td>
<td>0413</td>
<td></td>
</tr>
<tr>
<td>1.3C</td>
<td>0327</td>
<td></td>
</tr>
<tr>
<td>1.4C</td>
<td>0338</td>
<td></td>
</tr>
<tr>
<td>1.4S</td>
<td>0014</td>
<td></td>
</tr>
<tr>
<td>Ammunition, fixed)</td>
<td>1.1E</td>
<td>0006</td>
</tr>
<tr>
<td>Ammunition, semi-fixed) –see</td>
<td>1.1F</td>
<td>0005</td>
</tr>
<tr>
<td>Ammunition, separate loading,)</td>
<td>1.2E</td>
<td>0321</td>
</tr>
<tr>
<td>1.2F</td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td>1.4E</td>
<td>0412</td>
<td></td>
</tr>
<tr>
<td>1.4F</td>
<td>0348</td>
<td></td>
</tr>
<tr>
<td>AMMUNITION, ILLUMINATING with or without burster, expelling charge or propelling charge</td>
<td>1.2G</td>
<td>0171</td>
</tr>
<tr>
<td>1.3G</td>
<td>0254</td>
<td></td>
</tr>
<tr>
<td>1.4G</td>
<td>0297</td>
<td></td>
</tr>
<tr>
<td>AMMUNITION, INCENDIARY, liquid or gel, with burster, expelling charge or propelling charge</td>
<td>1.3J</td>
<td>0247</td>
</tr>
<tr>
<td>AMMUNITION, INCENDIARY with or without burster, expelling charge or propelling charge</td>
<td>1.2G</td>
<td>0009</td>
</tr>
<tr>
<td>1.3G</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>1.4G</td>
<td>0300</td>
<td></td>
</tr>
<tr>
<td>Ammunition, incendiary (water- activated contrivances) with burster, expelling charge or propelling charge, – see</td>
<td>1.2L</td>
<td>0248</td>
</tr>
<tr>
<td>1.3L</td>
<td>0249</td>
<td></td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>AMMUNITION, INCENDIARY, WHITE PHOSPHORUS with burster, expelling charge or propelling charge</td>
<td>1.2H</td>
<td>0243</td>
</tr>
<tr>
<td></td>
<td>1.3H</td>
<td>0244</td>
</tr>
<tr>
<td>Ammunition, industrial, --see</td>
<td>1.2C</td>
<td>0381</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0275</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0277</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0276</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0278</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0323</td>
</tr>
<tr>
<td>Ammunition, lachrymatory, --see</td>
<td>1.2G</td>
<td>0018</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0019</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0301</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>2017</td>
</tr>
<tr>
<td>AMMUNITION, PRACTICE</td>
<td>1.3G</td>
<td>0488</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0362</td>
</tr>
<tr>
<td>AMMUNITION, PROOF</td>
<td>1.4G</td>
<td>0363</td>
</tr>
<tr>
<td>AMMUNITION, SMOKE with or without burster, expelling charge or propelling charge</td>
<td>1.2G</td>
<td>0015</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0016</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0303</td>
</tr>
<tr>
<td>Ammunition, smoke (water-activated contrivances), white phosphorus with burster, expelling charge or propelling charge, --see</td>
<td>1.2L</td>
<td>0248</td>
</tr>
<tr>
<td>Ammunition, smoke (water-activated contrivances), without white phosphorus or phosphides with burster, expelling charge or propelling charge, --see</td>
<td>1.3L</td>
<td>0249</td>
</tr>
<tr>
<td>AMMUNITION, SMOKE, WHITE PHOSPHORUS with burster, expelling charge or propelling charge</td>
<td>1.2H</td>
<td>0245</td>
</tr>
<tr>
<td></td>
<td>1.3H</td>
<td>0246</td>
</tr>
<tr>
<td>Ammunition, sporting, --see</td>
<td>1.2C</td>
<td>0328</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0417</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0339</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0012</td>
</tr>
<tr>
<td>AMMUNITION, TEAR-PRODUCING, NON-EXPLOSIVE without burster or expelling charge, non-fused</td>
<td>6.1</td>
<td>2017</td>
</tr>
<tr>
<td>AMMUNITION, TEAR-PRODUCING with burster, expelling charge or propelling charge</td>
<td>1.2G</td>
<td>0018</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0019</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0301</td>
</tr>
<tr>
<td>AMMUNITION, TOXIC with burster, expelling charge or propelling charge</td>
<td>1.2K</td>
<td>0020</td>
</tr>
<tr>
<td></td>
<td>1.3K</td>
<td>0021</td>
</tr>
<tr>
<td>Ammunition, toxic (water-activated contrivances) with burster, expelling charge or propelling charge, --see</td>
<td>1.2L</td>
<td>0248</td>
</tr>
<tr>
<td></td>
<td>1.3L</td>
<td>0249</td>
</tr>
<tr>
<td>AMMUNITION, TOXIC, NON-EXPLOSIVE without burster or expelling charge, non-fused</td>
<td>6.1</td>
<td>2016</td>
</tr>
<tr>
<td>Amorces (caps, toy), --see</td>
<td>1.1G</td>
<td>0333</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0336</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0337</td>
</tr>
<tr>
<td>Amosite, --see</td>
<td>9</td>
<td>2212</td>
</tr>
<tr>
<td>Amphibole asbestos, -see</td>
<td>9</td>
<td>2212</td>
</tr>
<tr>
<td>AMYL ACETATES</td>
<td>3</td>
<td>1104</td>
</tr>
<tr>
<td>AMYL ACID PHOSPHATE</td>
<td>8</td>
<td>2819</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Amyl aldehyde, —see</td>
<td>3</td>
<td>2058</td>
</tr>
<tr>
<td>AMYLAMINE</td>
<td>3</td>
<td>1106</td>
</tr>
<tr>
<td>AMYL BUTYRATES</td>
<td>3</td>
<td>2620</td>
</tr>
<tr>
<td>AMYL CHLORIDE</td>
<td>3</td>
<td>1107</td>
</tr>
<tr>
<td>n-AMYLENE, —see</td>
<td>3</td>
<td>1108</td>
</tr>
<tr>
<td>AMYL FORMATES</td>
<td>3</td>
<td>1109</td>
</tr>
<tr>
<td>AMYL MERCAPTAN</td>
<td>3</td>
<td>1111</td>
</tr>
<tr>
<td>n-AMYL METHYL KETONE</td>
<td>3</td>
<td>1110</td>
</tr>
<tr>
<td>AMYL NITRATE</td>
<td>3</td>
<td>1112</td>
</tr>
<tr>
<td>AMYL NITRITE</td>
<td>3</td>
<td>1113</td>
</tr>
<tr>
<td>AMYLTRICHLOROSILANE</td>
<td>8</td>
<td>1728</td>
</tr>
<tr>
<td>Anaesthetic ether, —see</td>
<td>3</td>
<td>1155</td>
</tr>
<tr>
<td>ANILINE</td>
<td>6.1</td>
<td>1547</td>
</tr>
<tr>
<td>Aniline chloride, —see</td>
<td>6.1</td>
<td>1548</td>
</tr>
<tr>
<td>ANILINE HYDROCHLORIDE</td>
<td>6.1</td>
<td>1548</td>
</tr>
<tr>
<td>Aniline oil, —see</td>
<td>6.1</td>
<td>1547</td>
</tr>
<tr>
<td>Aniline salt, —see</td>
<td>6.1</td>
<td>1548</td>
</tr>
<tr>
<td>ANISIDINES</td>
<td>6.1</td>
<td>2431</td>
</tr>
<tr>
<td>ANISOLE</td>
<td>3</td>
<td>2222</td>
</tr>
<tr>
<td>ANISOYL CHLORIDE</td>
<td>8</td>
<td>1729</td>
</tr>
<tr>
<td>Anthophyllite, —see</td>
<td>9</td>
<td>2212</td>
</tr>
<tr>
<td>Antimonous chloride, —see</td>
<td>8</td>
<td>1733</td>
</tr>
<tr>
<td>ANTIMONY COMPOUND, INORGANIC, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>3141</td>
</tr>
<tr>
<td>ANTIMONY COMPOUND, INORGANIC, SOLID, N.O.S.</td>
<td>6.1</td>
<td>1549</td>
</tr>
<tr>
<td>Antimony hydride, —see</td>
<td>2.3</td>
<td>2676</td>
</tr>
<tr>
<td>ANTIMONY LACTATE</td>
<td>6.1</td>
<td>1550</td>
</tr>
<tr>
<td>Antimony (III) lactate, —see</td>
<td>6.1</td>
<td>1550</td>
</tr>
<tr>
<td>ANTIMONY PENTACHLORIDE, LIQUID</td>
<td>8</td>
<td>1730</td>
</tr>
<tr>
<td>ANTIMONY PENTACHLORIDE SOLUTION</td>
<td>8</td>
<td>1731</td>
</tr>
<tr>
<td>ANTIMONY PENTAFLUORIDE</td>
<td>8</td>
<td>1732</td>
</tr>
<tr>
<td>Antimony perchloride, liquid, —see</td>
<td>8</td>
<td>1730</td>
</tr>
<tr>
<td>ANTIMONY POTASSIUM TARTRATE</td>
<td>6.1</td>
<td>1551</td>
</tr>
<tr>
<td>ANTIMONY POWDER</td>
<td>6.1</td>
<td>2871</td>
</tr>
<tr>
<td>ANTIMONY TRICHLORIDE</td>
<td>8</td>
<td>1733</td>
</tr>
<tr>
<td>À.n.t.u., —see</td>
<td>6.1</td>
<td>1651</td>
</tr>
<tr>
<td>ARGON, COMPRESSED</td>
<td>2.2</td>
<td>1006</td>
</tr>
<tr>
<td>ARGON, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>1951</td>
</tr>
<tr>
<td>Arsenates, n.o.s., —see</td>
<td>6.1</td>
<td>1556</td>
</tr>
<tr>
<td>Arsenical dust</td>
<td>6.1</td>
<td>1562</td>
</tr>
<tr>
<td>Arsenical flue dust, —see</td>
<td>6.1</td>
<td>1562</td>
</tr>
<tr>
<td>ARSENIC</td>
<td>6.1</td>
<td>1558</td>
</tr>
<tr>
<td>ARSENIC ACID, LIQUID</td>
<td>6.1</td>
<td>1553</td>
</tr>
<tr>
<td>ARSENIC ACID, SOLID</td>
<td>6.1</td>
<td>1554</td>
</tr>
<tr>
<td>ARSENICAL DUST</td>
<td>6.1</td>
<td>1562</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>ARSENICAL PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23 °C</td>
<td>3</td>
<td>2760</td>
</tr>
<tr>
<td>ARSENICAL PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>2994</td>
</tr>
<tr>
<td>ARSENICAL PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23 °C</td>
<td>6.1</td>
<td>2993</td>
</tr>
<tr>
<td>ARSENICAL PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2759</td>
</tr>
<tr>
<td>ARSENIC BROMIDE</td>
<td>6.1</td>
<td>1555</td>
</tr>
<tr>
<td>Arsenic (III) bromide, –see</td>
<td>6.1</td>
<td>1555</td>
</tr>
<tr>
<td>Arsenic chloride, –see</td>
<td>6.1</td>
<td>1560</td>
</tr>
<tr>
<td>ARSENIC COMPOUND, LIQUID, N.O.S., inorganic, including: Arsenates, n.o.s., Arsenites, n.o.s.; and Arsenic sulphides, n.o.s.</td>
<td>6.1</td>
<td>1556</td>
</tr>
<tr>
<td>ARSENIC COMPOUND, SOLID, N.O.S., inorganic, including: Arsenates, n.o.s.; Arsenites, n.o.s.; and Arsenic sulphides, n.o.s.</td>
<td>6.1</td>
<td>1557</td>
</tr>
<tr>
<td>Arsenic (III) oxide, –see</td>
<td>6.1</td>
<td>1561</td>
</tr>
<tr>
<td>Arsenic (V) oxide, –see</td>
<td>6.1</td>
<td>1559</td>
</tr>
<tr>
<td>ARSENIC PENTOXIDE</td>
<td>6.1</td>
<td>1559</td>
</tr>
<tr>
<td>Arsenic sulphides, –see</td>
<td>6.1</td>
<td>1556</td>
</tr>
<tr>
<td>Arsenic sulphides, –see</td>
<td>6.1</td>
<td>1557</td>
</tr>
<tr>
<td>ARSENIC TRICHLORIDE</td>
<td>6.1</td>
<td>1560</td>
</tr>
<tr>
<td>ARSENIC TRIOXIDE</td>
<td>6.1</td>
<td>1561</td>
</tr>
<tr>
<td>Arsenious chloride, –see</td>
<td>6.1</td>
<td>1560</td>
</tr>
<tr>
<td>Arsenites, n.o.s., –see</td>
<td>6.1</td>
<td>1556</td>
</tr>
<tr>
<td>Arsenous chloride, –see</td>
<td>6.1</td>
<td>1560</td>
</tr>
<tr>
<td>ARSINE</td>
<td>2.3</td>
<td>2188</td>
</tr>
<tr>
<td>ARSINE, ADSORBED</td>
<td>2.3</td>
<td>3522</td>
</tr>
<tr>
<td>ARTICLES CONTAINING FLAMMABLE GAS, N.O.S.</td>
<td>2.1</td>
<td>3537</td>
</tr>
<tr>
<td>ARTICLES CONTAINING NONFLAMMABLE, NON TOXIC GAS, N.O.S.</td>
<td>2.2</td>
<td>3538</td>
</tr>
<tr>
<td>ARTICLES CONTAINING TOXIC GAS, N.O.S.</td>
<td>2.3</td>
<td>3539</td>
</tr>
<tr>
<td>ARTICLES CONTAINING FLAMMABLE LIQUID, N.O.S.</td>
<td>3</td>
<td>3540</td>
</tr>
<tr>
<td>ARTICLES CONTAINING FLAMMABLE SOLID, N.O.S.</td>
<td>4.1</td>
<td>3541</td>
</tr>
<tr>
<td>ARTICLES CONTAINING A SUBSTANCE LIABLE TO SPONTANEOUS COMBUSTION, N.O.S.</td>
<td>4.2</td>
<td>3542</td>
</tr>
<tr>
<td>ARTICLES CONTAINING A SUBSTANCE WHICH IN CONTACT WITH WATER EMITS FLAMMABLE GASES, N.O.S.</td>
<td>4.3</td>
<td>3543</td>
</tr>
<tr>
<td>ARTICLES CONTAINING OXIDIZING SUBSTANCE, N.O.S.</td>
<td>5.1</td>
<td>3544</td>
</tr>
<tr>
<td>ARTICLES CONTAINING ORGANIC PEROXIDE, N.O.S.</td>
<td>5.2</td>
<td>3545</td>
</tr>
<tr>
<td>ARTICLES CONTAINING TOXIC SUBSTANCE, N.O.S.</td>
<td>6.1</td>
<td>3546</td>
</tr>
<tr>
<td>ARTICLES CONTAINING CORROSIVE SUBSTANCE, N.O.S.</td>
<td>8</td>
<td>3547</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>ARTICLES CONTAINING MISCELLANEOUS DANGEROUS GOODS, N.O.S.</td>
<td>9</td>
<td>3548</td>
</tr>
<tr>
<td>ARTICLES, EEI, –see</td>
<td>1.6N</td>
<td>0486</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, EXTREMELY INSENSITIVE</td>
<td>1.6N</td>
<td>0486</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1C</td>
<td>0462</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1D</td>
<td>0463</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1E</td>
<td>0464</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1F</td>
<td>0465</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1L</td>
<td>0354</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.1L</td>
<td>0356</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2C</td>
<td>0466</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2D</td>
<td>0467</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2E</td>
<td>0468</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2F</td>
<td>0469</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.2L</td>
<td>0355</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.3C</td>
<td>0470</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.3L</td>
<td>0356</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4B</td>
<td>0350</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4C</td>
<td>0351</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4D</td>
<td>0352</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4E</td>
<td>0471</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4F</td>
<td>0472</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4G</td>
<td>0353</td>
</tr>
<tr>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
<td>1.4S</td>
<td>0349</td>
</tr>
<tr>
<td>ARTICLES, PRESSURISED, HYDRAULIC (containing non-flammable gas)</td>
<td>2.2</td>
<td>3164</td>
</tr>
<tr>
<td>ARTICLES, PRESSURISED, PNEUMATIC (containing non-flammable gas)</td>
<td>2.2</td>
<td>3164</td>
</tr>
<tr>
<td>ARTICLES, PYROPHORIC</td>
<td>1.2L</td>
<td>0380</td>
</tr>
<tr>
<td>ARTICLES, PYROTECHNIC for technical purposes</td>
<td>1.1G</td>
<td>0428</td>
</tr>
<tr>
<td>ARTICLES, PYROTECHNIC for technical purposes</td>
<td>1.2G</td>
<td>0429</td>
</tr>
<tr>
<td>ARTICLES, PYROTECHNIC for technical purposes</td>
<td>1.3G1.4G</td>
<td>0430</td>
</tr>
<tr>
<td>ARTICLES, PYROTECHNIC for technical purposes</td>
<td>1.4S</td>
<td>0431</td>
</tr>
<tr>
<td>ARYLSULPHONIC ACIDS, LIQUID with more than 5% free sulphuric acid</td>
<td>8</td>
<td>2584</td>
</tr>
<tr>
<td>ARYLSULPHONIC ACIDS, LIQUID with not more than 5% free sulphuric acid</td>
<td>8</td>
<td>2586</td>
</tr>
<tr>
<td>ARYLSULPHONIC ACIDS, SOLID with more than 5% free sulphuric acid</td>
<td>8</td>
<td>2583</td>
</tr>
<tr>
<td>ARYLSULPHONIC ACIDS, SOLID with not more than 5% free sulphuric acid</td>
<td>8</td>
<td>2585</td>
</tr>
<tr>
<td>ASBESTOS, AMPHIBOLE</td>
<td>9</td>
<td>2212</td>
</tr>
<tr>
<td>ASBESTOS, CRYSTOTILE</td>
<td>9</td>
<td>2590</td>
</tr>
<tr>
<td>ASPHALT CUT BACKS [AUST.] –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVIATION GASOLINE [AUST.] –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aviation regulated liquid, n.o.s.</td>
<td>9</td>
<td>3334</td>
</tr>
<tr>
<td>Aviation regulated solid, n.o.s.</td>
<td>9</td>
<td>3335</td>
</tr>
<tr>
<td>AVIATION TURBINE FUEL [AUST.] –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>AZODICARBONAMIDE</td>
<td>4.1</td>
<td>3242</td>
</tr>
<tr>
<td>Bag charges, –see</td>
<td>1.1C</td>
<td>0279</td>
</tr>
<tr>
<td></td>
<td>1.2C</td>
<td>0414</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0242</td>
</tr>
<tr>
<td>Ballistite, –see</td>
<td>1.1C</td>
<td>0160</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0161</td>
</tr>
<tr>
<td>Bangalore torpedoes, –see</td>
<td>1.1D</td>
<td>0137</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0136</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0138</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0294</td>
</tr>
<tr>
<td>BARIUM</td>
<td>4.3</td>
<td>1400</td>
</tr>
<tr>
<td>BARIUM ALLOYS, PYROPHORIC</td>
<td>4.2</td>
<td>1854</td>
</tr>
<tr>
<td>BARIUM AZIDE, dry or wetted with less than 50% water, by mass</td>
<td>1.1A</td>
<td>0224</td>
</tr>
<tr>
<td>BARIUM AZIDE, WETTED with not less than 50% water, by mass</td>
<td>4.1</td>
<td>1571</td>
</tr>
<tr>
<td>Barium binoxide, –see</td>
<td>5.1</td>
<td>1449</td>
</tr>
<tr>
<td>BARIUM BROMATE</td>
<td>5.1</td>
<td>2719</td>
</tr>
<tr>
<td>BARIUM CHLORATE, SOLID</td>
<td>5.1</td>
<td>1445</td>
</tr>
<tr>
<td>BARIUM CHLORATE SOLUTION</td>
<td>5.1</td>
<td>3405</td>
</tr>
<tr>
<td>BARIUM COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>1564</td>
</tr>
<tr>
<td>BARIUM CYANIDE</td>
<td>6.1</td>
<td>1565</td>
</tr>
<tr>
<td>Barium dioxide, –see</td>
<td>5.1</td>
<td>1449</td>
</tr>
<tr>
<td>BARIUM HYPOCHLORITE with more than 22% available chlorine</td>
<td>5.1</td>
<td>2741</td>
</tr>
<tr>
<td>BARIUM NITRATE</td>
<td>5.1</td>
<td>1446</td>
</tr>
<tr>
<td>BARIUM OXIDE</td>
<td>6.1</td>
<td>1884</td>
</tr>
<tr>
<td>BARIUM PERCHLORATE, SOLID</td>
<td>5.1</td>
<td>1447</td>
</tr>
<tr>
<td>BARIUM PERCHLORATE SOLUTION</td>
<td>5.1</td>
<td>3406</td>
</tr>
<tr>
<td>BARIUM PERMANGANATE</td>
<td>5.1</td>
<td>1448</td>
</tr>
<tr>
<td>BARIUM PEROXIDE</td>
<td>5.1</td>
<td>1449</td>
</tr>
<tr>
<td>Barium selenate, –see</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>Barium selenite, –see</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>Barium superoxide, –see</td>
<td>5.1</td>
<td>1449</td>
</tr>
<tr>
<td>BATTERIES, CONTAINING SODIUM</td>
<td>4.3</td>
<td>3292</td>
</tr>
<tr>
<td>BATTERIES, DRY, CONTAINING POTASSIUM HYDROXIDE SOLID, electric storage</td>
<td>8</td>
<td>3028</td>
</tr>
<tr>
<td>BATTERIES, NICKEL-METAL HYDRIDE</td>
<td>9</td>
<td>3496</td>
</tr>
<tr>
<td>BATTERIES, WET, FILLED WITH ACID, electric storage</td>
<td>8</td>
<td>2794</td>
</tr>
<tr>
<td>BATTERIES, WET, FILLED WITH ALKALI, electric storage</td>
<td>8</td>
<td>2795</td>
</tr>
<tr>
<td>BATTERIES, WET, NON- SPILLABLE, electric storage</td>
<td>8</td>
<td>2800</td>
</tr>
<tr>
<td>BATTERY FLUID, ACID</td>
<td>8</td>
<td>2796</td>
</tr>
<tr>
<td>BATTERY FLUID, ALKALI</td>
<td>8</td>
<td>2797</td>
</tr>
<tr>
<td>Battery, lithium, –see</td>
<td>9</td>
<td>3090</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3091</td>
</tr>
<tr>
<td>BATTERY-POWERED EQUIPMENT</td>
<td>9</td>
<td>3171</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>BATTERY-POWERED VEHICLE</td>
<td>9</td>
<td>3171</td>
</tr>
<tr>
<td>BENZALDEHYDE</td>
<td>9</td>
<td>1990</td>
</tr>
<tr>
<td>BENZENE</td>
<td>3</td>
<td>1114</td>
</tr>
<tr>
<td>BENZENESULPHONYL CHLORIDE</td>
<td>8</td>
<td>2225</td>
</tr>
<tr>
<td>Benzenethiol, –see</td>
<td>6.1</td>
<td>2337</td>
</tr>
<tr>
<td>BENZIDINE</td>
<td>6.1</td>
<td>1885</td>
</tr>
<tr>
<td>Benzol, –see</td>
<td>3</td>
<td>1114</td>
</tr>
<tr>
<td>Benzolene, –see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>BENZONITRILE</td>
<td>6.1</td>
<td>2224</td>
</tr>
<tr>
<td>BENZOQUINONE</td>
<td>6.1</td>
<td>2587</td>
</tr>
<tr>
<td>Benzosulphochloride, –see</td>
<td>8</td>
<td>2225</td>
</tr>
<tr>
<td>BENZOTRICHLORIDE</td>
<td>8</td>
<td>2226</td>
</tr>
<tr>
<td>BENZOTRIFLUORIDE</td>
<td>3</td>
<td>2338</td>
</tr>
<tr>
<td>BENZOYL CHLORIDE</td>
<td>8</td>
<td>1736</td>
</tr>
<tr>
<td>BENZYL BROMIDE</td>
<td>6.1</td>
<td>1737</td>
</tr>
<tr>
<td>BENZYL CHLORIDE</td>
<td>6.1</td>
<td>1738</td>
</tr>
<tr>
<td>Benzyl chlorocarbonate, –see</td>
<td>8</td>
<td>1739</td>
</tr>
<tr>
<td>BENZYL Chlorofomate</td>
<td>8</td>
<td>1739</td>
</tr>
<tr>
<td>Benzyldimethylamine</td>
<td>8</td>
<td>2619</td>
</tr>
<tr>
<td>BENZYLIDENE CHLORIDE</td>
<td>6.1</td>
<td>1886</td>
</tr>
<tr>
<td>BENZYL IODIDE</td>
<td>6.1</td>
<td>2653</td>
</tr>
<tr>
<td>BERYLLIUM COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>1566</td>
</tr>
<tr>
<td>BERYLLIUM NITRATE</td>
<td>5.1</td>
<td>2464</td>
</tr>
<tr>
<td>BERYLLIUM POWDER</td>
<td>6.1</td>
<td>1567</td>
</tr>
<tr>
<td>Bhusa</td>
<td>4.1</td>
<td>1327</td>
</tr>
<tr>
<td>BICYCLO[2.2.1]HEPTA-2,5-DIENE, STABILISED</td>
<td>3</td>
<td>2251</td>
</tr>
<tr>
<td>Bifluorides, n.o.s., –see</td>
<td>8</td>
<td>1740</td>
</tr>
<tr>
<td>BIOLOGICAL SUBSTANCE, CATEGORY B</td>
<td>6.2</td>
<td>3373</td>
</tr>
<tr>
<td>(BIO) MEDICAL WASTE, N.O.S.</td>
<td>6.2</td>
<td>3291</td>
</tr>
<tr>
<td>BIPYRIDILIUIM PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23 °C</td>
<td>3</td>
<td>2782</td>
</tr>
<tr>
<td>BIPYRIDILIUIM PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3016</td>
</tr>
<tr>
<td>BIPYRIDILIUIM PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23 °C</td>
<td>6.1</td>
<td>3015</td>
</tr>
<tr>
<td>BIPYRIDILIUIM PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2781</td>
</tr>
<tr>
<td>BISULPHATES, AQUEOUS SOLUTION</td>
<td>8</td>
<td>2837</td>
</tr>
<tr>
<td>BISULPHITES, AQUEOUS SOLUTION, N.O.S.</td>
<td>8</td>
<td>2693</td>
</tr>
<tr>
<td>BITUMEN CUT BACKS [AUST.] –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLACK POWDER, COMPRESSED</td>
<td>1.1D</td>
<td>0028</td>
</tr>
<tr>
<td>BLACK POWDER, granular or as a meal</td>
<td>1.1D</td>
<td>0027</td>
</tr>
<tr>
<td>BLACK POWDER, IN PELLETS</td>
<td>1.1D</td>
<td>0028</td>
</tr>
<tr>
<td>Blasting cap assemblies, –see</td>
<td>1.1B</td>
<td>0360</td>
</tr>
<tr>
<td></td>
<td>1.4B</td>
<td>0361</td>
</tr>
<tr>
<td>Blasting caps, electric, –see</td>
<td>1.1B</td>
<td>0030</td>
</tr>
<tr>
<td></td>
<td>1.4B</td>
<td>0255</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0456</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>Blasting caps, non electric, –see</td>
<td>1.1B</td>
<td>0029</td>
</tr>
<tr>
<td></td>
<td>1.4B</td>
<td>0267</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0455</td>
</tr>
<tr>
<td>Bleaching powder, –see</td>
<td>5.1</td>
<td>2208</td>
</tr>
<tr>
<td>BOMBS with bursting charge</td>
<td>1.1D</td>
<td>0033</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0034</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0035</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0291</td>
</tr>
<tr>
<td>Bombs, illuminating, –see</td>
<td>1.3G</td>
<td>0254</td>
</tr>
<tr>
<td>BOMBS, PHOTO-FLASH</td>
<td>1.1D</td>
<td>0038</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0037</td>
</tr>
<tr>
<td></td>
<td>1.2G</td>
<td>0039</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0299</td>
</tr>
<tr>
<td>BOMBS, SMOKE, NON-EXPLOSIVE with corrosive liquid, without initiating device</td>
<td>8</td>
<td>2028</td>
</tr>
<tr>
<td>Bombs, target identification, –see</td>
<td>1.2G</td>
<td>0171</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0254</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0297</td>
</tr>
<tr>
<td>BOMBS WITH FLAMMABLE LIQUID with bursting charge</td>
<td>1.1J</td>
<td>0399</td>
</tr>
<tr>
<td></td>
<td>1.2J</td>
<td>0400</td>
</tr>
<tr>
<td>BOOSTERS without detonator</td>
<td>1.1D</td>
<td>0042</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0283</td>
</tr>
<tr>
<td>BOOSTERS WITH DETONATOR</td>
<td>1.1B</td>
<td>0225</td>
</tr>
<tr>
<td></td>
<td>1.2B</td>
<td>0268</td>
</tr>
<tr>
<td>Borate and chlorate mixture, –see</td>
<td>5.1</td>
<td>1458</td>
</tr>
<tr>
<td>BORNEOL</td>
<td>4.1</td>
<td>1312</td>
</tr>
<tr>
<td>BORON TRIBROMIDE</td>
<td>8</td>
<td>2692</td>
</tr>
<tr>
<td>BORON TRICHLORIDE</td>
<td>2.3</td>
<td>1741</td>
</tr>
<tr>
<td>BORON TRIFLUORIDE</td>
<td>2.3</td>
<td>1008</td>
</tr>
<tr>
<td>BORON TRIFLUORIDE, ADSORBED</td>
<td>2.3</td>
<td>3519</td>
</tr>
<tr>
<td>BORON TRIFLUORIDE ACETIC ACID COMPLEX, LIQUID</td>
<td>8</td>
<td>1742</td>
</tr>
<tr>
<td>BORON TRIFLUORIDE ACETIC ACID COMPLEX, SOLID</td>
<td>8</td>
<td>3419</td>
</tr>
<tr>
<td>BORON TRIFLUORIDE DIETHYL ETHERATE</td>
<td>8</td>
<td>2604</td>
</tr>
<tr>
<td>BORON TRIFLUORIDE DIHYDRATE</td>
<td>8</td>
<td>2851</td>
</tr>
<tr>
<td>BORON TRIFLUORIDE DIMETHYL ETHERATE</td>
<td>4.3</td>
<td>2965</td>
</tr>
<tr>
<td>BORON TRIFLUORIDE PROPIONIC ACID COMPLEX, LIQUID</td>
<td>8</td>
<td>1743</td>
</tr>
<tr>
<td>BORON TRIFLUORIDE PROPIONIC ACID COMPLEX, SOLID</td>
<td>8</td>
<td>3420</td>
</tr>
<tr>
<td>BROMATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>1450</td>
</tr>
<tr>
<td>BROMATES, INORGANIC, AQUEOUS SOLUTION, N.O.S</td>
<td>5.1</td>
<td>3213</td>
</tr>
<tr>
<td>BROMINE</td>
<td>8</td>
<td>1744</td>
</tr>
<tr>
<td>BROMINE CHLORIDE</td>
<td>2.3</td>
<td>2901</td>
</tr>
<tr>
<td>BROMINE PENTAFLUORIDE</td>
<td>5.1</td>
<td>1745</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>BROMINE SOLUTION</td>
<td>8</td>
<td>1744</td>
</tr>
<tr>
<td>BROMINE TRIFLUORIDE</td>
<td>5.1</td>
<td>1746</td>
</tr>
<tr>
<td>BROMOACETIC ACID SOLUTION</td>
<td>8</td>
<td>1938</td>
</tr>
<tr>
<td>BROMOACETIC ACID, SOLID</td>
<td>8</td>
<td>3425</td>
</tr>
<tr>
<td>BROMOACETONE</td>
<td>6.1</td>
<td>1569</td>
</tr>
<tr>
<td>omega-Bromacetone, –see</td>
<td>6.4</td>
<td>2645</td>
</tr>
<tr>
<td>BROMOACETYL BROMIDE</td>
<td>8</td>
<td>2513</td>
</tr>
<tr>
<td>BROMOBENZENE</td>
<td>3</td>
<td>2514</td>
</tr>
<tr>
<td>BROMOBENZYL CYANIDES, LIQUID</td>
<td>6.1</td>
<td>1694</td>
</tr>
<tr>
<td>BROMOBENZYL CYANIDES, SOLID</td>
<td>6.1</td>
<td>3449</td>
</tr>
<tr>
<td>1-BROMOBUTANE</td>
<td>3</td>
<td>1126</td>
</tr>
<tr>
<td>2-BROMOBUTANE</td>
<td>3</td>
<td>2339</td>
</tr>
<tr>
<td>BROMOCHLOROMETHANE</td>
<td>6.1</td>
<td>1887</td>
</tr>
<tr>
<td>1-Bromo-3-CHLOROPROPA</td>
<td>6.1</td>
<td>2688</td>
</tr>
<tr>
<td>1-Brom-2,3-epoxypropane, –see</td>
<td>6.1</td>
<td>2558</td>
</tr>
<tr>
<td>Bromoethane, –see</td>
<td>6.1</td>
<td>1891</td>
</tr>
<tr>
<td>2-BROMOETHYL ETHYL ETHER</td>
<td>3</td>
<td>2340</td>
</tr>
<tr>
<td>BROMOFORM</td>
<td>6.1</td>
<td>2515</td>
</tr>
<tr>
<td>Bromomethane, –see</td>
<td>2.3</td>
<td>1062</td>
</tr>
<tr>
<td>1-Bromo-3-METHYL BUTANE</td>
<td>3</td>
<td>2341</td>
</tr>
<tr>
<td>BROMOMETHYLPROPANES</td>
<td>3</td>
<td>2342</td>
</tr>
<tr>
<td>2-BROMO-2-NITROPROPANE- 1,3-DIOL</td>
<td>4.1</td>
<td>3241</td>
</tr>
<tr>
<td>2-BROMOPENTANE</td>
<td>3</td>
<td>2343</td>
</tr>
<tr>
<td>BROMOPROPANES</td>
<td>3</td>
<td>2344</td>
</tr>
<tr>
<td>3-BROMOPROPYNE</td>
<td>3</td>
<td>2345</td>
</tr>
<tr>
<td>BROMOTRIFLUOROETHYLENE</td>
<td>2.1</td>
<td>2419</td>
</tr>
<tr>
<td>BROMOTRIFLUOROMETHANE</td>
<td>2.2</td>
<td>1009</td>
</tr>
<tr>
<td>BRUCINE</td>
<td>6.1</td>
<td>1570</td>
</tr>
<tr>
<td>BURSTERS, explosive</td>
<td>1</td>
<td>0043</td>
</tr>
<tr>
<td>BUTADIENES, STABILISED</td>
<td>2.1</td>
<td>1010</td>
</tr>
<tr>
<td>BUTADIENES AND HYDROCARBON MIXTURE,</td>
<td>2.1</td>
<td>1010</td>
</tr>
<tr>
<td>STABILISED, containing more than 40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUTANE</td>
<td>2.1</td>
<td>1011</td>
</tr>
<tr>
<td>BUTANEDIONE</td>
<td>3</td>
<td>2346</td>
</tr>
<tr>
<td>Butane-1-thiol, –see</td>
<td>3</td>
<td>2347</td>
</tr>
<tr>
<td>1-Butanol, –see</td>
<td>3</td>
<td>1120</td>
</tr>
<tr>
<td>Butan-2-ol, –see</td>
<td>3</td>
<td>1120</td>
</tr>
<tr>
<td>BUTANOLS</td>
<td>3</td>
<td>1120</td>
</tr>
<tr>
<td>Butanol, secondary, –see</td>
<td>3</td>
<td>1120</td>
</tr>
<tr>
<td>Butanol, tertiary, –see</td>
<td>3</td>
<td>1120</td>
</tr>
<tr>
<td>Butanone, –see</td>
<td>3</td>
<td>1193</td>
</tr>
<tr>
<td>2-Butenal, –see</td>
<td>6.1</td>
<td>1143</td>
</tr>
<tr>
<td>Butene, –see</td>
<td>2.1</td>
<td>1012</td>
</tr>
<tr>
<td>But-1-ene-3-one, –see</td>
<td>3</td>
<td>1251</td>
</tr>
<tr>
<td>1,2-Buteneoxide, –see</td>
<td>3</td>
<td>3022</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>2-Buten-1-ol, --see</td>
<td>3</td>
<td>2614</td>
</tr>
<tr>
<td>BUTYL ACETATES</td>
<td>3</td>
<td>1123</td>
</tr>
<tr>
<td>Butyl acetate, secondary, --see</td>
<td>3</td>
<td>1123</td>
</tr>
<tr>
<td>BUTYL ACID PHOSPHATE</td>
<td>8</td>
<td>1718</td>
</tr>
<tr>
<td>BUTYL ACRYLATES, STABILISED</td>
<td>3</td>
<td>2348</td>
</tr>
<tr>
<td>Butyl alcohols, --see</td>
<td>3</td>
<td>1120</td>
</tr>
<tr>
<td>n-BUTYLAMINE</td>
<td>3</td>
<td>1125</td>
</tr>
<tr>
<td>N-BUTYLANILINE</td>
<td>6.1</td>
<td>2738</td>
</tr>
<tr>
<td>sec-Butyl benzene, --see</td>
<td>3</td>
<td>2709</td>
</tr>
<tr>
<td>BUTYLBENZENES</td>
<td>3</td>
<td>2709</td>
</tr>
<tr>
<td>n-Butyl bromide, --see</td>
<td>3</td>
<td>1126</td>
</tr>
<tr>
<td>n-Butyl chloride, --see</td>
<td>3</td>
<td>1127</td>
</tr>
<tr>
<td>n-BUTYL CHLOROFORMATE</td>
<td>6.1</td>
<td>2743</td>
</tr>
<tr>
<td>tert-BUTYLCYCLOHEXYL CHLOROFORMATE</td>
<td>6.1</td>
<td>2747</td>
</tr>
<tr>
<td>BUTYLENE</td>
<td>2.1</td>
<td>1012</td>
</tr>
<tr>
<td>1,2-BUTYLENE OXIDE, STABILISED</td>
<td>3</td>
<td>3022</td>
</tr>
<tr>
<td>Butyl ethers, --see</td>
<td>3</td>
<td>1149</td>
</tr>
<tr>
<td>Butyl ethyl ether, --see</td>
<td>3</td>
<td>1179</td>
</tr>
<tr>
<td>n-BUTYL FORMATE</td>
<td>3</td>
<td>1128</td>
</tr>
<tr>
<td>tert-BUTYL HYPOCHLORITE</td>
<td>4.2</td>
<td>3255</td>
</tr>
<tr>
<td>N,n-BUTYLIMIDAZOLE</td>
<td>6.1</td>
<td>2690</td>
</tr>
<tr>
<td>N,n-Butyliminazole, --see</td>
<td>6.1</td>
<td>2690</td>
</tr>
<tr>
<td>n-BUTYL ISOCYANATE</td>
<td>6.1</td>
<td>2485</td>
</tr>
<tr>
<td>tert-BUTYL ISOCYANATE</td>
<td>6.1</td>
<td>2484</td>
</tr>
<tr>
<td>BUTYL MERCAPTAN</td>
<td>3</td>
<td>2347</td>
</tr>
<tr>
<td>n-BUTYL METHACRYLATE, STABILISED</td>
<td>3</td>
<td>2227</td>
</tr>
<tr>
<td>BUTYL METHYL ETHER</td>
<td>3</td>
<td>2350</td>
</tr>
<tr>
<td>BUTYL NITRITES</td>
<td>3</td>
<td>2351</td>
</tr>
<tr>
<td>Butylphenols, liquid, --see</td>
<td>8</td>
<td>3145</td>
</tr>
<tr>
<td>Butylphenols, solid, --see</td>
<td>8</td>
<td>2430</td>
</tr>
<tr>
<td>BUTYL PROPIONATES</td>
<td>3</td>
<td>1914</td>
</tr>
<tr>
<td>p-tert-Butyltoluene, --see</td>
<td>6.1</td>
<td>2667</td>
</tr>
<tr>
<td>BUTYLTOLENUES</td>
<td>6.1</td>
<td>2667</td>
</tr>
<tr>
<td>BUTYLTRICHLOROSILANE</td>
<td>8</td>
<td>1747</td>
</tr>
<tr>
<td>5-tert-BUTYL-2,4,6-TRINITRO-m-XYLENE</td>
<td>4.1</td>
<td>2956</td>
</tr>
<tr>
<td>BUTYL VINYL ETHER, STABILISED</td>
<td>3</td>
<td>2352</td>
</tr>
<tr>
<td>But-1-yne, --see</td>
<td>2.1</td>
<td>2452</td>
</tr>
<tr>
<td>1,4-BUTYNEDIOL</td>
<td>6.1</td>
<td>2716</td>
</tr>
<tr>
<td>2-Butyne-1,4-diol, --see</td>
<td>6.1</td>
<td>2716</td>
</tr>
<tr>
<td>BUTYRALDEHYDE</td>
<td>3</td>
<td>1129</td>
</tr>
<tr>
<td>BUTYRALDOXIME</td>
<td>3</td>
<td>2840</td>
</tr>
<tr>
<td>BUTYRIC ACID</td>
<td>8</td>
<td>2820</td>
</tr>
<tr>
<td>BUTYRIC ANHYDRIDE</td>
<td>8</td>
<td>2739</td>
</tr>
<tr>
<td>Butyroline, --see</td>
<td>3</td>
<td>2710</td>
</tr>
<tr>
<td>BUTYRONITRILE</td>
<td>3</td>
<td>2411</td>
</tr>
<tr>
<td>Butyroyl chloride, --see</td>
<td>3</td>
<td>2353</td>
</tr>
</tbody>
</table>
Name & Description

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYRYL CHLORIDE</td>
<td>3</td>
<td>2353</td>
</tr>
<tr>
<td>Cable cutters, explosive, –see</td>
<td>1.4S</td>
<td>0070</td>
</tr>
<tr>
<td>CACODYLIC ACID</td>
<td>6.1</td>
<td>1572</td>
</tr>
<tr>
<td>CADMIUM COMPOUND</td>
<td>6.1</td>
<td>2570</td>
</tr>
<tr>
<td>CAESIUM</td>
<td>4.3</td>
<td>1407</td>
</tr>
<tr>
<td>CAESIUM HYDROXIDE</td>
<td>8</td>
<td>2682</td>
</tr>
<tr>
<td>CAESIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>2681</td>
</tr>
<tr>
<td>CAESIUM NITRATE</td>
<td>5.1</td>
<td>1451</td>
</tr>
<tr>
<td>Caffeine, –see</td>
<td>6.1</td>
<td>1544</td>
</tr>
<tr>
<td>Cajeputene, –see</td>
<td>3</td>
<td>2052</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>4.3</td>
<td>1401</td>
</tr>
<tr>
<td>CALCIUM ALLOYS, PYROPHoric</td>
<td>4.2</td>
<td>1855</td>
</tr>
<tr>
<td>CALCIUM ARSENATE</td>
<td>6.1</td>
<td>1573</td>
</tr>
<tr>
<td>CALCIUM ARSENATE AND CALCIUM ARSENITE MIXTURE, SOLID</td>
<td>6.1</td>
<td>1574</td>
</tr>
<tr>
<td>Calcium bisulphite solution, –see</td>
<td>8</td>
<td>2693</td>
</tr>
<tr>
<td>CALCIUM CARBIDE</td>
<td>4.3</td>
<td>1402</td>
</tr>
<tr>
<td>CALCIUM CHLORATE</td>
<td>5.1</td>
<td>1452</td>
</tr>
<tr>
<td>CALCIUM CHLORATE, AQUEOUS SOLUTION</td>
<td>5.1</td>
<td>2429</td>
</tr>
<tr>
<td>CALCIUM CHLORIDE</td>
<td>5.1</td>
<td>1453</td>
</tr>
<tr>
<td>CALCIUM CYANAMIDE with more than 0.1% calcium carbide</td>
<td>4.3</td>
<td>1403</td>
</tr>
<tr>
<td>CALCIUM CYANIDE</td>
<td>6.1</td>
<td>1575</td>
</tr>
<tr>
<td>CALCIUM DITHIONITE</td>
<td>4.2</td>
<td>1923</td>
</tr>
<tr>
<td>CALCIUM HYDROGENIDE</td>
<td>4.3</td>
<td>1404</td>
</tr>
<tr>
<td>CALCIUM HYDROGENSULPHITE, –see</td>
<td>4.2</td>
<td>1923</td>
</tr>
<tr>
<td>CALCIUM HYPOCHLORITE, DRY</td>
<td>5.1</td>
<td>1748</td>
</tr>
<tr>
<td>CALCIUM HYPOCHLORITE, DRY, CORROSIVE</td>
<td>5.1</td>
<td>3485</td>
</tr>
<tr>
<td>CALCIUM HYPOCHLORITE, HYDRATED with not less than 5.5% but not more than 16% water</td>
<td>5.1</td>
<td>2880</td>
</tr>
<tr>
<td>CALCIUM HYPOCHLORITE, HYDRATED, CORROSIVE, with not less than 5.5% but not more than 16% water</td>
<td>5.1</td>
<td>3487</td>
</tr>
<tr>
<td>CALCIUM HYPOCHLORITE, HYDRATED MIXTURE, with not less than 5.5% but not more than 16% water</td>
<td>5.1</td>
<td>2880</td>
</tr>
<tr>
<td>CALCIUM HYPOCHLORITE, HYDRATED MIXTURE, CORROSIVE, with not less than 5.5% but not more than 16% water</td>
<td>5.1</td>
<td>3487</td>
</tr>
<tr>
<td>CALCIUM HYPOCHLORITE MIXTURE, DRY with more than 39% available chlorine (8.8% available oxygen)</td>
<td>5.1</td>
<td>1748</td>
</tr>
<tr>
<td>CALCIUM HYPOCHLORITE MIXTURE, DRY with more than 10% but not more than 39% available chlorine</td>
<td>5.1</td>
<td>2208</td>
</tr>
<tr>
<td>CALCIUM HYPOCHLORITE MIXTURE, DRY, CORROSIVE with more than 39% available chlorine (8.8% available oxygen)</td>
<td>5.1</td>
<td>3485</td>
</tr>
</tbody>
</table>
Name & Description

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCIUM HYPOCHLORITE MIXTURE, DRY, CORROSIVE with more than 10% but not more than 39% available chlorine</td>
<td>5.1</td>
<td>3486</td>
</tr>
<tr>
<td>CALCIUM MANGANESE SILICON</td>
<td>4.3</td>
<td>2844</td>
</tr>
<tr>
<td>CALCIUM NITRATE</td>
<td>5.1</td>
<td>1454</td>
</tr>
<tr>
<td>Calcium oxide</td>
<td>8</td>
<td>1910</td>
</tr>
<tr>
<td>CALCIUM PERCHLORATE</td>
<td>5.1</td>
<td>1455</td>
</tr>
<tr>
<td>CALCIUM PERMANGANATE</td>
<td>5.1</td>
<td>1456</td>
</tr>
<tr>
<td>CALCIUM PEROXIDE</td>
<td>5.1</td>
<td>1457</td>
</tr>
<tr>
<td>CALCIUM PHOSPHIDE</td>
<td>4.3</td>
<td>1360</td>
</tr>
<tr>
<td>CALCIUM, PYROPHORIC</td>
<td>4.2</td>
<td>1855</td>
</tr>
<tr>
<td>CALCIUM RESIN</td>
<td>4.1</td>
<td>1313</td>
</tr>
<tr>
<td>CALCIUM RESINATE, FUSED</td>
<td>4.1</td>
<td>1314</td>
</tr>
<tr>
<td>Calcium selenate, --see</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>CALCIUM SILICIDE</td>
<td>4.3</td>
<td>1405</td>
</tr>
<tr>
<td>Calcium silicon, --see</td>
<td>4.3</td>
<td>1405</td>
</tr>
<tr>
<td>Calcium superoxide, --see</td>
<td>5.1</td>
<td>1457</td>
</tr>
<tr>
<td>Camphanone, --see</td>
<td>4.1</td>
<td>2717</td>
</tr>
<tr>
<td>CAMPHOR OIL</td>
<td>3</td>
<td>1130</td>
</tr>
<tr>
<td>CAMPHOR, synthetic</td>
<td>4.1</td>
<td>2717</td>
</tr>
<tr>
<td>CAPACITOR, ASYMMETRIC (with an energy storage capacity greater than 0.3 Wh)</td>
<td>9</td>
<td>3508</td>
</tr>
<tr>
<td>CAPACITOR, ELECTRIC DOUBLE LAYER (with an energy storage capacity greater than 0.3 Wh)</td>
<td>9</td>
<td>3499</td>
</tr>
<tr>
<td>CAPROIC ACID</td>
<td>8</td>
<td>2829</td>
</tr>
<tr>
<td>CARBAMATE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23 °C</td>
<td>3</td>
<td>2758</td>
</tr>
<tr>
<td>CARBAMATE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>2992</td>
</tr>
<tr>
<td>CARBAMATE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23 °C</td>
<td>6.1</td>
<td>2991</td>
</tr>
<tr>
<td>CARBAMATE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2757</td>
</tr>
<tr>
<td>Carbolic acid, --see</td>
<td>6.1</td>
<td>1671</td>
</tr>
<tr>
<td>6.1 2312 6.1 2821</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBON, animal or vegetable origin</td>
<td>4.2</td>
<td>1361</td>
</tr>
<tr>
<td>CARBON, ACTIVATED</td>
<td>4.2</td>
<td>1362</td>
</tr>
<tr>
<td>Carbon bisulphide, --see</td>
<td>3</td>
<td>1131</td>
</tr>
<tr>
<td>Carbon black (animal or vegetable origin), --see</td>
<td>4.2</td>
<td>1361</td>
</tr>
<tr>
<td>CARBON DIOXIDE</td>
<td>2.2</td>
<td>1013</td>
</tr>
<tr>
<td>Carbon dioxide and ethylene oxide mixture, --see</td>
<td>2.1</td>
<td>1041</td>
</tr>
<tr>
<td>2.2 1952 2.3 3300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARBON DIOXIDE, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>2187</td>
</tr>
<tr>
<td>Carbon dioxide, solid</td>
<td>9</td>
<td>1845</td>
</tr>
<tr>
<td>CARBON DISULPHIDE</td>
<td>3</td>
<td>1131</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Carbonic anhydride, –see</td>
<td>2.2</td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1845</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>2187</td>
</tr>
<tr>
<td>CARBON MONOXIDE, COMPRESSED</td>
<td>2.3</td>
<td>1016</td>
</tr>
<tr>
<td>Carbon oxysulphide, –see</td>
<td>2.3</td>
<td>2204</td>
</tr>
<tr>
<td>CARBON TETRABROMIDE</td>
<td>6.1</td>
<td>2516</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>6.1</td>
<td>1846</td>
</tr>
<tr>
<td>Carbonyl chloride, –see</td>
<td>2.3</td>
<td>1076</td>
</tr>
<tr>
<td>CARBONYL FLUORIDE</td>
<td>2.3</td>
<td>2417</td>
</tr>
<tr>
<td>CARBONYL SULPHIDE</td>
<td>2.3</td>
<td>2204</td>
</tr>
<tr>
<td>Cartridge cases, empty, primed, –see</td>
<td>1.4C</td>
<td>0379</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0055</td>
</tr>
<tr>
<td>Cartridges, actuating, for fire extinguisher or apparatus valve, –see</td>
<td>1.2C</td>
<td>0381</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0275</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0276</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0323</td>
</tr>
<tr>
<td>Cartridges, explosive, –see</td>
<td>1.1D</td>
<td>0048</td>
</tr>
<tr>
<td>CARTRIDGES, FLASH</td>
<td>1.1G</td>
<td>0049</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0050</td>
</tr>
<tr>
<td>CARTRIDGES FOR TOOLS, BLANK</td>
<td>1.3C</td>
<td>0327</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0338</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0014</td>
</tr>
<tr>
<td>CARTRIDGES FOR WEAPONS with bursting charge</td>
<td>1.1E</td>
<td>0006</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0005</td>
</tr>
<tr>
<td></td>
<td>1.2E</td>
<td>0321</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0007</td>
</tr>
<tr>
<td></td>
<td>1.4E</td>
<td>0412</td>
</tr>
<tr>
<td></td>
<td>1.4F</td>
<td>0348</td>
</tr>
<tr>
<td>CARTRIDGES FOR WEAPONS, BLANK</td>
<td>1.1C</td>
<td>0326</td>
</tr>
<tr>
<td></td>
<td>1.2C</td>
<td>0413</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0327</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0338</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0014</td>
</tr>
<tr>
<td>CARTRIDGES FOR WEAPONS, INERT PROJECTILE</td>
<td>1.2C</td>
<td>0328</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0417</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0339</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0012</td>
</tr>
<tr>
<td>Cartridges, illuminating, –see</td>
<td>1.2G</td>
<td>0171</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0254</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0297</td>
</tr>
<tr>
<td>CARTRIDGES, OIL WELL</td>
<td>1.3C</td>
<td>0277</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0278</td>
</tr>
<tr>
<td>CARTRIDGES, POWER DEVICE</td>
<td>1.2C</td>
<td>0381</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0275</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0276</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0323</td>
</tr>
<tr>
<td>CARTRIDGES, SIGNAL</td>
<td>1.3G</td>
<td>0054</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0312</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0405</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>CARTRIDGES, SMALL ARMS</td>
<td>1.3C</td>
<td>0417</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0339</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0012</td>
</tr>
<tr>
<td>CARTRIDGES, SMALL ARMS, BLANK</td>
<td>1.3C</td>
<td>0327</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0338</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0014</td>
</tr>
<tr>
<td>Cartridges, starter, jet engine, –see</td>
<td>1.2C</td>
<td>0381</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0275</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0276</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0323</td>
</tr>
<tr>
<td>CASES, CARTRIDGE, EMPTY, WITH PRIMER</td>
<td>1.4C</td>
<td>0379</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0055</td>
</tr>
<tr>
<td>CASES, COMBUSTIBLE, EMPTY, WITHOUT PRIMER</td>
<td>1.3C</td>
<td>0447</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0446</td>
</tr>
<tr>
<td>Casinghead gasoline, –see</td>
<td>3</td>
<td>1203</td>
</tr>
<tr>
<td>CASTOR BEANS</td>
<td>9</td>
<td>2969</td>
</tr>
<tr>
<td>CASTOR FLAKE</td>
<td>9</td>
<td>2969</td>
</tr>
<tr>
<td>CASTOR MEAL</td>
<td>9</td>
<td>2969</td>
</tr>
<tr>
<td>CASTOR POMACE</td>
<td>9</td>
<td>2969</td>
</tr>
<tr>
<td>CAUSTIC ALKALI LIQUID, N.O.S.</td>
<td>8</td>
<td>1719</td>
</tr>
<tr>
<td>Caustic potash, –see</td>
<td>8</td>
<td>1814</td>
</tr>
<tr>
<td>Caustic soda, –see</td>
<td>8</td>
<td>1824</td>
</tr>
<tr>
<td>Caustic soda liquor, –see</td>
<td>8</td>
<td>1824</td>
</tr>
<tr>
<td>CELLS, CONTAINING SODIUM</td>
<td>4.3</td>
<td>3292</td>
</tr>
<tr>
<td>CELLULOID in block, rods, rolls, sheets, tubes, etc., except scrap</td>
<td>4.1</td>
<td>2000</td>
</tr>
<tr>
<td>CELLULOID, SCRAP</td>
<td>4.2</td>
<td>2002</td>
</tr>
<tr>
<td>Cement, –see</td>
<td>3</td>
<td>1133</td>
</tr>
<tr>
<td>CERIUM, slabs, ingots or rods</td>
<td>4.1</td>
<td>1333</td>
</tr>
<tr>
<td>CERIUM, turnings or gritty powder</td>
<td>4.3</td>
<td>3078</td>
</tr>
<tr>
<td>Cer mishmetall, –see</td>
<td>4.1</td>
<td>1323</td>
</tr>
<tr>
<td>Charcoal, activated, –see</td>
<td>4.1</td>
<td>1362</td>
</tr>
<tr>
<td>Charcoal, non-activated, –see</td>
<td>4.2</td>
<td>1361</td>
</tr>
<tr>
<td>CHARGES, BURSTING, PLASTICS BONDED</td>
<td>1.1D</td>
<td>0457</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0458</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0459</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0460</td>
</tr>
<tr>
<td>CHARGES, DEMOLITION</td>
<td>1.1D</td>
<td>0048</td>
</tr>
<tr>
<td>CHARGES, DEPTH</td>
<td>1.1D</td>
<td>0056</td>
</tr>
<tr>
<td>Charges, expelling, explosive, for fire extinguishers, – see</td>
<td>1.2C</td>
<td>0381</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0275</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0276</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0323</td>
</tr>
<tr>
<td>CHARGES, EXPLOSIVE, COMMERCIAL without detonator</td>
<td>1.1D</td>
<td>0442</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0443</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0444</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0445</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>CHARGES, PROPELLING</td>
<td>1.1C</td>
<td>0271</td>
</tr>
<tr>
<td></td>
<td>1.2C</td>
<td>0415</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0272</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0491</td>
</tr>
<tr>
<td>CHARGES, PROPELLING, FOR CANNON</td>
<td>1.1C</td>
<td>0279</td>
</tr>
<tr>
<td></td>
<td>1.2C</td>
<td>0414</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0242</td>
</tr>
<tr>
<td>CHARGES, SHAPED, FLEXIBLE, LINEAR</td>
<td>1.1D</td>
<td>0288</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0237</td>
</tr>
<tr>
<td>CHARGES, SHAPED, without detonator</td>
<td>1.1D</td>
<td>0059</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0439</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0440</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0441</td>
</tr>
<tr>
<td>CHARGES, SUPPLEMENTARY, EXPLOSIVE</td>
<td>1.1D</td>
<td>0060</td>
</tr>
<tr>
<td>CHEMICAL KIT</td>
<td>9</td>
<td>3316</td>
</tr>
<tr>
<td>CHEMICAL SAMPLE, TOXIC</td>
<td>6.1</td>
<td>3315</td>
</tr>
<tr>
<td>CHEMICAL UNDER PRESSURE, N.O.S.</td>
<td>2.2</td>
<td>3500</td>
</tr>
<tr>
<td>CHEMICAL UNDER PRESSURE, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td>3501</td>
</tr>
<tr>
<td>CHEMICAL UNDER PRESSURE, TOXIC, N.O.S.</td>
<td>2.2</td>
<td>3502</td>
</tr>
<tr>
<td>CHEMICAL UNDER PRESSURE, CORROSIVE, N.O.S.</td>
<td>2.2</td>
<td>3503</td>
</tr>
<tr>
<td>CHEMICAL UNDER PRESSURE, FLAMMABLE, TOXIC, N.O.S.</td>
<td>2.1</td>
<td>3504</td>
</tr>
<tr>
<td>CHEMICAL UNDER PRESSURE, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.1</td>
<td>3505</td>
</tr>
<tr>
<td>Chile saltpetre, –see</td>
<td>5.1</td>
<td>1498</td>
</tr>
<tr>
<td>CHLORAL, ANHYDROUS, STABILISED</td>
<td>6.1</td>
<td>2075</td>
</tr>
<tr>
<td>CHLORATE AND BORATE MIXTURE</td>
<td>5.1</td>
<td>1458</td>
</tr>
<tr>
<td>CHLORATE AND MAGNESIUM CHLORIDE MIXTURE, SOLID</td>
<td>5.1</td>
<td>1459</td>
</tr>
<tr>
<td>CHLORATE AND MAGNESIUM CHLORIDE MIXTURE SOLUTION</td>
<td>5.1</td>
<td>3407</td>
</tr>
<tr>
<td>CHLORATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>1461</td>
</tr>
<tr>
<td>CHLORATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>3210</td>
</tr>
<tr>
<td>CHLORIC ACID, AQUEOUS SOLUTION with not more than 10% chloric acid</td>
<td>5.1</td>
<td>2626</td>
</tr>
<tr>
<td>CHLORINE</td>
<td>2.3</td>
<td>1017</td>
</tr>
<tr>
<td>CHLORINE, ADSORBED</td>
<td>2.3</td>
<td>3520</td>
</tr>
<tr>
<td>CHLORINE PENTAFLUORIDE</td>
<td>2.3</td>
<td>2548</td>
</tr>
<tr>
<td>CHLORINE TRIFLUORIDE</td>
<td>2.3</td>
<td>1749</td>
</tr>
<tr>
<td>CHLORITES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>1462</td>
</tr>
<tr>
<td>CHLORITE SOLUTION</td>
<td>8</td>
<td>1908</td>
</tr>
<tr>
<td>Chloroacetaldehyde, –see</td>
<td>6.1</td>
<td>2232</td>
</tr>
<tr>
<td>CHLOROACETIC ACID, MOLTEN</td>
<td>6.1</td>
<td>3250</td>
</tr>
<tr>
<td>CHLOROACETIC ACID, SOLID</td>
<td>6.1</td>
<td>1751</td>
</tr>
<tr>
<td>CHLOROACETIC ACID SOLUTION</td>
<td>6.1</td>
<td>1750</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>CHLOROACETONE, STABILISED</td>
<td>6.1</td>
<td>1695</td>
</tr>
<tr>
<td>CHLOROACETONITRILE</td>
<td>6.1</td>
<td>2668</td>
</tr>
<tr>
<td>CHLOROACETOPHENONE, SOLID</td>
<td>6.1</td>
<td>1697</td>
</tr>
<tr>
<td>CHLOROACETOPHENONE, LIQUID</td>
<td>6.1</td>
<td>3416</td>
</tr>
<tr>
<td>CHLOROACETYL CHLORIDE</td>
<td>6.1</td>
<td>1752</td>
</tr>
<tr>
<td>CHLOROANILINES, LIQUID</td>
<td>6.1</td>
<td>2019</td>
</tr>
<tr>
<td>CHLOROANILINES, SOLID</td>
<td>6.1</td>
<td>2018</td>
</tr>
<tr>
<td>CHLOROANISIDINES</td>
<td>6.1</td>
<td>2233</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>3</td>
<td>1134</td>
</tr>
<tr>
<td>CHLOROBENZOTRIFLUORIDES</td>
<td>3</td>
<td>2234</td>
</tr>
<tr>
<td>CHLOROBENZYL CHLORIDES, LIQUID</td>
<td>6.1</td>
<td>2235</td>
</tr>
<tr>
<td>CHLOROBENZYL CHLORIDES, SOLID</td>
<td>6.1</td>
<td>3427</td>
</tr>
<tr>
<td>1-Chloro-3-bromopropane, –see</td>
<td>6.1</td>
<td>2688</td>
</tr>
<tr>
<td>1-Chlorobutane, –see</td>
<td>3</td>
<td>1127</td>
</tr>
<tr>
<td>2-Chlorobutane, –see</td>
<td>3</td>
<td>1127</td>
</tr>
<tr>
<td>CHLOROBUTANES</td>
<td>3</td>
<td>1127</td>
</tr>
<tr>
<td>CHLOROCRESOLS SOLUTION</td>
<td>6.1</td>
<td>2669</td>
</tr>
<tr>
<td>CHLOROCRESOLS, SOLID</td>
<td>6.1</td>
<td>3437</td>
</tr>
<tr>
<td>CHLORODIFLUOROBROMO- METHANE</td>
<td>2.3</td>
<td>1974</td>
</tr>
<tr>
<td>1-CHLORO-1,1-DIFLUOROETHANE</td>
<td>2.2</td>
<td>2517</td>
</tr>
<tr>
<td>CHLORODIFLUOROMETHANE</td>
<td>2.2</td>
<td>1018</td>
</tr>
<tr>
<td>AND CHLOROPENTAFLUORO-ETHANE MIXTURE</td>
<td>with fixed boiling point, with approximately 49% chlorodifluoromethane</td>
<td></td>
</tr>
<tr>
<td>3-Chloro-1,2-dihydroxypropane, –see</td>
<td>6.1</td>
<td>2689</td>
</tr>
<tr>
<td>Chlorodimethyl ether, –see</td>
<td>6.1</td>
<td>1239</td>
</tr>
<tr>
<td>CHLORODINITROBENZENES, LIQUID</td>
<td>6.1</td>
<td>1577</td>
</tr>
<tr>
<td>CHLORODINITROBENZENES, SOLID</td>
<td>6.1</td>
<td>3441</td>
</tr>
<tr>
<td>2-CHLOROETHANAL</td>
<td>6.1</td>
<td>2232</td>
</tr>
<tr>
<td>Chloroethane, –see</td>
<td>2.1</td>
<td>1037</td>
</tr>
<tr>
<td>Chloroethane nitrile, –see</td>
<td>6.1</td>
<td>2668</td>
</tr>
<tr>
<td>2-Chloroethanol, –see</td>
<td>6.1</td>
<td>1135</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>6.1</td>
<td>1888</td>
</tr>
<tr>
<td>CHLOROFORMATES, TOXIC, CORROSIVE, N.O.S.</td>
<td>6.1</td>
<td>3277</td>
</tr>
<tr>
<td>CHLOROFORMATES, TOXIC, CORROSIVE, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>2742</td>
</tr>
<tr>
<td>Chloromethane, –see</td>
<td>2.1</td>
<td>1063</td>
</tr>
<tr>
<td>1-Chloro-3-methylbutane, –see</td>
<td>3</td>
<td>1107</td>
</tr>
<tr>
<td>2-Chloro-2-methylbutane, –see</td>
<td>3</td>
<td>1107</td>
</tr>
<tr>
<td>CHLOROMETHYL CHLOROFORMATE</td>
<td>6.1</td>
<td>2745</td>
</tr>
<tr>
<td>Chloromethyl cyanide, –see</td>
<td>6.1</td>
<td>2668</td>
</tr>
<tr>
<td>CHLOROMETHYL ETHYL ETHER</td>
<td>3</td>
<td>2354</td>
</tr>
<tr>
<td>Chloromethyl methyl ether, –see</td>
<td>6.1</td>
<td>1239</td>
</tr>
<tr>
<td>3-CHLORO-4-METHYLPHENYL ISOCYANATE, LIQUID</td>
<td>6.1</td>
<td>2236</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>3-CHLORO-4-METHYLPHENYL ISOCYANATE, SOLID</td>
<td>6.1</td>
<td>3428</td>
</tr>
<tr>
<td>3-Chloro-2-methylprop-1-ene, –see</td>
<td>3</td>
<td>2554</td>
</tr>
<tr>
<td>CHLORONITROANILINES</td>
<td>6.1</td>
<td>2237</td>
</tr>
<tr>
<td>CHLORONITROBENZENES, SOLID</td>
<td>6.1</td>
<td>1578</td>
</tr>
<tr>
<td>CHLORONITROBENZENES, LIQUID</td>
<td>6.1</td>
<td>3409</td>
</tr>
<tr>
<td>CHLORONITROTOLUENES, LIQUID</td>
<td>6.1</td>
<td>2433</td>
</tr>
<tr>
<td>CHLORONITROTOLUENES, SOLID</td>
<td>6.1</td>
<td>3457</td>
</tr>
<tr>
<td>CHLOROPENTAFLUOROETHANE</td>
<td>2.2</td>
<td>1020</td>
</tr>
<tr>
<td>CHLOROPHENOLATES, LIQUID</td>
<td>8</td>
<td>2904</td>
</tr>
<tr>
<td>CHLOROPHENOLATES, SOLID</td>
<td>8</td>
<td>2905</td>
</tr>
<tr>
<td>CHLOROPHENOLS, LIQUID</td>
<td>6.1</td>
<td>2021</td>
</tr>
<tr>
<td>CHLOROPHENOLS, SOLID</td>
<td>6.1</td>
<td>2020</td>
</tr>
<tr>
<td>CHLOROPHENYL- TRICHLOROSILANE</td>
<td>8</td>
<td>1753</td>
</tr>
<tr>
<td>CHLOROPICRIN</td>
<td>6.1</td>
<td>1580</td>
</tr>
<tr>
<td>CHLOROPICRIN AND METHYL CHLORIDE MIXTURE</td>
<td>2.3</td>
<td>1582</td>
</tr>
<tr>
<td>CHLOROPICRIN AND METHYL BROMIDE MIXTURE</td>
<td>2.3</td>
<td>1581</td>
</tr>
<tr>
<td>with more than 2% chloropicrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLOROPICRIN MIXTURE, N.O.S.</td>
<td>6.1</td>
<td>1583</td>
</tr>
<tr>
<td>CHLOROPLATINIC ACID, SOLID</td>
<td>8</td>
<td>2507</td>
</tr>
<tr>
<td>CHLOROPRENE, STABILISED</td>
<td>3</td>
<td>1991</td>
</tr>
<tr>
<td>1-CHLOROPROPAINE</td>
<td>3</td>
<td>1278</td>
</tr>
<tr>
<td>2-CHLOROPROPAINE</td>
<td>3</td>
<td>2356</td>
</tr>
<tr>
<td>3-Chloro-propanediol-1,2, –see</td>
<td>6.1</td>
<td>2689</td>
</tr>
<tr>
<td>3-CHLOROPROPANOL-1</td>
<td>6.1</td>
<td>2849</td>
</tr>
<tr>
<td>2-CHLOROPROPENE</td>
<td>3</td>
<td>2456</td>
</tr>
<tr>
<td>3-Chloropropene, –see</td>
<td>3</td>
<td>1100</td>
</tr>
<tr>
<td>3-Chloroprop-1-ene, –see</td>
<td>3</td>
<td>1100</td>
</tr>
<tr>
<td>2-CHLOROPROPIONIC ACID</td>
<td>8</td>
<td>2511</td>
</tr>
<tr>
<td>2-CHLOROPYRIDINE</td>
<td>6.1</td>
<td>2822</td>
</tr>
<tr>
<td>CHLOROSILANES, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>2987</td>
</tr>
<tr>
<td>CHLOROSILANES, CORROSIVE, FLAMMABLE, N.O.S.</td>
<td>8</td>
<td>2986</td>
</tr>
<tr>
<td>CHLOROSILANES, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>3</td>
<td>2985</td>
</tr>
<tr>
<td>CHLOROSILANES, TOXIC, CORROSIVE, N.O.S.</td>
<td>6.1</td>
<td>3361</td>
</tr>
<tr>
<td>CHLOROSILANES, TOXIC, CORROSIVE, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3362</td>
</tr>
<tr>
<td>CHLOROSILANES, WATER- REACTIVE, CORROSIVE, N.O.S.</td>
<td>4.3</td>
<td>2988</td>
</tr>
<tr>
<td>CHLOROSULPHONIC ACID (with or without sulphur trioxide)</td>
<td>8</td>
<td>1754</td>
</tr>
<tr>
<td>1-CHLORO-1,2,2,2- TETRAFLUOROETHANE</td>
<td>2.2</td>
<td>1021</td>
</tr>
<tr>
<td>CHLOROTOLUENES</td>
<td>3</td>
<td>2238</td>
</tr>
<tr>
<td>4-CHLORO-o-TOLUIDINE HYDROCHLORIDE, SOLID</td>
<td>6.1</td>
<td>1579</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>4-CHLORO-ortho-TOLUIDINE HYDROCHLORIDE SOLUTION</td>
<td>6.1</td>
<td>3410</td>
</tr>
<tr>
<td>CHLOROTOLUIDINES, SOLID</td>
<td>6.1</td>
<td>2239</td>
</tr>
<tr>
<td>CHLOROTOLUIDINES, LIQUID</td>
<td>6.1</td>
<td>3429</td>
</tr>
<tr>
<td>1-CHLORO-2,2,2-TRIFLUORO-ETHANE</td>
<td>2.2</td>
<td>1983</td>
</tr>
<tr>
<td>Chlorotrifluoroethylene, –see</td>
<td>2.3</td>
<td>1082</td>
</tr>
<tr>
<td>CHLOROTRIFLUOROMETHANE</td>
<td>2.2</td>
<td>1022</td>
</tr>
<tr>
<td>CHLOROTRIFLUOROMETHANE AND TRIFLUOROMETHANE AZEOTROPIC MIXTURE with approximately 60% chlorotrifluoromethane</td>
<td>2.2</td>
<td>2599</td>
</tr>
<tr>
<td>Chromic acid, solid, –see</td>
<td>5.1</td>
<td>1463</td>
</tr>
<tr>
<td>CHROMIC ACID SOLUTION</td>
<td>8</td>
<td>1755</td>
</tr>
<tr>
<td>Chromic anhydride, solid, –see</td>
<td>5.1</td>
<td>1463</td>
</tr>
<tr>
<td>CHROMIC FLUORIDE, SOLID</td>
<td>8</td>
<td>1756</td>
</tr>
<tr>
<td>CHROMIC FLUORIDE SOLUTION</td>
<td>8</td>
<td>1757</td>
</tr>
<tr>
<td>Chromic nitrate, –see</td>
<td>5.1</td>
<td>2720</td>
</tr>
<tr>
<td>Chromium (VI) dichloride dioxide, –see</td>
<td>8</td>
<td>1758</td>
</tr>
<tr>
<td>Chromium (III) fluoride, solid, –see</td>
<td>8</td>
<td>1756</td>
</tr>
<tr>
<td>CHROMIUM NITRATE</td>
<td>5.1</td>
<td>2720</td>
</tr>
<tr>
<td>Chromium (III) nitrate, –see</td>
<td>5.1</td>
<td>2720</td>
</tr>
<tr>
<td>CHROMIUM OXYCHLORIDE</td>
<td>8</td>
<td>1758</td>
</tr>
<tr>
<td>CHROMIUM TRIOXIDE, ANHYDROUS</td>
<td>5.1</td>
<td>1463</td>
</tr>
<tr>
<td>CHROMOSULPHURIC ACID</td>
<td>8</td>
<td>2240</td>
</tr>
<tr>
<td>Chrysotile, –see</td>
<td>9</td>
<td>2590</td>
</tr>
<tr>
<td>Cinene, –see</td>
<td>3</td>
<td>2052</td>
</tr>
<tr>
<td>Cinnamene, –see</td>
<td>3</td>
<td>2055</td>
</tr>
<tr>
<td>Cinnamol, –see</td>
<td>3</td>
<td>2055</td>
</tr>
<tr>
<td>CLINICAL WASTE, UNSPECIFIED, N.O.S.</td>
<td>6.2</td>
<td>3291</td>
</tr>
<tr>
<td>COAL GAS, COMPRESSED</td>
<td>2</td>
<td>1023</td>
</tr>
<tr>
<td>COAL TAR DISTILLATES, FLAMMABLE</td>
<td>3</td>
<td>1136</td>
</tr>
<tr>
<td>Coal tar naphtha, –see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>Coal tar oil, –see</td>
<td>3</td>
<td>1136</td>
</tr>
<tr>
<td>COATING SOLUTION (includes surface treatment or coatings used for industrial or other purposes such as vehicle under coating, drum or barrel lining)</td>
<td>3</td>
<td>1139</td>
</tr>
<tr>
<td>COBALT NAPHTHENATES, POWDER</td>
<td>4.1</td>
<td>2001</td>
</tr>
<tr>
<td>COBALT RESINATE, PRECIPITATED</td>
<td>4.1</td>
<td>1318</td>
</tr>
<tr>
<td>Cocculus, –see</td>
<td>6.1</td>
<td>3172</td>
</tr>
<tr>
<td>Collodion cottons, –see</td>
<td>1.1D</td>
<td>0340</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0341</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0342</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2059</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>2555</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>2556</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>2557</td>
</tr>
</tbody>
</table>
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPONENTS, EXPLOSIVE TRAIN, N.O.S.</td>
<td>1.1B</td>
<td>0461</td>
</tr>
<tr>
<td></td>
<td>1.2B</td>
<td>0382</td>
</tr>
<tr>
<td></td>
<td>1.4B</td>
<td>0383</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0384</td>
</tr>
<tr>
<td>Composition B, –see</td>
<td>1.1D</td>
<td>0118</td>
</tr>
<tr>
<td>COMPRESSED GAS, N.O.S.</td>
<td>2.2</td>
<td>1956</td>
</tr>
<tr>
<td>COMPRESSED GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td>1954</td>
</tr>
<tr>
<td>COMPRESSED GAS, OXIDISING, N.O.S.</td>
<td>2.2</td>
<td>3156</td>
</tr>
<tr>
<td>COMPRESSED GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td>1955</td>
</tr>
<tr>
<td>COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>3304</td>
</tr>
<tr>
<td>COMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>3305</td>
</tr>
<tr>
<td>COMPRESSED GAS, TOXIC, OXIDISING, N.O.S.</td>
<td>2.3</td>
<td>3303</td>
</tr>
<tr>
<td>COMPRESSED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>3306</td>
</tr>
<tr>
<td>CONTRIVANCES, WATER- ACTIVATED with burster, expelling charge or propelling charge</td>
<td>1.2L</td>
<td>0248</td>
</tr>
<tr>
<td></td>
<td>1.3L</td>
<td>0249</td>
</tr>
<tr>
<td>COPPER ACETOARSENITE</td>
<td>6.1</td>
<td>1585</td>
</tr>
<tr>
<td>COPPER ARSENITE</td>
<td>6.1</td>
<td>1586</td>
</tr>
<tr>
<td>Copper (II) arsenite, –see</td>
<td>6.1</td>
<td>1586</td>
</tr>
<tr>
<td>COPPER BASED PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>2776</td>
</tr>
<tr>
<td>COPPER BASED PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3010</td>
</tr>
<tr>
<td>COPPER BASED PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23°C</td>
<td>6.1</td>
<td>3009</td>
</tr>
<tr>
<td>COPPER BASED PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2775</td>
</tr>
<tr>
<td>COPPER CHLORATE</td>
<td>5.1</td>
<td>2721</td>
</tr>
<tr>
<td>Copper (II) chlorate, –see</td>
<td>5.1</td>
<td>2721</td>
</tr>
<tr>
<td>COPPER CHLORIDE</td>
<td>8</td>
<td>2802</td>
</tr>
<tr>
<td>COPPER CYANIDE</td>
<td>6.1</td>
<td>1587</td>
</tr>
<tr>
<td>Copper selenate, –see</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>Copper selenite, –see</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>COPRA</td>
<td>4.2</td>
<td>1363</td>
</tr>
<tr>
<td>CORD, DETONATING, flexible</td>
<td>1.1D</td>
<td>0065</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0289</td>
</tr>
<tr>
<td>CORD, DETONATING, metal clad</td>
<td>1.1D</td>
<td>0102</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0290</td>
</tr>
<tr>
<td>CORD, DETONATING, MILD EFFECT, metal clad</td>
<td>1.4D</td>
<td>0104</td>
</tr>
<tr>
<td>CORD, IGNITER</td>
<td>1.4G</td>
<td>0066</td>
</tr>
<tr>
<td>Cordite, –see</td>
<td>1.1C</td>
<td>0160</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0161</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, N.O.S.</td>
<td>8</td>
<td>1760</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.</td>
<td>8</td>
<td>3264</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S.</td>
<td>8</td>
<td>3265</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S.</td>
<td>8</td>
<td>3266</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, BASIC, ORGANIC, N.O.S.</td>
<td>8</td>
<td>3267</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, FLAMMABLE, N.O.S.</td>
<td>8</td>
<td>2920</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, OXIDISING, N.O.S.</td>
<td>8</td>
<td>3093</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, SELF- HEATING, N.O.S.</td>
<td>8</td>
<td>3301</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, TOXIC, N.O.S.</td>
<td>8</td>
<td>2922</td>
</tr>
<tr>
<td>CORROSIVE LIQUID, WATER- REACTIVE, N.O.S.</td>
<td>8</td>
<td>3094</td>
</tr>
<tr>
<td>CORROSIVE SOLID, N.O.S.</td>
<td>8</td>
<td>1759</td>
</tr>
<tr>
<td>CORROSIVE SOLID, ACIDIC, INORGANIC, N.O.S.</td>
<td>8</td>
<td>3260</td>
</tr>
<tr>
<td>CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.</td>
<td>8</td>
<td>3261</td>
</tr>
<tr>
<td>CORROSIVE SOLID, BASIC, INORGANIC, N.O.S.</td>
<td>8</td>
<td>3262</td>
</tr>
<tr>
<td>CORROSIVE SOLID, BASIC, ORGANIC, N.O.S.</td>
<td>8</td>
<td>3263</td>
</tr>
<tr>
<td>CORROSIVE SOLID, FLAMMABLE, N.O.S.</td>
<td>8</td>
<td>2921</td>
</tr>
<tr>
<td>CORROSIVE SOLID, OXIDISING, N.O.S.</td>
<td>8</td>
<td>3084</td>
</tr>
<tr>
<td>CORROSIVE SOLID, SELF- HEATING, N.O.S.</td>
<td>8</td>
<td>3095</td>
</tr>
<tr>
<td>CORROSIVE SOLID, TOXIC, N.O.S.</td>
<td>8</td>
<td>2923</td>
</tr>
<tr>
<td>CORROSIVE SOLID, WATER- REACTIVE, N.O.S.</td>
<td>8</td>
<td>3096</td>
</tr>
<tr>
<td>COTTON WASTE, OILY</td>
<td>4.2</td>
<td>1364</td>
</tr>
<tr>
<td>COTTON, WET</td>
<td>4.2</td>
<td>1365</td>
</tr>
<tr>
<td>COUMARIN DERIVATIVE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>3024</td>
</tr>
<tr>
<td>COUMARIN DERIVATIVE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3026</td>
</tr>
<tr>
<td>COUMARIN DERIVATIVE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point not less than 23°C</td>
<td>6.1</td>
<td>3025</td>
</tr>
<tr>
<td>COUMARIN DERIVATIVE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>3027</td>
</tr>
<tr>
<td>Creosote, –see</td>
<td>6.1</td>
<td>2810</td>
</tr>
<tr>
<td>Creosote salts, –see</td>
<td>4.1</td>
<td>1334</td>
</tr>
<tr>
<td>CRESOLS, LIQUID</td>
<td>6.1</td>
<td>2076</td>
</tr>
<tr>
<td>CRESOLS, SOLID</td>
<td>6.1</td>
<td>3455</td>
</tr>
<tr>
<td>CRESYLYC ACID</td>
<td>6.1</td>
<td>2022</td>
</tr>
<tr>
<td>Crocidolite, –see</td>
<td>9</td>
<td>2212</td>
</tr>
<tr>
<td>CROTONALDEHYDE</td>
<td>6.1</td>
<td>1143</td>
</tr>
<tr>
<td>CROTONALDEHYDE, STABILISED</td>
<td>6.1</td>
<td>1143</td>
</tr>
<tr>
<td>CROTONIC ACID, LIQUID</td>
<td>8</td>
<td>3472</td>
</tr>
<tr>
<td>CROTONIC ACID, SOLID</td>
<td>8</td>
<td>2823</td>
</tr>
<tr>
<td>Crotonic aldehyde, stabilised, –see</td>
<td>6.1</td>
<td>1143</td>
</tr>
<tr>
<td>CROTONYLENE</td>
<td>3</td>
<td>1144</td>
</tr>
<tr>
<td>Crude naphtha, –see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>Cumene, –see</td>
<td>3</td>
<td>1918</td>
</tr>
<tr>
<td>Cupric chloride, –see</td>
<td>5.1</td>
<td>2721</td>
</tr>
<tr>
<td>CUPRIETHYLENEDIAMINE SOLUTION</td>
<td>8</td>
<td>1761</td>
</tr>
<tr>
<td>CUT BACKS, ASPHALT [AUST.] –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUT BACKS, BITUMEN [AUST.] –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUTTERS, CABLE, EXPLOSIVE</td>
<td>1.4S</td>
<td>0070</td>
</tr>
<tr>
<td>CYANIDE SOLUTION, N.O.S.</td>
<td>6.1</td>
<td>1935</td>
</tr>
<tr>
<td>CYANIDES, INORGANIC, SOLID, N.O.S.</td>
<td>6.1</td>
<td>1588</td>
</tr>
<tr>
<td>Cyanides, organic, flammable, toxic, n.o.s., –see</td>
<td>3</td>
<td>3273</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Cyanides, organic, toxic, n.o.s., –see</td>
<td>6.1</td>
<td>3276</td>
</tr>
<tr>
<td>Cyanides, organic, toxic, flammable, n.o.s., –see</td>
<td>6.1</td>
<td>3439</td>
</tr>
<tr>
<td>Cyanoacetonitrile, –see</td>
<td>6.1</td>
<td>3275</td>
</tr>
<tr>
<td>CYANOGEN</td>
<td>2.3</td>
<td>1026</td>
</tr>
<tr>
<td>CYANOGEN BROMIDE</td>
<td>6.1</td>
<td>1889</td>
</tr>
<tr>
<td>CYANOGEN CHLORIDE, STABILISED</td>
<td>2.3</td>
<td>1589</td>
</tr>
<tr>
<td>CYANURIC CHLORIDE</td>
<td>8</td>
<td>2670</td>
</tr>
<tr>
<td>CYCLOBUTANE</td>
<td>2.1</td>
<td>2601</td>
</tr>
<tr>
<td>CYCLOBUTYL CHLOROFORMATE</td>
<td>6.1</td>
<td>2744</td>
</tr>
<tr>
<td>1,5,9-CYCLODODECATRIENE</td>
<td>6.1</td>
<td>2518</td>
</tr>
<tr>
<td>CYCLOHEPTANE</td>
<td>3</td>
<td>2241</td>
</tr>
<tr>
<td>CYCLOHEPTATRIENE</td>
<td>3</td>
<td>2603</td>
</tr>
<tr>
<td>1,3,5-Cycloheptatriene, –see</td>
<td>3</td>
<td>2603</td>
</tr>
<tr>
<td>CYCLOHEPTENE</td>
<td>3</td>
<td>2242</td>
</tr>
<tr>
<td>1,4-Cyclohexadienedione, –see</td>
<td>6.1</td>
<td>2587</td>
</tr>
<tr>
<td>CYCLOHEXANE</td>
<td>3</td>
<td>1145</td>
</tr>
<tr>
<td>Cyclehexanethiol, –see</td>
<td>3</td>
<td>3054</td>
</tr>
<tr>
<td>CYCLOHEXANONE</td>
<td>3</td>
<td>1915</td>
</tr>
<tr>
<td>CYCLOHEXENE</td>
<td>3</td>
<td>2256</td>
</tr>
<tr>
<td>CYCLOHEXENYLTRI- CHLOROSILANE</td>
<td>8</td>
<td>1762</td>
</tr>
<tr>
<td>CYCLOHEXYL ACETATE</td>
<td>3</td>
<td>2243</td>
</tr>
<tr>
<td>CYCLOHEXYLAMINE</td>
<td>8</td>
<td>2357</td>
</tr>
<tr>
<td>CYCLOHEXYL ISOCYANATE</td>
<td>6.1</td>
<td>2488</td>
</tr>
<tr>
<td>CYCLOHEXYL MERCAPTAN</td>
<td>3</td>
<td>3054</td>
</tr>
<tr>
<td>CYCLOHEXYLTRICHLOROSILANE</td>
<td>8</td>
<td>1763</td>
</tr>
<tr>
<td>CYCLONITE, –see</td>
<td>1.1D</td>
<td>0072</td>
</tr>
<tr>
<td>CYCLOOCTADIENE PHOSPHINES, –see</td>
<td>4.2</td>
<td>2940</td>
</tr>
<tr>
<td>CYCLOOCTADIENES</td>
<td>3</td>
<td>2520</td>
</tr>
<tr>
<td>CYCLOOCTATETRAEENE</td>
<td>3</td>
<td>2358</td>
</tr>
<tr>
<td>CYCLOPENTANE</td>
<td>3</td>
<td>1146</td>
</tr>
<tr>
<td>CYCLOPENTANOL</td>
<td>3</td>
<td>2244</td>
</tr>
<tr>
<td>CYCLOPENTANONE</td>
<td>3</td>
<td>2245</td>
</tr>
<tr>
<td>CYCLOPENTENE</td>
<td>3</td>
<td>2246</td>
</tr>
<tr>
<td>CYCLOPROPAE</td>
<td>2.1</td>
<td>1027</td>
</tr>
<tr>
<td>CYCLOTETRAMETHYLENE- TETRANITRAMINE, DESENSITISED</td>
<td>1.1D</td>
<td>0484</td>
</tr>
<tr>
<td>CYCLOTETRAMETHYLENE- TETRANITRAMINE, WETTED with not less than 15% water, by mass</td>
<td>1.1D</td>
<td>0226</td>
</tr>
<tr>
<td>CYCLOTRIMETHYLENE TRINITRAMINE AND CYCLOTETRAMETHYLENE- TETRANITRAMINE MIXTURE, DESENSITISED with not less than 10% phlegmatiser, by mass</td>
<td>1.1D</td>
<td>0391</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>CYCLOTRIMETHYLENETRINITRAMINE AND CYCLOTETRAMETHYLENETETRANITRAMINE MIXTURE, WETTED with not less than 15% water, by mass</td>
<td>1.1D</td>
<td>0391</td>
</tr>
<tr>
<td>CYCLOTRIMETHYLENE- TRINITRAMINE, DESENSITISED</td>
<td>1.1D</td>
<td>0483</td>
</tr>
<tr>
<td>CYCLOTRIMETHYLENE- TRINITRAMINE, WETTED with not less than 15% water, by mass</td>
<td>1.1D</td>
<td>0072</td>
</tr>
<tr>
<td>CYMENES</td>
<td>3</td>
<td>2046</td>
</tr>
<tr>
<td>Cymol, –see</td>
<td>3</td>
<td>2046</td>
</tr>
<tr>
<td>DANGEROUS GOODS IN APPARATUS</td>
<td>9</td>
<td>3363</td>
</tr>
<tr>
<td>DANGEROUS GOODS IN MACHINERY</td>
<td>9</td>
<td>3363</td>
</tr>
<tr>
<td>DANGEROUS GOODS IN ARTICLES</td>
<td>9</td>
<td>3363</td>
</tr>
<tr>
<td>Deanol, –see</td>
<td>8</td>
<td>2051</td>
</tr>
<tr>
<td>DECBORANE</td>
<td>4.1</td>
<td>1868</td>
</tr>
<tr>
<td>DECAHYDRONAPHTHA-LENE</td>
<td>3</td>
<td>1147</td>
</tr>
<tr>
<td>Decalin, –see</td>
<td>3</td>
<td>1147</td>
</tr>
<tr>
<td>n-DECANE</td>
<td>3</td>
<td>2247</td>
</tr>
<tr>
<td>DEFLAGRATING METAL SALTS OF AROMATIC NITRODERIVATIVES, N.O.S.</td>
<td>1.3C</td>
<td>0132</td>
</tr>
<tr>
<td>Depth charge, –see</td>
<td>1.1D</td>
<td>0056</td>
</tr>
<tr>
<td>DESENSITISED EXPLOSIVE, LIQUID, N.O.S.</td>
<td>3</td>
<td>3379</td>
</tr>
<tr>
<td>DESENSITISED EXPLOSIVE, SOLID, N.O.S.</td>
<td>4.1</td>
<td>3380</td>
</tr>
<tr>
<td>Detonating relays, –see</td>
<td>1.1B</td>
<td>0029</td>
</tr>
<tr>
<td>DETONATOR ASSEMBLIES, NON- ELECTRIC for blasting</td>
<td>1.1B</td>
<td>0360</td>
</tr>
<tr>
<td>DETONATORS FOR AMMUNITION</td>
<td>1.1B</td>
<td>0073</td>
</tr>
<tr>
<td>DETONATORS, ELECTRIC for blasting</td>
<td>1.1B</td>
<td>0030</td>
</tr>
<tr>
<td>DETONATORS, ELECTRIC programmable for blasting</td>
<td>1.1B</td>
<td>0511</td>
</tr>
<tr>
<td>DETONATORS, NON-ELECTRIC for blasting</td>
<td>1.1B</td>
<td>0029</td>
</tr>
<tr>
<td>DEUTERIUM, COMPRESSED</td>
<td>2.1</td>
<td>1957</td>
</tr>
<tr>
<td>DEVICES, SMALL, HYDROCARBON GAS POWERED with release device</td>
<td>2.1</td>
<td>3150</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>DIACETONE ALCOHOL</td>
<td>3</td>
<td>1148</td>
</tr>
<tr>
<td>DIALLYLAMINE</td>
<td>3</td>
<td>2359</td>
</tr>
<tr>
<td>DIALLYL ETHER</td>
<td>3</td>
<td>2360</td>
</tr>
<tr>
<td>4,4’-DIAMINODIPHENYL METHANE</td>
<td>6.1</td>
<td>2651</td>
</tr>
<tr>
<td>1,2-Diaminoethane, --see</td>
<td>8</td>
<td>1604</td>
</tr>
<tr>
<td>Diaminopropylamine, --see</td>
<td>8</td>
<td>2269</td>
</tr>
<tr>
<td>DI-n-AMYLAMINE</td>
<td>3</td>
<td>2841</td>
</tr>
<tr>
<td>DIAZODINITROPHENOL, WETTED with not less than 40% water, or</td>
<td>1.1A</td>
<td>0074</td>
</tr>
<tr>
<td>mixture of alcohol and water, by mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenzopyridine, --see</td>
<td>6.1</td>
<td>2713</td>
</tr>
<tr>
<td>DIBENZYL DICHLOROSILANE</td>
<td>8</td>
<td>2434</td>
</tr>
<tr>
<td>DIBORANE</td>
<td>2.3</td>
<td>1911</td>
</tr>
<tr>
<td>1,2-DIBROMOBUTAN-3-ONE</td>
<td>6.1</td>
<td>2648</td>
</tr>
<tr>
<td>DIBROMOCHLOROPROPANES</td>
<td>6.1</td>
<td>2872</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane, --see</td>
<td>6.1</td>
<td>2872</td>
</tr>
<tr>
<td>DIBROMODIFLUOROMETHANE</td>
<td>9</td>
<td>1941</td>
</tr>
<tr>
<td>DIBROMOMETHANE</td>
<td>6.1</td>
<td>2664</td>
</tr>
<tr>
<td>DI-n-BUTYLAMINE</td>
<td>8</td>
<td>2248</td>
</tr>
<tr>
<td>DIBUTYLAMINOETHANOL</td>
<td>6.1</td>
<td>2873</td>
</tr>
<tr>
<td>2-Dibutylaminoethanol, --see</td>
<td>6.1</td>
<td>2873</td>
</tr>
<tr>
<td>N,N-Di-n-butylaminoethanol, --see</td>
<td>6.1</td>
<td>2873</td>
</tr>
<tr>
<td>DIBUTYL ETHER</td>
<td>3</td>
<td>1149</td>
</tr>
<tr>
<td>DICHLOROACETIC ACID</td>
<td>8</td>
<td>1764</td>
</tr>
<tr>
<td>1,3-DICHLOROACETONE</td>
<td>6.1</td>
<td>2649</td>
</tr>
<tr>
<td>DICHLOROACETYL CHLORIDE</td>
<td>8</td>
<td>1765</td>
</tr>
<tr>
<td>DICHLOROANILINES, LIQUID</td>
<td>6.1</td>
<td>1590</td>
</tr>
<tr>
<td>DICHLOROANILINES, SOLID</td>
<td>6.1</td>
<td>3442</td>
</tr>
<tr>
<td>α-DICHLOROBENZENE</td>
<td>6.1</td>
<td>1591</td>
</tr>
<tr>
<td>2,2’-DICHLORODIETHYL ETHER</td>
<td>6.1</td>
<td>1916</td>
</tr>
<tr>
<td>DICHLORODIFLUOROMETHANE</td>
<td>2.2</td>
<td>1028</td>
</tr>
<tr>
<td>DICHLORODIFLUOROMETHANE AND DIFLUOROETHANE AZEOTROPIC MIXTURE</td>
<td>2.2</td>
<td>2602</td>
</tr>
<tr>
<td>Dichlorodifluoromethane and ethylene oxide mixture, -- see</td>
<td>2.2</td>
<td>3070</td>
</tr>
<tr>
<td>DICHLOORODIMETHYL ETHER, SYMMETRICAL</td>
<td>6.1</td>
<td>2249</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td>3</td>
<td>2362</td>
</tr>
<tr>
<td>1,2-Dichloroethane, --see</td>
<td>3</td>
<td>1184</td>
</tr>
<tr>
<td>1,2-DICHLOROETHYLENE</td>
<td>3</td>
<td>1150</td>
</tr>
<tr>
<td>Di(2-chloroethyl) ether, --see</td>
<td>6.1</td>
<td>1916</td>
</tr>
<tr>
<td>DICHLOROFLUOROMETHANE</td>
<td>2.2</td>
<td>1029</td>
</tr>
<tr>
<td>alpha-Dichlorohydrin, --see</td>
<td>6.1</td>
<td>2750</td>
</tr>
<tr>
<td>DICHLOROISOCYANURIC ACID, DRY</td>
<td>5.1</td>
<td>2465</td>
</tr>
<tr>
<td>DICHLOROISOCYANURIC ACID SALTS</td>
<td>5.1</td>
<td>2465</td>
</tr>
<tr>
<td>DICHLOROISOPROPYL ETHER</td>
<td>6.1</td>
<td>2490</td>
</tr>
<tr>
<td>DICHLOROMETHANE</td>
<td>6.1</td>
<td>1593</td>
</tr>
<tr>
<td>1,1-DICHLORO-1-NITROETHANE</td>
<td>6.1</td>
<td>2650</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>DICHLOROPENTANES</td>
<td>3</td>
<td>1152</td>
</tr>
<tr>
<td>Dichlorophenol, –see</td>
<td>6.1</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>2021</td>
</tr>
<tr>
<td>DICHLOROPHENYL ISOCYANATES</td>
<td>6.1</td>
<td>2250</td>
</tr>
<tr>
<td>DICHLOROPHENYLTRICHLORO- SILANE</td>
<td>8</td>
<td>1766</td>
</tr>
<tr>
<td>1,2-DICHLOROPROPA NE</td>
<td>3</td>
<td>1279</td>
</tr>
<tr>
<td>1,3-DICHLOROPROPA NOL-2</td>
<td>6.1</td>
<td>2750</td>
</tr>
<tr>
<td>1,3-Dichloro-2-propanone, –see</td>
<td>6.1</td>
<td>2649</td>
</tr>
<tr>
<td>DICHLOROPROPENES</td>
<td>3</td>
<td>2047</td>
</tr>
<tr>
<td>DICHLOROSILANE</td>
<td>2.3</td>
<td>2189</td>
</tr>
<tr>
<td>1,2-DICHLORO-1,1,2,2- TETRAFLUOROETHANE</td>
<td>2.2</td>
<td>1958</td>
</tr>
<tr>
<td>Dichloro-s-triazine-2,4,6-trione, –see</td>
<td>5.1</td>
<td>2465</td>
</tr>
<tr>
<td>1,4-Dicycloheptadiene, –see</td>
<td>6.1</td>
<td>2205</td>
</tr>
<tr>
<td>DICYCLOHEXYLAMINE</td>
<td>8</td>
<td>2565</td>
</tr>
<tr>
<td>Dicyclohexylamine nitrite, –see</td>
<td>4.1</td>
<td>2687</td>
</tr>
<tr>
<td>DICYCLOHEXYLMONIUM NITRITE</td>
<td>4.1</td>
<td>2687</td>
</tr>
<tr>
<td>DICYCLOPENTADIENE</td>
<td>3</td>
<td>2048</td>
</tr>
<tr>
<td>1,2-DI-(DIMETHYLAMINO) ETHANE</td>
<td>3</td>
<td>2372</td>
</tr>
<tr>
<td>DIDYMUM NITRATE</td>
<td>5.1</td>
<td>1465</td>
</tr>
<tr>
<td>DIESEL FUEL</td>
<td>3</td>
<td>1202</td>
</tr>
<tr>
<td>1,1-Diethoxyethane, –see</td>
<td>3</td>
<td>1088</td>
</tr>
<tr>
<td>1,2-Diethoxyethane, –see</td>
<td>3</td>
<td>1153</td>
</tr>
<tr>
<td>DIETHOXYMETHANE</td>
<td>3</td>
<td>2373</td>
</tr>
<tr>
<td>3,3-DIETHOXYPROPENE</td>
<td>3</td>
<td>2374</td>
</tr>
<tr>
<td>DIETHYLAMINE</td>
<td>3</td>
<td>1154</td>
</tr>
<tr>
<td>2-DIETHYLAMINOETHANOL</td>
<td>8</td>
<td>2686</td>
</tr>
<tr>
<td>3-DIETHYLAMINOPROPYLAMINE</td>
<td>3</td>
<td>2684</td>
</tr>
<tr>
<td>N,N-DIETHYLAMINILNE</td>
<td>6.1</td>
<td>2432</td>
</tr>
<tr>
<td>DIETHYLBENZENE</td>
<td>3</td>
<td>2049</td>
</tr>
<tr>
<td>Diethylcarbinol, –see</td>
<td>3</td>
<td>1105</td>
</tr>
<tr>
<td>DIETHYL CARBONATE</td>
<td>3</td>
<td>2366</td>
</tr>
<tr>
<td>DIETHYLDICHLOROSILANE</td>
<td>8</td>
<td>1767</td>
</tr>
<tr>
<td>Diethylenediamine, –see</td>
<td>8</td>
<td>2579</td>
</tr>
<tr>
<td>DIETHYLENEGLYCOL DINITRATE, DESENSITISED with not less than 25% non-volatile, water-insoluble phlegmatiser, by mass</td>
<td>1.1d</td>
<td>0075</td>
</tr>
<tr>
<td>DIETHYLENETRIAMINE</td>
<td>8</td>
<td>2079</td>
</tr>
<tr>
<td>N,N-Diethylethanolamine, –see</td>
<td>3</td>
<td>2686</td>
</tr>
<tr>
<td>DIETHYL ETHER</td>
<td>3</td>
<td>1155</td>
</tr>
<tr>
<td>N,N-DIETHYLETHYLENEDIAMINE</td>
<td>8</td>
<td>2685</td>
</tr>
<tr>
<td>Di-(2-ethylhexyl) phosphoric acid, –see</td>
<td>8</td>
<td>1902</td>
</tr>
<tr>
<td>DIETHYL KETONE</td>
<td>3</td>
<td>1156</td>
</tr>
<tr>
<td>DIETHYL SULPHATE</td>
<td>6.1</td>
<td>1594</td>
</tr>
<tr>
<td>DIETHYL SULPHIDE</td>
<td>3</td>
<td>2375</td>
</tr>
<tr>
<td>DIETHYLTHIOPHOSPHORYL CHLORIDE</td>
<td>8</td>
<td>2751</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>2,4-Difluoroaniline, –see</td>
<td>6.1</td>
<td>2941</td>
</tr>
<tr>
<td>Difluorochloroethane, –see</td>
<td>2.1</td>
<td>2517</td>
</tr>
<tr>
<td>1,1-DIFLUOROETHANE</td>
<td>2.1</td>
<td>1030</td>
</tr>
<tr>
<td>1,1-DIFLUOROETHYLENE</td>
<td>2.1</td>
<td>1959</td>
</tr>
<tr>
<td>DIFLUOROMETHANE</td>
<td>2.1</td>
<td>3252</td>
</tr>
<tr>
<td>Difluoromethane, pentfluoroethane, and 1,1,1,2-</td>
<td>2.2</td>
<td>3340</td>
</tr>
<tr>
<td>tetrafluoroethane zeotropic mixture with approximately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23% difluoromethane and 25% pentfluoroethane, – see</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difluoromethane, pentfluoroethane, and 1,1,1,2-</td>
<td>2.2</td>
<td>3338</td>
</tr>
<tr>
<td>tetrafluoroethane zeotropic mixture with approximately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% difluoromethane and 40% pentfluoroethane, – see</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difluoromethane, pentfluoroethane, and 1,1,1,2-</td>
<td>2.2</td>
<td>3339</td>
</tr>
<tr>
<td>tetrafluoroethane zeotropic mixture with approximately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% difluoromethane and 70% pentfluoroethane, – see</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIFLUOROPHOSPHORIC ACID, ANHYDROUS</td>
<td>8</td>
<td>1768</td>
</tr>
<tr>
<td>2,3-DIHYDROPYRAN</td>
<td>3</td>
<td>2376</td>
</tr>
<tr>
<td>DIISOBUTYLAMINE</td>
<td>3</td>
<td>2361</td>
</tr>
<tr>
<td>DIISOBUTYLENE, ISOMERIC COMPOUNDS</td>
<td>3</td>
<td>2050</td>
</tr>
<tr>
<td>alpha-Diisobutylenne, –see</td>
<td>3</td>
<td>2050</td>
</tr>
<tr>
<td>beta-Diisobutylenne, –see</td>
<td>3</td>
<td>2050</td>
</tr>
<tr>
<td>DIISOBUTYL KETONE</td>
<td>3</td>
<td>1157</td>
</tr>
<tr>
<td>DIISOCTYL ACID PHOSPHATE</td>
<td>8</td>
<td>1902</td>
</tr>
<tr>
<td>DIISOPROPYLAMINE</td>
<td>3</td>
<td>1158</td>
</tr>
<tr>
<td>DIISOPROPYL ETHER</td>
<td>3</td>
<td>1159</td>
</tr>
<tr>
<td>DIKETENE, STABILISED</td>
<td>6.1</td>
<td>2521</td>
</tr>
<tr>
<td>1,1-DIMETHOXYETHANE</td>
<td>3</td>
<td>2377</td>
</tr>
<tr>
<td>1,2-DIMETHOXYETHANE</td>
<td>3</td>
<td>2252</td>
</tr>
<tr>
<td>Dimethoxystrychnine, –see</td>
<td>6.1</td>
<td>1570</td>
</tr>
<tr>
<td>DIMETHYLAMINE, ANHYDROUS</td>
<td>2.1</td>
<td>1032</td>
</tr>
<tr>
<td>DIMETHYLAMINE AQUEOUS SOLUTION</td>
<td>3</td>
<td>1160</td>
</tr>
<tr>
<td>2-DIMETHYLAMINO- ACETONITRILE</td>
<td>3</td>
<td>2378</td>
</tr>
<tr>
<td>2-DIMETHYLAMINOETHANOL</td>
<td>8</td>
<td>2051</td>
</tr>
<tr>
<td>2-DIMETHYLAMINOETHYL ACRYLATE, STABILIZED 6.1</td>
<td>3302</td>
<td></td>
</tr>
<tr>
<td>2-DIMETHYLAMINOETHYL METHACRYLATE, STABILIZED</td>
<td>6.1</td>
<td>2522</td>
</tr>
<tr>
<td>N,N-DIMETHYLANILINE</td>
<td>6.1</td>
<td>2253</td>
</tr>
<tr>
<td>Dimethylarsenic acid, –see</td>
<td>6.1</td>
<td>1572</td>
</tr>
<tr>
<td>N,N-Dimethylbenzylamine, –see</td>
<td>8</td>
<td>2619</td>
</tr>
<tr>
<td>2,3-DIMETHYLBUTANE</td>
<td>3</td>
<td>2457</td>
</tr>
<tr>
<td>1,3-DIMETHYLBUTYLAMINE</td>
<td>3</td>
<td>2379</td>
</tr>
<tr>
<td>DIMETHYL CARBAMOYL CHLORIDE</td>
<td>8</td>
<td>2262</td>
</tr>
<tr>
<td>DIMETHYL CARBONATE</td>
<td>3</td>
<td>1161</td>
</tr>
<tr>
<td>DIMETHYL CYCLOHEXANES</td>
<td>3</td>
<td>2263</td>
</tr>
<tr>
<td>N,N-DIMETHYL CYCLO- HEXYLAMINE</td>
<td>8</td>
<td>2264</td>
</tr>
<tr>
<td>DIMETHYLDICHLOROSILANE</td>
<td>3</td>
<td>1162</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>DIMETHYLDIETHOXYSILANE</td>
<td>3</td>
<td>2380</td>
</tr>
<tr>
<td>DIMETHYLDIOXANES</td>
<td>3</td>
<td>2707</td>
</tr>
<tr>
<td>DIMETHYL DISULPHIDE</td>
<td>3</td>
<td>2381</td>
</tr>
<tr>
<td>Dimethylethanolamine, –see</td>
<td>8</td>
<td>2051</td>
</tr>
<tr>
<td>DIMETHYL ETHER</td>
<td>2.1</td>
<td>1033</td>
</tr>
<tr>
<td>N,N-DIMETHYLFORMAMIDE</td>
<td>3</td>
<td>2265</td>
</tr>
<tr>
<td>DIMETHYLHYDRAZINE, SYMMETRICAL</td>
<td>6.1</td>
<td>2382</td>
</tr>
<tr>
<td>DIMETHYLHYDRAZINE, UNSYMMETRICAL</td>
<td>6.1</td>
<td>1163</td>
</tr>
<tr>
<td>1,1-Dimethylhydrazine, –see</td>
<td>6.1</td>
<td>1163</td>
</tr>
<tr>
<td>N,N-Dimethyl-4-nitrosoaniline, –see</td>
<td>4.2</td>
<td>1369</td>
</tr>
<tr>
<td>2,2-DIMETHYLPROPANE</td>
<td>2</td>
<td>2044</td>
</tr>
<tr>
<td>DIMETHYL-N-PROPYLAMINE</td>
<td>3</td>
<td>2266</td>
</tr>
<tr>
<td>DIMETHYL SULPHATE</td>
<td>6.1</td>
<td>1595</td>
</tr>
<tr>
<td>DIMETHYL SULPHIDE</td>
<td>3</td>
<td>1164</td>
</tr>
<tr>
<td>DIMETHYL THIOPHOSPHORYL CHLORIDE</td>
<td>6.1</td>
<td>2267</td>
</tr>
<tr>
<td>DINGU, –see</td>
<td>1.1D</td>
<td>0489</td>
</tr>
<tr>
<td>DINITROANILINES</td>
<td>6.1</td>
<td>1596</td>
</tr>
<tr>
<td>DINITROBENZENES, SOLID</td>
<td>6.1</td>
<td>3443</td>
</tr>
<tr>
<td>DINITROBENZENES LIQUID</td>
<td>6.1</td>
<td>1597</td>
</tr>
<tr>
<td>Dinitrochlorobenzene, –see</td>
<td>6.1</td>
<td>1577</td>
</tr>
<tr>
<td>DINITRO-o-CRESOL</td>
<td>6.1</td>
<td>1598</td>
</tr>
<tr>
<td>DINITROGEN TETROXIDE</td>
<td>2.3</td>
<td>1067</td>
</tr>
<tr>
<td>DINITROGLYCOLURIL</td>
<td>1.1D</td>
<td>0489</td>
</tr>
<tr>
<td>DINITROPHENOL, dry or wetted with less 15% water, by mass</td>
<td>1.1D</td>
<td>0076</td>
</tr>
<tr>
<td>DINITROPHENOL SOLUTION</td>
<td>6.1</td>
<td>1599</td>
</tr>
<tr>
<td>DINITROPHENOL, WETTED with not less than 15% water, by mass</td>
<td>4.1</td>
<td>1320</td>
</tr>
<tr>
<td>DINITROPHENOLATES, alkali metals, dry or wetted with less than 15% water, by mass</td>
<td>1.3C</td>
<td>0077</td>
</tr>
<tr>
<td>DINITROPHENOLATES, WETTED with not less than 15% water, by mass</td>
<td>4.1</td>
<td>1321</td>
</tr>
<tr>
<td>DINITRORESORCINOL, dry or wetted with less than 15% water, by mass</td>
<td>1.1D</td>
<td>0078</td>
</tr>
<tr>
<td>DINITRORESORCINOL, WETTED with not less than 15% water, by mass</td>
<td>4.1</td>
<td>1322</td>
</tr>
<tr>
<td>DINITROSOBENZENE</td>
<td>1.3C</td>
<td>0406</td>
</tr>
<tr>
<td>Dinitrotoluene mixed with sodium chlorate, –see</td>
<td>1.1D</td>
<td>0083</td>
</tr>
<tr>
<td>DINITROTOLUENES, LIQUID</td>
<td>6.1</td>
<td>2038</td>
</tr>
<tr>
<td>DINITROTOLUENES, MOLTEN</td>
<td>6.1</td>
<td>1600</td>
</tr>
<tr>
<td>DINITROTOLUENES, SOLID</td>
<td>6.1</td>
<td>3454</td>
</tr>
<tr>
<td>DIOXANE</td>
<td>3</td>
<td>1165</td>
</tr>
<tr>
<td>DIOXOLANE</td>
<td>3</td>
<td>1166</td>
</tr>
<tr>
<td>DIPENTENE</td>
<td>3</td>
<td>2052</td>
</tr>
<tr>
<td>DIPHENYLAMINE CHLOROARSINE</td>
<td>6.1</td>
<td>1698</td>
</tr>
<tr>
<td>DIPHENYLCHLOROARSINE, LIQUID</td>
<td>6.1</td>
<td>1699</td>
</tr>
<tr>
<td>DIPHENYLCHLOROARSINE, SOLID</td>
<td>6.1</td>
<td>3450</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>DIPHENYLDICHLOROSILANE</td>
<td>8</td>
<td>1769</td>
</tr>
<tr>
<td>DIPHENYL METHYL BROMIDE</td>
<td>8</td>
<td>1770</td>
</tr>
<tr>
<td>DIPICRYLAMINE, see</td>
<td>1.1D</td>
<td>0079</td>
</tr>
<tr>
<td>DIPICRYL SULPHIDE, dry or wetted with less than 10% water, by mass</td>
<td>1.1D</td>
<td>0401</td>
</tr>
<tr>
<td>DIPICRYL SULPHIDE, WETTED with not less than 10% water, by mass</td>
<td>4.1</td>
<td>2852</td>
</tr>
<tr>
<td>DIPROPYLAMINE</td>
<td>3</td>
<td>2383</td>
</tr>
<tr>
<td>Dipropylene triamine, see</td>
<td>8</td>
<td>2269</td>
</tr>
<tr>
<td>Di-n-PROPYL ETHER</td>
<td>3</td>
<td>2384</td>
</tr>
<tr>
<td>DIPROPYL KETONE</td>
<td>3</td>
<td>2710</td>
</tr>
<tr>
<td>DISINFECTANT, LIQUID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>1903</td>
</tr>
<tr>
<td>DISINFECTANT, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>3142</td>
</tr>
<tr>
<td>DISINFECTANT, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>1601</td>
</tr>
<tr>
<td>DISODIUM TRIOXOSILICATE</td>
<td>8</td>
<td>3253</td>
</tr>
<tr>
<td>DIVINYL ETHER, STABILISED</td>
<td>3</td>
<td>1167</td>
</tr>
<tr>
<td>DODECYL TRICHLOROSILANE</td>
<td>8</td>
<td>1771</td>
</tr>
<tr>
<td>DRIERS, PAINT OR VARNISH, LIQUID [AUST.]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry ice, see</td>
<td>9</td>
<td>1845</td>
</tr>
<tr>
<td>DYE INTERMEDIATE, LIQUID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>2801</td>
</tr>
<tr>
<td>DYE INTERMEDIATE, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>1602</td>
</tr>
<tr>
<td>DYE INTERMEDIATE, SOLID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>3147</td>
</tr>
<tr>
<td>DYE INTERMEDIATE, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>3143</td>
</tr>
<tr>
<td>Dynamite, see</td>
<td>1.1D</td>
<td>0081</td>
</tr>
<tr>
<td>Electric storage batteries, see</td>
<td>8</td>
<td>2794</td>
</tr>
<tr>
<td>Electric storage batteries, see</td>
<td>8</td>
<td>2795</td>
</tr>
<tr>
<td>Electric storage batteries, see</td>
<td>8</td>
<td>2800</td>
</tr>
<tr>
<td>Electric storage batteries, see</td>
<td>8</td>
<td>3028</td>
</tr>
<tr>
<td>Electrolyte (acid or alkaline) for batteries, see</td>
<td>8</td>
<td>2796</td>
</tr>
<tr>
<td>Electrolyte (acid or alkaline) for batteries, see</td>
<td>8</td>
<td>2797</td>
</tr>
<tr>
<td>ELEVATED TEMPERATURE LIQUID, N.O.S., at or above 100°C and below its flash-point (including molten metals, molten salts, etc.)</td>
<td>9</td>
<td>3257</td>
</tr>
<tr>
<td>ELEVATED TEMPERATURE LIQUID, FLAMMABLE, N.O.S. with flash-point above 60°C, at or above its flash-point</td>
<td>3</td>
<td>3256</td>
</tr>
<tr>
<td>ELEVATED TEMPERATURE SOLID, N.O.S., at or above 240°C</td>
<td>9</td>
<td>3258</td>
</tr>
<tr>
<td>ENAMEL [AUST.] see</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine, internal combustion</td>
<td>9</td>
<td>3530</td>
</tr>
<tr>
<td>ENGINE, INTERNAL COMBUSTION, FLAMMABLE LIQUID POWERED</td>
<td>3</td>
<td>3528</td>
</tr>
<tr>
<td>ENGINE, INTERNAL COMBUSTION, FLAMMABLE GAS POWERED</td>
<td>2.1</td>
<td>3529</td>
</tr>
<tr>
<td>ENGINE, FUEL CELL, FLAMMABLE GAS POWERED</td>
<td>2.1</td>
<td>3529</td>
</tr>
<tr>
<td>ENGINE, FUEL CELL, FLAMMABLE LIQUID POWERED</td>
<td>3</td>
<td>3528</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Engines, rocket, –see</td>
<td>1.2L</td>
<td>0322</td>
</tr>
<tr>
<td></td>
<td>1.3L</td>
<td>0250</td>
</tr>
<tr>
<td>ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.</td>
<td>9</td>
<td>3082</td>
</tr>
<tr>
<td>ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.</td>
<td>9</td>
<td>3077</td>
</tr>
<tr>
<td>EPIBROMOHYDRIN</td>
<td>6.1</td>
<td>2558</td>
</tr>
<tr>
<td>EPICHLOROHYDRIN</td>
<td>6.1</td>
<td>2023</td>
</tr>
<tr>
<td>1,2-Epoxybutane, stabilised, –see</td>
<td>3</td>
<td>3022</td>
</tr>
<tr>
<td>Epoxyethane, –see</td>
<td>2.3</td>
<td>1040</td>
</tr>
<tr>
<td>1,2-EPOXY-3-ETOXYPROPAHE</td>
<td>3</td>
<td>2752</td>
</tr>
<tr>
<td>2,3-Epoxy-1-propanal, –see</td>
<td>3</td>
<td>2622</td>
</tr>
<tr>
<td>2,3-Epoxypropyl ethyl ether, –see</td>
<td>3</td>
<td>2752</td>
</tr>
<tr>
<td>ESTERS, N.O.S.</td>
<td>3</td>
<td>3272</td>
</tr>
<tr>
<td>ETHANE</td>
<td>2.1</td>
<td>1035</td>
</tr>
<tr>
<td>ETHANE, REFRIGERATED LIQUID</td>
<td>2.1</td>
<td>1961</td>
</tr>
<tr>
<td>Ethanethiol, –see</td>
<td>3</td>
<td>2363</td>
</tr>
<tr>
<td>ETHANOL</td>
<td>3</td>
<td>1170</td>
</tr>
<tr>
<td>ETHANOL AND GASOLINE MIXTURE or ETHANOL AND MOTOR SPIRIT MIXTURE or ETHANOL AND PETROL MIXTURE, with more than 10% ethanol</td>
<td>3</td>
<td>3475</td>
</tr>
<tr>
<td>ETHANOL SOLUTION</td>
<td>3</td>
<td>1170</td>
</tr>
<tr>
<td>ETHANOLAMINE</td>
<td>8</td>
<td>2491</td>
</tr>
<tr>
<td>ETHANOLAMINE SOLUTION</td>
<td>8</td>
<td>2491</td>
</tr>
<tr>
<td>Ether, –see</td>
<td>3</td>
<td>1155</td>
</tr>
<tr>
<td>Ethers, N.O.S.</td>
<td>3</td>
<td>3271</td>
</tr>
<tr>
<td>2-Ethoxyethanol, –see</td>
<td>3</td>
<td>1171</td>
</tr>
<tr>
<td>2-Ethoxyethyl acetate, –see</td>
<td>3</td>
<td>1172</td>
</tr>
<tr>
<td>Ethoxy propane-1, –see</td>
<td>3</td>
<td>2615</td>
</tr>
<tr>
<td>ETHYL ACETATE</td>
<td>3</td>
<td>1173</td>
</tr>
<tr>
<td>ETHYLACETYLENE, STABILISED</td>
<td>2.1</td>
<td>2452</td>
</tr>
<tr>
<td>ETHYL ACRYLATE, STABILISED</td>
<td>3</td>
<td>1917</td>
</tr>
<tr>
<td>ETHYL ALCOHOL, –see</td>
<td>3</td>
<td>1170</td>
</tr>
<tr>
<td>ETHYL ALCOHOL SOLUTION, –see</td>
<td>3</td>
<td>1170</td>
</tr>
<tr>
<td>ETHYLAMINE</td>
<td>2.1</td>
<td>1036</td>
</tr>
<tr>
<td>ETHYLAMINE, AQUEOUS SOLUTION with not less than 50% but not more than 70% ethylamine</td>
<td>3</td>
<td>2270</td>
</tr>
<tr>
<td>ETHYL AMYL KETONE</td>
<td>3</td>
<td>2271</td>
</tr>
<tr>
<td>N-ETHYLANILINE</td>
<td>6.1</td>
<td>2272</td>
</tr>
<tr>
<td>2-ETHYLANILINE</td>
<td>6.1</td>
<td>2273</td>
</tr>
<tr>
<td>ETHYLBENZENE</td>
<td>3</td>
<td>1175</td>
</tr>
<tr>
<td>N-ETHYL-N-BENZYLANILINE</td>
<td>6.1</td>
<td>2274</td>
</tr>
<tr>
<td>N-ETHYLBENZYLTOULUIDINES, LIQUID</td>
<td>6.1</td>
<td>2753</td>
</tr>
<tr>
<td>N-ETHYLBENZYLTOULUIDINES, SOLID</td>
<td>6.1</td>
<td>3460</td>
</tr>
<tr>
<td>ETHYL BORATE</td>
<td>3</td>
<td>1176</td>
</tr>
<tr>
<td>ETHYL BORATE</td>
<td>6.1</td>
<td>1891</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>ETHYL BROMOACETATE</td>
<td>6.1</td>
<td>1603</td>
</tr>
<tr>
<td>2-ETHYL BUTANOL</td>
<td>3</td>
<td>2275</td>
</tr>
<tr>
<td>2-ETHYL BUTYL ACETATE</td>
<td>3</td>
<td>1177</td>
</tr>
<tr>
<td>2-Ethylbutyl acetate, see</td>
<td>3</td>
<td>1177</td>
</tr>
<tr>
<td>ETHYL BUTYL ETHER</td>
<td>3</td>
<td>1179</td>
</tr>
<tr>
<td>2-ETHYL BUTYRALDEHYDE</td>
<td>3</td>
<td>1178</td>
</tr>
<tr>
<td>ETHYL BUTYRATE</td>
<td>3</td>
<td>1180</td>
</tr>
<tr>
<td>ETHYL CHLORIDE</td>
<td>2.1</td>
<td>1037</td>
</tr>
<tr>
<td>ETHYL CHLOROACETATE</td>
<td>6.1</td>
<td>1181</td>
</tr>
<tr>
<td>Ethyl chlorocarbonate, see</td>
<td>6.1</td>
<td>1182</td>
</tr>
<tr>
<td>ETHYL CHLOROFORMATE</td>
<td>6.1</td>
<td>1182</td>
</tr>
<tr>
<td>ETHYL 2-CHLOROPROPIONATE</td>
<td>3</td>
<td>2935</td>
</tr>
<tr>
<td>Ethyl-alpha-chloropropionate, see</td>
<td>3</td>
<td>2935</td>
</tr>
<tr>
<td>ETHYL CHLOROTHIOFORMATE</td>
<td>8</td>
<td>2826</td>
</tr>
<tr>
<td>ETHYL CROTONATE</td>
<td>3</td>
<td>1862</td>
</tr>
<tr>
<td>ETHYLDICHLOROARSEINE</td>
<td>6.1</td>
<td>1892</td>
</tr>
<tr>
<td>ETHYLDICHLOROSILANE</td>
<td>4.3</td>
<td>1183</td>
</tr>
<tr>
<td>ETHYLENE, ACETYLENE AND PROPYLENE MIXTURE, REFRIGERATED LIQUID containing at least 71.5% ethylene with not more than 22.5% acetylene and not more than 6% propylene</td>
<td>2.1</td>
<td>3138</td>
</tr>
<tr>
<td>ETHYLENE CHLOROHYDRIN</td>
<td>6.1</td>
<td>1135</td>
</tr>
<tr>
<td>ETHYLENE</td>
<td>2.1</td>
<td>1962</td>
</tr>
<tr>
<td>ETHYLENEDIAMINE</td>
<td>8</td>
<td>1604</td>
</tr>
<tr>
<td>ETHYLENE DICHLORIDE</td>
<td>6.1</td>
<td>1605</td>
</tr>
<tr>
<td>Ethylene dibromide and methyl bromide, liquid mixture, see</td>
<td>6.1</td>
<td>1647</td>
</tr>
<tr>
<td>ETHYLENE DICHLORIDE</td>
<td>3</td>
<td>1184</td>
</tr>
<tr>
<td>ETHYLENE GLYCOL DIETHYL ETHER</td>
<td>3</td>
<td>1153</td>
</tr>
<tr>
<td>ETHYLENE GLYCOL DIMETHYLETHE [AUST.], see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETHYLENE GLYCOL MONOETHYL ETHER</td>
<td>3</td>
<td>1171</td>
</tr>
<tr>
<td>ETHYLENE GLYCOL MONOETHYL ETHER ACETATE</td>
<td>3</td>
<td>1172</td>
</tr>
<tr>
<td>ETHYLENE GLYCOL MONOMETHYL ETHER</td>
<td>3</td>
<td>1188</td>
</tr>
<tr>
<td>ETHYLENE GLYCOL MONOMETHYL ETHER ACETATE</td>
<td>3</td>
<td>1189</td>
</tr>
<tr>
<td>ETHYLENEIMINE, STABILISED</td>
<td>6.1</td>
<td>1185</td>
</tr>
<tr>
<td>ETHYLENE OXIDE</td>
<td>2.3</td>
<td>1040</td>
</tr>
<tr>
<td>ETHYLENE OXIDE AND CARBON DIOXIDE MIXTURE with more than 87% ethylene oxide</td>
<td>2.3</td>
<td>3300</td>
</tr>
<tr>
<td>ETHYLENE OXIDE AND CARBON DIOXIDE MIXTURE with more than 9% but not more than 87% ethylene oxide</td>
<td>2.1</td>
<td>1041</td>
</tr>
<tr>
<td>ETHYLENE OXIDE AND CARBON DIOXIDE MIXTURE with not more than 9% ethylene oxide</td>
<td>2.2</td>
<td>1952</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>ETHYLENE OXIDE AND CHLOROTETRAFLUOROETHANE MIXTURE with not more than 8.8% ethylene oxide</td>
<td>2.2</td>
<td>3297</td>
</tr>
<tr>
<td>ETHYLENE OXIDE AND DICHLORODIFLUOROMETHANE MIXTURE with not more than 12.5% ethylene oxide</td>
<td>2.2</td>
<td>3070</td>
</tr>
<tr>
<td>ETHYLENE OXIDE AND PENTAFLUOROETHANE MIXTURE with not more than 7.9% ethylene oxide</td>
<td>2.2</td>
<td>3298</td>
</tr>
<tr>
<td>ETHYLENE OXIDE AND PROPYLENE OXIDE MIXTURE, not more than 30% ethylene oxide</td>
<td>3</td>
<td>2983</td>
</tr>
<tr>
<td>ETHYLENE OXIDE AND TETRAFLUOROETHANE MIXTURE with not more than 5.6% ethylene oxide</td>
<td>2.2</td>
<td>3299</td>
</tr>
<tr>
<td>ETHYLENE OXIDE WITH NITROGEN up to a total pressure of 1 MPa (10 bar) at 50°C</td>
<td>2.3</td>
<td>1040</td>
</tr>
<tr>
<td>ETHYLENE, REFRIGERATED LIQUID</td>
<td>2.1</td>
<td>1038</td>
</tr>
<tr>
<td>ETHYL ETHER, --see</td>
<td>3</td>
<td>1155</td>
</tr>
<tr>
<td>ETHYL FLUORIDE</td>
<td>2.1</td>
<td>2453</td>
</tr>
<tr>
<td>ETHYL FORMATE</td>
<td>3</td>
<td>1190</td>
</tr>
<tr>
<td>2-ETHYLHEXYLAMINE</td>
<td>3</td>
<td>2276</td>
</tr>
<tr>
<td>2-ETHYLHEXYL CHLOROFORMATE</td>
<td>6.1</td>
<td>2748</td>
</tr>
<tr>
<td>Ethyldiene chloride, --see</td>
<td>3</td>
<td>2362</td>
</tr>
<tr>
<td>ETHYL ISOBUTYRATE</td>
<td>3</td>
<td>2385</td>
</tr>
<tr>
<td>ETHYL ISOCYANATE</td>
<td>3</td>
<td>2481</td>
</tr>
<tr>
<td>ETHYL LACTATE</td>
<td>3</td>
<td>1192</td>
</tr>
<tr>
<td>ETHYL MERCIAPTAN</td>
<td>3</td>
<td>2363</td>
</tr>
<tr>
<td>ETHYL METHACRYLATE, stabilised</td>
<td>3</td>
<td>2277</td>
</tr>
<tr>
<td>ETHYL METHYL ETHER</td>
<td>2.1</td>
<td>1039</td>
</tr>
<tr>
<td>ETHYL METHYL KETONE</td>
<td>3</td>
<td>1193</td>
</tr>
<tr>
<td>ETHYL NITRITE SOLUTION</td>
<td>3</td>
<td>1194</td>
</tr>
<tr>
<td>ETHYL ORTHOFORMATE</td>
<td>3</td>
<td>2524</td>
</tr>
<tr>
<td>ETHYL OXALATE</td>
<td>6.1</td>
<td>2525</td>
</tr>
<tr>
<td>ETHYLPHENYLDICHLOROSILANE</td>
<td>8</td>
<td>2435</td>
</tr>
<tr>
<td>1-ETHYLPIPERIDINE</td>
<td>3</td>
<td>2386</td>
</tr>
<tr>
<td>ETHYL PROPIONATE</td>
<td>3</td>
<td>1195</td>
</tr>
<tr>
<td>ETHYL PROPYL ETHER</td>
<td>3</td>
<td>2615</td>
</tr>
<tr>
<td>Ethyl silicate, --see</td>
<td>3</td>
<td>1292</td>
</tr>
<tr>
<td>Ethyl sulphate, --see</td>
<td>6.1</td>
<td>1594</td>
</tr>
<tr>
<td>N-ETHYLTOULUIDINES</td>
<td>6.1</td>
<td>2754</td>
</tr>
<tr>
<td>ETHYLTRICHLOROSILANE</td>
<td>3</td>
<td>1196</td>
</tr>
<tr>
<td>EXPLOSIVE, BLASTING, TYPE A</td>
<td>1.1D</td>
<td>0081</td>
</tr>
<tr>
<td>EXPLOSIVE, BLASTING, TYPE B</td>
<td>1.1D</td>
<td>0082</td>
</tr>
<tr>
<td></td>
<td>1.5D</td>
<td>0331</td>
</tr>
<tr>
<td>EXPLOSIVE, BLASTING, TYPE C</td>
<td>1.1D</td>
<td>0083</td>
</tr>
<tr>
<td>EXPLOSIVE, BLASTING, TYPE D</td>
<td>1.1D</td>
<td>0084</td>
</tr>
<tr>
<td>EXPLOSIVE, BLASTING, TYPE E</td>
<td>1.1D</td>
<td>0241</td>
</tr>
<tr>
<td></td>
<td>1.5D</td>
<td>0332</td>
</tr>
<tr>
<td>Explosives, emulsion, --see</td>
<td>1.1D</td>
<td>0241</td>
</tr>
<tr>
<td></td>
<td>1.5D</td>
<td>0332</td>
</tr>
</tbody>
</table>
Name & Description

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosive, seismic, –see</td>
<td>1.1D</td>
<td>0081</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0082</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0083</td>
</tr>
<tr>
<td></td>
<td>1.5D</td>
<td>0331</td>
</tr>
<tr>
<td>Explosive, slurry, –see</td>
<td>1.1D</td>
<td>0241</td>
</tr>
<tr>
<td></td>
<td>1.5D</td>
<td>0332</td>
</tr>
<tr>
<td>Explosive, water gel, –see</td>
<td>1.1D</td>
<td>0241</td>
</tr>
<tr>
<td></td>
<td>1.5D</td>
<td>0332</td>
</tr>
<tr>
<td>EXTRACTS, AROMATIC, LIQUID</td>
<td>3</td>
<td>1169</td>
</tr>
<tr>
<td>EXTRACTS, FLAVOURING, LIQUID</td>
<td>3</td>
<td>1197</td>
</tr>
<tr>
<td>FABRICS, ANIMAL, N.O.S. with oil</td>
<td>4.2</td>
<td>1373</td>
</tr>
<tr>
<td>FABRICS IMPREGNATED WITH WEAKLY NITRATED NITROCELLULOSE, N.O.S.</td>
<td>4.1</td>
<td>1353</td>
</tr>
<tr>
<td>FABRICS, SYNTHETIC, N.O.S. with oil</td>
<td>4.2</td>
<td>1373</td>
</tr>
<tr>
<td>FABRICS, VEGETABLE, N.O.S. with oil</td>
<td>4.2</td>
<td>1373</td>
</tr>
<tr>
<td>FERRIC ARSENATE</td>
<td>6.1</td>
<td>1606</td>
</tr>
<tr>
<td>FERRIC ARSENITE</td>
<td>6.1</td>
<td>1607</td>
</tr>
<tr>
<td>FERRIC CHLORIDE, ANHYDROUS</td>
<td>8</td>
<td>1773</td>
</tr>
<tr>
<td>FERRIC CHLORIDE SOLUTION</td>
<td>8</td>
<td>2582</td>
</tr>
<tr>
<td>FERRIC NITRATE</td>
<td>5.1</td>
<td>1466</td>
</tr>
<tr>
<td>FERROCIERIUM</td>
<td>4.1</td>
<td>1323</td>
</tr>
<tr>
<td>FERROSILICON with 30% or more but less than 90% silicon</td>
<td>4.3</td>
<td>1408</td>
</tr>
<tr>
<td>FEROUS ARSENATE</td>
<td>6.1</td>
<td>1608</td>
</tr>
<tr>
<td>FERROUS METAL BORINGS in a form liable to self-heating</td>
<td>4.2</td>
<td>2793</td>
</tr>
<tr>
<td>FERROUS METAL CUTTINGS in a form liable to self-heating</td>
<td>4.2</td>
<td>2793</td>
</tr>
<tr>
<td>FERROUS METAL SHAVINGS in a form liable to self-heating</td>
<td>4.2</td>
<td>2793</td>
</tr>
<tr>
<td>FERROUS METAL TURNINGS in a form liable to self-heating</td>
<td>4.2</td>
<td>2793</td>
</tr>
<tr>
<td>FERTILISER AMMONIATING SOLUTION with free ammonia</td>
<td>2.2</td>
<td>1043</td>
</tr>
<tr>
<td>Fertiliser with ammonium nitrate, n.o.s., –see</td>
<td>5.1</td>
<td>2072</td>
</tr>
<tr>
<td>FIBRES, ANIMAL burnt, wet or damp</td>
<td>4.2</td>
<td>1372</td>
</tr>
<tr>
<td>FIBRES, ANIMAL, N.O.S. with oil</td>
<td>4.2</td>
<td>1373</td>
</tr>
<tr>
<td>FIBRES IMPREGNATED WITH WEAKLY NITRATED NITROCELLULOSE, N.O.S.</td>
<td>4.1</td>
<td>1353</td>
</tr>
<tr>
<td>FIBRES, SYNTHETIC, N.O.S. with oil</td>
<td>4.2</td>
<td>1373</td>
</tr>
<tr>
<td>FIBRES, VEGETABLE burnt, wet or damp</td>
<td>4.2</td>
<td>1372</td>
</tr>
<tr>
<td>FIBRES, VEGETABLE, DRY</td>
<td>4.1</td>
<td>3360</td>
</tr>
<tr>
<td>FIBRES, VEGETABLE, N.O.S. with oil</td>
<td>4.2</td>
<td>1373</td>
</tr>
<tr>
<td>FILLERS, liquid [AUST.] –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Films, nitrocellulose base, from which gelatin has been removed; film scrap, –see</td>
<td>Films, nitrocellulose base, gelatin coated, except scrap</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Australian Dangerous Goods Code, 2020, Edition 7.7
<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE EXTINGUISHER CHARGES, corrosive liquid</td>
<td>8</td>
<td>1774</td>
</tr>
<tr>
<td>Fire extinguisher charges, expelling, explosive</td>
<td>1.2C</td>
<td>0381</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0275</td>
</tr>
<tr>
<td></td>
<td>1.4c</td>
<td>0276</td>
</tr>
<tr>
<td></td>
<td>1.4s</td>
<td>0323</td>
</tr>
<tr>
<td>FIRE EXTINGUISHERS with compressed or liquefied gas</td>
<td>2.2</td>
<td>1044</td>
</tr>
<tr>
<td>FIRELIGHTERS, SOLID with flammable liquid</td>
<td>4.1</td>
<td>2623</td>
</tr>
<tr>
<td>FIREWORKS</td>
<td>1.1G</td>
<td>0333</td>
</tr>
<tr>
<td></td>
<td>1.2G</td>
<td>0334</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0335</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0336</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0337</td>
</tr>
<tr>
<td>FIRST AID KIT</td>
<td>9</td>
<td>3316</td>
</tr>
<tr>
<td>Fish meal, stabilised</td>
<td>9</td>
<td>2216</td>
</tr>
<tr>
<td>FISH MEAL, UNSTABILISED</td>
<td>4.2</td>
<td>1374</td>
</tr>
<tr>
<td>Fish scrap, stabilised, –see</td>
<td>9</td>
<td>2216</td>
</tr>
<tr>
<td>FISH SCRAP, UNSTABILISED, –see</td>
<td>4.2</td>
<td>1374</td>
</tr>
<tr>
<td>Flammable gas in lighters, –see</td>
<td>2.1</td>
<td>1057</td>
</tr>
<tr>
<td>FLAMMABLE LIQUID, N.O.S</td>
<td>3</td>
<td>1993</td>
</tr>
<tr>
<td>FLAMMABLE LIQUID, CORROSIVE, N.O.S.</td>
<td>3</td>
<td>2924</td>
</tr>
<tr>
<td>FLAMMABLE LIQUID, TOXIC, N.O.S.</td>
<td>3</td>
<td>1992</td>
</tr>
<tr>
<td>FLAMMABLE LIQUID, TOXIC, CORROSIVE, N.O.S.</td>
<td>3</td>
<td>3286</td>
</tr>
<tr>
<td>FLAMMABLE SOLID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>4.1</td>
<td>3180</td>
</tr>
<tr>
<td>FLAMMABLE SOLID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>4.1</td>
<td>2925</td>
</tr>
<tr>
<td>FLAMMABLE SOLID, INORGANIC, N.O.S.</td>
<td>4.1</td>
<td>3178</td>
</tr>
<tr>
<td>FLAMMABLE SOLID, ORGANIC, N.O.S.</td>
<td>4.1</td>
<td>1325</td>
</tr>
<tr>
<td>FLAMMABLE SOLID, ORGANIC, MOLTEN, N.O.S.</td>
<td>4.1</td>
<td>3176</td>
</tr>
<tr>
<td>FLAMMABLE SOLID, OXIDISING, N.O.S.</td>
<td>4.1</td>
<td>3097</td>
</tr>
<tr>
<td>FLAMMABLE SOLID, TOXIC, INORGANIC, N.O.S.</td>
<td>4.1</td>
<td>3179</td>
</tr>
<tr>
<td>FLAMMABLE SOLID, TOXIC, ORGANIC, N.O.S.</td>
<td>4.1</td>
<td>2926</td>
</tr>
<tr>
<td>FLARES, AERIAL</td>
<td>1.1G</td>
<td>0420</td>
</tr>
<tr>
<td></td>
<td>1.2G</td>
<td>0421</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0093</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0403</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0404</td>
</tr>
<tr>
<td>Flares, aeroplane, –see</td>
<td>1.1G</td>
<td>0420</td>
</tr>
<tr>
<td></td>
<td>1.2G</td>
<td>0421</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0093</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0403</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0404</td>
</tr>
<tr>
<td>Flares, highway,)</td>
<td>1.4G</td>
<td>0191</td>
</tr>
<tr>
<td>Flares, distress, small,) –see</td>
<td>1.4S</td>
<td>0373</td>
</tr>
<tr>
<td>Flares, railway or highway)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>FLARES, SURFACE</td>
<td>1.1G</td>
<td>0418</td>
</tr>
<tr>
<td></td>
<td>1.2G</td>
<td>0419</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0092</td>
</tr>
<tr>
<td>Flares, water-activated, –see</td>
<td>1.2L</td>
<td>0248</td>
</tr>
<tr>
<td></td>
<td>1.3L</td>
<td>0249</td>
</tr>
<tr>
<td>FLASH POWDER</td>
<td>1.1G</td>
<td>0094</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0305</td>
</tr>
<tr>
<td>Flue dusts, toxic, –see</td>
<td>6.1</td>
<td>1562</td>
</tr>
<tr>
<td>Fluoric acid, –see</td>
<td>8</td>
<td>1790</td>
</tr>
<tr>
<td>FLUORINE, COMPRESSED</td>
<td>2.3</td>
<td>1045</td>
</tr>
<tr>
<td>FLUOROACETIC ACID</td>
<td>6.1</td>
<td>2642</td>
</tr>
<tr>
<td>FLUOROANILINEs</td>
<td>6.1</td>
<td>2941</td>
</tr>
<tr>
<td>2-Fluoroaniline, –see</td>
<td>6.1</td>
<td>2941</td>
</tr>
<tr>
<td>4-Fluoroaniline, –see</td>
<td>6.1</td>
<td>2941</td>
</tr>
<tr>
<td>o-Fluoroaniline, –see</td>
<td>6.1</td>
<td>2941</td>
</tr>
<tr>
<td>p-Fluoroaniline, –see</td>
<td>6.1</td>
<td>2941</td>
</tr>
<tr>
<td>FLUOROBENZENE</td>
<td>3</td>
<td>2387</td>
</tr>
<tr>
<td>FLUOROBORIC ACID</td>
<td>8</td>
<td>1775</td>
</tr>
<tr>
<td>Fluoroethane, –see</td>
<td>2.1</td>
<td>2453</td>
</tr>
<tr>
<td>Fluoroform, –see</td>
<td>2.2</td>
<td>1984</td>
</tr>
<tr>
<td>Fluoromethane, –see</td>
<td>2.1</td>
<td>2454</td>
</tr>
<tr>
<td>FLUOROPHOSPHORIC ACID, ANHYDROUS</td>
<td>8</td>
<td>1776</td>
</tr>
<tr>
<td>FLUOROSILICATES, N.O.S.</td>
<td>6.1</td>
<td>2856</td>
</tr>
<tr>
<td>FLUOROSILICIC ACID</td>
<td>8</td>
<td>1778</td>
</tr>
<tr>
<td>FLUOROSULPHONIC ACID</td>
<td>8</td>
<td>1777</td>
</tr>
<tr>
<td>FLUROTOLUENES</td>
<td>3</td>
<td>2388</td>
</tr>
<tr>
<td>FORMALDEHYDE SOLUTION with not less</td>
<td>8</td>
<td>2209</td>
</tr>
<tr>
<td>than 25% formaldehyde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMALDEHYDE SOLUTION, FLAMMABLE</td>
<td>3</td>
<td>1198</td>
</tr>
<tr>
<td>Formalin, –see</td>
<td>3</td>
<td>1198</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2209</td>
</tr>
<tr>
<td>Formamide sulphinic acid, –see</td>
<td>4.2</td>
<td>3341</td>
</tr>
<tr>
<td>FORMIC ACID with more than 85% acid by mass</td>
<td>8</td>
<td>1779</td>
</tr>
<tr>
<td>FORMIC ACID with not less than 10% but</td>
<td>8</td>
<td>3412</td>
</tr>
<tr>
<td>not more than 85% acid by mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMIC ACID with not less than 5% but</td>
<td>8</td>
<td>3412</td>
</tr>
<tr>
<td>less than 10% acid by mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formic aldehyde, –see</td>
<td>3</td>
<td>1198</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2209</td>
</tr>
<tr>
<td>2-Formyl-3,4-dihydro-2H-pyran, –see</td>
<td>3</td>
<td>2607</td>
</tr>
<tr>
<td>FRACTURING DEVICES, EXPLOSIVE without</td>
<td>1.1D</td>
<td>0099</td>
</tr>
<tr>
<td>detonator, for oil wells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUEL, AVIATION, TURBINE ENGINE</td>
<td>3</td>
<td>1863</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>FUEL CELL CARTRIDGES or FUEL CELL CARTRIDGES CONTAINED IN EQUIPMENT or FUEL CELL CARTRIDGES PACKED WITH EQUIPMENT,</td>
<td>8</td>
<td>3477</td>
</tr>
<tr>
<td>–containing corrosive substances</td>
<td>3</td>
<td>3473</td>
</tr>
<tr>
<td>–containing flammable liquids</td>
<td>2.1</td>
<td>3479</td>
</tr>
<tr>
<td>–containing hydrogen in metal hydride</td>
<td>2.1</td>
<td>3478</td>
</tr>
<tr>
<td>–containing liquefied flammable gas</td>
<td>4.3</td>
<td>3476</td>
</tr>
<tr>
<td>–containing water-reactive substances</td>
<td>3</td>
<td>1780</td>
</tr>
<tr>
<td>Fumaryl dichloride, –see</td>
<td>6.1</td>
<td>1199</td>
</tr>
<tr>
<td>FUMARYL CHLORIDE</td>
<td>8</td>
<td>1780</td>
</tr>
<tr>
<td>FUMIGATED CARGO TRANSPORT UNIT</td>
<td>9</td>
<td>3359</td>
</tr>
<tr>
<td>FURALDEHYDES</td>
<td>6.1</td>
<td>2389</td>
</tr>
<tr>
<td>FURAN</td>
<td>3</td>
<td>2874</td>
</tr>
<tr>
<td>FURFURYL ALCOHOL</td>
<td>3</td>
<td>2526</td>
</tr>
<tr>
<td>FURFURYLAMINE</td>
<td>6.1</td>
<td>2874</td>
</tr>
<tr>
<td>Furfuryl carbinol, –see</td>
<td>1.1D</td>
<td>0290</td>
</tr>
<tr>
<td>FUSE, DETONATING, metal clad, –see</td>
<td>1.2D</td>
<td>0102</td>
</tr>
<tr>
<td>FUSE, DETONATING, MILD EFFECT, metal clad, –see</td>
<td>1.4D</td>
<td>0104</td>
</tr>
<tr>
<td>FUSE, IGNITER, tubular, metal clad</td>
<td>1.4G</td>
<td>0103</td>
</tr>
<tr>
<td>FUSE, NON-DETONATING</td>
<td>1.3G</td>
<td>0101</td>
</tr>
<tr>
<td>FUSEL OIL</td>
<td>3</td>
<td>1201</td>
</tr>
<tr>
<td>FUSE, SAFETY</td>
<td>1.4S</td>
<td>0105</td>
</tr>
<tr>
<td>Fuse, combination, percussion or time, –see</td>
<td>1.1B</td>
<td>0106</td>
</tr>
<tr>
<td></td>
<td>1.2B</td>
<td>0107</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0257</td>
</tr>
<tr>
<td></td>
<td>1.4B</td>
<td>0316</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0317</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0367</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0368</td>
</tr>
<tr>
<td>FUSES, DETONATING</td>
<td>1.1D</td>
<td>0106</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0107</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0257</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0367</td>
</tr>
<tr>
<td>FUSES, DETONATING with protective features</td>
<td>1.1D</td>
<td>0408</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0409</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0410</td>
</tr>
<tr>
<td>FUSES, IGNITING</td>
<td>1.3G</td>
<td>0316</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0317</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0368</td>
</tr>
<tr>
<td>GALLIUM</td>
<td>8</td>
<td>2803</td>
</tr>
<tr>
<td>GAS CARTRIDGES without a release device, non-refillable, –see</td>
<td>2</td>
<td>2037</td>
</tr>
<tr>
<td>Gas drips, hydrocarbon, –see</td>
<td>3</td>
<td>3295</td>
</tr>
<tr>
<td>GAS OIL</td>
<td>3</td>
<td>1202</td>
</tr>
<tr>
<td>GASOLINE</td>
<td>3</td>
<td>1203</td>
</tr>
<tr>
<td>Gasoline, casinghead, –see</td>
<td>3</td>
<td>1203</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>GAS, REFRIGERATED LIQUID, N.O.S.</td>
<td>2.2</td>
<td>3158</td>
</tr>
<tr>
<td>GAS, REFRIGERATED LIQUID, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td>3312</td>
</tr>
<tr>
<td>GAS, REFRIGERATED LIQUID, OXIDISING, N.O.S.</td>
<td>2.2</td>
<td>3311</td>
</tr>
<tr>
<td>GAS SAMPLE, NON-PRESSURISED, FLAMMABLE, N.O.S., not refrigerated liquid</td>
<td>2.1</td>
<td>3167</td>
</tr>
<tr>
<td>GAS SAMPLE, NON-PRESSURISED, TOXIC, N.O.S., not refrigerated liquid</td>
<td>2.3</td>
<td>3169</td>
</tr>
<tr>
<td>Gelatin, blasting, –see</td>
<td>1.1D</td>
<td>0081</td>
</tr>
<tr>
<td>Gelatin, dynamites, –see</td>
<td>1.1D</td>
<td>0081</td>
</tr>
<tr>
<td>GENETICALLY MODIFIED MICROORGANISMS</td>
<td>9</td>
<td>3245</td>
</tr>
<tr>
<td>GENETICALLY MODIFIED ORGANISMS</td>
<td>9</td>
<td>3245</td>
</tr>
<tr>
<td>GERMANE</td>
<td>2.3</td>
<td>2192</td>
</tr>
<tr>
<td>GERMANE, ADSORBED</td>
<td>2.3</td>
<td>3523</td>
</tr>
<tr>
<td>Germanium hydride, –see</td>
<td>2.3</td>
<td>2192</td>
</tr>
<tr>
<td>Glycer-1,3-dichlorohydrin, –see</td>
<td>6.1</td>
<td>2750</td>
</tr>
<tr>
<td>GLYCEROL alpha-MONOCHLOROHYDRIN</td>
<td>6.1</td>
<td>2689</td>
</tr>
<tr>
<td>Glycerol trinitrate, –see</td>
<td>1.1D</td>
<td>0143</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0144</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1204</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3064</td>
</tr>
<tr>
<td>GLYCIDALDEHYDE</td>
<td>3</td>
<td>2622</td>
</tr>
<tr>
<td>GRENADES, hand or rifle, with bursting charge</td>
<td>1.1D</td>
<td>0284</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0292</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0285</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0293</td>
</tr>
<tr>
<td>Grenades, illuminating, –see</td>
<td>1.2G</td>
<td>0171</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0254</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0297</td>
</tr>
<tr>
<td>GRENADES, PRACTICE, hand or rifle</td>
<td>1.2G</td>
<td>0372</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0318</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0452</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0110</td>
</tr>
<tr>
<td>Grenades, smoke, –see</td>
<td>1.2G</td>
<td>0015</td>
</tr>
<tr>
<td></td>
<td>1.2H</td>
<td>0245</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0016</td>
</tr>
<tr>
<td></td>
<td>1.3H</td>
<td>0246</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0303</td>
</tr>
<tr>
<td>GUANIDINE NITRATE</td>
<td>5.1</td>
<td>1467</td>
</tr>
<tr>
<td>GUANYNITROSAMINO-GUANYLIDENE HYDRAZINE, WETTED with not less than 30% water, by mass</td>
<td>1.1A</td>
<td>0113</td>
</tr>
<tr>
<td>GUANYNITROSAMINO-GUANYLTETRAZENE, WETTED with not less than 30% water, or mixture of alcohol and water, by mass</td>
<td>1.1A</td>
<td>0114</td>
</tr>
<tr>
<td>GUNPOWDER, COMPRESSED, –see</td>
<td>1.1D</td>
<td>0028</td>
</tr>
<tr>
<td>GUNPOWDER, granular or as a meal, –see</td>
<td>1.1D</td>
<td>0027</td>
</tr>
</tbody>
</table>
Name & Description

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUNPOWDER, IN PELLETS, –see</td>
<td>1.1D</td>
<td>0028</td>
</tr>
<tr>
<td>Gutta percha solution, –see</td>
<td>3</td>
<td>1287</td>
</tr>
<tr>
<td>HAFNIUM POWDER, DRY</td>
<td>4.2</td>
<td>2545</td>
</tr>
<tr>
<td>HAFNIUM POWDER, WETTED with not less than 25% water (a)</td>
<td>4.1</td>
<td>1326</td>
</tr>
<tr>
<td>mechanically produced, particle size less than 53 microns; (b) chemically produced, particle size less than 840 microns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALOGENATED MONOMETHYLDIPHENYLMETHANES, LIQUIDS</td>
<td>9</td>
<td>3151</td>
</tr>
<tr>
<td>HALOGENATED MONOMETHYLDIPHENYLMETHANES, SOLIDS</td>
<td>9</td>
<td>3152</td>
</tr>
<tr>
<td>Hay</td>
<td>4.1</td>
<td>1327</td>
</tr>
<tr>
<td>HEATING OIL, LIGHT</td>
<td>3</td>
<td>1202</td>
</tr>
<tr>
<td>Heavy hydrogen, –see</td>
<td>2.1</td>
<td>1957</td>
</tr>
<tr>
<td>HELIUM, COMPRESSED</td>
<td>2.2</td>
<td>1046</td>
</tr>
<tr>
<td>HELIUM, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>1963</td>
</tr>
<tr>
<td>HEPTAFLUOROPROPAINE</td>
<td>2.2</td>
<td>3296</td>
</tr>
<tr>
<td>n-HEPTALDEHYDE</td>
<td>3</td>
<td>3056</td>
</tr>
<tr>
<td>n-Heptanal, –see</td>
<td>3</td>
<td>3056</td>
</tr>
<tr>
<td>HEPTANES</td>
<td>3</td>
<td>1206</td>
</tr>
<tr>
<td>4-Heptanone, –see</td>
<td>3</td>
<td>2710</td>
</tr>
<tr>
<td>n-HEPTENE</td>
<td>3</td>
<td>2278</td>
</tr>
<tr>
<td>HEXACHLOROACETONE</td>
<td>6.1</td>
<td>2661</td>
</tr>
<tr>
<td>HEXACHLOROBENZENE</td>
<td>6.1</td>
<td>2729</td>
</tr>
<tr>
<td>HEXACHLOROBUTADIENE</td>
<td>6.1</td>
<td>2279</td>
</tr>
<tr>
<td>Hexachloro-1,3-butadiene, –see</td>
<td>6.1</td>
<td>2279</td>
</tr>
<tr>
<td>HEXACHLOROCYCLO- PENTADIENE</td>
<td>6.1</td>
<td>2646</td>
</tr>
<tr>
<td>HEXACHLOROPHENE</td>
<td>6.1</td>
<td>2875</td>
</tr>
<tr>
<td>Hexachloro-2-propanone, –see</td>
<td>6.1</td>
<td>2661</td>
</tr>
<tr>
<td>HEXADECYLTRICHLOROSILANE</td>
<td>8</td>
<td>1781</td>
</tr>
<tr>
<td>HEXADIENE</td>
<td>3</td>
<td>2458</td>
</tr>
<tr>
<td>HEXAETHYL TETRAPHOSPHATE</td>
<td>6.1</td>
<td>1611</td>
</tr>
<tr>
<td>HEXAETHYL TETRAPHOSPHATE AND COMPRESSED GAS MIXTURE</td>
<td>2.3</td>
<td>1612</td>
</tr>
<tr>
<td>HEXAFLUOROACETONE</td>
<td>2.3</td>
<td>2420</td>
</tr>
<tr>
<td>HEXAFLUOROACETONE HYDRATE, LIQUID</td>
<td>6.1</td>
<td>2552</td>
</tr>
<tr>
<td>HEXAFLUOROACETONE HYDRATE, SOLID</td>
<td>6.1</td>
<td>3436</td>
</tr>
<tr>
<td>HEXAFLUOROETHANE (REGRIGERANT GAS R116)</td>
<td>2.2</td>
<td>2193</td>
</tr>
<tr>
<td>HEXAFLUOROPHOSPHORIC ACID</td>
<td>8</td>
<td>1782</td>
</tr>
<tr>
<td>HEXAFLUOROPROPYLENE</td>
<td>2.2</td>
<td>1858</td>
</tr>
<tr>
<td>Hexahydrocresol, –see</td>
<td>3</td>
<td>2617</td>
</tr>
<tr>
<td>Hexahydromethyl phenol, –see</td>
<td>3</td>
<td>2617</td>
</tr>
<tr>
<td>HEXALDEHYDE</td>
<td>3</td>
<td>1207</td>
</tr>
<tr>
<td>HEXAMETHYLIENEDIAMINE, SOLID</td>
<td>8</td>
<td>2280</td>
</tr>
<tr>
<td>HEXAMETHYLIENEDIAMINE SOLUTION</td>
<td>8</td>
<td>1783</td>
</tr>
<tr>
<td>HEXAMETHYLENE DIISOCYANATE</td>
<td>6.1</td>
<td>2281</td>
</tr>
</tbody>
</table>
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEXAMETHYLENEIMINE</td>
<td>3</td>
<td>2493</td>
</tr>
<tr>
<td>HEXAMETHYLENETETRAMINE</td>
<td>4.1</td>
<td>1328</td>
</tr>
<tr>
<td>Hexamine, –see</td>
<td>4.1</td>
<td>1328</td>
</tr>
<tr>
<td>HEXANES</td>
<td>3</td>
<td>1208</td>
</tr>
<tr>
<td>HEXANITRODIPHENYLAMINE</td>
<td>1.1D</td>
<td>0079</td>
</tr>
<tr>
<td>HEXANITROSTILBENE</td>
<td>1.1D</td>
<td>0392</td>
</tr>
<tr>
<td>Hexanoic acid, –see</td>
<td>8</td>
<td>2829</td>
</tr>
<tr>
<td>HEXANOLS</td>
<td>3</td>
<td>2282</td>
</tr>
<tr>
<td>1-HEXENE</td>
<td>1.1D</td>
<td>0072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0391</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0483</td>
</tr>
<tr>
<td>HEXOXEN, –see</td>
<td>1.1D</td>
<td>0118</td>
</tr>
<tr>
<td>HEXOLITE, dry or wetted with less than 15% water, by mass</td>
<td>1.1D</td>
<td></td>
</tr>
<tr>
<td>HEXOTOL, –see</td>
<td>1.1D</td>
<td>0118</td>
</tr>
<tr>
<td>HEXOTONAL</td>
<td>1.1D</td>
<td>0393</td>
</tr>
<tr>
<td>HEXOTONAL, cast, –see</td>
<td>1.1D</td>
<td>0393</td>
</tr>
<tr>
<td>HEXYL, –see</td>
<td>1.1D</td>
<td>0079</td>
</tr>
<tr>
<td>HEXYLTRICHLOROSILANE</td>
<td>8</td>
<td>1784</td>
</tr>
<tr>
<td>HMX, –see</td>
<td>1.1D</td>
<td>0226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0391</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0484</td>
</tr>
<tr>
<td>HYDRAZINE, ANHYDROUS</td>
<td>8</td>
<td>2029</td>
</tr>
<tr>
<td>HYDRAZINE, AQUEOUS SOLUTION with more than 37% hydrazine, by mass</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>HYDRAZINE, AQUEOUS SOLUTION with not more than 37% hydrazine, by mass</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>HYDRAZINE AQUEOUS SOLUTION, FLAMMABLE, with more than 37% hydrazine, by mass</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Hydrazine hydrate</td>
<td>8</td>
<td>2030</td>
</tr>
<tr>
<td>Hydrides, metal, water-reactive, n.o.s., –see</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>Hydriodic acid, anhydrous, –see</td>
<td>2.3</td>
<td>2197</td>
</tr>
<tr>
<td>HYDRIODIC ACID</td>
<td>8</td>
<td>1787</td>
</tr>
<tr>
<td>HYDROBROMIC ACID</td>
<td>8</td>
<td>1788</td>
</tr>
<tr>
<td>HYDROCARBON GAS MIXTURE, COMPRESSED, N.O.S.</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>HYDROCARBON GAS MIXTURE, LIQUEFIED, N.O.S.2.1 such as mixtures A, A01, A02, A0, A1, B1, B2, B or C</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>HYDROCARBON GAS REFILLS FOR SMALL DEVICES with release device</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>HYDROCARBONS, LIQUID, N.O.S.</td>
<td>3</td>
<td>3295</td>
</tr>
<tr>
<td>HYDROCHLORIC ACID</td>
<td>8</td>
<td>1789</td>
</tr>
<tr>
<td>HYDROCYANIC ACID, AQUEOUS SOLUTION with not more than 20% hydrogen cyanide</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>HYDROFLUORIC ACID, with more than 60% hydrogen fluoride</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>HYDROFLUORIC ACID, with not more than 60% hydrogen fluoride</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>HYDROFLUORIC ACID AND SULPHURIC ACID MIXTURE</td>
<td>8</td>
<td>1786</td>
</tr>
<tr>
<td>Hydrofluoroboric acid, –see</td>
<td>8</td>
<td>1775</td>
</tr>
<tr>
<td>Hydrofluorosilic acid, –see</td>
<td>8</td>
<td>1778</td>
</tr>
<tr>
<td>HYDROGEN AND METHANE MIXTURE, COMPRESSED</td>
<td>2.1</td>
<td>2034</td>
</tr>
<tr>
<td>Hydrogen arsenide, –see</td>
<td>2.3</td>
<td>2188</td>
</tr>
<tr>
<td>HYDROGEN BROMIDE, ANHYDROUS</td>
<td>2.3</td>
<td>1048</td>
</tr>
<tr>
<td>Hydrogen bromide solution, –see</td>
<td>8</td>
<td>1788</td>
</tr>
<tr>
<td>HYDROGEN CHLORIDE, ANHYDROUS</td>
<td>2.3</td>
<td>1050</td>
</tr>
<tr>
<td>HYDROGEN CHLORIDE, REFRIGERATED LIQUID</td>
<td>2.3</td>
<td>2186</td>
</tr>
<tr>
<td>HYDROGEN, COMPRESSED</td>
<td>2.1</td>
<td>1049</td>
</tr>
<tr>
<td>HYDROGEN CYANIDE, AQUEOUS SOLUTION with not more than 20% hydrogen cyanide, –see</td>
<td>6.1</td>
<td>1613</td>
</tr>
<tr>
<td>HYDROGEN CYANIDE, SOLUTION IN ALCOHOL with not more than 45% hydrogen cyanide</td>
<td>6.1</td>
<td>3294</td>
</tr>
<tr>
<td>HYDROGEN CYANIDE, STABILISED containing less than 3% water</td>
<td>6.1</td>
<td>1051</td>
</tr>
<tr>
<td>HYDROGEN CYANIDE, STABILISED, containing less than 3% water and absorbed in a porous inert material</td>
<td>6.1</td>
<td>1614</td>
</tr>
<tr>
<td>HYDROGEN CYANIDE, STABILISED, containing less than 3% water and absorbed in a porous inert material</td>
<td>6.1</td>
<td>1052</td>
</tr>
<tr>
<td>HYDROGEN FLUORIDE, ANHYDROUS</td>
<td>8</td>
<td>1790</td>
</tr>
<tr>
<td>Hydrogen fluoride solution, –see</td>
<td>8</td>
<td>1787</td>
</tr>
<tr>
<td>HYDROGEN IN A METAL HYDRIDE STORAGE SYSTEM or HYDROGEN IN A METAL HYDRIDE STORAGE SYSTEM CONTAINED IN EQUIPMENT or HYDROGEN IN A METAL HYDRIDE STORAGE SYSTEM PACKED WITH EQUIPMENT</td>
<td>2.1</td>
<td>3468</td>
</tr>
<tr>
<td>HYDROGEN IODIDE, ANHYDROUS</td>
<td>2.3</td>
<td>2197</td>
</tr>
<tr>
<td>Hydrogen iodide solution, –see</td>
<td>8</td>
<td>1787</td>
</tr>
<tr>
<td>HYDROGEN PEROXIDE AND PEROXYACETIC ACID MIXTURE with acid(s), water and not more than 5% peroxyacetic acid, STABILISED</td>
<td>5.1</td>
<td>3149</td>
</tr>
<tr>
<td>HYDROGEN PEROXIDE, AQUEOUS SOLUTION with not less than 8% but less than 20% hydrogen peroxide (stabilised as necessary)</td>
<td>5.1</td>
<td>2984</td>
</tr>
<tr>
<td>HYDROGEN PEROXIDE, AQUEOUS SOLUTION with not less than 20% but not more than 60% hydrogen peroxide (stabilised as necessary)</td>
<td>5.1</td>
<td>2014</td>
</tr>
<tr>
<td>HYDROGEN PEROXIDE, AQUEOUS SOLUTION, STABILISED with more than 60% hydrogen peroxide</td>
<td>5.1</td>
<td>2015</td>
</tr>
<tr>
<td>HYDROGEN PEROXIDE, STABILISED</td>
<td>5.1</td>
<td>2015</td>
</tr>
<tr>
<td>HYDROGEN, REFRIGERATED LIQUID</td>
<td>2.1</td>
<td>1966</td>
</tr>
<tr>
<td>HYDROGEN SELENIDE, ADSORBED</td>
<td>2.3</td>
<td>3526</td>
</tr>
<tr>
<td>HYDROGEN SELENIDE, ANHYDROUS</td>
<td>2.3</td>
<td>2202</td>
</tr>
<tr>
<td>Hydrogen silicide, –see</td>
<td>2.1</td>
<td>2203</td>
</tr>
<tr>
<td>HYDROGEN SULPHIDE</td>
<td>2.3</td>
<td>1053</td>
</tr>
<tr>
<td>HYDROQUINONE, SOLID <DELETED></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>HYDROQUINONE, SOLUTION <DELETED></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroselenic acid, –see</td>
<td>2.3</td>
<td>2202</td>
</tr>
<tr>
<td>Hydrosilicofluoric acid, –see</td>
<td>8</td>
<td>1778</td>
</tr>
<tr>
<td>1-HYDROXYBENZOTRIAZOLE, ANHYDROUS, dry or 1.3C wetted with less than 20% water, by mass</td>
<td></td>
<td>0508</td>
</tr>
<tr>
<td>1-HYDROXYBENZOTRIAZOLE MONOHYDRATE, –see</td>
<td>4.1</td>
<td>3474</td>
</tr>
<tr>
<td>3-Hydroxybutan-2-one, –see</td>
<td>3</td>
<td>2621</td>
</tr>
<tr>
<td>HYDROXYLAMINE SULPHATE</td>
<td>8</td>
<td>2865</td>
</tr>
<tr>
<td>1-Hydroxy-3-methyl-2-penten-4-yne, –see</td>
<td>8</td>
<td>2705</td>
</tr>
<tr>
<td>3-Hydroxyphenol, –see</td>
<td>6.1</td>
<td>2876</td>
</tr>
<tr>
<td>HYPOCHLORITES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>3212</td>
</tr>
<tr>
<td>HYPOCHLORITE SOLUTION</td>
<td>8</td>
<td>1791</td>
</tr>
<tr>
<td>IGNITERS</td>
<td>1.1G</td>
<td>0121</td>
</tr>
<tr>
<td></td>
<td>1.2G</td>
<td>0314</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0315</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0325</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0454</td>
</tr>
<tr>
<td>3,3'-IMINODIPROPYLAMINE</td>
<td>8</td>
<td>2269</td>
</tr>
<tr>
<td>Indiarubber, –see</td>
<td>3</td>
<td>1287</td>
</tr>
<tr>
<td>INFECTIOUS SUBSTANCE, AFFECTING ANIMALS only</td>
<td>6.2</td>
<td>2900</td>
</tr>
<tr>
<td>INFECTIOUS SUBSTANCE, AFFECTING HUMANS</td>
<td>6.2</td>
<td>2814</td>
</tr>
<tr>
<td>Ink, printer's, flammable, –see</td>
<td>3</td>
<td>1210</td>
</tr>
<tr>
<td>INSECTICIDE GAS, N.O.S.</td>
<td>2.2</td>
<td>1968</td>
</tr>
<tr>
<td>INSECTICIDE GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td>3354</td>
</tr>
<tr>
<td>INSECTICIDE GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td>1967</td>
</tr>
<tr>
<td>INSECTICIDE GAS, TOXIC, FLAMMABLE, N.O.S.</td>
<td>2.3</td>
<td>3355</td>
</tr>
<tr>
<td>IODINE</td>
<td>8</td>
<td>3495</td>
</tr>
<tr>
<td>IODINE MONOCHLORIDE, SOLID</td>
<td>8</td>
<td>1792</td>
</tr>
<tr>
<td>IODINE MONOCHLORIDE, LIQUID</td>
<td>8</td>
<td>3498</td>
</tr>
<tr>
<td>IODINE PENTAFLUORIDE</td>
<td>5.1</td>
<td>2495</td>
</tr>
<tr>
<td>2-IODOBUTANE</td>
<td>3</td>
<td>2390</td>
</tr>
<tr>
<td>Iodomethane, –see</td>
<td>6.1</td>
<td>2644</td>
</tr>
<tr>
<td>IODOMETHYLPROPANES</td>
<td>3</td>
<td>2391</td>
</tr>
<tr>
<td>IODOPROPANES</td>
<td>3</td>
<td>2392</td>
</tr>
<tr>
<td>alpha-lodotoluene, –see</td>
<td>6.1</td>
<td>2653</td>
</tr>
<tr>
<td>l.p.d.i., –see</td>
<td>6.1</td>
<td>2290</td>
</tr>
<tr>
<td>Iron chloride, anhydrous, –see</td>
<td>8</td>
<td>1773</td>
</tr>
<tr>
<td>Iron (III) chloride, anhydrous, –see</td>
<td>8</td>
<td>1773</td>
</tr>
<tr>
<td>Iron chloride solution, –see</td>
<td>8</td>
<td>2582</td>
</tr>
<tr>
<td>IRON OXIDE, SPENT obtained from coal gas purification</td>
<td>4.2</td>
<td>1376</td>
</tr>
<tr>
<td>IRON PENTACARBONYL</td>
<td>6.1</td>
<td>1994</td>
</tr>
<tr>
<td>Iron perchloride, anhydrous, –see</td>
<td>8</td>
<td>1773</td>
</tr>
<tr>
<td>Iron powder, pyrophoric, –see</td>
<td>4.2</td>
<td>1383</td>
</tr>
<tr>
<td>Iron sesquichloride, anhydrous, –see</td>
<td>8</td>
<td>1773</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>IRON SPONGE, SPENT obtained from coal gas purification</td>
<td>4.2</td>
<td>1376</td>
</tr>
<tr>
<td>Iron swarf, —see</td>
<td>4.2</td>
<td>2793</td>
</tr>
<tr>
<td>ISOBUTANE</td>
<td>2.1</td>
<td>1969</td>
</tr>
<tr>
<td>ISOBUTANOL</td>
<td>3</td>
<td>1212</td>
</tr>
<tr>
<td>Isobutene, —see</td>
<td>2.1</td>
<td>1055</td>
</tr>
<tr>
<td>ISOBUTYL ACETATE</td>
<td>3</td>
<td>1213</td>
</tr>
<tr>
<td>ISOBUTYL ACRYLATE, STABILISED</td>
<td>3</td>
<td>2527</td>
</tr>
<tr>
<td>ISOBUTYL ALCOHOL, —see</td>
<td>3</td>
<td>1212</td>
</tr>
<tr>
<td>ISOBUTYL ALDEHYDE, —see</td>
<td>3</td>
<td>2045</td>
</tr>
<tr>
<td>ISOBUTYLAMINE</td>
<td>3</td>
<td>1214</td>
</tr>
<tr>
<td>ISOBUTYLENE</td>
<td>2</td>
<td>1055</td>
</tr>
<tr>
<td>ISOBUTYL FORMATE</td>
<td>3</td>
<td>2393</td>
</tr>
<tr>
<td>ISOBUTYL ISOBUTYRATE</td>
<td>3</td>
<td>2528</td>
</tr>
<tr>
<td>ISOBUTYL ISOCYANATE</td>
<td>3</td>
<td>2486</td>
</tr>
<tr>
<td>ISOBUTYL METHACRYLATE, STABILISED</td>
<td>3</td>
<td>2283</td>
</tr>
<tr>
<td>ISOBUTYL PROPIONATE</td>
<td>3</td>
<td>2394</td>
</tr>
<tr>
<td>ISOBUTYRALDEHYDE</td>
<td>3</td>
<td>2045</td>
</tr>
<tr>
<td>ISOBUTYRIC ACID</td>
<td>3</td>
<td>2529</td>
</tr>
<tr>
<td>ISOBUTYRONITRILE</td>
<td>3</td>
<td>2284</td>
</tr>
<tr>
<td>ISOBUTYRYL CHLORIDE</td>
<td>3</td>
<td>2395</td>
</tr>
<tr>
<td>ISOCYANATES, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>2478</td>
</tr>
<tr>
<td>ISOCYANATES, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>2206</td>
</tr>
<tr>
<td>ISOCYANATES, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3080</td>
</tr>
<tr>
<td>ISOCYANATE SOLUTION, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>2478</td>
</tr>
<tr>
<td>ISOCYANATE SOLUTION, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>2206</td>
</tr>
<tr>
<td>ISOCYANATE SOLUTION, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3080</td>
</tr>
<tr>
<td>ISOCYANATOBENZOTRI-FLUORIDES</td>
<td>6.1</td>
<td>2285</td>
</tr>
<tr>
<td>3-Isocyanatomethyl-3,5,5-tri- methylcyclohexyl isocyanate, —see</td>
<td>6.1</td>
<td>2290</td>
</tr>
<tr>
<td>Isododecane, —see</td>
<td>3</td>
<td>2286</td>
</tr>
<tr>
<td>ISOHEPTENES</td>
<td>3</td>
<td>2287</td>
</tr>
<tr>
<td>ISOHEXENES</td>
<td>3</td>
<td>2288</td>
</tr>
<tr>
<td>Isooctane, —see</td>
<td>3</td>
<td>1262</td>
</tr>
<tr>
<td>ISOCTENES</td>
<td>3</td>
<td>1216</td>
</tr>
<tr>
<td>Isopentane, —see</td>
<td>3</td>
<td>1265</td>
</tr>
<tr>
<td>ISOPENTENES</td>
<td>3</td>
<td>2371</td>
</tr>
<tr>
<td>Isopentylamine, —see</td>
<td>3</td>
<td>1106</td>
</tr>
<tr>
<td>Isopentyl nitrite, —see</td>
<td>3</td>
<td>1113</td>
</tr>
<tr>
<td>ISOPHORONEDIAMINE</td>
<td>8</td>
<td>2289</td>
</tr>
<tr>
<td>ISOPHORONE DIISOCYANATE</td>
<td>6.1</td>
<td>2290</td>
</tr>
<tr>
<td>ISOPRENE, STABILISED</td>
<td>3</td>
<td>1218</td>
</tr>
<tr>
<td>ISOPROPAHOL</td>
<td>3</td>
<td>1219</td>
</tr>
<tr>
<td>ISOPROPENYL ACETATE</td>
<td>3</td>
<td>2403</td>
</tr>
<tr>
<td>ISOPROPENYL BENZENE</td>
<td>3</td>
<td>2303</td>
</tr>
</tbody>
</table>
Name & Description

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISOPROPYL ACETATE</td>
<td>3</td>
<td>1220</td>
</tr>
<tr>
<td>ISOPROPYL ACID PHOSPHATE</td>
<td>8</td>
<td>1793</td>
</tr>
<tr>
<td>ISOPROPYL ALCOHOL, –see</td>
<td>3</td>
<td>1219</td>
</tr>
<tr>
<td>ISOPROPYLAMINE</td>
<td>3</td>
<td>1221</td>
</tr>
<tr>
<td>ISOPROPYLBENZENE</td>
<td>3</td>
<td>1918</td>
</tr>
<tr>
<td>ISOPROPYL BUTYRATE</td>
<td>3</td>
<td>2405</td>
</tr>
<tr>
<td>Isopropyl chloride, –see</td>
<td>3</td>
<td>2356</td>
</tr>
<tr>
<td>ISOPROPYL CHLOROACETATE</td>
<td>3</td>
<td>2947</td>
</tr>
<tr>
<td>ISOPROPYL CHLOROFORMATE</td>
<td>6.1</td>
<td>2407</td>
</tr>
<tr>
<td>ISOPROPYL 2- CHLOROPROPIONATE</td>
<td>3</td>
<td>2934</td>
</tr>
<tr>
<td>Isopropyl-alpha-chloropropionate, –see</td>
<td>3</td>
<td>2934</td>
</tr>
<tr>
<td>Isopropyl ether, –see</td>
<td>3</td>
<td>1159</td>
</tr>
<tr>
<td>Isopropylethylene, –see</td>
<td>3</td>
<td>2561</td>
</tr>
<tr>
<td>Isopropyl formate, –see</td>
<td>3</td>
<td>1281</td>
</tr>
<tr>
<td>ISOPROPYL ISOBUTYRATE</td>
<td>3</td>
<td>2406</td>
</tr>
<tr>
<td>ISOPROPYL ISOCYANATE</td>
<td>3</td>
<td>2483</td>
</tr>
<tr>
<td>Isopropyl mercaptan, –see</td>
<td>3</td>
<td>2402</td>
</tr>
<tr>
<td>ISOPROPYL NITRATE</td>
<td>3</td>
<td>1222</td>
</tr>
<tr>
<td>ISOPROPYL PROPIONATE</td>
<td>3</td>
<td>2409</td>
</tr>
<tr>
<td>Isolpropyltoluene, –see</td>
<td>3</td>
<td>2046</td>
</tr>
<tr>
<td>Isopropyltoluol, –see</td>
<td>3</td>
<td>2046</td>
</tr>
<tr>
<td>ISOSORBIDE DINITRATE MIXTURE with not less than 60% lactose, mannose, starch or calcium hydrogen phosphate</td>
<td>4.1</td>
<td>2907</td>
</tr>
<tr>
<td>ISOSORBIDE-5-MONONITRATE</td>
<td>4.1</td>
<td>3251</td>
</tr>
<tr>
<td>Isovaleraldehyde, –see</td>
<td>3</td>
<td>2058</td>
</tr>
<tr>
<td>JET PERFORATING GUNS, CHARGED, oil well, without detonator</td>
<td>1.1d</td>
<td>0124</td>
</tr>
<tr>
<td>Jet tappers, without detonator, –see</td>
<td>1.1D</td>
<td>0059</td>
</tr>
<tr>
<td>KEROSENE</td>
<td>3</td>
<td>1223</td>
</tr>
<tr>
<td>KETONES, LIQUID, N.O.S.</td>
<td>3</td>
<td>1224</td>
</tr>
<tr>
<td>KRILL MEAL</td>
<td>4.2</td>
<td>3497</td>
</tr>
<tr>
<td>KRYPTON, COMPRESSED</td>
<td>2.2</td>
<td>1056</td>
</tr>
<tr>
<td>KRYPTON, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>1970</td>
</tr>
<tr>
<td>LACQUER [AUST.], –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacquer base or lacquer chips, nitrocellulose, dry, –see4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacquer base or lacquer chips, plastic, wet with alcohol or solvent, –see</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAD ACETATE</td>
<td>6.1</td>
<td>1616</td>
</tr>
<tr>
<td>Lead (II) acetate, –see</td>
<td>6.1</td>
<td>1616</td>
</tr>
<tr>
<td>LEAD ARSENATES</td>
<td>6.1</td>
<td>1617</td>
</tr>
<tr>
<td>LEAD ARSENITES</td>
<td>6.1</td>
<td>1618</td>
</tr>
<tr>
<td>LEAD AZIDE, WETTED with not less than 20% water, or mixture of alcohol and water, by mass</td>
<td>1.1A</td>
<td>0129</td>
</tr>
<tr>
<td>Lead chloride, solid, –see</td>
<td>6.1</td>
<td>2291</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>LEAD COMPOUND, SOLUBLE, N.O.S.</td>
<td>6.1</td>
<td>2291</td>
</tr>
<tr>
<td>LEAD CYANIDE</td>
<td>6.1</td>
<td>1620</td>
</tr>
<tr>
<td>Lead (II) cyanide</td>
<td>6.1</td>
<td>1620</td>
</tr>
<tr>
<td>LEAD DIOXIDE</td>
<td>5.1</td>
<td>1872</td>
</tr>
<tr>
<td>LEAD NITRATE</td>
<td>5.1</td>
<td>1469</td>
</tr>
<tr>
<td>Lead (II) nitrate</td>
<td>5.1</td>
<td>1469</td>
</tr>
<tr>
<td>LEAD PERCHLORATE, SOLID</td>
<td>5.1</td>
<td>1470</td>
</tr>
<tr>
<td>Lead (II) perchlorate</td>
<td>5.1</td>
<td>1470</td>
</tr>
<tr>
<td>LEAD PERCHLORATE SOLUTION</td>
<td>5.1</td>
<td>3408</td>
</tr>
<tr>
<td>Lead peroxide, –see</td>
<td>5.1</td>
<td>1872</td>
</tr>
<tr>
<td>LEAD PHOSPHITE, DIBASIC</td>
<td>4.1</td>
<td>2989</td>
</tr>
<tr>
<td>LEAD STYPHNATE, WETTED with not less than 20% water, or mixture of alcohol and water, by mass</td>
<td>1.1A</td>
<td>0130</td>
</tr>
<tr>
<td>LEAD SULPHATE with more than 3% free acid</td>
<td>8</td>
<td>1794</td>
</tr>
<tr>
<td>Lead tetraethyl, –see</td>
<td>6.1</td>
<td>1649</td>
</tr>
<tr>
<td>Lead tetramethyl, –see</td>
<td>6.1</td>
<td>1649</td>
</tr>
<tr>
<td>LEAD TRINITRORESORCINATE, WETTED, –see</td>
<td>1.1A</td>
<td>0130</td>
</tr>
<tr>
<td>LIFE-SAVING APPLIANCES NOT SELF-INFLATING containing dangerous goods as equipment</td>
<td>9</td>
<td>3072</td>
</tr>
<tr>
<td>LIFE-SAVING APPLIANCES, SELF-INFLATING</td>
<td>9</td>
<td>2990</td>
</tr>
<tr>
<td>LIGHTER REFILLS containing flammable gas</td>
<td>2.1</td>
<td>1057</td>
</tr>
<tr>
<td>LIGHTERS containing flammable gas</td>
<td>2.1</td>
<td>1057</td>
</tr>
<tr>
<td>LIGHTERS, FUSE</td>
<td>1.4S</td>
<td>0131</td>
</tr>
<tr>
<td>Limonene, inactive, –see</td>
<td>3</td>
<td>2052</td>
</tr>
<tr>
<td>LIQUEFIED GAS, N.O.S.</td>
<td>2.2</td>
<td>3163</td>
</tr>
<tr>
<td>LIQUEFIED GASES, non-flammable, charged with nitrogen, carbon dioxide or air</td>
<td>2.2</td>
<td>1058</td>
</tr>
<tr>
<td>Liquefied gas, flammable, N.O.S.</td>
<td>2.1</td>
<td>3161</td>
</tr>
<tr>
<td>LIQUEFIED GAS, OXIDISING, N.O.S.</td>
<td>2.2</td>
<td>3157</td>
</tr>
<tr>
<td>LIQUEFIED GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td>3162</td>
</tr>
<tr>
<td>LIQUEFIED GAS, TOXIC, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>3308</td>
</tr>
<tr>
<td>LIQUEFIED GAS, TOXIC, FLAMMABLE, N.O.S.</td>
<td>2.3</td>
<td>3160</td>
</tr>
<tr>
<td>LIQUEFIED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>3309</td>
</tr>
<tr>
<td>LIQUEFIED GAS, TOXIC, OXIDISING, N.O.S.</td>
<td>2.3</td>
<td>3307</td>
</tr>
<tr>
<td>LIQUEFIED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>3310</td>
</tr>
<tr>
<td>Liquefied petroleum gas, –see</td>
<td>2.1</td>
<td>1075</td>
</tr>
<tr>
<td>LITHIUM</td>
<td>4.3</td>
<td>1415</td>
</tr>
<tr>
<td>LITHIUM ALUMINIUM HYDRIDE</td>
<td>4.3</td>
<td>1410</td>
</tr>
<tr>
<td>LITHIUM ALUMINIUM HYDRIDE, ETHEREAL</td>
<td>4.3</td>
<td>1411</td>
</tr>
<tr>
<td>LITHIUM BATTERIES INSTALLED IN CARGO TRANSPORT UNIT lithium ion batteries or lithium metal batteries</td>
<td>9</td>
<td>3536</td>
</tr>
<tr>
<td>LITHIUM ION BATTERIES</td>
<td>9</td>
<td>3480</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT or PACKED WITH EQUIPMENT</td>
<td>9</td>
<td>3481</td>
</tr>
<tr>
<td>LITHIUM METAL BATTERIES</td>
<td>9</td>
<td>3090</td>
</tr>
<tr>
<td>LITHIUM METAL BATTERIES CONTAINED IN EQUIPMENT or PACKED WITH EQUIPMENT</td>
<td>9</td>
<td>3091</td>
</tr>
<tr>
<td>LITHIUM BOROHYDRIDE</td>
<td>4.3</td>
<td>1413</td>
</tr>
<tr>
<td>LITHIUM FERROSILICON</td>
<td>4.3</td>
<td>2830</td>
</tr>
<tr>
<td>LITHIUM HYDRIDE</td>
<td>4.3</td>
<td>1414</td>
</tr>
<tr>
<td>LITHIUM HYDRIDE, FUSED SOLID</td>
<td>4.3</td>
<td>2805</td>
</tr>
<tr>
<td>LITHIUM HYDROXIDE</td>
<td>8</td>
<td>2680</td>
</tr>
<tr>
<td>LITHIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>2679</td>
</tr>
<tr>
<td>LITHIUM HYPOCHLORITE, DRY</td>
<td>5.1</td>
<td>1471</td>
</tr>
<tr>
<td>LITHIUM HYPOCHLORITE MIXTURE</td>
<td>5.1</td>
<td>1471</td>
</tr>
<tr>
<td>Lithium in cartouches, −see</td>
<td>4.3</td>
<td>1415</td>
</tr>
<tr>
<td>LITHIUM NITRATE</td>
<td>5.1</td>
<td>2722</td>
</tr>
<tr>
<td>LITHIUM NITRIDE</td>
<td>4.3</td>
<td>2806</td>
</tr>
<tr>
<td>LITHIUM PEROXIDE</td>
<td>5.1</td>
<td>1472</td>
</tr>
<tr>
<td>Lithium silicide, −see</td>
<td>4.3</td>
<td>1417</td>
</tr>
<tr>
<td>LITHIUM SILICON</td>
<td>4.3</td>
<td>1417</td>
</tr>
<tr>
<td>L.n.g., −see</td>
<td>2.1</td>
<td>1972</td>
</tr>
<tr>
<td>LONDON PURPLE</td>
<td>6.1</td>
<td>1621</td>
</tr>
<tr>
<td>LP GAS [AUST.], −see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.p.g., −see</td>
<td>2.1</td>
<td>1075</td>
</tr>
<tr>
<td>Lye, −see</td>
<td>8</td>
<td>1823</td>
</tr>
<tr>
<td>Lythene, −see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>MACHINERY, INTERNAL COMBUSTION, FLAMMABLE LIQUID POWERED</td>
<td>3</td>
<td>3528</td>
</tr>
<tr>
<td>MACHINERY, FUEL CELL, FLAMMABLE LIQUID POWERED</td>
<td>3</td>
<td>3528</td>
</tr>
<tr>
<td>MACINER, INTERNAL COMBUSTION, FLAMMABLE GAS POWERED</td>
<td>2.1</td>
<td>3529</td>
</tr>
<tr>
<td>MACHINERY, FUEL CELL, FLAMMABLE GAS POWERED</td>
<td>2.1</td>
<td>3529</td>
</tr>
<tr>
<td>MACHINERY, INTERNAL COMBUSTION</td>
<td>9</td>
<td>3530</td>
</tr>
<tr>
<td>MAGNESIUM in pellets, turnings or ribbons</td>
<td>4.1</td>
<td>1869</td>
</tr>
<tr>
<td>MAGNESIUM ALLOYS with more than 50% magnesium in pellets, turnings or ribbons</td>
<td>4.1</td>
<td>1869</td>
</tr>
<tr>
<td>MAGNESIUM ALLOYS POWDER</td>
<td>4.3</td>
<td>1418</td>
</tr>
<tr>
<td>MAGNESIUM ALUMINIUM PHOSPHIDE</td>
<td>4.3</td>
<td>1419</td>
</tr>
<tr>
<td>MAGNESIUM ARSENATE</td>
<td>6.1</td>
<td>1622</td>
</tr>
<tr>
<td>Magnesium bisulphite solution, −see</td>
<td>8</td>
<td>2693</td>
</tr>
<tr>
<td>MAGNESIUM BROMATE</td>
<td>5.1</td>
<td>1473</td>
</tr>
<tr>
<td>MAGNESIUM CHLORATE</td>
<td>5.1</td>
<td>2723</td>
</tr>
<tr>
<td>Magnesium chloride and chloride mixture, −see</td>
<td>5.1</td>
<td>1459</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>3407</td>
</tr>
<tr>
<td>MAGNESIUM DIAMIDE</td>
<td>4.2</td>
<td>2004</td>
</tr>
<tr>
<td>MAGNESIUM FLUOROSILICATE</td>
<td>6.1</td>
<td>2853</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>MAGNESIUM GRANULES, COATED, particle size not less than 149 microns</td>
<td>4.3</td>
<td>2950</td>
</tr>
<tr>
<td>MAGNESIUM HYDRIIDE</td>
<td>4.3</td>
<td>2010</td>
</tr>
<tr>
<td>MAGNESIUM NITRATE</td>
<td>5.1</td>
<td>1474</td>
</tr>
<tr>
<td>MAGNESIUM PERCHLORATE</td>
<td>5.1</td>
<td>1475</td>
</tr>
<tr>
<td>MAGNESIUM PEROXIDE</td>
<td>5.1</td>
<td>1476</td>
</tr>
<tr>
<td>MAGNESIUM PHOSPHIDE</td>
<td>4.3</td>
<td>2011</td>
</tr>
<tr>
<td>MAGNESIUM POWDER</td>
<td>4.3</td>
<td>1418</td>
</tr>
<tr>
<td>Magnesium scrap, –see</td>
<td>4.1</td>
<td>1869</td>
</tr>
<tr>
<td>MAGNESIUM SILICIDE</td>
<td>4.3</td>
<td>2624</td>
</tr>
<tr>
<td>Magnesium silicofluoride, –see</td>
<td>6.1</td>
<td>2853</td>
</tr>
<tr>
<td>Magnetised material</td>
<td>9</td>
<td>2807</td>
</tr>
<tr>
<td>MALEIC ANHYDRIDE</td>
<td>8</td>
<td>2215</td>
</tr>
<tr>
<td>MALEIC ANHYDRIDE, MOLTEN</td>
<td>8</td>
<td>2215</td>
</tr>
<tr>
<td>Malonic dinitrile, –see</td>
<td>6.1</td>
<td>2647</td>
</tr>
<tr>
<td>Malonodinitrile, –see</td>
<td>6.1</td>
<td>2647</td>
</tr>
<tr>
<td>MALONONITRILE</td>
<td>6.1</td>
<td>2647</td>
</tr>
<tr>
<td>MANEB</td>
<td>4.2</td>
<td>2210</td>
</tr>
<tr>
<td>MANEB PREPARATION with not less than 60% maneb</td>
<td>4.2</td>
<td>2210</td>
</tr>
<tr>
<td>MANEB PREPARATION, STABILISED against self-heating</td>
<td>4.3</td>
<td>2968</td>
</tr>
<tr>
<td>MANEB, STABILISED against self-heating</td>
<td>4.3</td>
<td>2968</td>
</tr>
<tr>
<td>Manganese ethylene-di-dithiocarbamate, –see</td>
<td>4.2</td>
<td>2210</td>
</tr>
<tr>
<td>Manganese ethylene-1,2- dithiocarbamate, –see</td>
<td>4.2</td>
<td>2210</td>
</tr>
<tr>
<td>MANGANESE NITRATE</td>
<td>5.1</td>
<td>2724</td>
</tr>
<tr>
<td>Manganese (II) nitrate, –see</td>
<td>5.1</td>
<td>2724</td>
</tr>
<tr>
<td>MANGANESE RESINATE</td>
<td>4.1</td>
<td>1330</td>
</tr>
<tr>
<td>Manganous nitrate, –see</td>
<td>5.1</td>
<td>2724</td>
</tr>
<tr>
<td>MANNITOL HEXANITRATE, WETTED with not less than 40% water, or mixture of alcohol and water, by mass</td>
<td>1.1d</td>
<td>0133</td>
</tr>
<tr>
<td>MATCHES, FUSEE</td>
<td>4.1</td>
<td>2254</td>
</tr>
<tr>
<td>MATCHES, SAFETY (book, card or strike on box)</td>
<td>4.1</td>
<td>1944</td>
</tr>
<tr>
<td>MATCHES, “STRIKE ANYWHERE”</td>
<td>4.1</td>
<td>1331</td>
</tr>
<tr>
<td>MATCHES, WAX “VESTA”</td>
<td>4.1</td>
<td>1945</td>
</tr>
<tr>
<td>MEDICAL WASTE, N.O.S.</td>
<td>6.2</td>
<td>3291</td>
</tr>
<tr>
<td>MEDICINE, LIQUID, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>3248</td>
</tr>
<tr>
<td>MEDICINE, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>1851</td>
</tr>
<tr>
<td>MEDICINE, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>3249</td>
</tr>
<tr>
<td>p-Mentha-1,8-diene, –see</td>
<td>8</td>
<td>2052</td>
</tr>
<tr>
<td>MERCAPTANS, LIQUID, FLAMMABLE, N.O.S.</td>
<td>3</td>
<td>3336</td>
</tr>
<tr>
<td>MERCAPTANS, LIQUID, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>1228</td>
</tr>
<tr>
<td>MERCAPTANS, LIQUID, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3071</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>MERCAPTAN MIXTURE, LIQUID, FLAMMABLE, N.O.S.</td>
<td>3</td>
<td>3336</td>
</tr>
<tr>
<td>MERCAPTAN MIXTURE, LIQUID, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>1228</td>
</tr>
<tr>
<td>MERCAPTAN MIXTURE, LIQUID, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3071</td>
</tr>
<tr>
<td>2-Mercaptoethanol, –see</td>
<td>6.1</td>
<td>2966</td>
</tr>
<tr>
<td>2-Mercaptopropionic acid, –see</td>
<td>6.1</td>
<td>2936</td>
</tr>
<tr>
<td>5-MERCAPTOTETRAZOL-1-ACETIC ACID</td>
<td>1.4C</td>
<td>0448</td>
</tr>
<tr>
<td>MERCURIC ARSENATE</td>
<td>6.1</td>
<td>1623</td>
</tr>
<tr>
<td>MERCURIC CHLORIDE</td>
<td>6.1</td>
<td>1624</td>
</tr>
<tr>
<td>MERCURIC NITRATE</td>
<td>6.1</td>
<td>1625</td>
</tr>
<tr>
<td>MERCURIC POTASSIUM CYANIDE</td>
<td>6.1</td>
<td>1626</td>
</tr>
<tr>
<td>Mercuric sulphate, –see</td>
<td>6.1</td>
<td>1645</td>
</tr>
<tr>
<td>Mercuroil, –see</td>
<td>6.1</td>
<td>1639</td>
</tr>
<tr>
<td>Mercurous bisulphate, –see</td>
<td>6.1</td>
<td>1645</td>
</tr>
<tr>
<td>Mercurous chloride</td>
<td>6.1</td>
<td>2025</td>
</tr>
<tr>
<td>MERCUROUS NITRATE</td>
<td>6.1</td>
<td>1627</td>
</tr>
<tr>
<td>Mercurous sulphate, –see</td>
<td>6.1</td>
<td>1645</td>
</tr>
<tr>
<td>MERCURY</td>
<td>8</td>
<td>2809</td>
</tr>
<tr>
<td>MERCURY ACETATE</td>
<td>6.1</td>
<td>1629</td>
</tr>
<tr>
<td>MERCURY AMMONIUM CHLORIDE</td>
<td>6.1</td>
<td>1630</td>
</tr>
<tr>
<td>MERCURY BASED PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>2778</td>
</tr>
<tr>
<td>MERCURY BASED PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3012</td>
</tr>
<tr>
<td>MERCURY BASED PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23°C</td>
<td>6.1</td>
<td>3011</td>
</tr>
<tr>
<td>MERCURY BASED PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2777</td>
</tr>
<tr>
<td>MERCURY BENZOATE</td>
<td>6.1</td>
<td>1631</td>
</tr>
<tr>
<td>Mercury bichloride, –see</td>
<td>6.1</td>
<td>1624</td>
</tr>
<tr>
<td>MERCURY BROMIDES</td>
<td>6.1</td>
<td>1634</td>
</tr>
<tr>
<td>MERCURY COMPOUND, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>2024</td>
</tr>
<tr>
<td>MERCURY COMPOUND, SOLID, N.O.S.</td>
<td>6.1</td>
<td>2025</td>
</tr>
<tr>
<td>MERCURY CONTAINED IN MANUFACTURED ARTICLES</td>
<td>8</td>
<td>3506</td>
</tr>
<tr>
<td>MERCURY CYANIDE</td>
<td>6.1</td>
<td>1636</td>
</tr>
<tr>
<td>MERCURY FULMINATE, WETTED with not less than 20% water, or mixture of alcohol and</td>
<td>1.1A</td>
<td>0135</td>
</tr>
<tr>
<td>MERCURY GLUCONATE</td>
<td>6.1</td>
<td>1637</td>
</tr>
<tr>
<td>MERCURY IODIDE</td>
<td>6.1</td>
<td>1638</td>
</tr>
<tr>
<td>MERCURY NUCLEATE</td>
<td>6.1</td>
<td>1639</td>
</tr>
<tr>
<td>MERCURY OLEATE</td>
<td>6.1</td>
<td>1640</td>
</tr>
<tr>
<td>MERCURY OXIDE</td>
<td>6.1</td>
<td>1641</td>
</tr>
<tr>
<td>MERCURY OXYCYANIDE, DESENSITISED</td>
<td>6.1</td>
<td>1642</td>
</tr>
<tr>
<td>MERCURY POTASSIUM IODIDE</td>
<td>6.1</td>
<td>1643</td>
</tr>
<tr>
<td>MERCURY SALICYLATE</td>
<td>6.1</td>
<td>1644</td>
</tr>
<tr>
<td>MERCURY SULPHATE</td>
<td>6.1</td>
<td>1645</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>MERCURY THIOCYANATE</td>
<td>6.1</td>
<td>1646</td>
</tr>
<tr>
<td>Mesitylene, –see</td>
<td>3</td>
<td>2325</td>
</tr>
<tr>
<td>MESITYL OXIDE</td>
<td>3</td>
<td>1229</td>
</tr>
<tr>
<td>METAL ARYLS, WATER- REACTIVE, N.O.S.</td>
<td>4.2</td>
<td>2003</td>
</tr>
<tr>
<td>METAL CARBONYLS, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>3281</td>
</tr>
<tr>
<td>METAL CARBONYLS, SOLID, N.O.S.</td>
<td>6.1</td>
<td>3466</td>
</tr>
<tr>
<td>METAL CATALYST, DRY</td>
<td>4.2</td>
<td>2881</td>
</tr>
<tr>
<td>METAL CATALYST, WETTED with a visible excess of liquid</td>
<td>4.2</td>
<td>1378</td>
</tr>
<tr>
<td>METALDEHYDE</td>
<td>4.1</td>
<td>1332</td>
</tr>
<tr>
<td>METAL HYDRIDES, FLAMMABLE, N.O.S.</td>
<td>4.1</td>
<td>3182</td>
</tr>
<tr>
<td>METAL HYDRIDES, WATER- REACTIVE, N.O.S.</td>
<td>4.3</td>
<td>1409</td>
</tr>
<tr>
<td>METALLIC SUBSTANCE, WATER- REACTIVE, N.O.S.</td>
<td>4.3</td>
<td>3208</td>
</tr>
<tr>
<td>METAL CATALYST, WETTED with a visible excess of liquid</td>
<td>4.2</td>
<td>1378</td>
</tr>
<tr>
<td>METAL CATALYST, DRY</td>
<td>4.2</td>
<td>2881</td>
</tr>
<tr>
<td>METAL POWDER, FLAMMABLE, N.O.S.</td>
<td>4.1</td>
<td>3089</td>
</tr>
<tr>
<td>METAL POWDER, SELF-HEATING, N.O.S.</td>
<td>4.2</td>
<td>3189</td>
</tr>
<tr>
<td>METAL SALTS OF ORGANIC COMPOUNDS, FLAMMABLE, N.O.S.</td>
<td>4.1</td>
<td>3181</td>
</tr>
<tr>
<td>METHACRYLALDEHYDE, STABILISED</td>
<td>3</td>
<td>2396</td>
</tr>
<tr>
<td>METHACRYLIC ACID, STABILISED</td>
<td>8</td>
<td>2531</td>
</tr>
<tr>
<td>METHACRYLONITRILE, STABILISED</td>
<td>3</td>
<td>3079</td>
</tr>
<tr>
<td>METHALLYL ALCOHOL</td>
<td>3</td>
<td>2614</td>
</tr>
<tr>
<td>Methanol, –see</td>
<td>3</td>
<td>1198</td>
</tr>
<tr>
<td>Methanol, –see</td>
<td>8</td>
<td>2209</td>
</tr>
<tr>
<td>Methane and hydrogen mixture, –see</td>
<td>2.1</td>
<td>2034</td>
</tr>
<tr>
<td>METHANE, COMPRESSED</td>
<td>2.1</td>
<td>1971</td>
</tr>
<tr>
<td>METHANE, REFRIGERATED LIQUID</td>
<td>2.1</td>
<td>1972</td>
</tr>
<tr>
<td>METHANESULPHONYL CHLORIDE</td>
<td>6.1</td>
<td>3246</td>
</tr>
<tr>
<td>METHANOL</td>
<td>3</td>
<td>1230</td>
</tr>
<tr>
<td>2-Methoxyethyl acetate, –see</td>
<td>3</td>
<td>1189</td>
</tr>
<tr>
<td>METHOXYMETHYL ISOCYANATE</td>
<td>3</td>
<td>2605</td>
</tr>
<tr>
<td>4-METHOXY-4-METHYL-PENTAN-2- ONE</td>
<td>3</td>
<td>2293</td>
</tr>
<tr>
<td>1-Methoxy-2-nitrobenzene, –see</td>
<td>6.1</td>
<td>2730</td>
</tr>
<tr>
<td>1-Methoxy-3-nitrobenzene, –see</td>
<td>6.1</td>
<td>2730</td>
</tr>
<tr>
<td>1-Methoxy-4-nitrobenzene, –see</td>
<td>6.1</td>
<td>3458</td>
</tr>
<tr>
<td>1-METHOXY-2-PROPA NOL</td>
<td>3</td>
<td>3092</td>
</tr>
<tr>
<td>METHYL ACETATE</td>
<td>3</td>
<td>1231</td>
</tr>
<tr>
<td>METHYLACETYLENE AND PROPADIENE MIXTURE, STABILISED</td>
<td>2.1</td>
<td>1060</td>
</tr>
<tr>
<td>beta-Methyl acrolein, –see</td>
<td>6.1</td>
<td>1143</td>
</tr>
<tr>
<td>METHYL ACRYLATE, STABILISED</td>
<td>3</td>
<td>1919</td>
</tr>
<tr>
<td>METHYLAL</td>
<td>3</td>
<td>1234</td>
</tr>
</tbody>
</table>
Name & Description

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl alcohol, –see</td>
<td>3</td>
<td>1230</td>
</tr>
<tr>
<td>Methyl allyl alcohol, –see</td>
<td>3</td>
<td>2614</td>
</tr>
<tr>
<td>METHYLALLYL CHLORIDE</td>
<td>3</td>
<td>2554</td>
</tr>
<tr>
<td>METHYLAMINE, ANHYDROUS</td>
<td>2.1</td>
<td>1061</td>
</tr>
<tr>
<td>METHYLAMINE, AQUEOUS SOLUTION</td>
<td>3</td>
<td>1235</td>
</tr>
<tr>
<td>METHYLAMYL ACETATE</td>
<td>3</td>
<td>1233</td>
</tr>
<tr>
<td>Methyl amyl alcohol, –see</td>
<td>3</td>
<td>2053</td>
</tr>
<tr>
<td>Methyl amyl ketone, –see</td>
<td>3</td>
<td>1110</td>
</tr>
<tr>
<td>N-METHYLANILINE</td>
<td>6.1</td>
<td>2294</td>
</tr>
<tr>
<td>Methylated spirit, –see</td>
<td>3</td>
<td>1986</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1987</td>
</tr>
<tr>
<td>alpha-METHYLBENZYL ALCOHOL, LIQUID</td>
<td>6.1</td>
<td>2937</td>
</tr>
<tr>
<td>alpha-METHYLBENZYL ALCOHOL, SOLID</td>
<td>6.1</td>
<td>3438</td>
</tr>
<tr>
<td>METHYL BROMIDE with not more than 2% chloropicrin</td>
<td>2.3</td>
<td>1062</td>
</tr>
<tr>
<td>Methyl bromide and chloropicrin mixture, –see</td>
<td>2.3</td>
<td>1581</td>
</tr>
<tr>
<td>METHYL BROMIDE AND ETHYLENE DIBROMIDE MIXTURE, LIQUID</td>
<td>6.1</td>
<td>1647</td>
</tr>
<tr>
<td>METHYL BROMOACETATE</td>
<td>6.1</td>
<td>2643</td>
</tr>
<tr>
<td>2-METHYL BUTANAL</td>
<td>3</td>
<td>3371</td>
</tr>
<tr>
<td>3-METHYL BUTAN-2-ONE</td>
<td>3</td>
<td>2397</td>
</tr>
<tr>
<td>2-METHYL-1-BUTENE</td>
<td>3</td>
<td>2459</td>
</tr>
<tr>
<td>2-METHYL-2-BUTENE</td>
<td>3</td>
<td>2460</td>
</tr>
<tr>
<td>3-METHYL-1-BUTENE</td>
<td>3</td>
<td>2561</td>
</tr>
<tr>
<td>N-METHYLBUTYLAMINE</td>
<td>3</td>
<td>2945</td>
</tr>
<tr>
<td>METHYL tert-BUTYL ETHER</td>
<td>3</td>
<td>2398</td>
</tr>
<tr>
<td>METHYL BUTYRATE</td>
<td>3</td>
<td>1237</td>
</tr>
<tr>
<td>METHYL CHLORIDE</td>
<td>2.1</td>
<td>1063</td>
</tr>
<tr>
<td>Methyl chloride and chloropicrin mixture, –see</td>
<td>2.3</td>
<td>1582</td>
</tr>
<tr>
<td>METHYL CHLORIDE AND METHYLENE CHLORIDE MIXTURE</td>
<td>2.1</td>
<td>1912</td>
</tr>
<tr>
<td>METHYL CHLOROACETATE</td>
<td>6.1</td>
<td>2295</td>
</tr>
<tr>
<td>Methyl chlorocarbonate, –see</td>
<td>6.1</td>
<td>1238</td>
</tr>
<tr>
<td>Methyl chloroform, –see</td>
<td>6.1</td>
<td>2831</td>
</tr>
<tr>
<td>METHYL CHLOROFORMATE</td>
<td>6.1</td>
<td>1238</td>
</tr>
<tr>
<td>METHYL CHLOROMETHYL ETHER</td>
<td>6.1</td>
<td>1239</td>
</tr>
<tr>
<td>METHYL 2-CHLOROPROPIONATE</td>
<td>3</td>
<td>2933</td>
</tr>
<tr>
<td>Methyl alpha-chloropropionate, –see</td>
<td>3</td>
<td>2933</td>
</tr>
<tr>
<td>METHYLCHLOROSILANE</td>
<td>2.3</td>
<td>2534</td>
</tr>
<tr>
<td>Methyl cyanide, –see</td>
<td>3</td>
<td>1648</td>
</tr>
<tr>
<td>METHYL CYCLOHEXANE</td>
<td>3</td>
<td>2296</td>
</tr>
<tr>
<td>METHYL CYCLOHEXANOLS, flammable</td>
<td>3</td>
<td>2617</td>
</tr>
<tr>
<td>METHYL CYCLOHEXANONE</td>
<td>3</td>
<td>2297</td>
</tr>
<tr>
<td>METHYL CYCLOPENTANE</td>
<td>3</td>
<td>2298</td>
</tr>
<tr>
<td>METHYL DICHLOROACETATE</td>
<td>6.1</td>
<td>2299</td>
</tr>
<tr>
<td>METHYLDICHLOROSILANE</td>
<td>4.3</td>
<td>1242</td>
</tr>
<tr>
<td>Methylene bromide, –see</td>
<td>6.1</td>
<td>2664</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE [AUST.], –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylene chloride, –see</td>
<td>6.1</td>
<td>1593</td>
</tr>
<tr>
<td>Methylene chloride and methyl chloride mixture, –see</td>
<td>2.1</td>
<td>1912</td>
</tr>
<tr>
<td>Methylene cyanide, –see</td>
<td>6.1</td>
<td>2647</td>
</tr>
<tr>
<td>p,p′-Methylene diaminiline, –see</td>
<td>6.1</td>
<td>2651</td>
</tr>
<tr>
<td>Methylene dibromide, –see</td>
<td>6.1</td>
<td>2664</td>
</tr>
<tr>
<td>2,2′-Methylene-di-(3,4,6- trichlorophenol), –see</td>
<td>6.1</td>
<td>2875</td>
</tr>
<tr>
<td>Methyl ethyl ether, –see</td>
<td>2.1</td>
<td>1039</td>
</tr>
<tr>
<td>METHYL ETHYL KETONE, –see</td>
<td>3</td>
<td>1193</td>
</tr>
<tr>
<td>2-METHYL-5-ETHYL PYRIDINE</td>
<td>6.1</td>
<td>2300</td>
</tr>
<tr>
<td>METHYL FLUORIDE</td>
<td>2.1</td>
<td>2454</td>
</tr>
<tr>
<td>METHYL FORMATE</td>
<td>3</td>
<td>1243</td>
</tr>
<tr>
<td>2-METHYLFURAN</td>
<td>3</td>
<td>2301</td>
</tr>
<tr>
<td>Methyl glycol, –see</td>
<td>3</td>
<td>1188</td>
</tr>
<tr>
<td>Methyl glycol acetate, –see</td>
<td>3</td>
<td>1189</td>
</tr>
<tr>
<td>2-METHYL-2-HEPTANETHIOL</td>
<td>6.1</td>
<td>3023</td>
</tr>
<tr>
<td>5-METHYLHEXAN-2-ONE</td>
<td>3</td>
<td>2302</td>
</tr>
<tr>
<td>METHYLHYDRAZINE</td>
<td>6.1</td>
<td>1244</td>
</tr>
<tr>
<td>METHYL IODIDE</td>
<td>6.1</td>
<td>2644</td>
</tr>
<tr>
<td>METHYL ISOBUTYL CARBINOL</td>
<td>3</td>
<td>2053</td>
</tr>
<tr>
<td>METHYL ISOBUTYL KETONE</td>
<td>3</td>
<td>1245</td>
</tr>
<tr>
<td>METHYL ISOXYANATE</td>
<td>6.1</td>
<td>2480</td>
</tr>
<tr>
<td>METHYL ISOPROPENYL KETONE, STABILISED</td>
<td>3</td>
<td>1246</td>
</tr>
<tr>
<td>METHYL ISOTHIOCYANATE</td>
<td>6.1</td>
<td>2477</td>
</tr>
<tr>
<td>METHYL ISOVALERATE</td>
<td>3</td>
<td>2400</td>
</tr>
<tr>
<td>METHYL MAGNESIUM BROMIDE IN ETHYL ETHER</td>
<td>4.3</td>
<td>1928</td>
</tr>
<tr>
<td>METHYL MERCAPTAN</td>
<td>2.3</td>
<td>1064</td>
</tr>
<tr>
<td>Methyl mercaptopropionaldehyde, –see</td>
<td>6.1</td>
<td>2785</td>
</tr>
<tr>
<td>METHYL METHACRYLATE MONomer, STABILISED</td>
<td>3</td>
<td>1247</td>
</tr>
<tr>
<td>4-METHYLMORPHOLINE</td>
<td>3</td>
<td>2535</td>
</tr>
<tr>
<td>N-METHYLMORPHOLINE, –see</td>
<td>3</td>
<td>2535</td>
</tr>
<tr>
<td>METHYL NITRITE</td>
<td>2.2</td>
<td>2455</td>
</tr>
<tr>
<td>METHYL ORTHOSILICATE</td>
<td>6.1</td>
<td>2606</td>
</tr>
<tr>
<td>METHYLPENTADIENE</td>
<td>3</td>
<td>2461</td>
</tr>
<tr>
<td>Methylpentanes, –see</td>
<td>3</td>
<td>1208</td>
</tr>
<tr>
<td>2-METHYL PENTAN-2-OL</td>
<td>3</td>
<td>2560</td>
</tr>
<tr>
<td>4-Methylpentan-2-ol, –see</td>
<td>3</td>
<td>2053</td>
</tr>
<tr>
<td>3-Methyl-2-penten-4ynol, –see</td>
<td>8</td>
<td>2705</td>
</tr>
<tr>
<td>METHYLPHENYL DICHLORO-SILANE</td>
<td>8</td>
<td>2437</td>
</tr>
<tr>
<td>2-Methyl-2-phenylpropane, –see</td>
<td>3</td>
<td>2709</td>
</tr>
<tr>
<td>1-METHYL PIPERIDINE</td>
<td>3</td>
<td>2399</td>
</tr>
<tr>
<td>METHYL PROPAionate</td>
<td>3</td>
<td>1248</td>
</tr>
<tr>
<td>Methylpropylbenzene, –see</td>
<td>3</td>
<td>2046</td>
</tr>
<tr>
<td>METHYL PROPYL ETHER</td>
<td>3</td>
<td>2612</td>
</tr>
<tr>
<td>METHYL PROPYL KETONE</td>
<td>3</td>
<td>1249</td>
</tr>
<tr>
<td>Methyl pyridines, –see</td>
<td>3</td>
<td>2313</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Methylstyrrene, inhibited, –see</td>
<td>3</td>
<td>2618</td>
</tr>
<tr>
<td>alpha-Methylstyrrene, –see</td>
<td>3</td>
<td>2303</td>
</tr>
<tr>
<td>Methyl sulphate, –see</td>
<td>6.1</td>
<td>1595</td>
</tr>
<tr>
<td>Methyl sulphide, –see</td>
<td>3</td>
<td>1164</td>
</tr>
<tr>
<td>METHYL Tetrahydrofuran</td>
<td>3</td>
<td>2536</td>
</tr>
<tr>
<td>METHYL TRICHLOROACETATE</td>
<td>6.1</td>
<td>2533</td>
</tr>
<tr>
<td>METHYLTRICHLOROSILANE</td>
<td>3</td>
<td>1250</td>
</tr>
<tr>
<td>alpha-METHYLVALERALDEHYDE</td>
<td>3</td>
<td>2367</td>
</tr>
<tr>
<td>Methyl vinyl benzene, inhibited, –see</td>
<td>3</td>
<td>2618</td>
</tr>
<tr>
<td>METHYL VINYL KETONE, STABILISED</td>
<td>6.1</td>
<td>1251</td>
</tr>
<tr>
<td>M.i.b.c., –see</td>
<td>3</td>
<td>2053</td>
</tr>
<tr>
<td>MINERAL TURPENTINE [AUST.], –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINES with bursting charge</td>
<td>1.1D</td>
<td>0137</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0136</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0138</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0294</td>
</tr>
<tr>
<td>Mirbane oil, –see</td>
<td>6.1</td>
<td>1662</td>
</tr>
<tr>
<td>Missiles, guided, –see</td>
<td>1.1E</td>
<td>0181</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0180</td>
</tr>
<tr>
<td></td>
<td>1.1J</td>
<td>0397</td>
</tr>
<tr>
<td></td>
<td>1.2C</td>
<td>0436</td>
</tr>
<tr>
<td></td>
<td>1.2E</td>
<td>0182</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0295</td>
</tr>
<tr>
<td></td>
<td>1.2J</td>
<td>0398</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0183</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0437</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0438</td>
</tr>
<tr>
<td>MOLYBDENUM PENTACHLORIDE</td>
<td>8</td>
<td>2508</td>
</tr>
<tr>
<td>Monochloroacetic acid, –see</td>
<td>6.1</td>
<td>1750</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>1751</td>
</tr>
<tr>
<td>Monochlorobenzene, –see</td>
<td>3</td>
<td>1134</td>
</tr>
<tr>
<td>Monochlorodifluoromethane, –see</td>
<td>2.2</td>
<td>1018</td>
</tr>
<tr>
<td>Monochlorodifluoromethane and monochloropentafluoroethane mixture, –see</td>
<td>2.2</td>
<td>1973</td>
</tr>
<tr>
<td>Monochlorodifluoromono- bromomethane, –see</td>
<td>2.2</td>
<td>1974</td>
</tr>
<tr>
<td>Monochloropentafluoroethane and monochlorodifluoroethane mixture, –see</td>
<td>2.2</td>
<td>1973</td>
</tr>
<tr>
<td>Monoethylamine, –see</td>
<td>2.1</td>
<td>1036</td>
</tr>
<tr>
<td>MONONITROTOLUIDINES, –see</td>
<td>6.1</td>
<td>2660</td>
</tr>
<tr>
<td>Monopropylamine, –see</td>
<td>3</td>
<td>1277</td>
</tr>
<tr>
<td>MORPHOLINE</td>
<td>8</td>
<td>2054</td>
</tr>
<tr>
<td>MOTOR FUEL ANTI-KNOCK MIXTURE</td>
<td>6.1</td>
<td>1649</td>
</tr>
<tr>
<td>MOTOR FUEL ANTI-KNOCK MIXTURE, FLAMMABLE6.1</td>
<td>3</td>
<td>3483</td>
</tr>
<tr>
<td>MOTOR SPIRIT</td>
<td>3</td>
<td>1203</td>
</tr>
<tr>
<td>Muriatic acid, –see</td>
<td>8</td>
<td>1789</td>
</tr>
<tr>
<td>MUSK XYLENE, –see</td>
<td>4.1</td>
<td>2956</td>
</tr>
<tr>
<td>Mysorite, –see</td>
<td>9</td>
<td>2212</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Naphta, —see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>Naphta, petroleum, —see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>Naphta, solvent, —see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>NAPHTHALENE, CRUDE</td>
<td>4.1</td>
<td>1334</td>
</tr>
<tr>
<td>NAPHTHALENE, MOLTEN</td>
<td>4.1</td>
<td>2304</td>
</tr>
<tr>
<td>NAPHTHALENE, REFINED</td>
<td>4.1</td>
<td>1334</td>
</tr>
<tr>
<td>alpha-NAPHTHYLAMINE</td>
<td>6.1</td>
<td>2077</td>
</tr>
<tr>
<td>beta-NAPHTHYLAMINE, SOLID</td>
<td>6.1</td>
<td>1650</td>
</tr>
<tr>
<td>beta-NAPHTHYLAMINE SOLUTION</td>
<td>6.1</td>
<td>3411</td>
</tr>
<tr>
<td>NAPHTHYLTHIOUREA</td>
<td>6.1</td>
<td>1651</td>
</tr>
<tr>
<td>1-Naphthylthiourea, —see</td>
<td>6.1</td>
<td>1651</td>
</tr>
<tr>
<td>NAPHTHYLUREA</td>
<td>6.1</td>
<td>1652</td>
</tr>
<tr>
<td>NATURAL GAS, COMPRESSED with high methane content</td>
<td>2.1</td>
<td>1971</td>
</tr>
<tr>
<td>NATURAL GAS, REFRIGERATED LIQUID with high methane content</td>
<td>2.1</td>
<td>1972</td>
</tr>
<tr>
<td>Natural gasoline, —see</td>
<td>3</td>
<td>1203</td>
</tr>
<tr>
<td>Neohexane, —see</td>
<td>3</td>
<td>1208</td>
</tr>
<tr>
<td>NEON, COMPRESSED</td>
<td>2.2</td>
<td>1065</td>
</tr>
<tr>
<td>NEON, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>1913</td>
</tr>
<tr>
<td>Neothyl, —see</td>
<td>3</td>
<td>2612</td>
</tr>
<tr>
<td>NICKEL CARBONYL</td>
<td>6.1</td>
<td>1259</td>
</tr>
<tr>
<td>NICKEL CYANIDE</td>
<td>6.1</td>
<td>1653</td>
</tr>
<tr>
<td>Nickel (II) cyanide, —see</td>
<td>6.1</td>
<td>1653</td>
</tr>
<tr>
<td>NICKEL NITRATE</td>
<td>5.1</td>
<td>2725</td>
</tr>
<tr>
<td>Nickel (II) nitrate, —see</td>
<td>5.1</td>
<td>2725</td>
</tr>
<tr>
<td>NICKEL NITRITE</td>
<td>5.1</td>
<td>2726</td>
</tr>
<tr>
<td>Nickel (II) nitrite, —see</td>
<td>5.1</td>
<td>2726</td>
</tr>
<tr>
<td>Nickelous nitrate, —see</td>
<td>5.1</td>
<td>2725</td>
</tr>
<tr>
<td>Nickelous nitrite, —see</td>
<td>5.1</td>
<td>2726</td>
</tr>
<tr>
<td>Nickel tetracarbonyl, —see</td>
<td>6.1</td>
<td>1259</td>
</tr>
<tr>
<td>NICOTINE</td>
<td>6.1</td>
<td>1654</td>
</tr>
<tr>
<td>NICOTINE COMPOUND, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>3144</td>
</tr>
<tr>
<td>NICOTINE COMPOUND, SOLID, N.O.S.</td>
<td>6.1</td>
<td>1655</td>
</tr>
<tr>
<td>NICOTINE HYDROCHLORIDE, LIQUID</td>
<td>6.1</td>
<td>1656</td>
</tr>
<tr>
<td>NICOTINE HYDROCHLORIDE, SOLID</td>
<td>6.1</td>
<td>3444</td>
</tr>
<tr>
<td>NICOTINE HYDROCHLORIDE SOLUTION</td>
<td>6.1</td>
<td>1656</td>
</tr>
<tr>
<td>NICOTINE PREPARATION, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>3144</td>
</tr>
<tr>
<td>NICOTINE PREPARATION, SOLID, N.O.S.</td>
<td>6.1</td>
<td>1655</td>
</tr>
<tr>
<td>NICOTINE SALICYLATE</td>
<td>6.1</td>
<td>1657</td>
</tr>
<tr>
<td>NICOTINE SULPHATE, SOLID</td>
<td>6.1</td>
<td>3445</td>
</tr>
<tr>
<td>NICOTINE SULPHATE SOLUTION</td>
<td>6.1</td>
<td>1658</td>
</tr>
<tr>
<td>NICOTINE TARTRATE</td>
<td>6.1</td>
<td>1659</td>
</tr>
<tr>
<td>NITRATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>1477</td>
</tr>
<tr>
<td>NITRATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>3218</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>NITRATING ACID MIXTURE with more than 50% nitric acid</td>
<td>8</td>
<td>1796</td>
</tr>
<tr>
<td>NITRATING ACID MIXTURE with not more than 50% nitric acid</td>
<td>8</td>
<td>1796</td>
</tr>
<tr>
<td>NITRATING ACID MIXTURE, SPENT, with more than 50% nitric acid</td>
<td>8</td>
<td>1826</td>
</tr>
<tr>
<td>NITRATING ACID MIXTURE, SPENT, with not more than 50% nitric acid</td>
<td>8</td>
<td>1826</td>
</tr>
<tr>
<td>NITRIC ACID, other than red fuming</td>
<td>8</td>
<td>2031</td>
</tr>
<tr>
<td>NITRIC ACID, RED FUMING</td>
<td>8</td>
<td>2032</td>
</tr>
<tr>
<td>NITRIC OXIDE, COMPRessed</td>
<td>2.3</td>
<td>1660</td>
</tr>
<tr>
<td>NITRIC OXIDE AND DINITROGEN TETROXIDE MIXTURE</td>
<td>2.3</td>
<td>1975</td>
</tr>
<tr>
<td>NITRIC OXIDE AND NITROGEN DIOXIDE MIXTURE, –see</td>
<td>2.3</td>
<td>1975</td>
</tr>
<tr>
<td>NITRILES, FLAMMABLE, TOXIC, N.O.S.</td>
<td>3</td>
<td>3273</td>
</tr>
<tr>
<td>NITRILES, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>3276</td>
</tr>
<tr>
<td>NITRILES, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>3439</td>
</tr>
<tr>
<td>NITRILES, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3275</td>
</tr>
<tr>
<td>NITRITES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>2627</td>
</tr>
<tr>
<td>NITRITES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>3219</td>
</tr>
<tr>
<td>NITROANILINES (o-, m-, p-)</td>
<td>6.1</td>
<td>1661</td>
</tr>
<tr>
<td>NITROANISOLES, LIQUID</td>
<td>6.1</td>
<td>2730</td>
</tr>
<tr>
<td>NITROANISOLEs, SOLID</td>
<td>6.1</td>
<td>3458</td>
</tr>
<tr>
<td>NITROBENZENe</td>
<td>6.1</td>
<td>1662</td>
</tr>
<tr>
<td>Nitrobenzene bromide, –see</td>
<td>6.1</td>
<td>2732</td>
</tr>
<tr>
<td>NITROBENZENESULPHONIC ACID</td>
<td>8</td>
<td>2305</td>
</tr>
<tr>
<td>Nitrobenzol, –see</td>
<td>6.1</td>
<td>1662</td>
</tr>
<tr>
<td>5-NITROBENZOTRIAZOL</td>
<td>1.1D</td>
<td>0385</td>
</tr>
<tr>
<td>NITROBENZOTRIFlUORIDEs, LIQUID</td>
<td>6.1</td>
<td>2306</td>
</tr>
<tr>
<td>NITROBENZOTRI FluORIDEs, liquid</td>
<td>6.1</td>
<td>2306</td>
</tr>
<tr>
<td>NITROBENZOTRI FluORIDEs, SOLID</td>
<td>6.1</td>
<td>3431</td>
</tr>
<tr>
<td>NITROBROMOBENZENS, LIQUID</td>
<td>6.1</td>
<td>2732</td>
</tr>
<tr>
<td>NITROBROMOBENZENS, SOLID</td>
<td>6.1</td>
<td>3459</td>
</tr>
<tr>
<td>NITROCELLULOSE, dry or wetted with less than 25% water (or alcohol), by mass</td>
<td>1.1D</td>
<td>0340</td>
</tr>
<tr>
<td>NITROCELLULOSE, unmodified or plasticised with less than 18% plasticising substance, by mass</td>
<td>1.1D</td>
<td>0341</td>
</tr>
<tr>
<td>NITROCELLULOSE MEMBRANE FILTERS, with not more than 12.6% nitrogen, by dry mass</td>
<td>4.1</td>
<td>3270</td>
</tr>
<tr>
<td>NITROCELLULOSE, with not more than 12.6% nitrogen, by dry mass, MIXTURE WITH PLASTICISER, WITHOUT PIGMENT</td>
<td>4.1</td>
<td>2557</td>
</tr>
<tr>
<td>NITROCELLULOSE, with not more than 12.6% nitrogen, by dry mass, MIXTURE WITH PLASTICISER, WITH PIGMENT</td>
<td>4.1</td>
<td>2557</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>NITROCELLULOSE, with not more than 12.6% nitrogen, by dry mass, MIXTURE WITHOUT</td>
<td>4.1</td>
<td>2557</td>
</tr>
<tr>
<td>PLASTICISER, WITHOUT PIGMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROCELLULOSE, with not more than 12.6% nitrogen, by dry mass, MIXTURE WITHOUT</td>
<td>4.1</td>
<td>2557</td>
</tr>
<tr>
<td>PLASTICISER, WITHOUT PIGMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROCELLULOSE, PLASTICISED with not less than 18% plasticising substance, by mass</td>
<td>1.3C</td>
<td>0343</td>
</tr>
<tr>
<td>NITROCELLULOSE SOLUTION, FLAMMABLE with not more than 12.6% nitrogen, by dry mass,</td>
<td>3</td>
<td>2059</td>
</tr>
<tr>
<td>and not more than 55% nitrocellulose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROCELLULOSE, WETTED with not less than 25% alcohol, by mass</td>
<td>1.3C</td>
<td>0342</td>
</tr>
<tr>
<td>NITROCELLULOSE WITH ALCOHOL (not less than 25% alcohol, by mass, and not more than</td>
<td>4.1</td>
<td>2556</td>
</tr>
<tr>
<td>12.6% nitrogen, by dry mass)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROCELLULOSE WITH WATER (not less than 25% water, by mass)</td>
<td>4.1</td>
<td>2555</td>
</tr>
<tr>
<td>Nitrochlorobenzenes, –see</td>
<td>6.1</td>
<td>1578</td>
</tr>
<tr>
<td>3-NITRO-4-CHLOROBENZOTRI- FLUORIDE</td>
<td>6.1</td>
<td>2307</td>
</tr>
<tr>
<td>NITROCREOSOLS, LIQUID</td>
<td>6.1</td>
<td>2446</td>
</tr>
<tr>
<td>NITROCREOSOLS, LIQUID</td>
<td>6.1</td>
<td>3434</td>
</tr>
<tr>
<td>NITROETHANE</td>
<td>3</td>
<td>2842</td>
</tr>
<tr>
<td>NITROGEN, COMPRESSED</td>
<td>2.2</td>
<td>1066</td>
</tr>
<tr>
<td>NITROGEN DIOXIDE, –see</td>
<td>2.3</td>
<td>1067</td>
</tr>
<tr>
<td>NITROGEN, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>1977</td>
</tr>
<tr>
<td>NITROGEN TRIFLUORIDE</td>
<td>2.2</td>
<td>2451</td>
</tr>
<tr>
<td>NITROGEN TRIOXIDE</td>
<td>2.3</td>
<td>2421</td>
</tr>
<tr>
<td>NITROGLYCERIN, DESENSITISED with not less than 40% non-volatile water-insoluble</td>
<td>1.1D</td>
<td>0143</td>
</tr>
<tr>
<td>phlegmatiser, by mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROGLYCERIN MIXTURE, DESENSITISED, LIQUID, N.O.S. with not more than 30%</td>
<td>3</td>
<td>3357</td>
</tr>
<tr>
<td>nitroglycerin, by mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROGLYCERIN MIXTURE, DESENSITISED, LIQUID, FLAMMABLE, N.O.S. with not more than</td>
<td>3</td>
<td>3343</td>
</tr>
<tr>
<td>30% nitroglycerin, by mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROGLYCERIN MIXTURE, DESENSITISED, SOLID, N.O.S. with more than 2% but not more</td>
<td>4.1</td>
<td>3319</td>
</tr>
<tr>
<td>than 10% nitroglycerin, by mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROGLYCERIN, SOLUTION IN ALCOHOL with more than 1% but not more than 5%</td>
<td>3</td>
<td>3064</td>
</tr>
<tr>
<td>nitroglycerin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROGLYCERIN SOLUTION IN ALCOHOL with more than 1% but not more than 10%</td>
<td>1.1D</td>
<td>0144</td>
</tr>
<tr>
<td>nitroglycerin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NITROGLYCERIN SOLUTION IN ALCOHOL with not more than 1% nitroglycerin</td>
<td>3</td>
<td>1204</td>
</tr>
<tr>
<td>NITROGUANIDINE, dry or wetted with less than 20% water, by mass</td>
<td>1.1D</td>
<td>0282</td>
</tr>
<tr>
<td>NITROGUANIDINE, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>1336</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>NITROHYDROCHLORIC ACID</td>
<td>8</td>
<td>1798</td>
</tr>
<tr>
<td>NITROMANNITE, WETTED, --see</td>
<td>1.1D</td>
<td>0133</td>
</tr>
<tr>
<td>NITROMETHANE</td>
<td>3</td>
<td>1261</td>
</tr>
<tr>
<td>Nitromuriatic acid, --see</td>
<td>8</td>
<td>1798</td>
</tr>
<tr>
<td>NITRONAPHTHALENE</td>
<td>4.1</td>
<td>2538</td>
</tr>
<tr>
<td>NITROPHENOLS (o-, m-, p-)</td>
<td>6.1</td>
<td>1663</td>
</tr>
<tr>
<td>4-NITROPHENYLHYDRAZINE, with not less than 30% water, by mass</td>
<td>4.1</td>
<td>3376</td>
</tr>
<tr>
<td>NITROPROPANES</td>
<td>3</td>
<td>2608</td>
</tr>
<tr>
<td>p-NITROSODIMETHYLANILINE</td>
<td>4.2</td>
<td>1369</td>
</tr>
<tr>
<td>NITROSTARCH, dry or wetted with less than 20% water, by mass</td>
<td>1.1D</td>
<td>0146</td>
</tr>
<tr>
<td>NITROSTARCH, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>1337</td>
</tr>
<tr>
<td>NITROSYL CHLORIDE</td>
<td>2.3</td>
<td>1069</td>
</tr>
<tr>
<td>NITROSYSULPHURIC ACID, LIQUID</td>
<td>8</td>
<td>2308</td>
</tr>
<tr>
<td>NITROSYSULPHURIC ACID, SOLID</td>
<td>8</td>
<td>3456</td>
</tr>
<tr>
<td>NITROTOLUENES, LIQUID</td>
<td>6.1</td>
<td>1664</td>
</tr>
<tr>
<td>NITROTOLUENES, SOLID</td>
<td>6.1</td>
<td>3446</td>
</tr>
<tr>
<td>NITROTOLUIDINES</td>
<td>6.1</td>
<td>2660</td>
</tr>
<tr>
<td>NITROTRIAZOLONE</td>
<td>1.1d</td>
<td>0490</td>
</tr>
<tr>
<td>NITRO UREA</td>
<td>1.1d</td>
<td>0147</td>
</tr>
<tr>
<td>NITROUS OXIDE</td>
<td>2.2</td>
<td>1070</td>
</tr>
<tr>
<td>NITROUS OXIDE, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>2201</td>
</tr>
<tr>
<td>NITROXYLENES, LIQUID</td>
<td>6.1</td>
<td>1665</td>
</tr>
<tr>
<td>NITROXYLENES, SOLID</td>
<td>6.1</td>
<td>3447</td>
</tr>
<tr>
<td>Non-activated carbon, --see</td>
<td>4.2</td>
<td>1361</td>
</tr>
<tr>
<td>Non-activated charcoal, --see</td>
<td>4.2</td>
<td>1361</td>
</tr>
<tr>
<td>NONANES</td>
<td>3</td>
<td>1920</td>
</tr>
<tr>
<td>NONYLTRICHLOROSILANE</td>
<td>8</td>
<td>1799</td>
</tr>
<tr>
<td>2,5-NORBORNADIENE, STABILISED, --see</td>
<td>3</td>
<td>2251</td>
</tr>
<tr>
<td>Normal propyl alcohol, --see</td>
<td>3</td>
<td>1274</td>
</tr>
<tr>
<td>NTO, --see</td>
<td>1.1D</td>
<td>0490</td>
</tr>
<tr>
<td>OCTADECYLTRICHLOROSILANE</td>
<td>8</td>
<td>1800</td>
</tr>
<tr>
<td>OCTADIENE</td>
<td>3</td>
<td>2309</td>
</tr>
<tr>
<td>OCTAFLUOROBUT-2-ENE</td>
<td>2.2</td>
<td>2422</td>
</tr>
<tr>
<td>OCTAFLUOROCYCLOBUTANE</td>
<td>2.2</td>
<td>1976</td>
</tr>
<tr>
<td>OCTAFLUOROPROPAINE</td>
<td>2.2</td>
<td>2424</td>
</tr>
<tr>
<td>OCTANES</td>
<td>3</td>
<td>1262</td>
</tr>
<tr>
<td>OCTOGEN, --see</td>
<td>1.1D</td>
<td>0226</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0391</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0484</td>
</tr>
<tr>
<td>OCTOL, dry or wetted with less than 15% water, by mass, --see</td>
<td>1.1D</td>
<td>0266</td>
</tr>
<tr>
<td>OCTOLITE, dry or wetted with less than 15% water, by mass</td>
<td>1.1D</td>
<td>0266</td>
</tr>
<tr>
<td>OCTONAL</td>
<td>1.1D</td>
<td>0496</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>OCTYL ALDEHYDES</td>
<td>3</td>
<td>1191</td>
</tr>
<tr>
<td>tert-Octyl mercaptan, –see</td>
<td>6.1</td>
<td>3023</td>
</tr>
<tr>
<td>OCTYLTRICHLOROSILANE</td>
<td>8</td>
<td>1801</td>
</tr>
<tr>
<td>Oenanthol, –see</td>
<td>3</td>
<td>3056</td>
</tr>
<tr>
<td>OIL GAS, COMPRESSED</td>
<td>2.3</td>
<td>1071</td>
</tr>
<tr>
<td>Oleum, –see</td>
<td>8</td>
<td>1831</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE B, LIQUID</td>
<td>5.2</td>
<td>3101</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE B, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3111</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE B, SOLID</td>
<td>5.2</td>
<td>3102</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE B, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3112</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE C, LIQUID</td>
<td>5.2</td>
<td>3103</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE C, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3113</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE C, SOLID</td>
<td>5.2</td>
<td>3104</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE C, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3114</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE D, LIQUID</td>
<td>5.2</td>
<td>3105</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE D, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3115</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE D, SOLID</td>
<td>5.2</td>
<td>3106</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE D, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3116</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE E, LIQUID</td>
<td>5.2</td>
<td>3107</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE E, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3117</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE E, SOLID</td>
<td>5.2</td>
<td>3108</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE E, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3118</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE F, LIQUID</td>
<td>5.2</td>
<td>3109</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE F, LIQUID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3119</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE F, SOLID</td>
<td>5.2</td>
<td>3110</td>
</tr>
<tr>
<td>ORGANIC PEROXIDE TYPE F, SOLID, TEMPERATURE CONTROLLED</td>
<td>5.2</td>
<td>3120</td>
</tr>
<tr>
<td>Organic peroxides, –see Table 11.3 for an alphabetical list of currently assigned organic peroxides –and see to 3120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORGANIC PIGMENTS, SELF- HEATING</td>
<td>4.2</td>
<td>3313</td>
</tr>
<tr>
<td>ORGANOARSENIC COMPOUND, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>3280</td>
</tr>
<tr>
<td>ORGANOARSENIC COMPOUND, SOLID, N.O.S.</td>
<td>6.1</td>
<td>3465</td>
</tr>
<tr>
<td>ORGANOCHLORINE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>2762</td>
</tr>
<tr>
<td>ORGANOCHLORINE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>2996</td>
</tr>
<tr>
<td>ORGANOCHLORINE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point not less than 23°C</td>
<td>6.1</td>
<td>2995</td>
</tr>
<tr>
<td>ORGANOCHLORINE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2761</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>ORGANOMETALLIC COMPOUND, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>3282</td>
</tr>
<tr>
<td>ORGANOMETALLIC COMPOUND, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>3467</td>
</tr>
<tr>
<td>ORGANOMETALLIC COMPOUND SOLUTION, WATER-REACTIVE, FLAMMABLE, N.O.S.</td>
<td>4.3</td>
<td>3207</td>
</tr>
<tr>
<td>ORGANOMETALLIC COMPOUND, WATER-REACTIVE, FLAMMABLE, N.O.S.</td>
<td>4.3</td>
<td>3207</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, LIQUID, PYROPHORIC</td>
<td>4.2</td>
<td>3392</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, LIQUID, PYROPHORIC, WATER-REACTIVE</td>
<td>4.2</td>
<td>3394</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, LIQUID, WATER-REACTIVE</td>
<td>4.3</td>
<td>3398</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, LIQUID, WATER-REACTIVE, FLAMMABLE</td>
<td>4.3</td>
<td>3399</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, PYROPHORIC</td>
<td>4.2</td>
<td>3391</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, WATER-REACTIVE</td>
<td>4.2</td>
<td>3393</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, SELF-HEATING</td>
<td>4.2</td>
<td>3400</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, WATER-REACTIVE, FLAMMABLE</td>
<td>4.3</td>
<td>3396</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, WATER-REACTIVE</td>
<td>4.3</td>
<td>3395</td>
</tr>
<tr>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, WATER-REACTIVE, SELF-HEATING</td>
<td>4.3</td>
<td>3397</td>
</tr>
<tr>
<td>ORGANOPHOSPHORUS COMPOUND, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>3278</td>
</tr>
<tr>
<td>ORGANOPHOSPHORUS COMPOUND, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>3464</td>
</tr>
<tr>
<td>ORGANOPHOSPHORUS COMPOUND, TOXIC, FLAMMABLE, N.O.S.</td>
<td>6.1</td>
<td>3279</td>
</tr>
<tr>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>2784</td>
</tr>
<tr>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3018</td>
</tr>
<tr>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, FLAMMABLE, flash-point not less than 23 °C</td>
<td>6.1</td>
<td>3017</td>
</tr>
<tr>
<td>ORGANOPHOSPHORUS PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2783</td>
</tr>
<tr>
<td>ORGANOTIN COMPOUND, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>2788</td>
</tr>
<tr>
<td>ORGANOTIN COMPOUND, SOLID, N.O.S.</td>
<td>6.1</td>
<td>3146</td>
</tr>
<tr>
<td>ORGANOTIN PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>2787</td>
</tr>
<tr>
<td>ORGANOTIN PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3020</td>
</tr>
<tr>
<td>ORGANOTIN PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23°C</td>
<td>6.1</td>
<td>3019</td>
</tr>
<tr>
<td>ORGANOTIN PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2786</td>
</tr>
</tbody>
</table>
Part 3: Dangerous Goods Lists, Special Provisions and Exceptions

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthophosphoric acid, –see</td>
<td>8</td>
<td>1805</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3453</td>
</tr>
<tr>
<td>OSMIUM TETROXIDE</td>
<td>6.1</td>
<td>2471</td>
</tr>
<tr>
<td>OXIDISING LIQUID, N.O.S.</td>
<td>5.1</td>
<td>3139</td>
</tr>
<tr>
<td>OXIDISING LIQUID, CORROSIVE, N.O.S.</td>
<td>5.1</td>
<td>3098</td>
</tr>
<tr>
<td>OXIDISING LIQUID, TOXIC, N.O.S.</td>
<td>5.1</td>
<td>3099</td>
</tr>
<tr>
<td>OXIDISING SOLID, N.O.S.</td>
<td>5.1</td>
<td>1479</td>
</tr>
<tr>
<td>OXIDISING SOLID, CORROSIVE, N.O.S.</td>
<td>5.1</td>
<td>3085</td>
</tr>
<tr>
<td>OXIDISING SOLID, FLAMMABLE, N.O.S.</td>
<td>5.1</td>
<td>3137</td>
</tr>
<tr>
<td>OXIDISING SOLID, SELF-HEATING, N.O.S.</td>
<td>5.1</td>
<td>3100</td>
</tr>
<tr>
<td>OXIDISING SOLID, TOXIC, N.O.S.</td>
<td>5.1</td>
<td>3087</td>
</tr>
<tr>
<td>OXIDISING SOLID, WATER-REACTIVE, N.O.S.</td>
<td>5.1</td>
<td>3121</td>
</tr>
<tr>
<td>Oxirane, –see</td>
<td>2.3</td>
<td>1040</td>
</tr>
<tr>
<td>OXYGEN, COMPRESSED</td>
<td>2.2</td>
<td>1072</td>
</tr>
<tr>
<td>OXYGEN DIFLUORIDE, COMPRESSED</td>
<td>2.3</td>
<td>2190</td>
</tr>
<tr>
<td>OXYGEN GENERATOR, CHEMICAL</td>
<td>5.1</td>
<td>3356</td>
</tr>
<tr>
<td>OXYGEN, REFRIGERATED LIQUID</td>
<td>2</td>
<td>1073</td>
</tr>
<tr>
<td>1-Oxy-4-nitrobenzene, –see</td>
<td>6.1</td>
<td>1663</td>
</tr>
<tr>
<td>PACKAGING DISCARDED, EMPTY, UNCLEANED</td>
<td>9</td>
<td>3509</td>
</tr>
<tr>
<td>PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)</td>
<td>3</td>
<td>1263</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3066</td>
</tr>
<tr>
<td>PAINT, CORROSIVE, FLAMMABLE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)</td>
<td>8</td>
<td>3470</td>
</tr>
<tr>
<td>PAINT, FLAMMABLE, CORROSIVE (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)</td>
<td>3</td>
<td>3469</td>
</tr>
<tr>
<td>PAINT RELATED MATERIAL (including paint thinning and reducing compound)</td>
<td>3</td>
<td>1263</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3066</td>
</tr>
<tr>
<td>PAINT RELATED MATERIAL CORROSIVE, FLAMMABLE (including paint thinning or reducing compound)</td>
<td>8</td>
<td>3470</td>
</tr>
<tr>
<td>PAINT RELATED MATERIAL, FLAMMABLE, CORROSIVE (including paint thinning or reducing compound)</td>
<td>3</td>
<td>3469</td>
</tr>
<tr>
<td>PAPER, UNSATURATED OIL TREATED, incompletely dried (including carbon paper)</td>
<td>4.2</td>
<td>1379</td>
</tr>
<tr>
<td>Paraffin, –see</td>
<td>3</td>
<td>1223</td>
</tr>
<tr>
<td>PARAFORMALDEHYDE</td>
<td>4.1</td>
<td>2213</td>
</tr>
<tr>
<td>PARALDEHYDE</td>
<td>3</td>
<td>1264</td>
</tr>
<tr>
<td>PCBs, –see</td>
<td>9</td>
<td>2315</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3432</td>
</tr>
<tr>
<td>PENTABORANE</td>
<td>4.2</td>
<td>1380</td>
</tr>
<tr>
<td>PENTACHLOROETHANE</td>
<td>6.1</td>
<td>1669</td>
</tr>
<tr>
<td>PENTACHLOROPHENOL</td>
<td>6.1</td>
<td>3155</td>
</tr>
<tr>
<td>PENTAERYTHRITE TETRANITRATE with not less than 7% wax, by mass</td>
<td>1.1D</td>
<td>0411</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>PENTAERYTHRITOL TETRANITRATE, DESENSITISED with not less than 15% phlegmatiser,</td>
<td>1.1D</td>
<td>0150</td>
</tr>
<tr>
<td>by mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENTAERYTHRITOL TETRANITRATE MIXTURE, DESENSITISED, SOLID, N.O.S. with more than</td>
<td>4.1</td>
<td>3344</td>
</tr>
<tr>
<td>10% but not more than 20% PETN, by mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENTAERYTHRITOL TETRANITRATE, WETTED with not less than 25% water, by mass</td>
<td>1.1D</td>
<td>0150</td>
</tr>
<tr>
<td>PENTAERYTHRITOL TETRANITRATE; PETN MIXTURE, –see</td>
<td>4.1</td>
<td>3344</td>
</tr>
<tr>
<td>Pentafluoroethane, 1,1,1, trifluoroethane, and 1,1,1,2-tetrafluoroethane</td>
<td>2.2</td>
<td>3220</td>
</tr>
<tr>
<td>zeotropic mixture with approximately 44% pentafluoroethane and 52% 1,1,1-</td>
<td>2.2</td>
<td>3337</td>
</tr>
<tr>
<td>trifluoroethane, see</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENTAMENTHYLHEPTANE</td>
<td>3</td>
<td>2286</td>
</tr>
<tr>
<td>Pentanal, –see</td>
<td>3</td>
<td>2058</td>
</tr>
<tr>
<td>PENTANE-2,4-DIONE</td>
<td>3</td>
<td>2310</td>
</tr>
<tr>
<td>PENTANES, liquid</td>
<td>3</td>
<td>1265</td>
</tr>
<tr>
<td>n-Pentane, –see</td>
<td>3</td>
<td>1265</td>
</tr>
<tr>
<td>PENTANOLS</td>
<td>3</td>
<td>1105</td>
</tr>
<tr>
<td>3-Pentanol, –see</td>
<td>3</td>
<td>1105</td>
</tr>
<tr>
<td>1-PENTENE</td>
<td>3</td>
<td>1108</td>
</tr>
<tr>
<td>1-PENTOL</td>
<td>8</td>
<td>2705</td>
</tr>
<tr>
<td>PENTOLITE, dry or wetted with less than 15% water, by mass</td>
<td>1.1D</td>
<td>0151</td>
</tr>
<tr>
<td>Pentyl nitrite, –see</td>
<td>3</td>
<td>1113</td>
</tr>
<tr>
<td>PERCHLORATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>1481</td>
</tr>
<tr>
<td>PERCHLORATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>3211</td>
</tr>
<tr>
<td>PERCHLORIC ACID with more than 50% but not more 50% acid, by mass</td>
<td>8</td>
<td>1873</td>
</tr>
<tr>
<td>PERCHLORIC ACID with not more than 50% acid, by mass</td>
<td>8</td>
<td>1802</td>
</tr>
<tr>
<td>Perchlorobenzene, –see</td>
<td>6.1</td>
<td>2729</td>
</tr>
<tr>
<td>Perchlorocyclopentadiene, –see</td>
<td>6.1</td>
<td>2646</td>
</tr>
<tr>
<td>Perchloroethylene, –see</td>
<td>6.1</td>
<td>1897</td>
</tr>
<tr>
<td>PERCHLOROMETHYL MERCAPTAN</td>
<td>6.1</td>
<td>1670</td>
</tr>
<tr>
<td>PERCHLORYL FLUORIDE</td>
<td>2.3</td>
<td>3083</td>
</tr>
<tr>
<td>Perfluoroacetylchloride, –see</td>
<td>2.3</td>
<td>3057</td>
</tr>
<tr>
<td>PERFLUORO(ETHYL VINYL ETHER)</td>
<td>2.1</td>
<td>3154</td>
</tr>
<tr>
<td>PERFLUOROMETHYL VINYL ETHER</td>
<td>2.1</td>
<td>3153</td>
</tr>
<tr>
<td>Perfluoropropane, –see</td>
<td>2.2</td>
<td>2424</td>
</tr>
<tr>
<td>PERFUMERY PRODUCTS with flammable solvents</td>
<td>3</td>
<td>1266</td>
</tr>
<tr>
<td>PERMANGANATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>1482</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>PERMANGANATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>3214</td>
</tr>
<tr>
<td>PEROXIDES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>1483</td>
</tr>
<tr>
<td>PERSULPHATES, INORGANIC, N.O.S.</td>
<td>5.1</td>
<td>3215</td>
</tr>
<tr>
<td>PERSULPHATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
<td>5.1</td>
<td>3216</td>
</tr>
<tr>
<td>PESTICIDE, LIQUID, FLAMMABLE, TOXIC, N.O.S., flash-point less than 23°C</td>
<td>3</td>
<td>3021</td>
</tr>
<tr>
<td>PESTICIDE, LIQUID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>2902</td>
</tr>
<tr>
<td>PESTICIDE, LIQUID, TOXIC, FLAMMABLE, N.O.S., flash-point not less than 23°C</td>
<td>6.1</td>
<td>2903</td>
</tr>
<tr>
<td>PESTICIDE, SOLID, TOXIC, N.O.S.</td>
<td>6.1</td>
<td>2588</td>
</tr>
<tr>
<td>Pesticide, toxic, under compressed gas, n.o.s, –see</td>
<td>2</td>
<td>1950</td>
</tr>
<tr>
<td>PETN, –see</td>
<td>1.1D</td>
<td>0150</td>
</tr>
<tr>
<td>PETN/TNT, –see</td>
<td>1.1D</td>
<td>0411</td>
</tr>
<tr>
<td>PETROL</td>
<td>3</td>
<td>1203</td>
</tr>
<tr>
<td>PETROLEUM CRUDE OIL</td>
<td>3</td>
<td>1267</td>
</tr>
<tr>
<td>PETROLEUM SOUR CRUDE OIL, FLAMMABLE, TOXIC</td>
<td>3</td>
<td>3494</td>
</tr>
<tr>
<td>PETROLEUM DISTILLATES, N.O.S.</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>Petroleum ether, –see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>PETROLEUM FUEL [AUST.], –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETROLEUM GASES, LIQUEFIED</td>
<td>2.1</td>
<td>1075</td>
</tr>
<tr>
<td>Petroleum naphtha, –see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>Petroleum oil, –see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>PETROLEUM PRODUCTS, N.O.S.</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>Petroleum raffinate, –see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>Petroleum spirit, –see</td>
<td>3</td>
<td>1268</td>
</tr>
<tr>
<td>PHENACYL BROMIDE</td>
<td>6.1</td>
<td>2645</td>
</tr>
<tr>
<td>PHENETIDINES</td>
<td>6.1</td>
<td>2311</td>
</tr>
<tr>
<td>PHENOLATES, LIQUID</td>
<td>8</td>
<td>2904</td>
</tr>
<tr>
<td>PHENOLATES, SOLID</td>
<td>8</td>
<td>2905</td>
</tr>
<tr>
<td>PHENOL, MOLTEN</td>
<td>6.1</td>
<td>2312</td>
</tr>
<tr>
<td>PHENOL, SOLID</td>
<td>6.1</td>
<td>1671</td>
</tr>
<tr>
<td>PHENOL SOLUTION</td>
<td>6.1</td>
<td>2821</td>
</tr>
<tr>
<td>PHENOLSULPHONIC ACID, LIQUID</td>
<td>8</td>
<td>1803</td>
</tr>
<tr>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>3346</td>
</tr>
<tr>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3348</td>
</tr>
<tr>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23°C</td>
<td>6.1</td>
<td>3347</td>
</tr>
<tr>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>3345</td>
</tr>
<tr>
<td>PHENYLACETONITRILE, LIQUID</td>
<td>6.1</td>
<td>2470</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>PHENYLACETYL CHLORIDE</td>
<td>8</td>
<td>2577</td>
</tr>
<tr>
<td>Phenylamine, –see</td>
<td>6.1</td>
<td>1547</td>
</tr>
<tr>
<td>1-Phenylbutane, –see</td>
<td>3</td>
<td>2709</td>
</tr>
<tr>
<td>2-Phenylbutane, –see</td>
<td>3</td>
<td>2709</td>
</tr>
<tr>
<td>PHENYLCARBYLAMINE CHLORIDE</td>
<td>6.1</td>
<td>1672</td>
</tr>
<tr>
<td>PHENYL CHLOROFORMATE</td>
<td>6.1</td>
<td>2746</td>
</tr>
<tr>
<td>Phenyl cyanide, –see</td>
<td>6.1</td>
<td>2224</td>
</tr>
<tr>
<td>PHENYLENEDIAMINES (o-, m-, p-)</td>
<td>6.1</td>
<td>1673</td>
</tr>
<tr>
<td>Phenylethylene, –see</td>
<td>3</td>
<td>2055</td>
</tr>
<tr>
<td>PHENYLHYDRAZINE</td>
<td>6.1</td>
<td>2572</td>
</tr>
<tr>
<td>PHENYL ISOCYANATE</td>
<td>6.1</td>
<td>2487</td>
</tr>
<tr>
<td>Phenylisocyanodichloride, –see</td>
<td>6.1</td>
<td>1672</td>
</tr>
<tr>
<td>PHENYL MERCAPTAN</td>
<td>6.1</td>
<td>2337</td>
</tr>
<tr>
<td>PHENYL MERCURIC ACETATE</td>
<td>6.1</td>
<td>1674</td>
</tr>
<tr>
<td>PHENYL MERCURIC COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>2026</td>
</tr>
<tr>
<td>PHENYL MERCURIC HYDROXIDE</td>
<td>6.1</td>
<td>1894</td>
</tr>
<tr>
<td>PHENYL MERCURIC NITRATE</td>
<td>6.1</td>
<td>1895</td>
</tr>
<tr>
<td>PHENYLPHOSPHORUS DICHLORIDE</td>
<td>8</td>
<td>2798</td>
</tr>
<tr>
<td>PHENYLPHOSPHORUS THIODICHLORIDE</td>
<td>8</td>
<td>2799</td>
</tr>
<tr>
<td>2-Phenylpropene, –see</td>
<td>3</td>
<td>2303</td>
</tr>
<tr>
<td>PHENYL TRICHLOROSILANE</td>
<td>8</td>
<td>1804</td>
</tr>
<tr>
<td>PHOSGENE</td>
<td>2.3</td>
<td>1076</td>
</tr>
<tr>
<td>9-PHOSPHABICYCLONONANES</td>
<td>4.2</td>
<td>2940</td>
</tr>
<tr>
<td>PHOSPHINE</td>
<td>2.3</td>
<td>2199</td>
</tr>
<tr>
<td>PHOSPHINE, ADSORBED</td>
<td>2.3</td>
<td>3525</td>
</tr>
<tr>
<td>Phosphoretted hydrogen, –see</td>
<td>2.3</td>
<td>2199</td>
</tr>
<tr>
<td>PHOSPHORIC ACID, SOLUTION</td>
<td>8</td>
<td>1805</td>
</tr>
<tr>
<td>PHOSPHORIC ACID, SOLID</td>
<td>8</td>
<td>3453</td>
</tr>
<tr>
<td>Phosphoric acid, anhydrous, –see</td>
<td>8</td>
<td>1807</td>
</tr>
<tr>
<td>PHOSPHOROUS ACID</td>
<td>8</td>
<td>2834</td>
</tr>
<tr>
<td>PHOSPHORUS, AMORPHOUS</td>
<td>4.1</td>
<td>1338</td>
</tr>
<tr>
<td>Phosphorus bromide, –see</td>
<td>8</td>
<td>1808</td>
</tr>
<tr>
<td>Phosphorus chloride, –see</td>
<td>6.1</td>
<td>1809</td>
</tr>
<tr>
<td>PHOSPHORUS HEPTASULPHIDE, free from yellow and white phosphorus</td>
<td>4.1</td>
<td>1339</td>
</tr>
<tr>
<td>PHOSPHORUS OXYBROMIDE</td>
<td>8</td>
<td>1939</td>
</tr>
<tr>
<td>PHOSPHORUS OXYBROMIDE, MOLTEN</td>
<td>8</td>
<td>2576</td>
</tr>
<tr>
<td>PHOSPHORUS OXYCHLORIDE</td>
<td>8</td>
<td>1810</td>
</tr>
<tr>
<td>PHOSPHORUS PENTABROMIDE</td>
<td>8</td>
<td>2691</td>
</tr>
<tr>
<td>PHOSPHORUS PENTACHLORIDE</td>
<td>8</td>
<td>1806</td>
</tr>
<tr>
<td>PHOSPHORUS PENTAFLUORIDE</td>
<td>2.3</td>
<td>2198</td>
</tr>
<tr>
<td>PHOSPHORUS PENTAFLUORIDE, ADSORBED</td>
<td>2.3</td>
<td>3524</td>
</tr>
<tr>
<td>PHOSPHORUS PENTASULPHIDE, free from yellow and white phosphorus</td>
<td>4.3</td>
<td>1340</td>
</tr>
<tr>
<td>PHOSPHORUS PENTOXIDE</td>
<td>8</td>
<td>1807</td>
</tr>
<tr>
<td>PHOSPHORUS SESQUISULPHIDE, free from yellow and white phosphorus</td>
<td>4.1</td>
<td>1341</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Phosphorus (V) sulphide, free from yellow and white phosphorus, –see</td>
<td>4.3</td>
<td>1340</td>
</tr>
<tr>
<td>Phosphorus sulphochloride, –see</td>
<td>8</td>
<td>1837</td>
</tr>
<tr>
<td>PHOSPHORUS TRIBROMIDE</td>
<td>8</td>
<td>1808</td>
</tr>
<tr>
<td>PHOSPHORUS TRICHLORIDE</td>
<td>6.1</td>
<td>1809</td>
</tr>
<tr>
<td>PHOSPHORUS TRIOXIDE</td>
<td>8</td>
<td>2578</td>
</tr>
<tr>
<td>PHOSPHORUS TRISULPHIDE, free from yellow and white phosphorus</td>
<td>4.1</td>
<td>1343</td>
</tr>
<tr>
<td>PHOSPHORUS, WHITE, DRY</td>
<td>4.2</td>
<td>1381</td>
</tr>
<tr>
<td>PHOSPHORUS, WHITE IN SOLUTION</td>
<td>4.2</td>
<td>1381</td>
</tr>
<tr>
<td>PHOSPHORUS, WHITE, MOLTEN</td>
<td>4.2</td>
<td>2447</td>
</tr>
<tr>
<td>PHOSPHORUS, WHITE, UNDER WATER</td>
<td>4.2</td>
<td>1381</td>
</tr>
<tr>
<td>PHOSPHORUS, YELLOW, DRY</td>
<td>4.2</td>
<td>1381</td>
</tr>
<tr>
<td>PHOSPHORUS, YELLOW, IN SOLUTION</td>
<td>4.2</td>
<td>1381</td>
</tr>
<tr>
<td>PHOSPHORUS, YELLOW, UNDER WATER</td>
<td>4.2</td>
<td>1381</td>
</tr>
<tr>
<td>Phosphoryl chloride, –see</td>
<td>8</td>
<td>1810</td>
</tr>
<tr>
<td>PHTHALIC ANHYDRIDE with more than 0.05% of maleic anhydride</td>
<td>8</td>
<td>2214</td>
</tr>
<tr>
<td>PICOLINES</td>
<td>3</td>
<td>2313</td>
</tr>
<tr>
<td>PICRAMIDE, –see</td>
<td>1.1D</td>
<td>0153</td>
</tr>
<tr>
<td>PICRIC ACID, –see</td>
<td>1.1D</td>
<td>0154</td>
</tr>
<tr>
<td>PICRIC ACID, WETTED –see</td>
<td>4.1</td>
<td>1344</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3364</td>
</tr>
<tr>
<td>PICRITE, –see</td>
<td>1.1D</td>
<td>0282</td>
</tr>
<tr>
<td>PICRITE, WETTED, –see</td>
<td>4.1</td>
<td>1336</td>
</tr>
<tr>
<td>Picrotoxin, –see</td>
<td>6.1</td>
<td>3172</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>3462</td>
</tr>
<tr>
<td>PICRYL CHLORIDE, –see</td>
<td>1.1D</td>
<td>0155</td>
</tr>
<tr>
<td>PICRYLCHLORIDE, WETTED –see</td>
<td>4.1</td>
<td>3365</td>
</tr>
<tr>
<td>alpha-PINENE</td>
<td>3</td>
<td>2368</td>
</tr>
<tr>
<td>PINE OIL</td>
<td>3</td>
<td>1272</td>
</tr>
<tr>
<td>PIPERAZINE</td>
<td>8</td>
<td>2579</td>
</tr>
<tr>
<td>PIPERIDINE</td>
<td>8</td>
<td>2401</td>
</tr>
<tr>
<td>Pivaloyl chloride, –see</td>
<td>6.1</td>
<td>2438</td>
</tr>
<tr>
<td>Plastic explosives , –see</td>
<td>1.1D</td>
<td>0084</td>
</tr>
<tr>
<td>PLASTICS MOULDING COMPOUND in dough, sheet or extruded rope form evolving flammable vapour</td>
<td>9</td>
<td>3314</td>
</tr>
<tr>
<td>PLASTICS, NITROCELLULOSE- BASED, SELF-HEATING, N.O.S.</td>
<td>4.2</td>
<td>2006</td>
</tr>
<tr>
<td>POLISH [AUST.], –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYAMINES, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>3</td>
<td>2733</td>
</tr>
<tr>
<td>POLYAMINES, LIQUID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>2735</td>
</tr>
<tr>
<td>POLYAMINES, LIQUID, CORROSIVE, FLAMMABLE, N.O.S.</td>
<td>8</td>
<td>2734</td>
</tr>
<tr>
<td>POLYAMINES, SOLID, CORROSIVE, N.O.S.</td>
<td>8</td>
<td>3259</td>
</tr>
<tr>
<td>POLYCHLORINATED BIPHENYLS, LIQUID</td>
<td>9</td>
<td>2315</td>
</tr>
<tr>
<td>POLYCHLORINATED BIPHENYLS, SOLID</td>
<td>9</td>
<td>3432</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>POLYESTER RESIN KIT, liquid base material</td>
<td>3</td>
<td>3269</td>
</tr>
<tr>
<td>POLYESTER RESIN KIT, solid base material</td>
<td>4.1</td>
<td>3527</td>
</tr>
<tr>
<td>POLYHALOGENATED BIPHENYLS, LIQUID</td>
<td>9</td>
<td>3151</td>
</tr>
<tr>
<td>POLYHALOGENATED BIPHENYLS, SOLID</td>
<td>9</td>
<td>3152</td>
</tr>
<tr>
<td>POLYHALOGENATED TERPHENYLS, LIQUID</td>
<td>9</td>
<td>3151</td>
</tr>
<tr>
<td>POLYHALOGENATED TERPHENYLS, SOLID</td>
<td>9</td>
<td>3152</td>
</tr>
<tr>
<td>POLYMERIC BEADS, EXPANDABLE, evolving flammable vapour</td>
<td>9</td>
<td>2211</td>
</tr>
<tr>
<td>POLYMERIZING SUBSTANCE, LIQUID, STABILIZED, N.O.S.</td>
<td>4.1</td>
<td>3532</td>
</tr>
<tr>
<td>POLYMERIZING SUBSTANCE, LIQUID, TEMPERATURE CONTROLLED, N.O.S.</td>
<td>4.1</td>
<td>3534</td>
</tr>
<tr>
<td>POLYMERIZING SUBSTANCE, SOLID, STABILIZED, N.O.S.</td>
<td>4.1</td>
<td>3531</td>
</tr>
<tr>
<td>POLYMERIZING SUBSTANCE, SOLID, TEMPERATURE CONTROLLED, N.O.S.</td>
<td>4.1</td>
<td>3533</td>
</tr>
<tr>
<td>Polystyrene beads, expandable, –see</td>
<td>9</td>
<td>2211</td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>4.3</td>
<td>2257</td>
</tr>
<tr>
<td>POTASSIUM ARSENATE</td>
<td>6.1</td>
<td>1677</td>
</tr>
<tr>
<td>POTASSIUM ARSENITE</td>
<td>6.1</td>
<td>1678</td>
</tr>
<tr>
<td>Potassium bifluoride, –see</td>
<td>8</td>
<td>1811</td>
</tr>
<tr>
<td>Potassium bisulphate, –see</td>
<td>8</td>
<td>2509</td>
</tr>
<tr>
<td>Potassium bisulphite solution, –see</td>
<td>8</td>
<td>2693</td>
</tr>
<tr>
<td>POTASSIUM BOROHYDRIDE</td>
<td>4.3</td>
<td>1870</td>
</tr>
<tr>
<td>POTASSIUM BROMATE</td>
<td>5.1</td>
<td>1484</td>
</tr>
<tr>
<td>POTASSIUM CHLORATE</td>
<td>5.1</td>
<td>1485</td>
</tr>
<tr>
<td>POTASSIUM CHLORATE, AQUEOUS SOLUTION</td>
<td>5.1</td>
<td>2427</td>
</tr>
<tr>
<td>Potassium chloride mixed with mineral oil, –see</td>
<td>1.1D</td>
<td>0083</td>
</tr>
<tr>
<td>POTASSIUM CUPROCYANIDE</td>
<td>6.1</td>
<td>1679</td>
</tr>
<tr>
<td>POTASSIUM CYANIDE, SOLID</td>
<td>6.1</td>
<td>1680</td>
</tr>
<tr>
<td>POTASSIUM CYANIDE SOLUTION</td>
<td>6.1</td>
<td>3413</td>
</tr>
<tr>
<td>Potassium dicyanocuprate (I), –see</td>
<td>6.1</td>
<td>1679</td>
</tr>
<tr>
<td>POTASSIUM DITHIONITE</td>
<td>4.2</td>
<td>1929</td>
</tr>
<tr>
<td>POTASSIUM FLUORIDE, SOLID</td>
<td>6.1</td>
<td>1812</td>
</tr>
<tr>
<td>POTASSIUM FLUORIDE SOLUTION</td>
<td>6.1</td>
<td>3422</td>
</tr>
<tr>
<td>POTASSIUM FLUOROACETATE</td>
<td>6.1</td>
<td>2628</td>
</tr>
<tr>
<td>POTASSIUM FLUOROSILICATE</td>
<td>6.1</td>
<td>2655</td>
</tr>
<tr>
<td>Potassium hexafluorosilicate, –see</td>
<td>6.1</td>
<td>2655</td>
</tr>
<tr>
<td>Potassium hydrate, –see</td>
<td>8</td>
<td>1814</td>
</tr>
<tr>
<td>POTASSIUM HYDROGENDIFLUORIDE SOLID</td>
<td>8</td>
<td>1811</td>
</tr>
<tr>
<td>POTASSIUM HYDROGENDIFLUORIDE SOLUTION</td>
<td>8</td>
<td>3421</td>
</tr>
<tr>
<td>POTASSIUM HYDROGEN SULPHATE</td>
<td>8</td>
<td>2509</td>
</tr>
<tr>
<td>POTASSIUM HYDROSULPHITE, –see</td>
<td>4.2</td>
<td>1929</td>
</tr>
<tr>
<td>Potassium hydroxide, liquid, –see</td>
<td>8</td>
<td>1814</td>
</tr>
<tr>
<td>POTASSIUM HYDROXIDE, SOLID</td>
<td>8</td>
<td>1813</td>
</tr>
<tr>
<td>POTASSIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>1814</td>
</tr>
<tr>
<td>POTASSIUM METAL ALLOYS, LIQUID</td>
<td>4.3</td>
<td>1420</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>POTASSIUM METAL ALLOYS, SOLID</td>
<td>4.3</td>
<td>3403</td>
</tr>
<tr>
<td>POTASSIUM META VanADATE</td>
<td>6.1</td>
<td>2864</td>
</tr>
<tr>
<td>POTASSIUM MONOXIDE</td>
<td>8</td>
<td>2033</td>
</tr>
<tr>
<td>POTASSIUM NITRATE</td>
<td>5.1</td>
<td>1486</td>
</tr>
<tr>
<td>Potassium nitrate and sodium nitrate mixture, –see</td>
<td>5.1</td>
<td>1499</td>
</tr>
<tr>
<td>POTASSIUM NITRATE AND SODIUM NITRITE MIXTURE</td>
<td>5.1</td>
<td>1487</td>
</tr>
<tr>
<td>POTASSIUM NITRITE</td>
<td>5.1</td>
<td>1488</td>
</tr>
<tr>
<td>POTASSIUM PERCHLORATE</td>
<td>5.1</td>
<td>1489</td>
</tr>
<tr>
<td>POTASSIUM PERMANGANATE</td>
<td>5.1</td>
<td>1490</td>
</tr>
<tr>
<td>POTASSIUM PEROXIDE</td>
<td>5.1</td>
<td>1491</td>
</tr>
<tr>
<td>POTASSIUM PERSULPHATE</td>
<td>5.1</td>
<td>1492</td>
</tr>
<tr>
<td>POTASSIUM PHOSPHIDE</td>
<td>4.3</td>
<td>2012</td>
</tr>
<tr>
<td>Potassium selenate, –see</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>Potassium selenite, –see</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>Potassium silicofluoride, –see</td>
<td>6.1</td>
<td>2655</td>
</tr>
<tr>
<td>POTASSIUM SODIUM ALLOYS, LIQUID</td>
<td>4.3</td>
<td>1422</td>
</tr>
<tr>
<td>Potassium sodium alloys, SOLID</td>
<td>4.3</td>
<td>3404</td>
</tr>
<tr>
<td>POTASSIUM SULPHIDE with less than 30% water of crystallisation</td>
<td>4.2</td>
<td>1382</td>
</tr>
<tr>
<td>POTASSIUM SULPHIDE, ANHYDROUS</td>
<td>4.2</td>
<td>1382</td>
</tr>
<tr>
<td>POTASSIUM SULPHIDE, HYDRATED with not less than 30% water of crystallisation</td>
<td>8</td>
<td>1847</td>
</tr>
<tr>
<td>POTASSIUM SUPER OXIDE</td>
<td>5.1</td>
<td>2466</td>
</tr>
<tr>
<td>Potassium tetracyanomercurate (II), –see</td>
<td>6.1</td>
<td>1626</td>
</tr>
<tr>
<td>POWDER CAKE, WETTED with not less than 17% alcohol, by mass</td>
<td>1.1C</td>
<td>0433</td>
</tr>
<tr>
<td>POWDER CAKE, WETTED with not less than 25% water, by mass</td>
<td>1.3C</td>
<td>0159</td>
</tr>
<tr>
<td>POWDER PASTE, –see</td>
<td>1.1C</td>
<td>0433</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0159</td>
</tr>
<tr>
<td>POWDER, SMOKELESS</td>
<td>1.1C</td>
<td>0160016105</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>09</td>
</tr>
<tr>
<td>Power devices, explosive, –see</td>
<td>1.2C</td>
<td>0381</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0275</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0276</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0323</td>
</tr>
<tr>
<td>PRIMERS, CAP TYPE</td>
<td>1.1B</td>
<td>0377</td>
</tr>
<tr>
<td></td>
<td>1.4B</td>
<td>0378</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0044</td>
</tr>
<tr>
<td>Primers, small arms, –see</td>
<td>1.4S</td>
<td>0044</td>
</tr>
<tr>
<td>PRIMERS, TUBULAR</td>
<td>1.3G</td>
<td>0319</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0320</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0376</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>PRINTING INK, flammable or PRINTING INK RELATED MATERIAL (including printing ink thinning or reducing compound), flammable</td>
<td>3</td>
<td>1210</td>
</tr>
<tr>
<td>Projectiles, illuminating, –see</td>
<td>1.2G</td>
<td>0171</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0254</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0297</td>
</tr>
<tr>
<td>PROJECTILES, inert with tracer</td>
<td>1.3G</td>
<td>0424</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0425</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0345</td>
</tr>
<tr>
<td>PROJECTILES with burster or expelling charge</td>
<td>1.2D</td>
<td>0346</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0426</td>
</tr>
<tr>
<td></td>
<td>1.2G</td>
<td>0434</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0347</td>
</tr>
<tr>
<td></td>
<td>1.4F</td>
<td>0427</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0435</td>
</tr>
<tr>
<td>PROJECTILES with bursting charge</td>
<td>1.1D</td>
<td>0168</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0167</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0169</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0324</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0344</td>
</tr>
<tr>
<td>PROPADIENE, STABILISED</td>
<td>2.1</td>
<td>2200</td>
</tr>
<tr>
<td>Propadiene and methyl acetylene mixture, stabilised, – 2.1 see</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROPANE</td>
<td>2.1</td>
<td>1978</td>
</tr>
<tr>
<td>PROPANETHIOLS</td>
<td>3</td>
<td>2402</td>
</tr>
<tr>
<td>n-PROPANOL</td>
<td>3</td>
<td>1274</td>
</tr>
<tr>
<td>PROPELLANT, LIQUID</td>
<td>1.1C</td>
<td>0497</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0495</td>
</tr>
<tr>
<td>PROPELLANT, SOLID</td>
<td>1.1C</td>
<td>0498</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0499</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0501</td>
</tr>
<tr>
<td>Propellant with a single base,</td>
<td>1.1C</td>
<td>0160</td>
</tr>
<tr>
<td>Propellant with a double base,</td>
<td>1.3C</td>
<td>0161</td>
</tr>
<tr>
<td>Propellant with a triple base,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propene, –see</td>
<td>2.1</td>
<td>1077</td>
</tr>
<tr>
<td>PROPIONALDEHYDE</td>
<td>3</td>
<td>1275</td>
</tr>
<tr>
<td>PROPIONIC ACID with not less than 10% and less than 90% acid by mass</td>
<td>8</td>
<td>1848</td>
</tr>
<tr>
<td>PROPIONIC ACID with not less than 90% acid by mass</td>
<td>8</td>
<td>3463</td>
</tr>
<tr>
<td>PROPIONIC ANHYDRIDE</td>
<td>8</td>
<td>2496</td>
</tr>
<tr>
<td>PROPIONITRILE</td>
<td>3</td>
<td>2404</td>
</tr>
<tr>
<td>PROPIONYL CHLORIDE</td>
<td>3</td>
<td>1815</td>
</tr>
<tr>
<td>n-PROPYL ACETATE</td>
<td>3</td>
<td>1276</td>
</tr>
<tr>
<td>PROPYL ALCOHOL, NORMAL, –see</td>
<td>3</td>
<td>1274</td>
</tr>
<tr>
<td>PROPYLAMINE</td>
<td>3</td>
<td>1277</td>
</tr>
<tr>
<td>n-PROPYLENZENE</td>
<td>3</td>
<td>2364</td>
</tr>
<tr>
<td>Propyl chloride, –see</td>
<td>3</td>
<td>1278</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>n-PROPYL CHLOROFORMATE</td>
<td>6.1</td>
<td>2740</td>
</tr>
<tr>
<td>PROPYLENE</td>
<td>2.1</td>
<td>1077</td>
</tr>
<tr>
<td>PROPYLENE CHLOROHYDRIN</td>
<td>6.1</td>
<td>2611</td>
</tr>
<tr>
<td>1,2-PROPYLENEDIAMINE</td>
<td>8</td>
<td>2258</td>
</tr>
<tr>
<td>Propylene dichloride, –see</td>
<td>3</td>
<td>1279</td>
</tr>
<tr>
<td>PROPYLENEMINE, STABILISED</td>
<td>3</td>
<td>1921</td>
</tr>
<tr>
<td>PROPYLENE OXIDE</td>
<td>3</td>
<td>1280</td>
</tr>
<tr>
<td>PROPYLENE TETRAMER</td>
<td>3</td>
<td>2850</td>
</tr>
<tr>
<td>Propylene trimer, –see</td>
<td>3</td>
<td>2057</td>
</tr>
<tr>
<td>PROPYL FORMATES</td>
<td>3</td>
<td>1281</td>
</tr>
<tr>
<td>n-PROPYL ISOCYANATE</td>
<td>6.1</td>
<td>2482</td>
</tr>
<tr>
<td>Propyl mercaptan, –see</td>
<td>3</td>
<td>2402</td>
</tr>
<tr>
<td>n-PROPYL NITRATE</td>
<td>3</td>
<td>1865</td>
</tr>
<tr>
<td>PROPYLTRICHLOROSILANE</td>
<td>8</td>
<td>1816</td>
</tr>
<tr>
<td>Pyrazine hexahydrate, –see</td>
<td>8</td>
<td>2579</td>
</tr>
<tr>
<td>PYRETHROID PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>3350</td>
</tr>
<tr>
<td>PYRETHROID PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3352</td>
</tr>
<tr>
<td>PYRETHROID PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23°C</td>
<td>6.1</td>
<td>3351</td>
</tr>
<tr>
<td>PYRETHROID PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>3349</td>
</tr>
<tr>
<td>PYRIDINE</td>
<td>3</td>
<td>1282</td>
</tr>
<tr>
<td>PYROPHORIC ALLOY, N.O.S.</td>
<td>4.2</td>
<td>1383</td>
</tr>
<tr>
<td>PYROPHORIC LIQUID, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3194</td>
</tr>
<tr>
<td>PYROPHORIC LIQUID, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>2845</td>
</tr>
<tr>
<td>PYROPHORIC METAL, N.O.S.</td>
<td>4.2</td>
<td>1383</td>
</tr>
<tr>
<td>PYROPHORIC SOLID, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3200</td>
</tr>
<tr>
<td>PYROPHORIC SOLID, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>2846</td>
</tr>
<tr>
<td>PYROSULPHURYL CHLORIDE</td>
<td>8</td>
<td>1817</td>
</tr>
<tr>
<td>Pyroxylin solution, –see</td>
<td>3</td>
<td>2059</td>
</tr>
<tr>
<td>PYRROLIDINE</td>
<td>3</td>
<td>1922</td>
</tr>
<tr>
<td>QUINOLINE</td>
<td>6.1</td>
<td>2656</td>
</tr>
<tr>
<td>Quinone, –see</td>
<td>6.1</td>
<td>2587</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - ARTICLES MANUFACTURED FROM NATURAL URANIUM or DEPLETED URANIUM or NATURAL THORIUM</td>
<td>7</td>
<td>2909</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - EMPTY PACKAGING</td>
<td>7</td>
<td>2908</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - INSTRUMENTS or ARTICLES</td>
<td>7</td>
<td>2911</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - LIMITED QUANTITY OF MATERIAL</td>
<td>7</td>
<td>2910</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-I), non fissile or fissile-expected</td>
<td>7</td>
<td>2912</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-II), FISSILE</td>
<td>7</td>
<td>3324</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-II), non fissile or fissile-exceptioned</td>
<td>7</td>
<td>3321</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY, (LSA-III), FISSILE</td>
<td>7</td>
<td>3325</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-III), non fissile or fissile-exceptioned</td>
<td>7</td>
<td>3322</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, SURFACE CONTAMINATED OBJECTS (SCO-I or SCO-II), FISSILE</td>
<td>7</td>
<td>3326</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, SURFACE CONTAMINATED OBJECTS (SCO-I or SCO-II), non fissile or fissile-exceptioned</td>
<td>7</td>
<td>2913</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TRANSPORTED UNDER SPECIAL ARRANGEMENT, FISSILE</td>
<td>7</td>
<td>3331</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TRANSPORTED UNDER SPECIAL ARRANGEMENT, non fissile or fissile-exceptioned</td>
<td>7</td>
<td>2919</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, FISSILE, non-special form</td>
<td>7</td>
<td>3327</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, non-special form, non fissile or fissile-exceptioned</td>
<td>7</td>
<td>2915</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, SPECIAL FORM, FISSILE</td>
<td>7</td>
<td>3333</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, SPECIAL FORM, non fissile or fissile-exceptioned</td>
<td>7</td>
<td>3332</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE B(M) PACKAGE, FISSILE</td>
<td>7</td>
<td>3329</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE B(M) PACKAGE, non fissile or fissile-exceptioned</td>
<td>7</td>
<td>2917</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE B(U) PACKAGE, FISSILE</td>
<td>7</td>
<td>3328</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE B(U) PACKAGE, non fissile or fissile-exceptioned</td>
<td>7</td>
<td>2916</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE C PACKAGE, FISSILE</td>
<td>7</td>
<td>3330</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, TYPE C PACKAGE, non fissile or fissile-exceptioned</td>
<td>7</td>
<td>3323</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, URANIUM HEXAFLUORIDE, FISSILE</td>
<td>7</td>
<td>2977</td>
</tr>
<tr>
<td>RADIOACTIVE MATERIAL, URANIUM HEXAFLUORIDE, non fissile or fissile-exceptioned</td>
<td>7</td>
<td>2978</td>
</tr>
<tr>
<td>Rags, OILY</td>
<td>4.2</td>
<td>1856</td>
</tr>
<tr>
<td>RDX, –see</td>
<td>1.1D</td>
<td>0072</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0391</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0483</td>
</tr>
<tr>
<td>RECEPTACLES, SMALL, CONTAINING GAS without a release device, non-refillable</td>
<td>2</td>
<td>2037</td>
</tr>
<tr>
<td>Red phosphorus, –see</td>
<td>4.1</td>
<td>1338</td>
</tr>
<tr>
<td>REFRIGERANT GAS, N.O.S.</td>
<td>2.2</td>
<td>1078</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 12, –see</td>
<td>2.2</td>
<td>1028</td>
</tr>
</tbody>
</table>
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFRIGERANT GAS R 12B1, –see</td>
<td>2.2</td>
<td>1974</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 13, –see</td>
<td>2.2</td>
<td>1022</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 13B1, –see</td>
<td>2.2</td>
<td>1009</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 14, –see</td>
<td>2.2</td>
<td>1982</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 21, –see</td>
<td>2.2</td>
<td>1029</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 22, –see</td>
<td>2.2</td>
<td>1018</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 23, –see</td>
<td>2.2</td>
<td>1984</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 32, –see</td>
<td>2.1</td>
<td>3252</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 40, –see</td>
<td>2.1</td>
<td>1063</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 41, –see</td>
<td>2.1</td>
<td>2454</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 114, –see</td>
<td>2.2</td>
<td>1958</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 115, –see</td>
<td>2.2</td>
<td>1020</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 116, –see</td>
<td>2.2</td>
<td>2193</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 124, –see</td>
<td>2.2</td>
<td>1021</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 125, –see</td>
<td>2.2</td>
<td>3220</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 133a, –see</td>
<td>2.2</td>
<td>1983</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 134a, –see</td>
<td>2.2</td>
<td>3159</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 142b, –see</td>
<td>2.1</td>
<td>2517</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 143a, –see</td>
<td>2.1</td>
<td>2035</td>
</tr>
<tr>
<td>REFRIGERANT GASSR 152a, –see</td>
<td>2.1</td>
<td>1030</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 161, –see</td>
<td>2.1</td>
<td>2453</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 218, –see</td>
<td>2.2</td>
<td>2424</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 227, –see</td>
<td>2.2</td>
<td>3296</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 404A</td>
<td>2.2</td>
<td>3337</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 407A</td>
<td>2.2</td>
<td>3338</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 407B</td>
<td>2.2</td>
<td>3339</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 407C</td>
<td>2.2</td>
<td>3340</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 500, –see</td>
<td>2.2</td>
<td>2602</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 502, –see</td>
<td>2.2</td>
<td>1973</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 503, –see</td>
<td>2.2</td>
<td>2599</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 1132a, –see</td>
<td>2.2</td>
<td>1959</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 1216, –see</td>
<td>2.2</td>
<td>1858</td>
</tr>
<tr>
<td>REFRIGERANT GAS R 1318, –see</td>
<td>2.2</td>
<td>2422</td>
</tr>
<tr>
<td>REFRIGERANT GAS RC 318, –see</td>
<td>2.2</td>
<td>1976</td>
</tr>
<tr>
<td>REFRIGERATING MACHINES containing flammable, non-toxic, liquefied gas</td>
<td>2.1</td>
<td>3358</td>
</tr>
<tr>
<td>REFRIGERATING MACHINES containing non-flammable, non-toxic, gases or ammonia solutions (UN 2672)</td>
<td>2.2</td>
<td>2857</td>
</tr>
<tr>
<td>REGULATED MEDICAL WASTE, N.O.S.</td>
<td>6.2</td>
<td>3291</td>
</tr>
<tr>
<td>RELEASE DEVICES, EXPLOSIVE</td>
<td>1.4S</td>
<td>0173</td>
</tr>
<tr>
<td>RESIN SOLUTION, flammable</td>
<td>3</td>
<td>1866</td>
</tr>
<tr>
<td>Resorcin, –see</td>
<td>6.1</td>
<td>2876</td>
</tr>
<tr>
<td>RESORCINOL</td>
<td>6.1</td>
<td>2876</td>
</tr>
<tr>
<td>RIVETS, EXPLOSIVE</td>
<td>1.4S</td>
<td>0174</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>ROCKET MOTORS</td>
<td>1.1C</td>
<td>0280</td>
</tr>
<tr>
<td></td>
<td>1.2C</td>
<td>0281</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0186</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0510</td>
</tr>
<tr>
<td>ROCKET MOTORS, LIQUID FUELLED</td>
<td>1.2J</td>
<td>0395</td>
</tr>
<tr>
<td></td>
<td>1.3J</td>
<td>0396</td>
</tr>
<tr>
<td>ROCKET MOTORS WITH HYPERGOLIC LIQUIDS</td>
<td>1.2L</td>
<td>0322</td>
</tr>
<tr>
<td>with or without expelling charge</td>
<td>1.3L</td>
<td>0250</td>
</tr>
<tr>
<td>ROCKETS with bursting charge</td>
<td>1.1E</td>
<td>0181</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0180</td>
</tr>
<tr>
<td></td>
<td>1.2E</td>
<td>0182</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0295</td>
</tr>
<tr>
<td>ROCKETS with expelling charge</td>
<td>1.2C</td>
<td>0436</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0437</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0438</td>
</tr>
<tr>
<td>ROCKETS with inert head</td>
<td>1.3C</td>
<td>0183</td>
</tr>
<tr>
<td></td>
<td>1.2C</td>
<td>0502</td>
</tr>
<tr>
<td>ROCKETS, LINE-THROWING</td>
<td>1.2G</td>
<td>0238</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0240</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0453</td>
</tr>
<tr>
<td>ROCKETS, LIQUID FUELLED with bursting charge</td>
<td>1.1J</td>
<td>0397</td>
</tr>
<tr>
<td></td>
<td>1.2J</td>
<td>0398</td>
</tr>
<tr>
<td>ROSIN OIL</td>
<td>3</td>
<td>1286</td>
</tr>
<tr>
<td>RUBBER SCRAP, powdered or granulated, not exceeding 840 microns and rubber content exceeding 45%</td>
<td>4.1</td>
<td>1345</td>
</tr>
<tr>
<td>RUBBER SHODDY, powdered or granulated, not exceeding 840 microns and rubber content exceeding 45%</td>
<td>4.1</td>
<td>1345</td>
</tr>
<tr>
<td>RUBBER SOLUTION</td>
<td>3</td>
<td>1287</td>
</tr>
<tr>
<td>RUBIDIUM</td>
<td>4.3</td>
<td>1423</td>
</tr>
<tr>
<td>RUBIDIUM HYDROXIDE</td>
<td>8</td>
<td>2678</td>
</tr>
<tr>
<td>RUBIDIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>2677</td>
</tr>
<tr>
<td>SAFETY DEVICES, electrically initiated</td>
<td>9</td>
<td>3268</td>
</tr>
<tr>
<td>SAFETY DEVICES, PYROTECHNIC</td>
<td>1.4G</td>
<td>0503</td>
</tr>
<tr>
<td>Saltpetre, --see</td>
<td>5.1</td>
<td>1486</td>
</tr>
<tr>
<td>SAMPLES, EXPLOSIVE, other than initiating explosive</td>
<td>0190</td>
<td></td>
</tr>
<tr>
<td>Sand acid, --see</td>
<td>8</td>
<td>1778</td>
</tr>
<tr>
<td>SEAT-BELT PRETENSIONERS</td>
<td>1.4G</td>
<td>0503</td>
</tr>
<tr>
<td>- see SAFETY DEVICES, PYROTECHNIC or SAFETY DEVICES, electronically initiated</td>
<td>9</td>
<td>3268</td>
</tr>
<tr>
<td>SEED CAKE with more than 1.5% oil and not more than 11% moisture</td>
<td>4.2</td>
<td>1386</td>
</tr>
<tr>
<td>SEED CAKE with not more than 1.5% oil and not more 4.2 than 11% moisture</td>
<td>4.2</td>
<td>2217</td>
</tr>
<tr>
<td>Seed expellers, --see</td>
<td>4.2</td>
<td>1386</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>2217</td>
</tr>
<tr>
<td>SELENATES</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>SELENIC ACID</td>
<td>8</td>
<td>1905</td>
</tr>
<tr>
<td>SELENITES</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>SELENIUM COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>3283</td>
</tr>
<tr>
<td>SELENIUM COMPOUND, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>3440</td>
</tr>
<tr>
<td>SELENIUM DISULPHIDE</td>
<td>6.1</td>
<td>2657</td>
</tr>
<tr>
<td>SELENIUM HEXAFLUORIDE</td>
<td>2.3</td>
<td>2194</td>
</tr>
<tr>
<td>SELENIUM OXYCHLORIDE</td>
<td>8</td>
<td>2879</td>
</tr>
<tr>
<td>SELF-HEATING LIQUID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3188</td>
</tr>
<tr>
<td>SELF-HEATING LIQUID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3185</td>
</tr>
<tr>
<td>SELF-HEATING LIQUID, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3186</td>
</tr>
<tr>
<td>SELF-HEATING LIQUID, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3183</td>
</tr>
<tr>
<td>SELF-HEATING LIQUID, TOXIC, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3187</td>
</tr>
<tr>
<td>SELF-HEATING LIQUID, TOXIC, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3184</td>
</tr>
<tr>
<td>SELF-HEATING SOLID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3192</td>
</tr>
<tr>
<td>SELF-HEATING SOLID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3126</td>
</tr>
<tr>
<td>SELF-HEATING SOLID, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3190</td>
</tr>
<tr>
<td>SELF-HEATING SOLID, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3088</td>
</tr>
<tr>
<td>SELF-HEATING SOLID, OXIDISING, N.O.S.</td>
<td>4.2</td>
<td>3127</td>
</tr>
<tr>
<td>SELF-HEATING SOLID, TOXIC, INORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3191</td>
</tr>
<tr>
<td>SELF-HEATING SOLID, TOXIC, ORGANIC, N.O.S.</td>
<td>4.2</td>
<td>3128</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE B</td>
<td>4.1</td>
<td>3221</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE B, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3231</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE C</td>
<td>4.1</td>
<td>3223</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE C, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3233</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE D</td>
<td>4.1</td>
<td>3225</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE D, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3235</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE E</td>
<td>4.1</td>
<td>3227</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE E, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3237</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE F</td>
<td>4.1</td>
<td>3229</td>
</tr>
<tr>
<td>SELF-REACTIVE LIQUID TYPE F, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3239</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE B</td>
<td>4.1</td>
<td>3222</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE B, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3232</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE C</td>
<td>4.1</td>
<td>3224</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE C, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3234</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE D</td>
<td>4.1</td>
<td>3226</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE D, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3236</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE E</td>
<td>4.1</td>
<td>3228</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE E, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3238</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE F</td>
<td>4.1</td>
<td>3230</td>
</tr>
<tr>
<td>SELF-REACTIVE SOLID TYPE F, TEMPERATURE CONTROLLED</td>
<td>4.1</td>
<td>3240</td>
</tr>
<tr>
<td>SHALE OIL</td>
<td>3</td>
<td>1288</td>
</tr>
<tr>
<td>Shaped charges, –see</td>
<td>1.1D</td>
<td>0059</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0439</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0440</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0441</td>
</tr>
<tr>
<td>SIGNAL DEVICES, HAND</td>
<td>1.4G</td>
<td>0191</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0373</td>
</tr>
<tr>
<td>SIGNALS, DISTRESS, ship</td>
<td>1.1G</td>
<td>0194</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0195</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0506</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0507</td>
</tr>
<tr>
<td>Signals, distress, ship, water-activated, –see</td>
<td>1.3L</td>
<td>0249</td>
</tr>
<tr>
<td>SIGNALS, RAILWAY TRACK, EXPLOSIVE</td>
<td>1.1G</td>
<td>0192</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0193</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0492</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0493</td>
</tr>
<tr>
<td>SIGNALS, SMOKE</td>
<td>1.1G</td>
<td>0196</td>
</tr>
<tr>
<td></td>
<td>1.2G</td>
<td>0313</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0487</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0197</td>
</tr>
<tr>
<td>SILANE</td>
<td>2.1</td>
<td>2203</td>
</tr>
<tr>
<td>Silicofluoric acid, –see</td>
<td>8</td>
<td>1778</td>
</tr>
<tr>
<td>Silicofluorides, n.o.s., –see</td>
<td>6.1</td>
<td>2856</td>
</tr>
<tr>
<td>Silicon chloride, –see</td>
<td>8</td>
<td>1818</td>
</tr>
<tr>
<td>SILICON POWDER, AMORPHOUS</td>
<td>4.1</td>
<td>1346</td>
</tr>
<tr>
<td>SILICON TETRACHLORIDE</td>
<td>8</td>
<td>1818</td>
</tr>
<tr>
<td>SILICON TETRAFLUORIDE</td>
<td>2.3</td>
<td>1859</td>
</tr>
<tr>
<td>SILICON TETRAFLUORIDE, ADSORBED</td>
<td>2.3</td>
<td>3521</td>
</tr>
<tr>
<td>SILVER ARSENITE</td>
<td>6.1</td>
<td>1683</td>
</tr>
<tr>
<td>SILVER CYANIDE</td>
<td>6.1</td>
<td>1684</td>
</tr>
<tr>
<td>SILVER NITRATE</td>
<td>5.1</td>
<td>1493</td>
</tr>
<tr>
<td>SILVER PICRATE, WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>1347</td>
</tr>
<tr>
<td>SLUDGE ACID</td>
<td>8</td>
<td>1906</td>
</tr>
<tr>
<td>SODA LIME with more than 4% sodium hydroxide</td>
<td>8</td>
<td>1907</td>
</tr>
<tr>
<td>SODIUM</td>
<td>4.3</td>
<td>1428</td>
</tr>
<tr>
<td>Sodium aluminate, solid</td>
<td>8</td>
<td>2812</td>
</tr>
<tr>
<td>SODIUM ALUMINATE SOLUTION</td>
<td>8</td>
<td>1819</td>
</tr>
<tr>
<td>SODIUM ALUMINIUM HYDRIDE</td>
<td>4.3</td>
<td>2835</td>
</tr>
<tr>
<td>SODIUM AMMONIUM VANADATE</td>
<td>6.1</td>
<td>2863</td>
</tr>
<tr>
<td>SODIUM ARSANILATE</td>
<td>6.1</td>
<td>2473</td>
</tr>
<tr>
<td>SODIUM ARSENATE</td>
<td>6.1</td>
<td>1685</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>SODIUM ARSENITE, AQUEOUS SOLUTION</td>
<td>6.1</td>
<td>1686</td>
</tr>
<tr>
<td>SODIUM ARSENITE, SOLID</td>
<td>6.1</td>
<td>2027</td>
</tr>
<tr>
<td>SODIUM AZIDE</td>
<td>6.1</td>
<td>1687</td>
</tr>
<tr>
<td>Sodium biffluoride, –see</td>
<td>8</td>
<td>2439</td>
</tr>
<tr>
<td>Sodium binoxide, –see</td>
<td>5.1</td>
<td>1504</td>
</tr>
<tr>
<td>Sodium bisulphite solution, –see</td>
<td>8</td>
<td>2693</td>
</tr>
<tr>
<td>SODIUM BOROHYDRIDE</td>
<td>4.3</td>
<td>1426</td>
</tr>
<tr>
<td>SODIUM BOROHYDRIDE AND SODIUM HYDROXIDE SOLUTION, with not more than 12% sodium borohydrde and not more than 40% sodium hydroxide, by mass</td>
<td>8</td>
<td>3320</td>
</tr>
<tr>
<td>SODIUM BROMATE</td>
<td>5.1</td>
<td>1494</td>
</tr>
<tr>
<td>SODIUM CACODYLATE</td>
<td>6.1</td>
<td>1688</td>
</tr>
<tr>
<td>SODIUM CARBONATE PEROXYHYDRATE</td>
<td>5.1</td>
<td>3378</td>
</tr>
<tr>
<td>SODIUM CHLORATE</td>
<td>5.1</td>
<td>1495</td>
</tr>
<tr>
<td>SODIUM CHLORATE, AQUEOUS SOLUTION</td>
<td>5.1</td>
<td>2428</td>
</tr>
<tr>
<td>Sodium chlorate mixed with dinitrotoluene, –see 1.1D</td>
<td>0</td>
<td>0083</td>
</tr>
<tr>
<td>SODIUM CHLORITE</td>
<td>5.1</td>
<td>1496</td>
</tr>
<tr>
<td>SODIUM CHLOROACETATE</td>
<td>6.1</td>
<td>2659</td>
</tr>
<tr>
<td>SODIUM CUPROCYANIDE, SOLID</td>
<td>6.1</td>
<td>2316</td>
</tr>
<tr>
<td>SODIUM CUPROCYANIDE SOLUTION</td>
<td>6.1</td>
<td>2317</td>
</tr>
<tr>
<td>SODIUM CYANIDE, SOLID</td>
<td>6.1</td>
<td>1689</td>
</tr>
<tr>
<td>SODIUM CYANIDE SOLUTION</td>
<td>6.1</td>
<td>3414</td>
</tr>
<tr>
<td>Sodium dicyanocuprate (I), solid, –see</td>
<td>6.1</td>
<td>2316</td>
</tr>
<tr>
<td>Sodium dicyanocuprate (I) solution, –see</td>
<td>6.1</td>
<td>2317</td>
</tr>
<tr>
<td>Sodium dimethylarsenate, –see</td>
<td>6.1</td>
<td>1688</td>
</tr>
<tr>
<td>SODIUM DINITRO-o-CRESOLATE, dry or wetted with less than 15% water, by mass</td>
<td>1.3C</td>
<td>0234</td>
</tr>
<tr>
<td>SODIUM DINITRO-o-CRESOLATE, WETTED, with not4.1 less than 10% water, by mass</td>
<td>3369</td>
<td>0</td>
</tr>
<tr>
<td>SODIUM DINITRO-o-CRESOLATE, WETTED with not 4.1 less than 15% water, by mass</td>
<td>1348</td>
<td>0</td>
</tr>
<tr>
<td>Sodium dioxide, –see</td>
<td>5.1</td>
<td>1504</td>
</tr>
<tr>
<td>SODIUM DITHIONITE</td>
<td>4.2</td>
<td>1384</td>
</tr>
<tr>
<td>SODIUM FLUORIDE, SOLID</td>
<td>6.1</td>
<td>1690</td>
</tr>
<tr>
<td>SODIUM FLUORIDE SOLUTION</td>
<td>6.1</td>
<td>3415</td>
</tr>
<tr>
<td>SODIUM FLUOROACETATE</td>
<td>6.1</td>
<td>2629</td>
</tr>
<tr>
<td>SODIUM FLUOROSILICATE</td>
<td>6.1</td>
<td>2674</td>
</tr>
<tr>
<td>Sodium hexafluorosilicate, –see</td>
<td>6.1</td>
<td>2674</td>
</tr>
<tr>
<td>Sodium hydrate, –see</td>
<td>8</td>
<td>1824</td>
</tr>
<tr>
<td>SODIUM HYDRIQUE</td>
<td>4.3</td>
<td>1427</td>
</tr>
<tr>
<td>Sodium hydrogen 4-amino- phenylarsenate, –see</td>
<td>6.1</td>
<td>2473</td>
</tr>
<tr>
<td>SODIUM HYDROGENIFLUORIDE</td>
<td>8</td>
<td>2439</td>
</tr>
<tr>
<td>SODIUM HYDROSULPHIDE with less than 25% water of crystallisation</td>
<td>4.2</td>
<td>2318</td>
</tr>
<tr>
<td>SODIUM HYDROSULPHIDE, HYDRATED with not less than 25% water of crystallisation</td>
<td>8</td>
<td>2949</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>SODIUM HYDROSULPHITE, —see</td>
<td>4.2</td>
<td>1384</td>
</tr>
<tr>
<td>SODIUM HYDROXIDE, SOLID</td>
<td>8</td>
<td>1823</td>
</tr>
<tr>
<td>SODIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>1824</td>
</tr>
<tr>
<td>Sodium metasilicate pentahydrate, —see</td>
<td>8</td>
<td>3253</td>
</tr>
<tr>
<td>SODIUM METHYLATE</td>
<td>4.2</td>
<td>1431</td>
</tr>
<tr>
<td>SODIUM METHYLATE SOLUTION in alcohol</td>
<td>3</td>
<td>1289</td>
</tr>
<tr>
<td>SODIUM MONOXIDE</td>
<td>8</td>
<td>1825</td>
</tr>
<tr>
<td>SODIUM NITRATE</td>
<td>5.1</td>
<td>1498</td>
</tr>
<tr>
<td>SODIUM NITRATE AND POTASSIUM NITRATE MIXTURE</td>
<td>5.1</td>
<td>1499</td>
</tr>
<tr>
<td>SODIUM NITRITE</td>
<td>5.1</td>
<td>1500</td>
</tr>
<tr>
<td>Sodium nitrite and potassium nitrate mixture, —see</td>
<td>5.1</td>
<td>1487</td>
</tr>
<tr>
<td>SODIUM PENTACHLOROPHENATE</td>
<td>6.1</td>
<td>2567</td>
</tr>
<tr>
<td>SODIUM PERBORATE MONOHYDRATE</td>
<td>5.1</td>
<td>3377</td>
</tr>
<tr>
<td>SODIUM PERCHLORATE</td>
<td>5.1</td>
<td>1502</td>
</tr>
<tr>
<td>SODIUM PERMANGANATE</td>
<td>5.1</td>
<td>1503</td>
</tr>
<tr>
<td>SODIUM PEROXIDE</td>
<td>5.1</td>
<td>1504</td>
</tr>
<tr>
<td>SODIUM PEROXOBORATE, ANHYDROUS</td>
<td>5.1</td>
<td>3247</td>
</tr>
<tr>
<td>SODIUM PERSULPHATE</td>
<td>5.1</td>
<td>1505</td>
</tr>
<tr>
<td>SODIUM PHOSPHIDE</td>
<td>4.3</td>
<td>1432</td>
</tr>
<tr>
<td>SODIUM PICRAMATE, dry or wetted with less than 20% water, by mass</td>
<td>1.3C</td>
<td>0235</td>
</tr>
<tr>
<td>SODIUM PICRAMATE, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>1349</td>
</tr>
<tr>
<td>Sodium potassium alloys, —see</td>
<td>4.3</td>
<td>1422</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>3404</td>
</tr>
<tr>
<td>Sodium selenate, —see</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>Sodium selenite, —see</td>
<td>6.1</td>
<td>2630</td>
</tr>
<tr>
<td>Sodium silicofluoride, —see</td>
<td>6.1</td>
<td>2674</td>
</tr>
<tr>
<td>SODIUM SULPHIDE, ANHYDROUS</td>
<td>4.2</td>
<td>1385</td>
</tr>
<tr>
<td>SODIUM SULPHIDE with less than 30% water of crystallisation</td>
<td>4.2</td>
<td>1385</td>
</tr>
<tr>
<td>SODIUM SULPHIDE, HYDRATED with not less than 30% water</td>
<td>8</td>
<td>1849</td>
</tr>
<tr>
<td>SODIUM SUPEROXIDE</td>
<td>5.1</td>
<td>2547</td>
</tr>
<tr>
<td>SOLIDS CONTAINING CORROSIVE LIQUID, N.O.S.</td>
<td>8</td>
<td>3244</td>
</tr>
<tr>
<td>SOLIDS CONTAINING FLAMMABLE LIQUID, N.O.S.</td>
<td>4.1</td>
<td>3175</td>
</tr>
<tr>
<td>SOLIDS CONTAINING TOXIC LIQUID, N.O.S.</td>
<td>6.1</td>
<td>3243</td>
</tr>
<tr>
<td>Solvents, flammable, n.o.s., —see</td>
<td>3</td>
<td>1993</td>
</tr>
<tr>
<td>Solvents, flammable, toxic, n.o.s., —see</td>
<td>3</td>
<td>1992</td>
</tr>
<tr>
<td>SOUNDING DEVICES, EXPLOSIVE</td>
<td>1.1D</td>
<td>0374</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0296</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0375</td>
</tr>
<tr>
<td></td>
<td>1.2F</td>
<td>0204</td>
</tr>
<tr>
<td>Squibs, —see</td>
<td>1.4G</td>
<td>0325</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0454</td>
</tr>
<tr>
<td>STAINS [AUST.], —see</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>STANNIC CHLORIDE, ANHYDROUS</td>
<td>8</td>
<td>1827</td>
</tr>
<tr>
<td>STANNIC CHLORIDE PENTAHYDRATE</td>
<td>8</td>
<td>2440</td>
</tr>
<tr>
<td>STANNIC PHOSPHERIDES</td>
<td>4.3</td>
<td>1433</td>
</tr>
<tr>
<td>Steel swarf, see</td>
<td>4.2</td>
<td>2793</td>
</tr>
<tr>
<td>STIBINE</td>
<td>2.3</td>
<td>2676</td>
</tr>
<tr>
<td>Straw</td>
<td>4.1</td>
<td>1327</td>
</tr>
<tr>
<td>Strontium alloys, pyrophoric, see</td>
<td>4.2</td>
<td>1383</td>
</tr>
<tr>
<td>STRONTIUM ARSENITE</td>
<td>6.1</td>
<td>1691</td>
</tr>
<tr>
<td>STRONTIUM CHLORATE</td>
<td>5.1</td>
<td>1506</td>
</tr>
<tr>
<td>Strontium dioxide, see</td>
<td>5.1</td>
<td>1509</td>
</tr>
<tr>
<td>STRONTIUM NITRATE</td>
<td>5.1</td>
<td>1507</td>
</tr>
<tr>
<td>STRONTIUM PERCHLORATE</td>
<td>5.1</td>
<td>1508</td>
</tr>
<tr>
<td>STRONTIUM PEROXIDE</td>
<td>5.1</td>
<td>1509</td>
</tr>
<tr>
<td>STRONTIUM PHOSPHIDE</td>
<td>4.3</td>
<td>2013</td>
</tr>
<tr>
<td>STRYCHNINE</td>
<td>6.1</td>
<td>1692</td>
</tr>
<tr>
<td>STRYCHNINE SALTS</td>
<td>6.1</td>
<td>1692</td>
</tr>
<tr>
<td>STYPHNIC ACID, see</td>
<td>1.1D</td>
<td>0219</td>
</tr>
<tr>
<td>SUBSTANCES, EVI, N.O.S., see</td>
<td>1.5D</td>
<td>0482</td>
</tr>
<tr>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
<td>1.1A</td>
<td>0473</td>
</tr>
<tr>
<td></td>
<td>1.1C</td>
<td>0474</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0475</td>
</tr>
<tr>
<td></td>
<td>1.1G</td>
<td>0476</td>
</tr>
<tr>
<td></td>
<td>1.1L</td>
<td>0357</td>
</tr>
<tr>
<td></td>
<td>1.2L</td>
<td>0358</td>
</tr>
<tr>
<td></td>
<td>1.3C</td>
<td>0477</td>
</tr>
<tr>
<td></td>
<td>1.3G</td>
<td>0478</td>
</tr>
<tr>
<td></td>
<td>1.3L</td>
<td>0359</td>
</tr>
<tr>
<td></td>
<td>1.4C</td>
<td>0479</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0480</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0485</td>
</tr>
<tr>
<td></td>
<td>1.4S</td>
<td>0481</td>
</tr>
<tr>
<td>SUBSTANCES, EXPLOSIVE, VERY INSENSITIVE, N.O.S.</td>
<td>1.5D</td>
<td>0482</td>
</tr>
<tr>
<td>Substances liable to spontaneous combustion, n.o.s., see</td>
<td>4.2</td>
<td>2845</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>2846</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>3194</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>3200</td>
</tr>
<tr>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>2780</td>
</tr>
<tr>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3014</td>
</tr>
<tr>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23°C</td>
<td>6.1</td>
<td>3013</td>
</tr>
<tr>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2779</td>
</tr>
<tr>
<td>SULPHAMIC ACID</td>
<td>8</td>
<td>2967</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>SULPHUR</td>
<td>4.1</td>
<td>1350</td>
</tr>
<tr>
<td>SULPHUR CHLORIDES</td>
<td>8</td>
<td>1828</td>
</tr>
<tr>
<td>Sulphur dichloride, –see</td>
<td>8</td>
<td>1828</td>
</tr>
<tr>
<td>SULPHUR DIOXIDE</td>
<td>2.3</td>
<td>1079</td>
</tr>
<tr>
<td>Sulphuretted hydrogen, –see</td>
<td>2.2</td>
<td>1053</td>
</tr>
<tr>
<td>SULPHUR HEXAFLUORIDE</td>
<td>2.2</td>
<td>1080</td>
</tr>
<tr>
<td>SULPHURIC ACID with more than 51% acid</td>
<td>8</td>
<td>1830</td>
</tr>
<tr>
<td>SULPHURIC ACID with not more than 51% acid</td>
<td>8</td>
<td>2796</td>
</tr>
<tr>
<td>SULPHURIC ACID, FUMING</td>
<td>8</td>
<td>1831</td>
</tr>
<tr>
<td>SULPHURIC ACID, SPENT</td>
<td>8</td>
<td>1832</td>
</tr>
<tr>
<td>Sulphuric and hydrofluoric acid mixture, –see</td>
<td>8</td>
<td>1786</td>
</tr>
<tr>
<td>SULPHUR, MOLTEN</td>
<td>4.1</td>
<td>2448</td>
</tr>
<tr>
<td>Sulphur monochloride, –see</td>
<td>8</td>
<td>1828</td>
</tr>
<tr>
<td>SULPHUROUS ACID</td>
<td>8</td>
<td>1833</td>
</tr>
<tr>
<td>SULPHUR TETRAFLUORIDE</td>
<td>2.3</td>
<td>2418</td>
</tr>
<tr>
<td>SULPHUR TRIOXIDE, STABILISED</td>
<td>8</td>
<td>1829</td>
</tr>
<tr>
<td>SULPHURYL CHLORIDE</td>
<td>8</td>
<td>1834</td>
</tr>
<tr>
<td>SULPHURYL FLUORIDE</td>
<td>2.3</td>
<td>2191</td>
</tr>
<tr>
<td>Table tennis balls, see</td>
<td>4.1</td>
<td>2000</td>
</tr>
<tr>
<td>Talcum with tremolite and/or actinolite, –see</td>
<td>9</td>
<td>2212</td>
</tr>
<tr>
<td>TARS, LIQUID, including road oils, and cutback bitumens</td>
<td>3</td>
<td>1999</td>
</tr>
<tr>
<td>Tartar emetic, –see</td>
<td>6.1</td>
<td>1551</td>
</tr>
<tr>
<td>TEAR GAS CANDLES</td>
<td>6.1</td>
<td>1700</td>
</tr>
<tr>
<td>TEAR GAS SUBSTANCE, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>1693</td>
</tr>
<tr>
<td>TEAR GAS SUBSTANCE, SOLID, N.O.S.</td>
<td>6.1</td>
<td>3448</td>
</tr>
<tr>
<td>TELLURIUM COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>3284</td>
</tr>
<tr>
<td>TELLURIUM HEXAFLUORIDE</td>
<td>2.3</td>
<td>2195</td>
</tr>
<tr>
<td>TERPENE HYDROCARBONS, N.O.S.</td>
<td>3</td>
<td>2319</td>
</tr>
<tr>
<td>TERPINOLENE</td>
<td>3</td>
<td>2541</td>
</tr>
<tr>
<td>TETRABROMOETHANE</td>
<td>6.1</td>
<td>2504</td>
</tr>
<tr>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>6.1</td>
<td>1702</td>
</tr>
<tr>
<td>TETRACHLOROETHYLENE</td>
<td>6.1</td>
<td>1897</td>
</tr>
<tr>
<td>TETRAETHYL DITHIOPYROPHOSPHATE</td>
<td>6.1</td>
<td>1704</td>
</tr>
<tr>
<td>TETRAETHYLENEPENTAMINE</td>
<td>8</td>
<td>2320</td>
</tr>
<tr>
<td>Tetraethyl lead, –see</td>
<td>6.1</td>
<td>1649</td>
</tr>
<tr>
<td>TETRAETHYL SILICATE</td>
<td>3</td>
<td>1292</td>
</tr>
<tr>
<td>Tetraethylxysilane, –see</td>
<td>3</td>
<td>1292</td>
</tr>
<tr>
<td>Tetrafluorodichloroethane, –see</td>
<td>2.2</td>
<td>1958</td>
</tr>
<tr>
<td>1,1,1,2-TETRAFLUOROETHANE</td>
<td>2.2</td>
<td>3159</td>
</tr>
<tr>
<td>TETRAFLUOROETHYLENE, STABILISED</td>
<td>2.1</td>
<td>1081</td>
</tr>
<tr>
<td>TETRAFLUOROMETHANE (REGRIGERANT GAS R14)</td>
<td>2.2</td>
<td>1982</td>
</tr>
<tr>
<td>1,2,3,6-TETRAHYDRO- BENZALDEHYDE</td>
<td>3</td>
<td>2498</td>
</tr>
<tr>
<td>TETRAHYDROFURAN</td>
<td>3</td>
<td>2056</td>
</tr>
<tr>
<td>TETRAHYDROFURFURYLAMINE</td>
<td>3</td>
<td>2943</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Tetrahydro-1,4-oxazine, –see</td>
<td>3</td>
<td>2054</td>
</tr>
<tr>
<td>TETRAHYDROPTHALIC ANHYDRIDES with more than 0.05% of maleic anhydride</td>
<td>8</td>
<td>2698</td>
</tr>
<tr>
<td>1,2,3,6-TETRAHYDROPYRIDINE</td>
<td>3</td>
<td>2410</td>
</tr>
<tr>
<td>TETRAHYDROTHIOPHENE</td>
<td>3</td>
<td>2412</td>
</tr>
<tr>
<td>Tetramethoxysilane, –see</td>
<td>6.1</td>
<td>2606</td>
</tr>
<tr>
<td>TETRAMETHYLAMMONIUM HYDROXIDE SOLUTION</td>
<td>8</td>
<td>1835</td>
</tr>
<tr>
<td>TETRAMETHYLAMMONIUM HYDROXIDE, SOLID</td>
<td>8</td>
<td>3423</td>
</tr>
<tr>
<td>Tetramethylene, –see</td>
<td>2.1</td>
<td>2601</td>
</tr>
<tr>
<td>Tetramethylene cyanide, –see</td>
<td>6.1</td>
<td>2205</td>
</tr>
<tr>
<td>Tetramethyl lead, –see</td>
<td>6.1</td>
<td>1649</td>
</tr>
<tr>
<td>TETRAMETHYLISILANE</td>
<td>3</td>
<td>2749</td>
</tr>
<tr>
<td>TETRANITROANILINE</td>
<td>1.1D</td>
<td>0207</td>
</tr>
<tr>
<td>TETRANITROMETHANE</td>
<td>5.1</td>
<td>1510</td>
</tr>
<tr>
<td>TETRAPROPYL ORTHOTITANATE</td>
<td>3</td>
<td>2413</td>
</tr>
<tr>
<td>TETRAZENE, WETTED –see</td>
<td>1.1A</td>
<td>0114</td>
</tr>
<tr>
<td>TETRAZOL-1-ACETIC ACID</td>
<td>1.4C</td>
<td>0407</td>
</tr>
<tr>
<td>1H-TETRAZOLE</td>
<td>1.1D</td>
<td>0504</td>
</tr>
<tr>
<td>TETRYL, –see</td>
<td>1.1D</td>
<td>0208</td>
</tr>
<tr>
<td>TEXTILE WASTE, WET</td>
<td>4.2</td>
<td>1857</td>
</tr>
<tr>
<td>THALLIUM CHLORATE</td>
<td>5.1</td>
<td>2573</td>
</tr>
<tr>
<td>Thallium (I) chloride, –see</td>
<td>5.1</td>
<td>2573</td>
</tr>
<tr>
<td>THALLIUM COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>1707</td>
</tr>
<tr>
<td>THALLIUM NITRATE</td>
<td>6.1</td>
<td>2727</td>
</tr>
<tr>
<td>Thallium (I) nitrate, –see</td>
<td>6.1</td>
<td>2727</td>
</tr>
<tr>
<td>Thallous chloride, –see</td>
<td>5.1</td>
<td>2573</td>
</tr>
<tr>
<td>4-THIAPENTANAL</td>
<td>6.1</td>
<td>2785</td>
</tr>
<tr>
<td>Thia-4-pentanal, –see</td>
<td>6.1</td>
<td>2785</td>
</tr>
<tr>
<td>THINNERS [AUST.] –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THINNING LIQUID [AUST.] –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THIOACETIC ACID</td>
<td>3</td>
<td>2436</td>
</tr>
<tr>
<td>THIOCARBAMATE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>2772</td>
</tr>
<tr>
<td>THIOCARBAMATE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>3006</td>
</tr>
<tr>
<td>THIOCARBAMATE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23°C</td>
<td>6.1</td>
<td>3005</td>
</tr>
<tr>
<td>THIOCARBAMATE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2771</td>
</tr>
<tr>
<td>THIOGLYCOL</td>
<td>6.1</td>
<td>2966</td>
</tr>
<tr>
<td>THIOGLYCOLIC ACID</td>
<td>8</td>
<td>1940</td>
</tr>
<tr>
<td>THIOLACTIC ACID</td>
<td>6.1</td>
<td>2936</td>
</tr>
<tr>
<td>THIONYL CHLORIDE</td>
<td>8</td>
<td>1836</td>
</tr>
<tr>
<td>THIOPHENE</td>
<td>3</td>
<td>2414</td>
</tr>
<tr>
<td>Thiophenol, –see</td>
<td>6.1</td>
<td>2337</td>
</tr>
<tr>
<td>THIOPHOSGENE</td>
<td>6.1</td>
<td>2474</td>
</tr>
<tr>
<td>THIOPHOSPHORYL CHLORIDE</td>
<td>8</td>
<td>1837</td>
</tr>
<tr>
<td>THIOUREA DIOXIDE</td>
<td>4.2</td>
<td>3341</td>
</tr>
</tbody>
</table>
Name & Description

<table>
<thead>
<tr>
<th></th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin (IV) chloride, anhydrous, –see</td>
<td>8</td>
<td>1827</td>
</tr>
<tr>
<td>Tin (IV) chloride pentahydrate, –see</td>
<td>8</td>
<td>2440</td>
</tr>
<tr>
<td>TINCTURES, MEDICINAL</td>
<td>3</td>
<td>1293</td>
</tr>
<tr>
<td>Tin tetrachloride, –see</td>
<td>8</td>
<td>1827</td>
</tr>
<tr>
<td>TITANIUM DISULPHIDE</td>
<td>4.2</td>
<td>3174</td>
</tr>
<tr>
<td>TITANIUM HYDRIDE</td>
<td>4.1</td>
<td>1871</td>
</tr>
<tr>
<td>TITANIUM POWDER, DRY</td>
<td>4.2</td>
<td>2546</td>
</tr>
<tr>
<td>TITANIUM POWDER, WETTED with not less than 25% water (a visible excess of water must be present)mechanically produced, particle size less than 53 microns;chemically produced, particle size less than 840 microns</td>
<td>4.1</td>
<td>1352</td>
</tr>
<tr>
<td>TITANIUM SPONGE GRANULES</td>
<td>4.1</td>
<td>2878</td>
</tr>
<tr>
<td>TITANIUM SPONGE POWDERS</td>
<td>4.1</td>
<td>2878</td>
</tr>
<tr>
<td>TITANIUM TETRACHLORIDE</td>
<td>8</td>
<td>1838</td>
</tr>
<tr>
<td>TITANIUM TRICHLORIDE MIXTURE</td>
<td>8</td>
<td>2869</td>
</tr>
<tr>
<td>TITANIUM TRICHLORIDE MIXTURE, PYROPHORIC</td>
<td>4.2</td>
<td>2441</td>
</tr>
<tr>
<td>TITANIUM TRICHLORIDE, PYROPHORIC</td>
<td>4.2</td>
<td>2441</td>
</tr>
<tr>
<td>TNT, –see</td>
<td>1.1D</td>
<td>0209</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0388</td>
</tr>
<tr>
<td></td>
<td>1.1D</td>
<td>0389</td>
</tr>
<tr>
<td>TNT, WETTED, –see</td>
<td>4.1</td>
<td>1356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3366</td>
</tr>
<tr>
<td>TNT mixed with aluminium, –see</td>
<td>1.1D</td>
<td>0390</td>
</tr>
<tr>
<td>Toe puffs, nitrocellulose base, –see</td>
<td>4.1</td>
<td>1353</td>
</tr>
<tr>
<td>TOLUENE</td>
<td>3</td>
<td>1294</td>
</tr>
<tr>
<td>TOLUENE DIISOCYANATE</td>
<td>6.1</td>
<td>2078</td>
</tr>
<tr>
<td>TOLUIDINES, LIQUID</td>
<td>6.1</td>
<td>1708</td>
</tr>
<tr>
<td>TOLUIDINES, SOLID</td>
<td>6.1</td>
<td>3451</td>
</tr>
<tr>
<td>Tolul, –see</td>
<td>3</td>
<td>1294</td>
</tr>
<tr>
<td>2,4-TOLUYLENEDIAMINE, SOLID</td>
<td>6.1</td>
<td>1709</td>
</tr>
<tr>
<td>2,4-TOLUYLENEDIAMINE SOLUTION</td>
<td>6.1</td>
<td>3418</td>
</tr>
<tr>
<td>Tolylene diisocyanate, –see</td>
<td>6.1</td>
<td>2078</td>
</tr>
<tr>
<td>Tolylene diisocyanate, –see</td>
<td>6.1</td>
<td>2078</td>
</tr>
<tr>
<td>Tolylethylene, inhibited, –see</td>
<td>3</td>
<td>2618</td>
</tr>
<tr>
<td>TORPEDOES with bursting charge</td>
<td>1.1D</td>
<td>0451</td>
</tr>
<tr>
<td></td>
<td>1.1E</td>
<td>0329</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0330</td>
</tr>
<tr>
<td>TORPEDOES, LIQUID FUELLED with inert head</td>
<td>1.3J</td>
<td>0450</td>
</tr>
<tr>
<td>TORPEDOES, LIQUID FUELLED with or without bursting charge</td>
<td>1.1J</td>
<td>0449</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, N.O.S. with an LC${50}$ lower than or equal to 200 ml/m3 and saturated vapour concentration greater than or equal to 500 LC${50}$</td>
<td>6.1</td>
<td>3381</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, N.O.S. with an LC\textsubscript{50} lower than or equal to 1000 ml/m3 and saturated vapour concentration greater than or equal to 10 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3382</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, N.O.S. with an LC\textsubscript{50} lower than or equal to 200 ml/m3 and saturated vapour concentration greater than or equal to 500 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3383</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, N.O.S. with an LC\textsubscript{50} lower than or equal to 1000 ml/m3 and saturated vapour concentration greater than or equal to 10 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3384</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC\textsubscript{50} lower than or equal to 200 ml/m3 and saturated vapour concentration greater than or equal to 500 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3488</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC\textsubscript{50} lower than or equal to 1000 ml/m3 and saturated vapour concentration greater than or equal to 10 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3489</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, WATER-REACTIVE, N.O.S. with an LC\textsubscript{50} lower than or equal to 200 ml/m3 and saturated vapour concentration greater than or equal to 500 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3385</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, WATER-REACTIVE, N.O.S. with an LC\textsubscript{50} lower than or equal to 1000 ml/m3 and saturated vapour concentration greater than or equal to 10 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3386</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC\textsubscript{50} lower than or equal to 200 ml/m3 and saturated vapour concentration greater than or equal to 500 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3490</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC\textsubscript{50} lower than or equal to 1000 ml/m3 and saturated vapour concentration greater than or equal to 10 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3491</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, OXIDISING, N.O.S. with an LC\textsubscript{50} lower than or equal to 200 ml/m3 or less and saturated vapour concentration greater than or equal to 500 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3387</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, OXIDISING, N.O.S. with an LC\textsubscript{50} lower than or equal to 1000 ml/m3 or less and saturated vapour concentration greater than or equal to 10 LC\textsubscript{50}</td>
<td>6.1</td>
<td>3388</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC${50}$ lower than or equal to 200 ml/m3 and saturated vapour concentration greater than or equal to 500 LC${50}$</td>
<td>6.1</td>
<td>3389</td>
</tr>
<tr>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC${50}$ lower than or equal to 1000 ml/m3 and saturated vapour concentration greater than or equal to 10 LC${50}$</td>
<td>6.1</td>
<td>3390</td>
</tr>
<tr>
<td>TOXIC LIQUID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>6.1</td>
<td>3289</td>
</tr>
<tr>
<td>TOXIC LIQUID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>6.1</td>
<td>2927</td>
</tr>
<tr>
<td>TOXIC LIQUID, FLAMMABLE, ORGANIC, N.O.S.</td>
<td>6.1</td>
<td>2929</td>
</tr>
<tr>
<td>TOXIC LIQUID, CORROSIVE, N.O.S.</td>
<td>6.1</td>
<td>3287</td>
</tr>
<tr>
<td>TOXIC LIQUID, ORGANIC (CYTOTOXIC DRUG) [AUST.], –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXIC LIQUID, ORGANIC, N.O.S.</td>
<td>6.1</td>
<td>2810</td>
</tr>
<tr>
<td>TOXIC LIQUID, OXIDISING, N.O.S.</td>
<td>6.1</td>
<td>3122</td>
</tr>
<tr>
<td>TOXIC LIQUID, WATER-REACTIVE, N.O.S.</td>
<td>6.1</td>
<td>3123</td>
</tr>
<tr>
<td>TOXIC SOLID, CORROSIVE, INORGANIC, N.O.S.</td>
<td>6.1</td>
<td>3290</td>
</tr>
<tr>
<td>TOXIC SOLID, CORROSIVE, ORGANIC, N.O.S.</td>
<td>6.1</td>
<td>2928</td>
</tr>
<tr>
<td>TOXIC SOLID, FLAMMABLE, INORGANIC, N.O.S.</td>
<td>6.1</td>
<td>3535</td>
</tr>
<tr>
<td>TOXIC SOLID, FLAMMABLE, ORGANIC, N.O.S.</td>
<td>6.1</td>
<td>2930</td>
</tr>
<tr>
<td>TOXIC SOLID, INORGANIC, N.O.S.</td>
<td>6.1</td>
<td>3288</td>
</tr>
<tr>
<td>TOXIC SOLID, ORGANIC (CYTOTOXIC DRUG) [AUST.], –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOXIC SOLID, ORGANIC, N.O.S.</td>
<td>6.1</td>
<td>2811</td>
</tr>
<tr>
<td>TOXIC SOLID, OXIDISING, N.O.S.</td>
<td>6.1</td>
<td>3086</td>
</tr>
<tr>
<td>TOXIC SOLID, SELF-HEATING, N.O.S.</td>
<td>6.1</td>
<td>3124</td>
</tr>
<tr>
<td>TOXIC SOLID, WATER-REACTIVE, N.O.S.</td>
<td>6.1</td>
<td>3125</td>
</tr>
<tr>
<td>TOXINS, EXTRACTED FROM LIVING SOURCES, LIQUID, N.O.S.</td>
<td>6.1</td>
<td>3172</td>
</tr>
<tr>
<td>TOXINS, EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S.</td>
<td>6.1</td>
<td>3462</td>
</tr>
<tr>
<td>TRACERS FOR AMMUNITION</td>
<td>1.3G</td>
<td>0212</td>
</tr>
<tr>
<td></td>
<td>1.4G</td>
<td>0306</td>
</tr>
<tr>
<td>Tremolite, –see</td>
<td>9</td>
<td>2212</td>
</tr>
<tr>
<td>TRIALLYLAMINE</td>
<td>3</td>
<td>2610</td>
</tr>
<tr>
<td>TRIALLYL BORATE</td>
<td>6.1</td>
<td>2609</td>
</tr>
<tr>
<td>TRIAZINE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash-point less than 23°C</td>
<td>3</td>
<td>2764</td>
</tr>
<tr>
<td>TRIAZINE PESTICIDE, LIQUID, TOXIC</td>
<td>6.1</td>
<td>2998</td>
</tr>
<tr>
<td>TRIAZINE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash-point not less than 23°C</td>
<td>6.1</td>
<td>2997</td>
</tr>
<tr>
<td>TRIAZINE PESTICIDE, SOLID, TOXIC</td>
<td>6.1</td>
<td>2763</td>
</tr>
<tr>
<td>Tribromoborane, –see</td>
<td>8</td>
<td>2692</td>
</tr>
<tr>
<td>TRIBUTYLAMINE</td>
<td>6.1</td>
<td>2542</td>
</tr>
<tr>
<td>TRIBUTYLPHOSPHANE</td>
<td>4.2</td>
<td>3254</td>
</tr>
<tr>
<td>Trichloroacetaldehyde, –see</td>
<td>6.1</td>
<td>2075</td>
</tr>
</tbody>
</table>
Table: Name & Description, Class, UN No

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRICHLOROACETIC ACID</td>
<td>8</td>
<td>1839</td>
</tr>
<tr>
<td>TRICHLOROACETIC ACID SOLUTION</td>
<td>8</td>
<td>2564</td>
</tr>
<tr>
<td>Trichlororacetaldehyde, –see</td>
<td>6.1</td>
<td>2075</td>
</tr>
<tr>
<td>TRICHLOROACETYL CHLORIDE</td>
<td>8</td>
<td>2442</td>
</tr>
<tr>
<td>TRICHLOROBENZENES, LIQUID</td>
<td>6.1</td>
<td>2321</td>
</tr>
<tr>
<td>TRICHLOROBUTENE</td>
<td>6.1</td>
<td>2322</td>
</tr>
<tr>
<td>1,1,1-TRICHLOROETHANE</td>
<td>6.1</td>
<td>2831</td>
</tr>
<tr>
<td>TRICHLOROETHYLENE</td>
<td>6.1</td>
<td>1710</td>
</tr>
<tr>
<td>TRICHLOROISOCYANURIC ACID, DRY</td>
<td>5.1</td>
<td>2468</td>
</tr>
<tr>
<td>Trichloronitromethane, –see</td>
<td>6.1</td>
<td>1580</td>
</tr>
<tr>
<td>TRICHLOROSILANE</td>
<td>4.3</td>
<td>1295</td>
</tr>
<tr>
<td>1,3,5-Trichloro-s-triazine-2,4,6-trione, –see</td>
<td>5.1</td>
<td>2468</td>
</tr>
<tr>
<td>2,4,6-Trichloro-1,3,5- triazine, –see</td>
<td>8</td>
<td>2670</td>
</tr>
<tr>
<td>TRICRESYL PHOSPHATE with more than 3% ortho isomer</td>
<td>6.1</td>
<td>2574</td>
</tr>
<tr>
<td>TRIETHYLAMINE</td>
<td>3</td>
<td>1296</td>
</tr>
<tr>
<td>Triethyl borate, –see</td>
<td>3</td>
<td>1176</td>
</tr>
<tr>
<td>TRIETHYLENETETRAMINE</td>
<td>8</td>
<td>2259</td>
</tr>
<tr>
<td>Triethyl orthoformate, –see</td>
<td>3</td>
<td>2524</td>
</tr>
<tr>
<td>TRIETHYL PHOSPHITE</td>
<td>3</td>
<td>2323</td>
</tr>
<tr>
<td>TRIFLUOROACETIC ACID</td>
<td>8</td>
<td>2699</td>
</tr>
<tr>
<td>TRIFLUOROACETYL CHLORIDE</td>
<td>2.3</td>
<td>3057</td>
</tr>
<tr>
<td>Trifluorobromomethane, –see</td>
<td>2.2</td>
<td>1009</td>
</tr>
<tr>
<td>Trifluorochloroethane, –see</td>
<td>2.2</td>
<td>1983</td>
</tr>
<tr>
<td>TRIFLUOROCHLOROETHYLENE, STABILISED REFRIGERANT GAS R113</td>
<td>2.3</td>
<td>1082</td>
</tr>
<tr>
<td>Trifluorochloromethane, –see</td>
<td>2.2</td>
<td>1022</td>
</tr>
<tr>
<td>1,1,1-TRIFLUOROETHANE</td>
<td>2.1</td>
<td>2035</td>
</tr>
<tr>
<td>TRIFLUOROMETHANE</td>
<td>2.2</td>
<td>1984</td>
</tr>
<tr>
<td>TRIFLUOROMETHANE, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>3136</td>
</tr>
<tr>
<td>2-TRIFLUOROMETHYLANILINE</td>
<td>6.1</td>
<td>2942</td>
</tr>
<tr>
<td>3-TRIFLUOROMETHYLANILINE</td>
<td>6.1</td>
<td>2948</td>
</tr>
<tr>
<td>TRISOBUTYLENE</td>
<td>3</td>
<td>2324</td>
</tr>
<tr>
<td>TRISOPROPYL BORATE</td>
<td>3</td>
<td>2616</td>
</tr>
<tr>
<td>TRIMETHYLACETYL CHLORIDE</td>
<td>6.1</td>
<td>2438</td>
</tr>
<tr>
<td>TRIMETHYLAMINE, ANHYDROUS</td>
<td>2.1</td>
<td>1083</td>
</tr>
<tr>
<td>TRIMETHYLAMINE, AQUEOUS SOLUTION, not more than 50% trimethylamine, by mass</td>
<td>3</td>
<td>1297</td>
</tr>
<tr>
<td>1,3,5-TRIMETHYLBENZENE</td>
<td>3</td>
<td>2325</td>
</tr>
<tr>
<td>TRIMETHYL BORATE</td>
<td>3</td>
<td>2416</td>
</tr>
<tr>
<td>TRIMETHYLCYCLOHEXYLAMINE</td>
<td>8</td>
<td>2326</td>
</tr>
<tr>
<td>Trimethylene chlorobromide, –see</td>
<td>6.1</td>
<td>2688</td>
</tr>
<tr>
<td>TRIMETHYLHEXA- METHYLENEDIAMINES</td>
<td>8</td>
<td>2327</td>
</tr>
<tr>
<td>TRIMETHYLHEXAMETHYLENE DIISOCYANATE</td>
<td>6.1</td>
<td>2328</td>
</tr>
<tr>
<td>2,4,4-Trimethylpentene-1, –see</td>
<td>3</td>
<td>2050</td>
</tr>
<tr>
<td>2,4,4-Trimethylpentene-2, –see</td>
<td>3</td>
<td>2050</td>
</tr>
<tr>
<td>Name & Description</td>
<td>Class</td>
<td>UN No</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>TRIMETHYL PHOSPHITE</td>
<td>3</td>
<td>2329</td>
</tr>
<tr>
<td>TRINITROANILINE</td>
<td>1.1D</td>
<td>0153</td>
</tr>
<tr>
<td>TRINITROANISOLE</td>
<td>1.1D</td>
<td>0213</td>
</tr>
<tr>
<td>TRINITROBENZENE, dry or wetted with less than 30% water, by mass</td>
<td>1.1D</td>
<td>0214</td>
</tr>
<tr>
<td>Trinitrobenzene, wetted, with not less than 10% water, by mass</td>
<td>4.1</td>
<td>3367</td>
</tr>
<tr>
<td>TRINITROBENZENE, WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>1354</td>
</tr>
<tr>
<td>TRINITROBENZENESULPHONIC ACID</td>
<td>1.1D</td>
<td>0386</td>
</tr>
<tr>
<td>TRINITROBENZOIC ACID, dry or wetted with less than 30% water, by mass</td>
<td>1.1D</td>
<td>0215</td>
</tr>
<tr>
<td>TRINITROBENZOIC ACID, WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>3368</td>
</tr>
<tr>
<td>TRINITROBENZOIC ACID, WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>1355</td>
</tr>
<tr>
<td>TRINITROCHLOROBENZENE</td>
<td>1.1D</td>
<td>0155</td>
</tr>
<tr>
<td>TRINITROCHLOROBENZENE, WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>3365</td>
</tr>
<tr>
<td>TRINITROCHLOROBENZENE, WETTED, with not less than 30% water</td>
<td>4.1</td>
<td>1344</td>
</tr>
<tr>
<td>TRINITRO-m-CRESOL</td>
<td>1.1D</td>
<td>0216</td>
</tr>
<tr>
<td>TRINITROFLUORENONE</td>
<td>1.1D</td>
<td>0387</td>
</tr>
<tr>
<td>TRINITRONAPHTHALENE</td>
<td>1.1D</td>
<td>0217</td>
</tr>
<tr>
<td>TRINITROPHENETOLE</td>
<td>1.1D</td>
<td>0218</td>
</tr>
<tr>
<td>TRINITROPHENOL, dry or wetted with less than 30% water, by mass</td>
<td>1.1D</td>
<td>0154</td>
</tr>
<tr>
<td>TRINITROPHENOL, WETTED, with not less than 10% water by mass</td>
<td>4.1</td>
<td>3364</td>
</tr>
<tr>
<td>TRINITROPHENOL, WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>1344</td>
</tr>
<tr>
<td>TRINITROPHENOL, WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>0208</td>
</tr>
<tr>
<td>TRINITRORESORCINOL, dry or wetted with less than 20% water, or mixture of alcohol and water, by mass</td>
<td>1.1D</td>
<td>0219</td>
</tr>
<tr>
<td>TRINITRORESORCINOL, WETTED with not less than 20% water, or mixture of alcohol and water, by mass</td>
<td>1.1D</td>
<td>0394</td>
</tr>
<tr>
<td>TRINITROTOluene, dry or wetted with less than 30%, 1.1D</td>
<td>0209</td>
<td></td>
</tr>
<tr>
<td>TRINITROTOluene, WETTED with not less than 10% water by mass</td>
<td>4.1</td>
<td>3366</td>
</tr>
<tr>
<td>TRINITROTOluene, WETTED with not less than 30% water, by mass</td>
<td>4.1</td>
<td>1356</td>
</tr>
<tr>
<td>TRIPROPYLAMINE</td>
<td>3</td>
<td>2260</td>
</tr>
<tr>
<td>TRIPROPYLENE</td>
<td>3</td>
<td>2057</td>
</tr>
</tbody>
</table>
Name & Description

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIS-(1-AZIRIDINYL) PHOSPHINE OXIDE SOLUTION</td>
<td>6.1</td>
<td>2501</td>
</tr>
<tr>
<td>TRITONAL</td>
<td>1.1D</td>
<td>0390</td>
</tr>
<tr>
<td>Tropilidene, –see</td>
<td>3</td>
<td>2603</td>
</tr>
<tr>
<td>TUNGSTEN HEXAFLUORIDE</td>
<td>2.3</td>
<td>2196</td>
</tr>
<tr>
<td>TURPENTINE</td>
<td>3</td>
<td>1299</td>
</tr>
<tr>
<td>TURPENTINE SUBSTITUTE</td>
<td>3</td>
<td>1300</td>
</tr>
<tr>
<td>UNDECANE</td>
<td>3</td>
<td>2330</td>
</tr>
<tr>
<td>URANIUM HEXAFLUORIDE, RADIOACTIVE MATERIAL, EXPECTED PACKAGE, less than 0.1 Kg per package, non-fissile or fissile excepted</td>
<td>8</td>
<td>3507</td>
</tr>
<tr>
<td>UREA HYDROGEN PEROXIDE</td>
<td>5.1</td>
<td>1511</td>
</tr>
<tr>
<td>UREA NITRATE, dry or wetted with less than 20% water, by mass</td>
<td>1.1D</td>
<td>0220</td>
</tr>
<tr>
<td>UREA NITRATE, WETTED with not less than 10% water, by mass</td>
<td>4.1</td>
<td>3370</td>
</tr>
<tr>
<td>UREA NITRATE, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>1357</td>
</tr>
<tr>
<td>Valeral, –see</td>
<td>3</td>
<td>2058</td>
</tr>
<tr>
<td>VALERALDEHYDE</td>
<td>3</td>
<td>2058</td>
</tr>
<tr>
<td>n-Valeraldehyde, –see</td>
<td>3</td>
<td>2058</td>
</tr>
<tr>
<td>Valeric aldehyde, –see</td>
<td>3</td>
<td>2058</td>
</tr>
<tr>
<td>VALERYL CHLORIDE</td>
<td>8</td>
<td>2502</td>
</tr>
<tr>
<td>VANADIUM COMPOUND, N.O.S.</td>
<td>6.1</td>
<td>3285</td>
</tr>
<tr>
<td>Vanadium (IV) oxide sulphate, –see</td>
<td>6.1</td>
<td>2931</td>
</tr>
<tr>
<td>Vanadium oxysulphate, –see</td>
<td>6.1</td>
<td>2931</td>
</tr>
<tr>
<td>VANADIUM OXYTRICHLORIDE</td>
<td>8</td>
<td>2443</td>
</tr>
<tr>
<td>VANADIUM PENTOXIDE, non-fused form</td>
<td>6.1</td>
<td>2862</td>
</tr>
<tr>
<td>VANADIUM TETRACHLORIDE</td>
<td>8</td>
<td>2444</td>
</tr>
<tr>
<td>VANADIUM TRICHLORIDE</td>
<td>8</td>
<td>2475</td>
</tr>
<tr>
<td>VANADYL SULPHATE</td>
<td>6.1</td>
<td>2931</td>
</tr>
<tr>
<td>VARNISH [AUST.], –see</td>
<td>3.2.5</td>
<td></td>
</tr>
<tr>
<td>VEHICLE, FLAMMABLE GAS POWERED</td>
<td>9</td>
<td>3166</td>
</tr>
<tr>
<td>VEHICLE, FLAMMABLE LIQUID POWERED</td>
<td>9</td>
<td>3166</td>
</tr>
<tr>
<td>VEHICLE, FUEL CELL, FLAMMABLE GAS POWERED</td>
<td>9</td>
<td>3166</td>
</tr>
<tr>
<td>VEHICLE, FUEL CELL, FLAMMABLE LIQUID POWERED</td>
<td>9</td>
<td>3166</td>
</tr>
<tr>
<td>Villiaumite, –see</td>
<td>6.1</td>
<td>1690</td>
</tr>
<tr>
<td>VINYL ACETATE, STABILISED</td>
<td>3</td>
<td>1301</td>
</tr>
<tr>
<td>Vinylbenzene, –see</td>
<td>3</td>
<td>2055</td>
</tr>
<tr>
<td>VINYL BROMIDE, STABILISED</td>
<td>2.1</td>
<td>1085</td>
</tr>
<tr>
<td>VINYL BUTYRATE, STABILISED</td>
<td>3</td>
<td>2838</td>
</tr>
<tr>
<td>VINYL CHLORIDE, STABILISED</td>
<td>2.1</td>
<td>1086</td>
</tr>
<tr>
<td>VINYL CHLOROACETATE</td>
<td>6.1</td>
<td>2589</td>
</tr>
<tr>
<td>VINYL ETHYL ETHER, STABILISED</td>
<td>3</td>
<td>1302</td>
</tr>
<tr>
<td>VINYL FLUORIDE, STABILISED</td>
<td>2.1</td>
<td>1860</td>
</tr>
</tbody>
</table>
Name & Description

<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>VINYLIDENE CHLORIDE, STABILISED</td>
<td>3</td>
<td>1303</td>
</tr>
<tr>
<td>VINYL ISOBUTYL ETHER, STABILISED</td>
<td>3</td>
<td>1304</td>
</tr>
<tr>
<td>VINYL METHYL ETHER, STABILISED</td>
<td>2.1</td>
<td>1087</td>
</tr>
<tr>
<td>VINYLPYRIDINES, STABILISED</td>
<td>6.1</td>
<td>3073</td>
</tr>
<tr>
<td>VINYLTOUENES, STABILISED</td>
<td>3</td>
<td>2618</td>
</tr>
<tr>
<td>VINYLTRICHLOROSILANE</td>
<td>3</td>
<td>1305</td>
</tr>
<tr>
<td>WARHEADS for guided missiles, –see</td>
<td>1.1D</td>
<td>0286</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0369</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0287</td>
</tr>
<tr>
<td></td>
<td>1.4D</td>
<td>0370</td>
</tr>
<tr>
<td></td>
<td>1.4F</td>
<td>0371</td>
</tr>
<tr>
<td>WARHEADS, ROCKET with burster or expelling</td>
<td>1.4D</td>
<td>0370</td>
</tr>
<tr>
<td>charge</td>
<td>1.4F</td>
<td>0371</td>
</tr>
<tr>
<td>WARHEADS, ROCKET with bursting charge</td>
<td>1.1D</td>
<td>0286</td>
</tr>
<tr>
<td></td>
<td>1.1F</td>
<td>0369</td>
</tr>
<tr>
<td></td>
<td>1.2D</td>
<td>0287</td>
</tr>
<tr>
<td>WARHEADS, TORPEDO with bursting charge</td>
<td>1.1D</td>
<td>0221</td>
</tr>
<tr>
<td>WATER-REACTIVE LIQUID, N.O.S.</td>
<td>4.3</td>
<td>3148</td>
</tr>
<tr>
<td>WATER-REACTIVE LIQUID, CORROSIVE, N.O.S.</td>
<td>4.3</td>
<td>3129</td>
</tr>
<tr>
<td>WATER-REACTIVE LIQUID, TOXIC, N.O.S.</td>
<td>4.3</td>
<td>3130</td>
</tr>
<tr>
<td>WATER-REACTIVE SOLID, N.O.S.</td>
<td>4.3</td>
<td>2813</td>
</tr>
<tr>
<td>WATER-REACTIVE SOLID, CORROSIVE, N.O.S.</td>
<td>4.3</td>
<td>3131</td>
</tr>
<tr>
<td>WATER-REACTIVE SOLID, FLAMMABLE, N.O.S.</td>
<td>4.3</td>
<td>3132</td>
</tr>
<tr>
<td>WATER-REACTIVE SOLID, OXIDISING, N.O.S.</td>
<td>4.3</td>
<td>3133</td>
</tr>
<tr>
<td>WATER-REACTIVE SOLID, SELF- HEATING, N.O.S.</td>
<td>4.3</td>
<td>3135</td>
</tr>
<tr>
<td>WATER-REACTIVE SOLID, TOXIC, N.O.S.</td>
<td>4.3</td>
<td>3134</td>
</tr>
<tr>
<td>White arsenic, –see</td>
<td>6.1</td>
<td>1561</td>
</tr>
<tr>
<td>WHITE SPIRIT [AUST.], –see 3.2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White spirit, –see</td>
<td>3</td>
<td>1300</td>
</tr>
<tr>
<td>WOOD PRESERVATIVES, LIQUID</td>
<td>3</td>
<td>1306</td>
</tr>
<tr>
<td>Wool waste, wet</td>
<td>4.2</td>
<td>1387</td>
</tr>
<tr>
<td>XANTHATES</td>
<td>4.2</td>
<td>3342</td>
</tr>
<tr>
<td>XENON</td>
<td>2.2</td>
<td>2036</td>
</tr>
<tr>
<td>XENON, REFRIGERATED LIQUID</td>
<td>2.2</td>
<td>2591</td>
</tr>
<tr>
<td>XYLENES</td>
<td>3</td>
<td>1307</td>
</tr>
<tr>
<td>XYLENOLS, SOLID</td>
<td>6.1</td>
<td>2261</td>
</tr>
<tr>
<td>XYLENOLS, LIQUID</td>
<td>6.1</td>
<td>3430</td>
</tr>
<tr>
<td>XYLIDINES, LIQUID</td>
<td>6.1</td>
<td>1711</td>
</tr>
<tr>
<td>XYLIDINES, SOLID</td>
<td>6.1</td>
<td>3452</td>
</tr>
<tr>
<td>Xylols, –see</td>
<td>3</td>
<td>1307</td>
</tr>
<tr>
<td>XYLYL BROMIDE, LIQUID</td>
<td>6.1</td>
<td>1701</td>
</tr>
<tr>
<td>XYLYL BROMIDE, SOLID</td>
<td>6.1</td>
<td>3417</td>
</tr>
<tr>
<td>ZINC AMMONIUM NITRITE</td>
<td>5.1</td>
<td>1512</td>
</tr>
<tr>
<td>ZINC ARSENATE</td>
<td>6.1</td>
<td>1712</td>
</tr>
<tr>
<td>ZINC ARSENATE AND ZINC ARSENITE MIXTURE</td>
<td>6.1</td>
<td>1712</td>
</tr>
<tr>
<td>ZINC ARSENITE</td>
<td>6.1</td>
<td>1712</td>
</tr>
<tr>
<td>ZINC ASHES</td>
<td>4.3</td>
<td>1435</td>
</tr>
</tbody>
</table>
Name & Description
<table>
<thead>
<tr>
<th>Name & Description</th>
<th>Class</th>
<th>UN No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc bisulphite solution, –see</td>
<td>8</td>
<td>2693</td>
</tr>
<tr>
<td>ZINC BROMATE</td>
<td>5.1</td>
<td>2469</td>
</tr>
<tr>
<td>ZINC CHLORATE</td>
<td>5.1</td>
<td>1513</td>
</tr>
<tr>
<td>ZINC CHLORIDE, ANHYDROUS</td>
<td>8</td>
<td>2331</td>
</tr>
<tr>
<td>ZINC CHLORIDE SOLUTION</td>
<td>8</td>
<td>1840</td>
</tr>
<tr>
<td>ZINC CYANIDE</td>
<td>6.1</td>
<td>1713</td>
</tr>
<tr>
<td>ZINC DITHIONITE</td>
<td>9</td>
<td>1931</td>
</tr>
<tr>
<td>ZINC DUST</td>
<td>4.3</td>
<td>1436</td>
</tr>
<tr>
<td>ZINC FLUOROSILICATE</td>
<td>6.1</td>
<td>2855</td>
</tr>
<tr>
<td>Zinc hexafluorosilicate, –see</td>
<td>6.1</td>
<td>2855</td>
</tr>
<tr>
<td>ZINC HYDROSULPHITE, –see</td>
<td>9</td>
<td>1931</td>
</tr>
<tr>
<td>ZINC NITRATE</td>
<td>5.1</td>
<td>1514</td>
</tr>
<tr>
<td>ZINC PERMANGANATE</td>
<td>5.1</td>
<td>1515</td>
</tr>
<tr>
<td>ZINC PEROXIDE</td>
<td>5.1</td>
<td>1516</td>
</tr>
<tr>
<td>ZINC PHOSPHIDE</td>
<td>4.3</td>
<td>1714</td>
</tr>
<tr>
<td>ZINC POWDER</td>
<td>4.3</td>
<td>1436</td>
</tr>
<tr>
<td>ZINC RESINATE</td>
<td>4.1</td>
<td>2714</td>
</tr>
<tr>
<td>Zinc selenate, –see</td>
<td>4.1</td>
<td>2630</td>
</tr>
<tr>
<td>Zinc selenite, –see</td>
<td>4.1</td>
<td>2630</td>
</tr>
<tr>
<td>Zinc silicofluoride, –see</td>
<td>6.1</td>
<td>2855</td>
</tr>
<tr>
<td>ZIRCONIUM, DRY, coiled wire, finished metal sheets, strip (thinner than 254 microns but not thinner than 18 microns)</td>
<td>4.1</td>
<td>2858</td>
</tr>
<tr>
<td>ZIRCONIUM, DRY, finished sheets, strip or coiled wire</td>
<td>4.2</td>
<td>2009</td>
</tr>
<tr>
<td>ZIRCONIUM HYDROXIDE</td>
<td>4.1</td>
<td>1437</td>
</tr>
<tr>
<td>ZIRCONIUM NITRATE</td>
<td>5.1</td>
<td>2728</td>
</tr>
<tr>
<td>ZIRCONIUM PICRAMATE, dry or wetted with less than 1.3C 20% water, by mass</td>
<td>0236</td>
<td></td>
</tr>
<tr>
<td>ZIRCONIUM PICRAMATE, WETTED with not less than 20% water, by mass</td>
<td>4.1</td>
<td>1517</td>
</tr>
<tr>
<td>ZIRCONIUM POWDER, DRY</td>
<td>4.2</td>
<td>2008</td>
</tr>
<tr>
<td>ZIRCONIUM POWDER, WETTED with not less than 25% water (a visible excess of water must be present)mechanically produced, particle size less than 53 microns;chemically produced, particle size less than 840 microns</td>
<td>4.1</td>
<td>1358</td>
</tr>
<tr>
<td>ZIRCONIUM SCRAP</td>
<td>4.2</td>
<td>1932</td>
</tr>
<tr>
<td>ZIRCONIUM SUSPENDED IN A FLAMMABLE LIQUID</td>
<td>3</td>
<td>1308</td>
</tr>
<tr>
<td>ZIRCONIUM TETRACHLORIDE</td>
<td>8</td>
<td>2503</td>
</tr>
</tbody>
</table>

3.2.5 AUSTRALIAN SPECIFIC [AUST.] ENTRIES

3.2.5.1

The alternative names listed in Column (1) of Table 3.2 may be used in lieu of the proper shipping name, for land transport purposes within Australia, subject to the conditions and limitations detailed in Notes A - G referenced for the particular entry in Column (3).
3.2.5.2 For each of the [AUST.] entries in Column (1) of Table 3.2, reference must be made to the entry in the principle Dangerous Goods List in 3.2.3 for the UN Number shown below in Column (2) to determine classification, packing and tank requirements and the application of any special provisions.

3.2.5.3 <DELETED>.

NOTE: [AUST.] entries are not acceptable as proper shipping names on transport documentation or package marking for sea or air transport under IMDG, ICAO or IATA requirements.

3.2.5.4 Use of UN 1270 Petroleum Fuel [AUST.]

3.2.5.4.1 The use of UN Number 1270 Petroleum Fuel has been discontinued internationally. The continued use in Australia is specifically because of the continued use of tankers carrying mixed loads of petroleum fuels. This is less common elsewhere in the world. This [AUST.] entry is therefore restricted to the UN Number and Proper Shipping Name on Mixed Load (refined petroleum product) Emergency Information Panels in accordance with 5.3.1.3.3, when no single entry (such as UN 1203 or UN 1268) is valid for all compartments of a multi-compartmented portable tank or tank vehicle.

3.2.5.4.2 Where the whole load in a multi-compartmented portable tank or tank vehicle is correctly described by a single UN number other than UN 1270, whether or not that other number is included in Table 3.1, then the use of the Mixed Load (refined petroleum product) Emergency Information Panel is not permitted. For such loads, Emergency Information Panels for the particular substance are required in accordance with 5.3.1.3.1 and Section 5.3.4 (portable tanks) or 5.3.6 (tank vehicles). UN 1270 must not be used to describe such a load.

3.2.5.4.3 Where UN 1270 is displayed on the Emergency Information Panel in accordance with this Section, Section 5.3.4 or 5.3.6, and 5.3.1.3.3, the dangerous goods description on the transport documentation in accordance with 11.1.2.2 must nevertheless show the Proper Shipping Name and UN number for each dangerous substance in the portable tank or tank vehicle.

3.2.5.4.4 The refined petroleum products, being dangerous goods of Class 3 and C1 combustible liquids, that may form part of the load of a multi-compartmented portable tank or tank vehicle where UN 1270 is displayed in accordance with 5.3.1.3.3, are listed in Table 3.1.

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1145</td>
<td>CYCLOHEXANE</td>
</tr>
</tbody>
</table>

1 C1 Combustible Liquids are not classified as dangerous goods for transport purposes. No placarding is required by this Code on a portable tank or tank vehicle transporting only C1 liquid. However, industry practice is often to display "Combustible Liquid" in the area normally used for placarding a tanker.
<table>
<thead>
<tr>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1146</td>
<td>CYCLOPENTANE</td>
</tr>
<tr>
<td>1202</td>
<td>DIESEL OIL, or DIESEL FUEL, or GAS OIL, or HEATING OIL, LIGHT flash point ≤ 60°C</td>
</tr>
<tr>
<td>1203</td>
<td>MOTOR SPIRIT, or GASOLINE, or PETROL</td>
</tr>
<tr>
<td>1206</td>
<td>HEXANES</td>
</tr>
<tr>
<td>1208</td>
<td>HEXANES</td>
</tr>
<tr>
<td>1216</td>
<td>ISOCTENE</td>
</tr>
<tr>
<td>1223</td>
<td>KEROSENE</td>
</tr>
<tr>
<td>1262</td>
<td>OCTANES</td>
</tr>
<tr>
<td>1267</td>
<td>PETROLEUM CRUDE OIL</td>
</tr>
<tr>
<td>1268</td>
<td>PETROLEUM DISTILLATES, N.O.S., or PETROLEUM PRODUCTS N.O.S.</td>
</tr>
<tr>
<td>1294</td>
<td>TOLUENE</td>
</tr>
<tr>
<td>1300</td>
<td>TURPENTINE SUBSTITUTE, or MINERAL TURPENTINE [AUST.], or WHITE SPIRIT [AUST.]</td>
</tr>
<tr>
<td>1307</td>
<td>XYLENES</td>
</tr>
<tr>
<td>1920</td>
<td>NONANES</td>
</tr>
<tr>
<td>2296</td>
<td>METHYLCYCLOHEXANE</td>
</tr>
<tr>
<td>2298</td>
<td>METHYLCYCLOPENTANE</td>
</tr>
<tr>
<td>2457</td>
<td>2,3-DIMETHYL BUTANE</td>
</tr>
<tr>
<td>3475</td>
<td>ETHANOL AND GASOLINE MIXTURE, or ETHANOL AND MOTOR SPIRIT MIXTURE; or ETHANOL AND PETROL MIXTURE, with more than 10% ethanol</td>
</tr>
</tbody>
</table>

Diesel Oil, Diesel Fuel, Gas Oil, Heating Oil Light or Distillate with a flashpoint > 60°C < 93°C

C1 Combustible Liquids are not classified as dangerous goods for transport purposes. No placarding is required by this Code on a portable tank or tank vehicle transporting only C1 liquid. However, industry practice is often to display "Combustible Liquid" in the area normally used for placarding a tanker.
Table 3.2: Australian Petroleum Based Products

<table>
<thead>
<tr>
<th>[AUST.] Entry</th>
<th>Relevant UN Number Entry in 3.2.3 for Classification, Packing and Tank Requirements</th>
<th>Usage – see Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVIATION GASOLINE [AUST.]</td>
<td>1203 MOTOR SPIRIT or GASOLINE or PETROL</td>
<td>A, B, C</td>
</tr>
<tr>
<td>AVIATION TURBINE FUEL [AUST.]</td>
<td>1863 FUEL, AVIATION, TURBINE ENGINE</td>
<td>A, B, C</td>
</tr>
<tr>
<td>LP GAS [AUST.]</td>
<td>1075 PETROLEUM GASES, LIQUEFIED</td>
<td>A, B, C</td>
</tr>
<tr>
<td>MINERAL TURPENTINE [AUST.]</td>
<td>1300 TURPENTINE SUBSTITUTE</td>
<td>D</td>
</tr>
<tr>
<td>PETROLEUM FUEL [AUST.] UN 1270</td>
<td>--see Determine from the relevant entries in Table 3.2.5.4 3.1</td>
<td>B, E</td>
</tr>
<tr>
<td>TOXIC LIQUID, ORGANIC, (CYTOTOXIC DRUG) [AUST.]</td>
<td>2810 TOXIC LIQUID, ORGANIC, N.O.S.</td>
<td>G</td>
</tr>
<tr>
<td>TOXIC SOLID, ORGANIC, (CYTOTOXIC DRUG) [AUST.]</td>
<td>2811 TOXIC SOLID, ORGANIC, N.O.S.</td>
<td>G</td>
</tr>
<tr>
<td>WHITE SPIRIT [AUST.]</td>
<td>1300 TURPENTINE SUBSTITUTE</td>
<td>D</td>
</tr>
</tbody>
</table>

NOTE: These uses are valid only for land transport within Australia:

A. Use permitted as Proper Shipping Name on package marking
B. Use permitted as Proper Shipping Name on Emergency Information Panels
C. Use permitted as Proper Shipping Name on transport documentation
D. Use permitted as Proper Shipping Name for inner packaging marking
E. For conditions on use of UN 1270, see 3.2.5.4 and 5.3.1.3.3
F. <DELETED>
G. These entries must be used for cytotoxic drugs that meet the criteria for packing group I. Despite the assignment of SP 274 to these two UN numbers in the principal Dangerous Goods List, where either of these [AUST.] entries is shown in full as the Proper Shipping Name, it is not necessary to supplement this with the Technical Name on marking or documentation. UN 1851 (liquid) or UN 3249 (solid) must be used for drugs of packing group II or III”.

3.2.6 GENERIC AND N.O.S. PROPER SHIPPING NAMES

NOTE: This section incorporates, in full, Appendix A of UN20

3.2.6.1 Substances or articles not mentioned specifically by name in the Dangerous Goods List in 3.2.3 must be classified in accordance with 3.1.1.2. Thus the name in the Dangerous Goods List which most appropriately describes the substance or article must be used as the Proper Shipping Name. The main generic entries and all the N.O.S. entries given in the Dangerous Goods List are listed below. This proper shipping name must be supplemented by the technical name when special provision 274 has been assigned to the entry in Column 6 of the Dangerous Goods List.

3.2.6.2 In this list generic and N.O.S. names are grouped according to their hazard class or division. Within each hazard class or division the names have been placed into three groups as follows:
(a) specific entries covering a group of substances or articles of a particular chemical or technical nature;
(b) pesticide entries, for Class 3 and Division 6.1;
(c) general entries covering a group of substances or articles having one or more general dangerous properties.

3.2.6.3 When assigning generic and N.O.S. Proper Shipping Names:
– THE MOST SPECIFIC APPLICABLE NAME MUST ALWAYS BE USED.

Table 3.3: List of generic and N.O.S proper shipping names

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0190</td>
<td>SAMPLES, EXPLOSIVE, other than initiating explosive</td>
</tr>
<tr>
<td>DIVISION 1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1A</td>
<td></td>
<td>0473</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.1B</td>
<td></td>
<td>0461</td>
<td>COMPONENTS, EXPLOSIVE TRAIN, N.O.S.</td>
</tr>
<tr>
<td>1.1C</td>
<td></td>
<td>0462</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.1C</td>
<td></td>
<td>0474</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.1C</td>
<td></td>
<td>0497</td>
<td>PROPELLANT, LIQUID</td>
</tr>
<tr>
<td>1.1C</td>
<td></td>
<td>0498</td>
<td>PROPELLANT, SOLID</td>
</tr>
<tr>
<td>1.1D</td>
<td></td>
<td>0463</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.1D</td>
<td></td>
<td>0475</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.1E</td>
<td></td>
<td>0464</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.1F</td>
<td></td>
<td>0465</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.1G</td>
<td></td>
<td>0476</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.1L</td>
<td></td>
<td>0354</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.1L</td>
<td></td>
<td>0357</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>DIVISION 1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2B</td>
<td></td>
<td>0382</td>
<td>COMPONENTS, EXPLOSIVE TRAIN, N.O.S.</td>
</tr>
<tr>
<td>1.2C</td>
<td></td>
<td>0466</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.2D</td>
<td></td>
<td>0467</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.2E</td>
<td></td>
<td>0468</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.2F</td>
<td></td>
<td>0469</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.2K</td>
<td>6.1</td>
<td>0020</td>
<td>AMMUNITION, TOXIC with burster, expelling charge or propelling charge</td>
</tr>
<tr>
<td>1.2L</td>
<td></td>
<td>0248</td>
<td>CONTRIVANCES, WATER-ACTIVATED with burster, expelling charge or propelling charge</td>
</tr>
<tr>
<td>1.2L</td>
<td></td>
<td>0355</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.2L</td>
<td></td>
<td>0358</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>DIVISION 1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3C</td>
<td></td>
<td>0132</td>
<td>DEFLAGRATING METAL SALTS OF AROMATIC NITRODERIVATIVES, N.O.S.</td>
</tr>
<tr>
<td>1.3C</td>
<td></td>
<td>0470</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.3C</td>
<td></td>
<td>0477</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.3C</td>
<td></td>
<td>0495</td>
<td>PROPELLANT, LIQUID</td>
</tr>
</tbody>
</table>
Table 3.3
LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3C</td>
<td></td>
<td>0499</td>
<td>PROPELLANT, SOLID</td>
</tr>
<tr>
<td>1.3G</td>
<td></td>
<td>0478</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.3K 6.1</td>
<td></td>
<td>0021</td>
<td>AMMUNITION, TOXIC with burster, expelling charge or propelling charge</td>
</tr>
<tr>
<td>1.3L</td>
<td></td>
<td>0249</td>
<td>CONTRIVANCES, WATER-ACTIVATED with burster, expelling charge or propelling charge</td>
</tr>
<tr>
<td>1.3L</td>
<td></td>
<td>0356</td>
<td>ARTICLES, EXPLOSIVE, N.O.S.</td>
</tr>
<tr>
<td>1.3L</td>
<td></td>
<td>0359</td>
<td>SUBSTANCES, EXPLOSIVE, N.O.S.</td>
</tr>
</tbody>
</table>

DIVISION 1.4

1.4B		0350	ARTICLES, EXPLOSIVE, N.O.S.
1.4B		0383	COMPONENTS, EXPLOSIVE TRAIN, N.O.S.
1.4C		0351	ARTICLES, EXPLOSIVE, N.O.S.
1.4C		0479	SUBSTANCES, EXPLOSIVE, N.O.S.
1.4C		0501	PROPELLANT, SOLID
1.4D		0352	ARTICLES, EXPLOSIVE, N.O.S.
1.4D		0480	SUBSTANCES, EXPLOSIVE, N.O.S.
1.4E		0471	ARTICLES, EXPLOSIVE, N.O.S.
1.4F		0472	ARTICLES, EXPLOSIVE, N.O.S.
1.4G		0353	ARTICLES, EXPLOSIVE, N.O.S.
1.4G		0485	SUBSTANCES, EXPLOSIVE, N.O.S.
1.4S		0349	ARTICLES, EXPLOSIVE, N.O.S.
1.4S		0384	COMPONENTS, EXPLOSIVE TRAIN, N.O.S.
1.4S		0481	SUBSTANCES, EXPLOSIVE, N.O.S.

DIVISION 1.5

| 1.5D | | 0482 | SUBSTANCES, EXPLOSIVE, VERY INSENSITIVE (SUBSTANCES, EVI), N.O.S. |

DIVISION 1.6

| 1.6N | | 0486 | ARTICLES, EXPLOSIVE, EXTREMELY INSENSITIVE (ARTICLES, EEI) |

CLASS 2

DIVISION 2.1

Specific entries

2.1	1964	HYDROCARBON GAS MIXTURE, COMPRESSED, N.O.S.
2.1	1965	HYDROCARBON GAS MIXTURE, LIQUEFIED, N.O.S.
2.1	3354	INSECTICIDE GAS, FLAMMABLE, N.O.S.

General entries

2.1	3510	ADSORBED GAS, FLAMMABLE, N.O.S.
2.1	1954	COMPRESSED GAS, FLAMMABLE, N.O.S.
2.1	3161	LIQUEFIED GAS, FLAMMABLE, N.O.S.
2.1	3167	GAS SAMPLE, NON-PRESSURISED, FLAMMABLE, N.O.S., not refrigerated liquid
2.1	3312	GAS, REFRIGERATED LIQUID, FLAMMABLE, N.O.S.
2.1	3501	CHEMICAL UNDER PRESSURE, FLAMMABLE, N.O.S.
2.1 6.1	3504	CHEMICAL UNDER PRESSURE, FLAMMABLE, TOXIC, N.O.S.
2.1 8	3505	CHEMICAL UNDER PRESSURE, FLAMMABLE, CORROSIVE, N.O.S.
2.1 See 2.0.5.6	3537	ARTICLES CONTAINING FLAMMABLE GAS, N.O.S.
Table 3.3
LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION 2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific entries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>1078</td>
<td>REFRIGERANT GAS, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>1968</td>
<td>INSECTICIDE GAS, N.O.S.</td>
</tr>
<tr>
<td>General entries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>3511</td>
<td>ADSORBED GAS, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>3513</td>
<td>ADSORBED GAS, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>1956</td>
<td>COMPRESSED GAS, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>3163</td>
<td>LIQUEFIED GAS, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>3158</td>
<td>GAS, REFRIGERATED LIQUID, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td>5.1</td>
<td>3156</td>
<td>COMPRESSED GAS, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td>5.1</td>
<td>3157</td>
<td>LIQUEFIED GAS, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td>5.1</td>
<td>3311</td>
<td>GAS, REFRIGERATED LIQUID, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td>6.1</td>
<td>3502</td>
<td>CHEMICAL UNDER PRESSURE, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td>8</td>
<td>3503</td>
<td>CHEMICAL UNDER PRESSURE, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>3538</td>
<td>ARTICLES CONTAINING NON-FLAMMABLE, NON TOXIC GAS, N.O.S.</td>
</tr>
<tr>
<td>DIVISION 2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific entries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>1967</td>
<td>INSECTICIDE GAS, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>2.1</td>
<td>3355</td>
<td>INSECTICIDE GAS, TOXIC, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>General entries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>3516</td>
<td>ADSORBED GAS, TOXIC, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>3517</td>
<td>ADSORBED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>3514</td>
<td>ADSORBED GAS, TOXIC, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>3512</td>
<td>ADSORBED GAS, TOXIC N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>3518</td>
<td>ADSORBED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>3515</td>
<td>ADSORBED GAS, TOXIC, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>1955</td>
<td>COMPRESSED GAS, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>3162</td>
<td>LIQUEFIED GAS, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>3169</td>
<td>GAS SAMPLE, NON-PRESSURISED, TOXIC, N.O.S., not refrigerated liquid</td>
</tr>
<tr>
<td>2.3</td>
<td>2.1</td>
<td>1953</td>
<td>COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>2.1</td>
<td>3160</td>
<td>LIQUEFIED GAS, TOXIC, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>2.1</td>
<td>3168</td>
<td>GAS SAMPLE, NON-PRESSURISED, TOXIC, FLAMMABLE, N.O.S., not refrigerated liquid</td>
</tr>
<tr>
<td>2.3</td>
<td>2.1 + 8</td>
<td>3305</td>
<td>COMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>2.1 + 8</td>
<td>3309</td>
<td>LIQUEFIED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>5.1</td>
<td>3303</td>
<td>COMPRESSED GAS, TOXIC, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>5.1</td>
<td>3307</td>
<td>LIQUEFIED GAS, TOXIC, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>5.1 + 8</td>
<td>3306</td>
<td>COMPRESSED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>5.1 + 8</td>
<td>3310</td>
<td>LIQUEFIED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>8</td>
<td>3304</td>
<td>COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td>8</td>
<td>3308</td>
<td>LIQUEFIED GAS, TOXIC, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>3539</td>
<td>ARTICLES CONTAINING TOXIC GAS, N.O.S.</td>
</tr>
</tbody>
</table>

See 2.0.5.6
Table 3.3
LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific entries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1224</td>
<td>1224</td>
<td>KETONES, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>1268</td>
<td>1268</td>
<td>PETROLEUM DISTILLATES, N.O.S. or PETROLEUM PRODUCTS, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>1987</td>
<td>1987</td>
<td>ALCOHOLS, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>1989</td>
<td>1989</td>
<td>ALDEHYDES, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>2319</td>
<td>2319</td>
<td>TERPENE HYDROCARBONS, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>3271</td>
<td>3271</td>
<td>ETHERS, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>3272</td>
<td>3272</td>
<td>ESTERS, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>3295</td>
<td>3295</td>
<td>HYDROCARBONS, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>3336</td>
<td>3336</td>
<td>MERCAPTANS, LIQUID, FLAMMABLE, N.O.S. or MERCAPTAN MIXTURE, LIQUID, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>3343</td>
<td>3343</td>
<td>NITROGLYCERIN MIXTURE, DESENSITISED, LIQUID, FLAMMABLE, N.O.S. with not more than 30% nitroglycerin, by mass</td>
</tr>
<tr>
<td>3</td>
<td>3357</td>
<td>3357</td>
<td>NITROGLYCERIN MIXTURE, DESENSITISED, LIQUID, N.O.S. with not more than 30% nitroglycerin, by mass</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>1228</td>
<td>MERCAPTANS, LIQUID, FLAMMABLE, TOXIC, N.O.S. or MERCAPTAN MIXTURE, LIQUID, FLAMMABLE, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>1986</td>
<td>ALCOHOLS, FLAMMABLE, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>1988</td>
<td>ALDEHYDES, FLAMMABLE, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2478</td>
<td>ISOCYANATES, FLAMMABLE, TOXIC, N.O.S. or ISOCYANATE SOLUTION, FLAMMABLE, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>3248</td>
<td>MEDICINE, LIQUID, FLAMMABLE, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>3273</td>
<td>NITRILES, FLAMMABLE, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2733</td>
<td>AMINES, FLAMMABLE, CORROSIVE, N.O.S. or POLYAMINES, FLAMMABLE, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>2985</td>
<td>CHLOROSILANES, FLAMMABLE, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3274</td>
<td>ALCOHOLATES SOLUTION, N.O.S., in alcohol</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3379</td>
<td>DESENSITISED EXPLOSIVE, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>Pesticides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2758</td>
<td>CARBAMATE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2760</td>
<td>ARSENICAL PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2762</td>
<td>ORGANOCHLORINE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2764</td>
<td>TRIAZINE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2772</td>
<td>THIOCARBAMATE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2776</td>
<td>COPPER BASED PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2778</td>
<td>MERCURY BASED PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2780</td>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
</tbody>
</table>
Table 3.3

LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6.1</td>
<td>2782</td>
<td>BIPYRIDILUM PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2784</td>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>2787</td>
<td>ORGANOTIN PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>3021</td>
<td>PESTICIDE, LIQUID, FLAMMABLE, TOXIC, N.O.S., flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>3024</td>
<td>COUMARIN DERIVATIVE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>3346</td>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>3350</td>
<td>PYRETHROID PESTICIDE, LIQUID, FLAMMABLE, TOXIC, flash point < 23°C</td>
</tr>
</tbody>
</table>

General entries

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>UN No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1993</td>
<td>FLAMMABLE LIQUID, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>3256</td>
<td>ELEVATED TEMPERATURE LIQUID, FLAMMABLE, N.O.S., with flash point above 60°C, at or above its flash point</td>
</tr>
<tr>
<td>3</td>
<td>1992</td>
<td>FLAMMABLE LIQUID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>3286</td>
<td>FLAMMABLE LIQUID, TOXIC, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>2924</td>
<td>FLAMMABLE LIQUID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>3</td>
<td>3540</td>
<td>ARTICLES CONTAINING FLAMMABLE LIQUID, N.O.S.</td>
</tr>
</tbody>
</table>

CLASS 4

DIVISION 4.1

Specific entries

<table>
<thead>
<tr>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>1353</td>
<td>FIBRES or FABRICS IMPREGNATED WITH WEAKLY NITRATED NITROCELLULOSE, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td>3089</td>
<td>METAL POWDER, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td>3182</td>
<td>METAL HYDRIDES, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td>3221</td>
<td>SELF-REACTIVE LIQUID TYPE B</td>
</tr>
<tr>
<td>4.1</td>
<td>3222</td>
<td>SELF-REACTIVE SOLID TYPE B</td>
</tr>
<tr>
<td>4.1</td>
<td>3223</td>
<td>SELF-REACTIVE LIQUID TYPE C</td>
</tr>
<tr>
<td>4.1</td>
<td>3224</td>
<td>SELF-REACTIVE SOLID TYPE C</td>
</tr>
<tr>
<td>4.1</td>
<td>3225</td>
<td>SELF-REACTIVE LIQUID TYPE D</td>
</tr>
<tr>
<td>4.1</td>
<td>3226</td>
<td>SELF-REACTIVE SOLID TYPE D</td>
</tr>
<tr>
<td>4.1</td>
<td>3227</td>
<td>SELF-REACTIVE LIQUID TYPE E</td>
</tr>
<tr>
<td>4.1</td>
<td>3228</td>
<td>SELF-REACTIVE SOLID TYPE E</td>
</tr>
<tr>
<td>4.1</td>
<td>3229</td>
<td>SELF-REACTIVE LIQUID TYPE F</td>
</tr>
<tr>
<td>4.1</td>
<td>3230</td>
<td>SELF-REACTIVE SOLID TYPE F</td>
</tr>
<tr>
<td>4.1</td>
<td>3231</td>
<td>SELF-REACTIVE LIQUID TYPE B, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>4.1</td>
<td>3232</td>
<td>SELF-REACTIVE SOLID TYPE B, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>4.1</td>
<td>3233</td>
<td>SELF-REACTIVE LIQUID TYPE C, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>4.1</td>
<td>3234</td>
<td>SELF-REACTIVE SOLID TYPE C, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>4.1</td>
<td>3235</td>
<td>SELF-REACTIVE LIQUID TYPE D, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>4.1</td>
<td>3236</td>
<td>SELF-REACTIVE SOLID TYPE D, TEMPERATURE CONTROLLED</td>
</tr>
</tbody>
</table>
Table 3.3 LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td></td>
<td>3237</td>
<td>SELF-REACTIVE LIQUID TYPE E, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3238</td>
<td>SELF-REACTIVE SOLID TYPE E, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3239</td>
<td>SELF-REACTIVE LIQUID TYPE F, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3240</td>
<td>SELF-REACTIVE SOLID TYPE F, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3319</td>
<td>NITROGLYCERIN MIXTURE, DESENSITISED, SOLID, N.O.S. with more than 2% but not more than 10% nitroglycerin, by mass</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3344</td>
<td>PENTAERYTHRITE TETRANITRATE MIXTURE, DESENSITISED, SOLID, N.O.S. with more than 10% but not more than 20% PETN, by mass</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3380</td>
<td>DESENSITISED EXPLOSIVE, SOLID, N.O.S.</td>
</tr>
</tbody>
</table>

General entries

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td></td>
<td>1325</td>
<td>FLAMMABLE SOLID, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3175</td>
<td>SOLIDS CONTAINING FLAMMABLE LIQUID, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3176</td>
<td>FLAMMABLE SOLID, ORGANIC, MOLTEN, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3178</td>
<td>FLAMMABLE SOLID, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3181</td>
<td>METAL SALTS OF ORGANIC COMPOUNDS, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td>5.1</td>
<td>3097</td>
<td>FLAMMABLE SOLID, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td>6.1</td>
<td>2926</td>
<td>FLAMMABLE SOLID, TOXIC, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td>6.1</td>
<td>3179</td>
<td>FLAMMABLE SOLID, TOXIC, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td>8</td>
<td>2925</td>
<td>FLAMMABLE SOLID, CORROSIVE, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td>8</td>
<td>3180</td>
<td>FLAMMABLE SOLID, CORROSIVE, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>3541</td>
<td>ARTICLES CONTAINING FLAMMABLE LIQUID, N.O.S.</td>
</tr>
</tbody>
</table>

DIVISION 4.2

Specific entries

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td></td>
<td>1373</td>
<td>FIBRES or FABRICS, ANIMAL or VEGETABLE or SYNTHETIC, N.O.S., with oil</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>1378</td>
<td>METAL CATALYST, WETTED with a visible excess of liquid</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>1383</td>
<td>PYROPHORIC METAL, N.O.S. or PYROPHORIC ALLOY, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>2006</td>
<td>PLASTICS, NITROCELLULOSE-BASED, SELF-HEATING, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>2881</td>
<td>METAL CATALYST, DRY</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3189</td>
<td>METAL POWDER, SELF-HEATING, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3205</td>
<td>ALKALINE EARTH METAL ALCOHOLATES, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3313</td>
<td>ORGANIC PIGMENTS, SELF-HEATING</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3342</td>
<td>XANTHATES</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3391</td>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, PYROPHORIC</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3392</td>
<td>ORGANOMETALLIC SUBSTANCE, LIQUID, PYROPHORIC</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3400</td>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, SELF-HEATING</td>
</tr>
<tr>
<td>4.2</td>
<td>4.3</td>
<td>3393</td>
<td>ORGANOMETALLIC SUBSTANCE, SOLID, PYROPHORIC, WATER REACTIVE</td>
</tr>
<tr>
<td>4.2</td>
<td>4.3</td>
<td>3394</td>
<td>ORGANOMETALLIC SUBSTANCE, LIQUID, PYROPHORIC, WATER REACTIVE</td>
</tr>
<tr>
<td>4.2</td>
<td>8</td>
<td>3206</td>
<td>ALKALI METAL ALCOHOLATES, SELF-HEATING, CORROSIVE, N.O.S.</td>
</tr>
</tbody>
</table>

General entries

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td></td>
<td>2845</td>
<td>PYROPHORIC LIQUID, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>2846</td>
<td>PYROPHORIC SOLID, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3088</td>
<td>SELF-HEATING SOLID, ORGANIC, N.O.S.</td>
</tr>
</tbody>
</table>
Table 3.3
LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td></td>
<td>3183</td>
<td>SELF-HEATING LIQUID, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3186</td>
<td>SELF-HEATING LIQUID, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3190</td>
<td>SELF-HEATING SOLID, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3194</td>
<td>PYROPHORIC LIQUID, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3200</td>
<td>PYROPHORIC SOLID, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td>5.1</td>
<td>3127</td>
<td>SELF-HEATING SOLID, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td>6.1</td>
<td>3128</td>
<td>SELF-HEATING SOLID, TOXIC, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td>6.1</td>
<td>3184</td>
<td>SELF-HEATING LIQUID, TOXIC, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td>6.1</td>
<td>3187</td>
<td>SELF-HEATING LIQUID, TOXIC, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td>8</td>
<td>3126</td>
<td>SELF-HEATING SOLID, CORROSIVE, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td>8</td>
<td>3185</td>
<td>SELF-HEATING LIQUID, CORROSIVE, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td>8</td>
<td>3188</td>
<td>SELF-HEATING LIQUID, CORROSIVE, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>3192</td>
<td>SELF-HEATING SOLID, CORROSIVE, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>4.2</td>
<td>See 2.0.5.6</td>
<td>3542</td>
<td>ARTICLES CONTAINING A SUBSTANCE LIABLE TO SPONTANEOUS COMBUSTION, N.O.S.</td>
</tr>
</tbody>
</table>

DIVISION 4.3

Specific entries

4.3	1389	ALKALI METAL AMALGAM, LIQUID	
4.3	1390	ALKALI METAL AMIDES	
4.3	1391	ALKALI METAL DISPERSION or ALKALI EARTH METAL DISPERSION	
4.3	1392	ALKALINE EARTH METAL AMALGAM, LIQUID	
4.3	1393	ALKALINE EARTH METAL ALLOY, N.O.S.	
4.3	1409	METAL HYDRIDES, WATER-REACTIVE, N.O.S.	
4.3	1421	ALKALI METAL ALLOY, LIQUID, N.O.S.	
4.3	3208	METALLIC SUBSTANCE, WATER-REACTIVE, N.O.S.	
4.3	3395	ORGANOMETALLIC SUBSTANCE, SOLID, WATER REACTIVE	
4.3	3398	ORGANOMETALLIC SUBSTANCE, LIQUID, WATER REACTIVE	
4.3	3399	ORGANOMETALLIC SUBSTANCE, LIQUID, WATER REACTIVE, FLAMMABLE	
4.3	3401	ALKALI METAL AMALGAM, SOLID	
4.3	3402	ALKALINE EARTH METAL AMALGAM, SOLID	
4.3	3	3399	ORGANOMETALLIC SUBSTANCE, LIQUID, WATER REACTIVE, FLAMMABLE
4.3	3	3482	ALKALI METAL DISPERSION, FLAMMABLE or ALKALINE EARTH METAL DISPERSION, FLAMMABLE
4.3	3 + 8	2988	CHLOROSILANES, WATER-REACTIVE, FLAMMABLE, CORROSIVE, N.O.S.
4.3	4.1	3396	ORGANOMETALLIC SUBSTANCE, SOLID, WATER REACTIVE, FLAMMABLE
4.3	4.2	3209	METALLIC SUBSTANCE, WATER-REACTIVE, SELF-HEATING, N.O.S.
4.3	4.2	3397	ORGANOMETALLIC SUBSTANCE, SOLID, WATER REACTIVE, SELF-HEATING

General entries

<p>| 4.3 | 3148 | WATER-REACTIVE LIQUID, N.O.S. |</p>
<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td></td>
<td>2813</td>
<td>WATER-REACTION SOLID, N.O.S.</td>
</tr>
<tr>
<td>4.3</td>
<td>4.1</td>
<td>3132</td>
<td>WATER-REACTION SOLID, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>4.3</td>
<td>4.2</td>
<td>3135</td>
<td>WATER-REACTION SOLID, SELF-HEATING, N.O.S.</td>
</tr>
<tr>
<td>4.3</td>
<td>5.1</td>
<td>3133</td>
<td>WATER-REACTION SOLID, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>4.3</td>
<td>6.1</td>
<td>3130</td>
<td>WATER-REACTION LIQUID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>4.3</td>
<td>6.1</td>
<td>3134</td>
<td>WATER-REACTION SOLID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>4.3</td>
<td>8</td>
<td>3129</td>
<td>WATER-REACTION LIQUID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>4.3</td>
<td>8</td>
<td>3131</td>
<td>WATER-REACTION SOLID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>4.3</td>
<td>See 2.0.5.6</td>
<td>3543</td>
<td>ARTICLES CONTAINING A SUBSTANCE WHICH IN CONTACT WITH WATER EMITS FLAMMABLE GASES, N.O.S.</td>
</tr>
</tbody>
</table>

CLASS 5

DIVISION 5.1

Specific entries

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td></td>
<td>1450</td>
<td>BROMATES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>1461</td>
<td>CHLORATES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>1462</td>
<td>CHLORITES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>1477</td>
<td>NITRATES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>1481</td>
<td>PERCHLORATES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>1482</td>
<td>PERMANGANATES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>1483</td>
<td>PEROXIDES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>2627</td>
<td>NITRITES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>3210</td>
<td>CHLORATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>3211</td>
<td>PERCHLORATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>3212</td>
<td>HYPOCHLORITES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>3213</td>
<td>BROMATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>3214</td>
<td>PERMANGANATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>3215</td>
<td>PERSULPHATES, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>3216</td>
<td>PERSULPHATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>3218</td>
<td>NITRATES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>3219</td>
<td>NITRITES, INORGANIC, AQUEOUS SOLUTION, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>1479</td>
<td>OXIDISING SOLID, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td></td>
<td>1479</td>
<td>OXIDISING SOLID, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td>4.1</td>
<td>3137</td>
<td>OXIDISING SOLID, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td>4.2</td>
<td>3100</td>
<td>OXIDISING SOLID, SELF-HEATING, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td>4.3</td>
<td>3121</td>
<td>OXIDISING SOLID, WATER-REACTION, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td>6.1</td>
<td>3087</td>
<td>OXIDISING SOLID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td>6.1</td>
<td>3099</td>
<td>OXIDISING LIQUID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td>8</td>
<td>3085</td>
<td>OXIDISING SOLID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td>8</td>
<td>3098</td>
<td>OXIDISING LIQUID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>5.1</td>
<td>See 2.0.5.6</td>
<td>3544</td>
<td>ARTICLES CONTAINING OXIDIZING SUBSTANCE, N.O.S.</td>
</tr>
</tbody>
</table>

DIVISION 5.2

Specific entries

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>3101</td>
<td>ORGANIC PEROXIDE TYPE B, LIQUID</td>
</tr>
<tr>
<td>5.2</td>
<td>3102</td>
<td>ORGANIC PEROXIDE TYPE B, SOLID</td>
</tr>
</tbody>
</table>
Table 3.3

LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td></td>
<td>3103</td>
<td>ORGANIC PEROXIDE TYPE C, LIQUID</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3104</td>
<td>ORGANIC PEROXIDE TYPE C, SOLID</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3105</td>
<td>ORGANIC PEROXIDE TYPE D, LIQUID</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3106</td>
<td>ORGANIC PEROXIDE TYPE D, SOLID</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3107</td>
<td>ORGANIC PEROXIDE TYPE E, LIQUID</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3108</td>
<td>ORGANIC PEROXIDE TYPE E, SOLID</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3109</td>
<td>ORGANIC PEROXIDE TYPE F, LIQUID</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3110</td>
<td>ORGANIC PEROXIDE TYPE F, SOLID</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3111</td>
<td>ORGANIC PEROXIDE TYPE B, LIQUID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3112</td>
<td>ORGANIC PEROXIDE TYPE B, SOLID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3113</td>
<td>ORGANIC PEROXIDE TYPE C, LIQUID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3114</td>
<td>ORGANIC PEROXIDE TYPE C, SOLID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3115</td>
<td>ORGANIC PEROXIDE TYPE D, LIQUID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3116</td>
<td>ORGANIC PEROXIDE TYPE D, SOLID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3117</td>
<td>ORGANIC PEROXIDE TYPE E, LIQUID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3118</td>
<td>ORGANIC PEROXIDE TYPE E, SOLID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3119</td>
<td>ORGANIC PEROXIDE TYPE F, LIQUID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>3120</td>
<td>ORGANIC PEROXIDE TYPE F, SOLID, TEMPERATURE CONTROLLED</td>
</tr>
<tr>
<td>5.2</td>
<td>See 2.0.5.6</td>
<td>3545</td>
<td>ARTICLES CONTAINING ORGANIC PEROXIDE, N.O.S.</td>
</tr>
</tbody>
</table>

General entries

CLASS 6

DIVISION 6.1

Specific entries

6.1	1544	ALKALOIDS, SOLID, N.O.S. or ALKALOID SALTS, SOLID, N.O.S.
6.1	1549	ANTIMONY COMPOUND, INORGANIC, SOLID, N.O.S.
6.1	1556	ARSENIC COMPOUND, LIQUID, N.O.S.
6.1	1557	ARSENIC COMPOUND, SOLID, N.O.S.
6.1	1564	BARIUM COMPOUND, N.O.S.
6.1	1566	BERYLLIUM COMPOUND, N.O.S.
6.1	1583	CHLOROPICRIN MIXTURE, N.O.S.
6.1	1588	CYANIDES, INORGANIC, SOLID, N.O.S.
6.1	1601	DISINFECTANT, SOLID, TOXIC, N.O.S.
6.1	1602	DYE, LIQUID, TOXIC, N.O.S. or DYE INTERMEDIATE, LIQUID, TOXIC, N.O.S.
6.1	1655	NICOTINE COMPOUND, SOLID, N.O.S. or NICOTINE PREPARATION, SOLID, N.O.S.
6.1	1693	TEAR GAS SUBSTANCE, LIQUID, N.O.S.
6.1	1707	THALLIUM COMPOUND, N.O.S.
6.1	1851	MEDICINE, LIQUID, TOXIC, N.O.S.
6.1	1935	CYANIDE SOLUTION, N.O.S.
6.1	2024	MERCURY COMPOUND, LIQUID, N.O.S.
6.1	2025	MERCURY COMPOUND, SOLID, N.O.S.
6.1	2026	PHENYMERCURIC COMPOUND, N.O.S.
Table 3.3: LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Hazard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2206</td>
<td>ISOCYANATES, TOXIC, N.O.S. or ISOCYANATE SOLUTION, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2291</td>
<td>LEAD COMPOUND, SOLUBLE, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2570</td>
<td>CADMIUM COMPOUND</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2788</td>
<td>ORGANOTIN COMPOUND, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2856</td>
<td>FLUOROSILICATES, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3140</td>
<td>ALKALOIDS, LIQUID, N.O.S. or ALKALOID SALTS, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3141</td>
<td>ANTIMONY COMPOUND, INORGANIC, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3142</td>
<td>DISINFECTANT, LIQUID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3143</td>
<td>DYE, SOLID, TOXIC, N.O.S. or DYE INTERMEDIATE, SOLID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3144</td>
<td>NICOTINE COMPOUND, LIQUID, N.O.S. or NICOTINE PREPARATION, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3146</td>
<td>ORGANOTIN COMPOUND, SOLID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3249</td>
<td>MEDICINE, SOLID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3276</td>
<td>NITRILES, TOXIC, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3278</td>
<td>ORGANOPHOSPHORUS COMPOUND, TOXIC, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3280</td>
<td>ORGANOARSENIC COMPOUND LIQUID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3281</td>
<td>METAL CARBONYLS LIQUID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3282</td>
<td>ORGANO METALLIC COMPOUND, TOXIC, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3283</td>
<td>Selenium Compound, Solid, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3284</td>
<td>Tellurium Compound, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3285</td>
<td>Vanadium Compound, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3439</td>
<td>NITRILES, TOXIC, SOLID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3440</td>
<td>Selenium Compound, Liquid, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3448</td>
<td>TEAR GAS SUBSTANCE, SOLID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3464</td>
<td>ORGANOPHOSPHORUS COMPOUND, TOXIC, SOLID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3465</td>
<td>ORGANOARSENIC COMPOUND SOLID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3466</td>
<td>Metal Carboxyls Liquid, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3467</td>
<td>ORGANO METALLIC COMPOUND, TOXIC, SOLID, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3071</td>
<td>Mercaptans, Liquid, ToxIC, Flammable, N.O.S. or Mercaptan Mixture, Liquid, Toxic, Flammable, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3080</td>
<td>Isocyanates, ToxIC, Flammable, N.O.S. or Isocyanate Solution, Toxic, Flammable, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3275</td>
<td>Nitriles, Toxic, Flammable, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3279</td>
<td>Organophosphorus Compound, Toxic, Flammable, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>3 + 8</td>
<td>2742</td>
<td>Chloroformates, Toxic, Corrosive, Flammable, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>3 + 8</td>
<td>3362</td>
<td>Chlorosilanes, Toxic, Corrosive, Flammable, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>8</td>
<td>3277</td>
<td>Chlorosilanes, Toxic, Corrosive, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>8</td>
<td>3361</td>
<td>Chlorosilanes, Toxic, Corrosive, N.O.S.</td>
</tr>
</tbody>
</table>

Pesticides (a) Solid

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Hazard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2588</td>
<td>Pesticide, Solid, ToxIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2757</td>
<td>Carbamate Pesticide, Solid, ToxIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2759</td>
<td>Arsenical Pesticide, Solid, ToxIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2761</td>
<td>Organochlorine Pesticide, Solid, ToxIC</td>
</tr>
</tbody>
</table>
Table 3.3 LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td></td>
<td>2763</td>
<td>TRIAZINE PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2771</td>
<td>THIOCARBAMATE PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2775</td>
<td>COPPER BASED PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2777</td>
<td>MERCURY BASED PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2779</td>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2781</td>
<td>BIPYRIDILILUM PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2783</td>
<td>ORGANOPHOSPHORUS PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2786</td>
<td>ORGANOTIN PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3027</td>
<td>COUMARIN DERIVATIVE PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3345</td>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3349</td>
<td>PYRETHROID PESTICIDE, SOLID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2902</td>
<td>PESTICIDE, LIQUID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2992</td>
<td>CARBAMATE PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2994</td>
<td>ARSENICAL PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2996</td>
<td>ORGANOCHLORINE PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>2998</td>
<td>TRIAZINE PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3006</td>
<td>THIOCARBAMATE PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3010</td>
<td>COPPER BASED PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3012</td>
<td>MERCURY BASED PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3014</td>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3016</td>
<td>BIPYRIDILILUM PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3018</td>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3020</td>
<td>ORGANOTIN PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3026</td>
<td>COUMARIN DERIVATIVE PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3348</td>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>3352</td>
<td>PYRETHROID PESTICIDE, LIQUID, TOXIC</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>2903</td>
<td>PESTICIDE, LIQUID, TOXIC, FLAMMABLE, N.O.S., flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>2991</td>
<td>CARBAMATE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>2993</td>
<td>ARSENICAL PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>2995</td>
<td>ORGANOCHLORINE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>2997</td>
<td>TRIAZINE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3005</td>
<td>THIOCARBAMATE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3009</td>
<td>COPPER BASED PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3011</td>
<td>MERCURY BASED PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3013</td>
<td>SUBSTITUTED NITROPHENOL PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3015</td>
<td>BIPYRIDILILUM PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>UN No.</td>
<td>Proper Shipping Name</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------------</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3017</td>
<td>ORGANOPHOSPHORUS PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3019</td>
<td>ORGANOTIN PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3025</td>
<td>COUMARIN DERIVATIVE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3347</td>
<td>PHENOXYACETIC ACID DERIVATIVE PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td>6.1</td>
<td>3</td>
<td>3351</td>
<td>PYRETHROID PESTICIDE, LIQUID, TOXIC, FLAMMABLE, flash point ≥ 23°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2810</td>
<td>TOXIC LIQUID, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2811</td>
<td>TOXIC SOLID, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3172</td>
<td>TOXINS, EXTRACTED FROM LIVING SOURCES, LIQUID, N.O.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3243</td>
<td>SOLIDS CONTAINING TOXIC LIQUID, N.O.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3287</td>
<td>TOXIC LIQUID, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3288</td>
<td>TOXIC SOLID, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3315</td>
<td>CHEMICAL SAMPLE, TOXIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3381</td>
<td>TOXIC BY INHALATION LIQUID, N.O.S. with an inhalation toxicity lower than or equal to 200 ml/m3 and saturated vapour concentration greater than or equal to 500 LC$_{50}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3382</td>
<td>TOXIC BY INHALATION LIQUID, N.O.S. with an inhalation toxicity lower than or equal to 1000 ml/m3 and saturated vapour concentration greater than or equal to 10 LC$_{50}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3462</td>
<td>TOXINS, EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2929</td>
<td>TOXIC LIQUID, FLAMMABLE, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3383</td>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, N.O.S. with an LC${50}$ lower than or equal to 200 ml/m3 and saturated vapour concentration greater than or equal to 500 LC${50}$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3384</td>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, N.O.S. with an LC${50}$ lower than or equal to 1000 ml/m3 and saturated vapour concentration greater than or equal to 10 LC${50}$</td>
</tr>
<tr>
<td></td>
<td>3 + 8</td>
<td>3488</td>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, CORROSIVE, N.O.S. with an LC${50}$ lower than or equal to 200 ml/m3 and saturated vapour concentration greater than or equal to 500 LC${50}$</td>
</tr>
<tr>
<td></td>
<td>3 + 8</td>
<td>3489</td>
<td>TOXIC BY INHALATION LIQUID, FLAMMABLE, CORROSIVE, N.O.S. with an LC${50}$ lower than or equal to 1000 ml/m3 and saturated vapour concentration greater than or equal to 10 LC${50}$</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>2930</td>
<td>TOXIC SOLID, FLAMMABLE, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>3535</td>
<td>TOXIC SOLID, FLAMMABLE, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>3124</td>
<td>TOXIC SOLID, SELF-HEATING, N.O.S.</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>3123</td>
<td>TOXIC LIQUID, WATER-REACTIVE, N.O.S.</td>
</tr>
<tr>
<td>Class or Division</td>
<td>Subsidiary Hazard</td>
<td>UN No.</td>
<td>Proper Shipping Name</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>6.1</td>
<td>4.3</td>
<td>3125</td>
<td>TOXIC SOLID, WATER-REACTIVE, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>4.3</td>
<td>3385</td>
<td>TOXIC BY INHALATION LIQUID, WATER-REACTIVE, N.O.S. with an LC<sub>50</sub> lower than or equal to 200 ml/m<sup>3</sup> and saturated vapour concentration greater than or equal to 500 LC<sub>50</sub></td>
</tr>
<tr>
<td>6.1</td>
<td>4.3</td>
<td>3386</td>
<td>TOXIC BY INHALATION LIQUID, WATER-REACTIVE, N.O.S. with an LC<sub>50</sub> lower than or equal to 1000 ml/m<sup>3</sup> and saturated vapour concentration greater than or equal to 10 LC<sub>50</sub></td>
</tr>
<tr>
<td>6.1</td>
<td>5.1</td>
<td>3122</td>
<td>TOXIC LIQUID, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>5.1</td>
<td>3086</td>
<td>TOXIC SOLID, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>5.1</td>
<td>3387</td>
<td>TOXIC BY INHALATION LIQUID, OXIDISING, N.O.S. with an LC<sub>50</sub> lower than or equal to 200 ml/m<sup>3</sup> and saturated vapour concentration greater than or equal to 500 LC<sub>50</sub></td>
</tr>
<tr>
<td>6.1</td>
<td>5.1</td>
<td>3388</td>
<td>TOXIC BY INHALATION LIQUID, OXIDISING, N.O.S. with an LC<sub>50</sub> lower than or equal to 1000 ml/m<sup>3</sup> and saturated vapour concentration greater than or equal to 10 LC<sub>50</sub></td>
</tr>
<tr>
<td>6.1</td>
<td>8</td>
<td>2927</td>
<td>TOXIC LIQUID, CORROSIVE, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>8</td>
<td>2928</td>
<td>TOXIC SOLID, CORROSIVE, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>8</td>
<td>3289</td>
<td>TOXIC LIQUID, CORROSIVE, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>8</td>
<td>3290</td>
<td>TOXIC SOLID, CORROSIVE, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>6.1</td>
<td>8</td>
<td>3389</td>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC<sub>50</sub> lower than or equal to 200 ml/m<sup>3</sup> and saturated vapour concentration greater than or equal to 500 LC<sub>50</sub></td>
</tr>
<tr>
<td>6.1</td>
<td>8</td>
<td>3390</td>
<td>TOXIC BY INHALATION LIQUID, CORROSIVE, N.O.S. with an LC<sub>50</sub> lower than or equal to 1000 ml/m<sup>3</sup> and saturated vapour concentration greater than or equal to 10 LC<sub>50</sub></td>
</tr>
<tr>
<td>6.1</td>
<td>See 2.0.5.6</td>
<td>3546</td>
<td>ARTICLES CONTAINING TOXIC SUBSTANCE, N.O.S.</td>
</tr>
</tbody>
</table>

DIVISION 6.2

Specific entries

6.2	3291	CLINICAL WASTE, UNSPECIFIED, N.O.S. or (BIO) MEDICAL WASTE, N.O.S. or REGULATED MEDICAL WASTE, N.O.S.
6.2	3373	BIOLOGICAL SUBSTANCE, CATEGORY B
6.2	3549	MEDICAL WASTE, CATEGORY A, AFFECTING HUMANS, solid
6.2	3549	MEDICAL WASTE, CATEGORY A, AFFECTING ANIMALS only, solid

General entries

| 6.2 | 2814 | INFECTIOUS SUBSTANCE, AFFECTING HUMANS |
| 6.2 | 2900 | INFECTIOUS SUBSTANCE, AFFECTING ANIMALS only |

CLASS 7

General entries

| 7 | 2908 | RADIOACTIVE MATERIAL, EXCEPTED PACKAGE – EMPTY PACKAGING |
Table 3.3 LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2909</td>
<td></td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE – ARTICLES MANUFACTURED FROM NATURAL URANIUM or DEPLETED URANIUM or NATURAL THORIUM</td>
</tr>
<tr>
<td>7</td>
<td>2910</td>
<td></td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE – LIMITED QUANTITY OF MATERIAL</td>
</tr>
<tr>
<td>7</td>
<td>2911</td>
<td></td>
<td>RADIOACTIVE MATERIAL, EXCEPTED PACKAGE -INSTRUMENTS or ARTICLES</td>
</tr>
<tr>
<td>7</td>
<td>2912</td>
<td></td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-I), non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>2913</td>
<td></td>
<td>RADIOACTIVE MATERIAL, SURFACE CONTAMINATED OBJECTS (SCO-I or SCO-II), non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>2915</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, non-special form, non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>2916</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE B(U) PACKAGE, non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>2917</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE B(M) PACKAGE, non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>2919</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TRANSPORTED UNDER SPECIAL ARRANGEMENT, non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>3321</td>
<td></td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-II), non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>3322</td>
<td></td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-III), non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>3323</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE C PACKAGE, non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>3324</td>
<td></td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-II), FISSILE</td>
</tr>
<tr>
<td>7</td>
<td>3325</td>
<td></td>
<td>RADIOACTIVE MATERIAL, LOW SPECIFIC ACTIVITY (LSA-III), FISSILE</td>
</tr>
<tr>
<td>7</td>
<td>3326</td>
<td></td>
<td>RADIOACTIVE MATERIAL, SURFACE CONTAMINATED OBJECTS (SCO-I or SCO-II), FISSILE</td>
</tr>
<tr>
<td>7</td>
<td>3327</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, FISSILE, non-special form</td>
</tr>
<tr>
<td>7</td>
<td>3328</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE B(U) PACKAGE, FISSILE</td>
</tr>
<tr>
<td>7</td>
<td>3329</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE B(M) PACKAGE, FISSILE</td>
</tr>
<tr>
<td>7</td>
<td>3330</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE C PACKAGE, FISSILE</td>
</tr>
<tr>
<td>7</td>
<td>3331</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TRANSPORTED UNDER SPECIAL ARRANGEMENT, FISSILE</td>
</tr>
<tr>
<td>7</td>
<td>3332</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, SPECIAL FORM, non-fissile or fissile-excepted</td>
</tr>
<tr>
<td>7</td>
<td>3333</td>
<td></td>
<td>RADIOACTIVE MATERIAL, TYPE A PACKAGE, SPECIAL FORM, FISSILE</td>
</tr>
</tbody>
</table>
Table 3.3 LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (cont.) (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific entries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1719</td>
<td></td>
<td>CAUSTIC ALKALI LIQUID, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>1740</td>
<td></td>
<td>HYDROGENENDIFLUORIDES, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>1903</td>
<td></td>
<td>DISINFECTANT, LIQUID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2430</td>
<td></td>
<td>ALKYLPHENOLS, SOLID, N.O.S. (including C2-C12 homologues)</td>
</tr>
<tr>
<td>8</td>
<td>2693</td>
<td></td>
<td>BISULPHITES, AQUEOUS SOLUTION, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2735</td>
<td></td>
<td>AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2801</td>
<td></td>
<td>DYE, LIQUID, CORROSIVE, N.O.S. or DYE INTERMEDIATE, LIQUID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2837</td>
<td></td>
<td>BISULPHATES, AQUEOUS SOLUTION</td>
</tr>
<tr>
<td>8</td>
<td>2987</td>
<td></td>
<td>CHLOROSILANES, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3145</td>
<td></td>
<td>ALKYLPHENOLS, LIQUID, N.O.S. (including C2-C12 homologues)</td>
</tr>
<tr>
<td>8</td>
<td>3147</td>
<td></td>
<td>DYE, SOLID, CORROSIVE, N.O.S. or DYE INTERMEDIATE, SOLID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3259</td>
<td></td>
<td>AMINES, SOLID, CORROSIVE, N.O.S. or POLYAMINES, SOLID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2734</td>
<td>3</td>
<td>AMINES, LIQUID, CORROSIVE, FLAMMABLE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2986</td>
<td>3.1</td>
<td>CHLOROSILANES, CORROSIVE, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3471</td>
<td>6.1</td>
<td>HYDROGENENDIFLUORIDES SOLUTION, N.O.S.</td>
</tr>
<tr>
<td>General entries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1759</td>
<td></td>
<td>CORROSIVE SOLID, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>1760</td>
<td></td>
<td>CORROSIVE LIQUID, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3244</td>
<td></td>
<td>SOLIDS CONTAINING CORROSIVE LIQUID, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3260</td>
<td></td>
<td>CORROSIVE SOLID, ACIDIC, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3261</td>
<td></td>
<td>CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3262</td>
<td></td>
<td>CORROSIVE SOLID, BASIC, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3263</td>
<td></td>
<td>CORROSIVE SOLID, BASIC, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3264</td>
<td></td>
<td>CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3265</td>
<td></td>
<td>CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3266</td>
<td></td>
<td>CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3267</td>
<td></td>
<td>CORROSIVE LIQUID, BASIC, ORGANIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2920</td>
<td>3.1</td>
<td>CORROSIVE LIQUID, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2921</td>
<td>4.1</td>
<td>CORROSIVE SOLID, FLAMMABLE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3095</td>
<td>4.2</td>
<td>CORROSIVE SOLID, SELF-HEATING, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3094</td>
<td>4.3</td>
<td>CORROSIVE LIQUID, WATER-REACTIVE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3096</td>
<td>4.3</td>
<td>CORROSIVE SOLID, WATER-REACTIVE, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3084</td>
<td>5.1</td>
<td>CORROSIVE SOLID, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>3093</td>
<td>5.1</td>
<td>CORROSIVE LIQUID, OXIDISING, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2922</td>
<td>6.1</td>
<td>CORROSIVE LIQUID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>2923</td>
<td>6.1</td>
<td>CORROSIVE SOLID, TOXIC, N.O.S.</td>
</tr>
<tr>
<td>8</td>
<td>See 2.0.5.6</td>
<td>3547</td>
<td>ARTICLES CONTAINING CORROSIVE SUBSTANCE, N.O.S.</td>
</tr>
</tbody>
</table>
Table 3.3 LIST OF GENERIC AND N.O.S. PROPER SHIPPING NAMES (cont.) (see 3.2.6.3)

<table>
<thead>
<tr>
<th>Class or Division</th>
<th>Subsidiary Hazard</th>
<th>UN No.</th>
<th>Proper Shipping Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>General entries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3077</td>
<td>9</td>
<td>ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.</td>
</tr>
<tr>
<td>9</td>
<td>3082</td>
<td>9</td>
<td>ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>9</td>
<td>3245</td>
<td>9</td>
<td>GENETICALLY MODIFIED MICROORGANISMS or GENETICALLY MODIFIED ORGANISMS</td>
</tr>
<tr>
<td>9</td>
<td>3257</td>
<td>9</td>
<td>ELEVATED TEMPERATURE LIQUID, N.O.S., at or above 100°C and below its flash point (including molten metals, molten salts, etc.)</td>
</tr>
<tr>
<td>9</td>
<td>3258</td>
<td>9</td>
<td>ELEVATED TEMPERATURE SOLID, N.O.S., at or above 240°C</td>
</tr>
<tr>
<td>9</td>
<td>3334</td>
<td>9</td>
<td>AVIATION REGULATED LIQUID, N.O.S.</td>
</tr>
<tr>
<td>9</td>
<td>3335</td>
<td>9</td>
<td>AVIATION REGULATED SOLID, N.O.S.</td>
</tr>
<tr>
<td>9</td>
<td>See 2.0.5.6</td>
<td>9</td>
<td>ARTICLES CONTAINING MISCELLANEOUS DANGEROUS GOODS, N.O.S.</td>
</tr>
</tbody>
</table>
CHAPTER 3.3 - SPECIAL PROVISIONS APPLICABLE TO CERTAIN ARTICLES OR SUBSTANCES

3.3.1 INTRODUCTION
When Column 6 of the Dangerous Goods List indicates that a special provision is relevant to a substance or article, the meaning and requirements of that special provision are as set forth below. Where a special provision includes a requirement for package marking, the provisions of 5.2.1.2 (a) to (d) shall be met. If the required mark is in the form of specific wording indicated in quotation marks, such as ‘LITHIUM BATTERIES FOR DISPOSAL’, the size of the mark shall be at least 12 mm, unless otherwise indicated in the special provision or elsewhere in this Code.

3.3.2 UN SPECIAL PROVISIONS
The Special Provisions in this Section 3.3.2 are sourced from UN15 (as amended by UN16, UN17, UN18, UN19 and UN20) and, except as otherwise indicated, are therefore applicable to international transport as well as transport within Australia.

SP No.

16 Samples of new or existing explosive substances or articles may be transported as directed by the competent authorities for purposes including: testing, classification, research and development, quality control, or as a commercial sample. Explosive samples which are not wetted or desensitised must be limited to 10 kg in small packages as specified by the competent authorities. Explosive samples which are wetted or desensitised must be limited to 25 kg.

23 Even though this substance has a flammability hazard, it only exhibits such hazard under extreme fire conditions in confined areas.

26 This substance is not permitted for transport in portable tanks, or intermediate bulk containers with a capacity exceeding 450 litres, due to potential initiation of explosion when transported in large volumes.

28 This substance may be transported under the provisions of Division 4.1 only if it is so packed that the percentage of diluent will not fall below that stated, at any time during transport (see 2.4.2.4).

29 This substance is exempt from labelling, but must be marked with the appropriate Class or division.

32 This substance is not subject to this Code when in any other form.

37 This substance is not subject to this Code when coated.

38 This substance is not subject to this Code when it contains not more than 0.1% calcium carbide.

39 This substance is not subject to this Code when it contains less than 30% or not less than 90% silicon.

43 When offered for carriage as pesticides, these substances must be carried under the relevant pesticide entry and in accordance with the relevant pesticide provisions (see 2.6.2.3 and 2.6.2.4).
Antimony sulphides and oxides which contain not more than 0.5% of arsenic calculated on the total weight are not subject to this Code.

Ferricyanides and ferrocyanides are not subject to this Code.

The transport of this substance, when it contains more than 20% hydrocyanic acid, is prohibited except with special authorisation granted by the competent authorities.

These substances are not subject to this Code when they contain not more than 50% magnesium.

If the concentration is more than 72%, the transport of this substance is prohibited except with special authorisation granted by the competent authorities.

The technical name which must supplement the proper shipping name must be the ISO common name, other name listed in the WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification or the name of the active substance (see also 3.1.2.8.1.1).

This substance is not subject to this Code when it contains not more than 4% sodium hydroxide.

The division of Class 2 and the subsidiary hazards depend on the nature of the contents of the aerosol dispenser. The following provisions apply:

(a) Division 2.1 applies if the contents include 85% by mass or more flammable components and the chemical heat of combustion is 30 kJ/g or more;
(b) Division 2.2 applies if the contents contain 1% by mass or less flammable components and the heat of combustion is less than 20 J/g;
(c) Otherwise the product must be classified as tested by the tests described in the Manual of Tests and Criteria, Part III, section 31. Extremely flammable and flammable aerosols must be classified in Division 2.1; non-flammable in Division 2.2;
(d) Gases of Division 2.3 must not be used as a propellant in an aerosol dispenser;
(e) Where the contents other than the propellant of aerosol dispensers to be ejected are classified as Division 6.1 packing groups II or III or Class 8 packing groups II or III, the aerosol will have a subsidiary hazard of Division 6.1 or Class 8;
(f) Aerosols with contents meeting the criteria for packing group I for toxicity or corrosivity are prohibited from transport;
(g) Subsidiary hazard labels may be required for air transport. Flammable components are flammable liquids, flammable solids or flammable gases and gas mixtures as defined in Notes 1 to 3 of subsection 31.1.3 of Part III of the Manual of Tests and Criteria. This designation does not cover pyrophoric, self-heating or water-reactive substances. The chemical heat of combustion must be determined by one of the following methods ASTM D 240, ISO/FDIS 13943: 1999 (E/F) 86.1 to 86.3 or NFPA 30B.

Hydrogen peroxide aqueous solutions with less than 8% hydrogen peroxide are not subject to this Code.
Cinnabar is not subject to this Code.

Ammonium nitrites and mixtures of an inorganic nitrite with an ammonium salt are prohibited.

Nitrocellulose meeting the descriptions of UN 2556 or UN 2557 may be classified in Division 4.1.

Not subject to this Code. Dangerous Goods only when transported by air.

The carriage of chemically unstable mixtures is prohibited.

Not subject to this Code. Dangerous Goods only when transported by sea.

Refrigerating machines include machines or other appliances which have been designed for the specific purpose of keeping food or other items at a low temperature in an internal compartment, and air conditioning units. Refrigerating machines and refrigerating machine components are not subject to this Code if they contain less than 12 kg of gas in Division 2.2 or less than 12 litres ammonia solution (UN 2672).

The subsidiary hazard, control and emergency temperatures if any, and the generic entry number for each of the currently assigned organic peroxide formulations are given in 2.5.3.2.4, 4.1.4.2 packing instruction IBC520 and 4.2.5.2.6 portable tank instruction T23.

Not subject to this Code. This entry in the Dangerous Goods List applies only when transported by air or sea.

Other inert material or inert material mixture may be used at the discretion of the competent authority, provided this inert material has identical phlegmatising properties.

The phlegmatised substance must be significantly less sensitive than dry PETN.

During the course of transport, this substance must be protected from direct sunshine and stored (or kept) in a cool and well-ventilated place, away from all sources of heat.

If over-confined in packagings, this substance may exhibit explosive behaviour. Packagings authorised under packing instruction P409 are intended to prevent over-confinement. When a packaging other than those prescribed under packing instruction P409 is authorised by the competent authority of the country/state of origin in accordance with 4.1.3.7, the package must bear an “EXPLOSIVE” subsidiary hazard label (Model No.1, see 5.2.2.2.2) unless the competent authority of the country/state of origin has permitted this label to be dispensed with for the specific packaging employed because test data have proved that the substance in this packaging does not exhibit explosive behaviour (see 11.1.2.3.4.1). The provisions of 7.1.3.1 of UN20 must also be then considered.

The dihydrated sodium salt of dichloroisocyanuric acid does not meet the criteria for inclusion in Division 5.1 and is not subject to this Code unless meeting the criteria for inclusion in another Class or Division.

p Bromobenzyl cyanide is not subject to this Code.
Products which have undergone sufficient heat treatment so that they present no hazard during transport are not subject to this Code.

Solvent extracted soya bean meal containing not more than 1.5% oil and 11% moisture, which is substantially free of flammable solvent, is not subject to this Code.

An aqueous solution containing not more than 24% alcohol by volume is not subject to this Code.

Other than for air transport, alcoholic beverages of packing group III, when carried in receptacles of 250 litres or less, are not subject to this Code.

Other than for air and sea transport, alcoholic beverages of packing group II, when carried in receptacles of 5 litres or less, are not subject to this Code.

The classification of this substance will vary with particle size and packaging, but borderlines have not been experimentally determined. Appropriate classifications must be made as required by 2.1.3.

This entry applies only if it is demonstrated, on the basis of tests, that the substances, when in contact with water are not combustible nor show a tendency to auto-ignition and that the mixture of gases evolved is not flammable.

A substance specifically listed by name in the list of dangerous goods must not be transported under this entry. Materials transported under this entry may contain 20% or less nitrocellulose provided the nitrocellulose contains not more than 12.6% nitrogen (by dry mass).

Asbestos which is immersed or fixed in a natural or artificial binder (such as cement, plastics, asphalt, resins or mineral ore) in such a way that no escape of hazardous quantities of respirable asbestos fibres can occur during transport is not subject to this Code. Manufactured articles containing asbestos and not meeting this provision are nevertheless not subject to this Code when packed so that no escape of hazardous quantities of respirable asbestos fibres can occur during transport.

Phthalic anhydride in the solid state and tetrahydrophthalic anhydrides, with not more than 0.05% maleic anhydride, are not subject to this Code. Phthalic anhydride molten at a temperature above its flash point, with not more than 0.05% maleic anhydride, must be classified under UN 3256.

Where a radioactive material has a subsidiary hazard(s):

(a) The substance must be allocated to Packing Group I, II or III, if appropriate, by application of the packing group criteria provided in Part 2 corresponding to the nature of the predominant subsidiary hazard;

(b) Packages must be labelled with subsidiary hazard labels corresponding to each subsidiary hazard exhibited by the material; corresponding placards must be affixed to cargo transport units in accordance with the relevant provisions of 5.3.1;

(c) For the purposes of documentation and package marking, the proper shipping name must be supplemented with the name of the...
constituents which most predominantly contribute to this (these) subsidiary hazard(s) and which must be enclosed in parenthesis;

(d) The dangerous goods transport document must indicate the class or division of the subsidiary hazard and packing group where applicable.

For packing, see also 4.1.9.1.5.

177 Barium sulphate is not subject to this Code.

178 This designation must be used only when no other appropriate designation exists in the list, and only with the approval of the competent authority of the country of origin or in accordance with a competent authority determination in accordance with Regulation 1.5.1(1).

179 Deleted

181 Packages containing this type of substance must bear the “EXPLOSIVE” subsidiary hazard label (Model No.1, see 5.2.2.2.2) unless the competent authority of the country or state of origin has permitted this label to be dispensed with for the specific packaging employed because test data have proved that the substance in this packaging does not exhibit explosive behaviour (see 11.1.2.3.4.1). The provisions of 7.1.3.1 of UN20 must also be considered.

182 The group of alkali metals includes lithium, sodium, potassium, rubidium and caesium.

183 The group of alkaline earth metals includes magnesium, calcium, strontium and barium.

186 Deleted

188 Cells and batteries offered for transport are not subject to other provisions of this Code if they meet the following:

(a) For a lithium metal or lithium alloy cell, the lithium content is not more than 1 g, and for a lithium ion cell, the Watt-hour rating is not more than 20 Wh; and

(b) For a lithium metal or lithium alloy battery the aggregate lithium content is not more than 2 g, and for a lithium ion battery, the Watt-hour rating is not more than 100 Wh. Lithium ion batteries subject to this provision must be marked with the Watt-hour rating on the outside case, except those manufactured before 1 January 2009;

and

(c) Each cell or battery meets the provisions of 2.9.4 (a), (e), (f) if applicable and (g); and

(d) Cells and batteries, except when installed in equipment, must be packed in inner packagings that completely enclose the cell or battery. Cells and batteries must be protected so as to prevent short circuits. This includes protection against contact with electrically conductive material within the same packaging that could lead to a short circuit. The inner packagings must be packed in strong outer packagings which conform to the provisions of 4.1.1.1, 4.1.1.2, and 4.1.1.5; and

(e) Cells and batteries when installed in equipment must be protected from damage and short circuit, and the equipment must be equipped with an effective means of preventing accidental activation. This
requirement does not apply to devices which are intentionally active in transport (radio frequency identification (RFID) transmitters, watches, sensors, etc.) and which are not capable of generating a dangerous evolution of heat; and

(f) Each package shall be marked with the appropriate lithium battery mark, as illustrated at 5.2.1.9;

NOTE 1: Packages containing lithium batteries packed in conformity with the provisions of Part 4, Chapter 11, packing instructions 965 or 968, Section IB of the ICAO Technical Instructions for the Safe Transport of Dangerous Goods by Air that bear the mark as shown in 5.2.1.9 (lithium battery mark) and the label shown in 5.2.2.1.9, Model No.9A shall be deemed to meet the provisions of this special provision.

This requirement does not apply to:
(i) packages containing only button cell batteries installed in equipment (including circuit boards); and
(ii) packages containing no more than four cells or two batteries installed in equipment, where there are not more than two packages in the consignment.

When packages are placed in an overpack, the lithium battery mark shall either be clearly visible or be reproduced on the outside of the overpack and the overpack shall be marked with the word “OVERPACK”. The lettering of the “OVERPACK” mark shall be at least 12 mm high.

(g) Except when lithium cells or batteries are installed in equipment, each package must be capable of withstanding a 1.2 m drop test in any orientation without damage to cells or batteries contained therein, without shifting of the contents so as to allow battery to battery (or cell to cell) contact and without release of contents; and

(h) Except when lithium cells or batteries are installed in or packed with equipment, packages must not exceed 30 kg gross mass.

As used above and elsewhere in this Code, “lithium content” means the mass of lithium in the anode of a lithium metal or lithium alloy cell. As used in this special provision “equipment” means apparatus for which the lithium cells or batteries will provide electrical power for its operation.

Separate entries exist for lithium metal batteries and lithium ion batteries to facilitate the transport of these batteries for specific modes of transport and to enable the application of different emergency response actions.

A single cell battery as defined in Part III, sub-section 38.3.2.3 of the Manual of Tests and Criteria is considered a “cell” and shall be transported according to the requirements for “cells” for the purpose of this special provision.

Aerosol dispensers must be provided with protection against inadvertent discharge. Aerosols with a capacity not exceeding 50 ml containing only non-toxic constituents are not subject to this Code.
Receptacles, small, containing gas are not fitted with a release device. Receptacles with a capacity not exceeding 50 ml containing only non-toxic constituents are not subject to this Code.

This entry may only be used for ammonium nitrate based compound fertilizers. They shall be classified in accordance with the procedure as set out in the Manual of Tests and Criteria, Part III, Section 39. Fertilizers meeting the criteria for this UN number are not subject to this Code. Dangerous Goods only when transported by air or sea.

The control and emergency temperatures, if any, and the generic entry number for each of the currently assigned self-reactive substances are given in 2.4.2.3.2.3.

For certain organic peroxides types B or C, a smaller packaging than that allowed by packing methods OP5 or OP6 respectively has to be used (see 4.1.7 and 2.5.3.2.4).

Formulations which in laboratory testing neither detonate in the cavitated state nor deflagrate, which show no effect when heated under confinement and which exhibit no explosive power may be transported under this entry. The formulation must also be thermally stable (i.e. the SADT is 60 °C or higher for a 50 kg package). Formulations not meeting these criteria must be transported under the provisions of Division 5.2; see 2.5.3.2.4.

Nitrocellulose solutions containing not more than 20% nitrocellulose may be transported as paint, perfumery products or printing ink, as applicable. See UN Nos. 1210, 1263, 1266, 3066, 3469 and 3470.

Lead compounds which, when mixed in a ratio of 1:1000 with 0.07M hydrochloric acid and stirred for one hour at a temperature of 23 °C ± 2 °C, exhibit a solubility of 5% or less (see ISO 3711:1990 “Lead chromate pigments and lead chromate-molybdate pigments – Specifications and methods of test”) are considered insoluble and are not subject to this Code unless they meet the criteria for inclusion in another hazard class or division.

Lighters and lighter refills must comply with the provisions of the country/state in which they were filled. They must be provided with protection against inadvertent discharge. The liquid portion of the gas must not exceed 85% of the capacity of the receptacle at 15 °C. The receptacles, including the closures, must be capable of withstanding an internal pressure of twice the pressure of the liquefied petroleum gas at 55 °C. The valve mechanisms and ignition devices must be securely sealed, taped or otherwise fastened or designed to prevent operation or leakage of the contents during transport. Lighters must not contain more than 10 g of liquefied petroleum gas. Lighter refills must not contain more than 65 g of liquefied petroleum gas.

This entry must not be used for polychlorinated biphenyls, UN 2315.

Articles containing smoke producing substance(s) corrosive according to the criteria for Class 8 must be labelled with a “CORROSIVE” subsidiary hazard label (Model No.8, see 5.2.2.2.2).
Articles containing smoke-producing substance(s) toxic by inhalation according to the criteria for Division 6.1 shall be labelled with a "TOXIC" subsidiary hazard label (Model No 6.1, see 5.2.2.2.2), except that those manufactured before 31 December 2016 may be transported until 1 January 2019 without a "TOXIC" subsidiary hazard label.

205 This entry must not be used for UN 3155 PENTACHLOROPHENOL.

206 This entry is not intended to include ammonium permanganate, the transport of which is prohibited except with special authorisation granted by the competent authorities.

207 Plastics moulding compounds may be made from polystyrene, poly (methyl methacrylate) or other polymeric material.

208 The commercial grade of calcium nitrate fertiliser, when consisting mainly of a double salt (calcium nitrate and ammonium nitrate) containing not more than 10% ammonium nitrate and at least 12% water of crystallisation, is not subject to this Code.

209 The gas must be at a pressure corresponding to ambient atmospheric pressure at the time the containment system is closed and this must not exceed 105 kPa absolute.

210 Toxins from plant, animal or bacterial sources which contain infectious substances, or toxins that are contained in infectious substances, must be classified in Division 6.2.

215 This entry only applies to the technically pure substance or to formulations derived from it having an SADT higher than 75 °C and therefore does not apply to formulations which are self-reactive substances. (For self-reactive substances, see 2.4.2.3.2.3). Homogeneous mixtures containing not more than 35 % by mass of azocarbonamide and at least 65 % of inert substance are not subject to this Code unless criteria of other classes or divisions are met.

216 Mixtures of solids which are not subject to this Code and flammable liquids may be transported under this entry without first applying the classification criteria of Division 4.1, provided there is no free liquid visible at the time the substance is loaded or at the time the packaging or cargo transport unit is closed. Each cargo transport unit must be leakproof when used as a bulk packaging. Sealed packets and articles containing less than 10 ml of a packing group II or III flammable liquid absorbed into a solid material are not subject to this Code provided there is no free liquid in the packet or article.

217 Mixtures of solids which are not subject to this Code and toxic liquids may be transported under this entry without first applying the classification criteria of Division 6.1, provided there is no free liquid visible at the time the substance is loaded or at the time the packaging or cargo transport unit is closed. Each cargo transport unit must be leakproof when used as a bulk packaging. This entry must not be used for solids containing a packing group I liquid.

218 Mixtures of solids which are not subject to this Code and corrosive liquids may be transported under this entry without first applying the classification
criteria of Class 8, provided there is no free liquid visible at the time the substance is loaded or at the time the packaging or cargo transport unit is closed. Each cargo transport unit must be leakproof when used as a bulk packaging.

219 Genetically modified microorganisms (GMMOs) and genetically modified organisms (GMOs) packed and marked in accordance with packing instruction P904 are not subject to any other requirements in this Code.

If GMMOs or GMOs meet the definition in Chapter 2.6 of a toxic substance or an infectious substance and the criteria for inclusion in Division 6.1 or 6.2 the requirements in this Code for transporting toxic substances or infectious substances apply.

220 The technical name of the flammable liquid component only of this solution or mixture must be shown in parentheses immediately following the proper shipping name.

221 Substances included under this entry must not be of packing group I.

223 If the chemical or physical properties of a substance covered by this description are such that when tested it does not meet the established defining criteria for the Class or division listed in column (3), or any other Class or division, it is not subject to this Code.

224 Unless it can be demonstrated by testing that the sensitivity of the substance in its frozen state is no greater than in its liquid state, the substance must remain liquid during normal transport conditions. It must not freeze at temperatures above -15 °C.

225 Fire extinguishers under this entry may include installed actuating cartridges (cartridges, power device of Division 1.4C or 1.4S), without changing the classification of Division 2.2 provided the total quantity of deflagrating (propellant) explosives does not exceed 3.2 g per extinguishing unit.

Fire extinguishers must be manufactured, tested, approved and labelled according to the provisions applied in the country of manufacture.

NOTE: “Provisions applied in the country of manufacture” means the provisions applicable in the country of manufacture or those applicable in the country of use.

Fire extinguishers under this entry include:
(a) portable fire extinguishers for manual handling and operation;
(b) fire extinguishers for installation in aircraft;
(c) fire extinguishers mounted on wheels for manual handling;
(d) fire extinguishing equipment or machinery mounted on wheels or wheeled platforms or units transported similar to (small) trailers, and
(e) fire extinguishers composed of a non-rollable pressure drum and equipment, and handled e.g. by fork lift or crane when loaded or unloaded.

NOTE: Pressure receptacles which contain gases for use in the above-mentioned extinguishers or for use in stationary fire-fighting installations shall meet the requirements in Chapter 6.2 and all requirements
applicable to the relevant dangerous goods when these pressure receptacles are transported separately.

226 Formulations of these substances containing not less than 30% non-volatile, non-flammable phlegmatiser are not subject to this Code.

227 When phlegmatised with water and inorganic inert material the content of urea nitrate may not exceed 75% by mass and the mixture must not be capable of being detonated by the Series 1, type (a), test in the Manual of Tests and Criteria, Part I.

228 Mixtures not meeting the criteria for flammable gases (Division 2.1) must be transported under UN 3163.

230 Lithium cells and batteries may be transported under this entry if they meet the provisions of 2.9.4.

232 This designation may only be used when the substance does not meet the criteria of any other class. Transport in cargo transport units other than in multimodal tanks must be in accordance with standards specified by the competent authorities of the country or state of origin.

235 This entry applies to articles which contain Class 1 explosive substances and which may also contain dangerous goods of other classes. These articles are used to enhance safety in vehicles, vessels or aircraft – e.g. air bag inflators, air bag modules, seat-belt pretensioners, and pyromechanical devices.

236 Polyester resin kits consist of two components: a base material (either Class 3 or Division 4.1, packing group II or III) and an activator (organic peroxide). The organic peroxide shall be type D, E, or F, not requiring temperature control. The packing group shall be II or III, according to the criteria of either Class 3 or Division 4.1, as appropriate, applied to the base material. The quantity limit shown in column 7a of the Dangerous Goods List of Chapter 3.2 applies to the base material.

237 The membrane filters, including paper separators, coating or backing materials, etc., that are present in transport, must not be liable to propagate a detonation as tested by one of the tests described in the Manual of Tests and Criteria, Part I, Test series 1(a).

In addition, the competent authority may determine, on the basis of the results of suitable burning rate tests taking account of the standard tests in the Manual of Tests and Criteria, Part III, sub-section 33.2.1, that nitrocellulose membrane filters in the form in which they are to be transported are not subject to the provisions of this Code applicable to flammable solids in Division 4.1.

238 (a) Batteries can be considered as non-spillable provided that they are capable of withstanding the vibration and pressure differential tests given below, without leakage of battery fluid.

Vibration test: The battery is rigidly clamped to the platform of a vibration machine and a simple harmonic motion having an amplitude of 0.8 mm (1.6 mm maximum total excursion) is applied. The frequency is varied at the rate of 1 Hz/min between the limits of 10 Hz and 55 Hz.
The entire range of frequencies and return is traversed in 95 ± 5 minutes for each mounting position (direction of vibration) of the battery. The battery is tested in three mutually perpendicular positions (to include testing with fill openings and vents, if any, in an inverted position) for equal time periods.

Pressure differential test: Following the vibration test, the battery is stored for six hours at 24°C ± 4°C while subjected to a pressure differential of at least 88 kPa. The battery is tested in three mutually perpendicular positions (to include testing with fill openings and vents, if any, in an inverted position) for at least six hours in each position.

NOTE: Non-spillable type batteries which are an integral part of and necessary for the operation of mechanical or electronic equipment, must be securely fastened in the battery holder on the equipment and protected in such a manner as to prevent damage and short circuits.

(b) Non-spillable batteries are not subject to this Code if, at a temperature of 55 °C, the electrolyte will not flow from a ruptured or cracked case and there is no free liquid to flow and if, when packaged for transport, the terminals are protected from short circuit.

239 Batteries or cells must not contain dangerous goods other than sodium, sulphur or sodium compounds (e.g. sodium polysulphides and sodium tetrachloroaluminate). Batteries or cells must not be offered for transport at a temperature such that liquid elemental sodium is present in the battery or cell unless exempted and under the conditions established by the competent authority.

Cells must consist of hermetically sealed metal casings which fully enclose the dangerous goods and which are so constructed and closed as to prevent the release of the dangerous goods under normal conditions of transport.

Batteries must consist of cells secured within and fully enclosed by a metal casing so constructed and closed as to prevent the release of the dangerous goods under normal conditions of transport.240 Deleted.

241 The formulation must be prepared so that it remains homogeneous and does not separate during transport. Formulations with low nitrocellulose contents and not showing dangerous properties when tested for their liability to detonate, deflagrate or explode when heated under defined confinement by tests of Test series 1 (a), 2 (b) and 2 (c) respectively in the Manual of Tests and Criteria, Part I and not being a flammable solid when tested in accordance with test N.1 in the Manual of Tests and Criteria, Part III, sub-section 33.2.1.4 (chips, if necessary, crushed and sieved to a particle size of less than 1.25 mm) are not subject to this Code.

242 Sulphur is not subject to this Code when it has been formed to a specific shape (e.g. prills, granules, pellets, pastilles or flakes).

243 Gasoline, motor spirit and petrol for use in spark-ignition engines (e.g. in automobiles, stationary engines and other engines) must be assigned to this entry regardless of variations in volatility.

244 This entry includes e.g. aluminium dross, aluminium skimmings, spent cathodes, spent potliner, and aluminium salt slags.
Before loading, these by-products shall be cooled to ambient
temperature, unless they have been calcined to remove moisture. Cargo
transport units containing bulk loads shall be adequately ventilated and
protected against ingress of water throughout the journey.

Notwithstanding the provisions of 4.3.2.2, sheeted bulk containers (BK1)
may be used for inland transport.

246 This substance must be packed in accordance with packing method OP6
(see applicable packing instruction). During transport, it must be protected
from direct sunshine and stored (or kept) in a cool and well-ventilated
place, away from all sources of heat.

247 Alcoholic beverages containing more than 24% alcohol but not more than
70% by volume, when transported as part of the manufacturing process,
may be transported in wooden barrels with a capacity of more than
250 litres and not more than 500 litres meeting the general requirements
of 4.1.1, as appropriate, on the following conditions:

(a) The wooden barrels must be checked and tightened before filling; and
(b) Sufficient ullage (not less than 3%) must be left to allow for the
expansion of the liquid; and
(c) The wooden barrels must be transported with the bungholes pointing
upwards; and
(d) The wooden barrels must be transported in containers meeting the
requirements of the International Convention for Safe Containers
(CSC), 1972, as amended. Each wooden barrel must be secured in
custom-made cradles and be wedged by appropriate means to
prevent it from being displaced in any way during transport.

249 Ferrocierium, stabilised against corrosion, with a minimum iron content of
10% is not subject to this Code.

250 This entry may only be used for samples of chemicals taken for analysis
in connection with the implementation of the Convention on the Prohibition
of the Development, Production, Stockpiling and Use of Chemical
Weapons and on their Destruction. The transport of substances under this
entry must be in accordance with the chain of custody and security
procedures specified by the Organisation for the Prohibition of Chemical
Weapons.

The chemical sample may only be transported providing prior approval
has been granted by the competent authority or the Director General of
the Organisation for the Prohibition of Chemical Weapons and providing
the sample complies with the following provisions:

(a) It must be packed according to Packing Instruction 623 in the
International Civil Aviation Organisation's Technical Instructions for
the Safe Transport of Dangerous Goods by Air; and
(b) During transport it must be accompanied by a copy of the document
of approval for transport, showing the quantity limitations and the
packing provisions.

251 The entry CHEMICAL KIT or FIRST AID KIT is intended to apply to boxes,
cases etc. containing small quantities of various dangerous goods which
are used for example for medical, analytical or testing or repair purposes.
Such kits shall only contain dangerous goods that are permitted as:

(a) Excepted quantities not exceeding the quantity indicated by the code in column (7b) of the Dangerous Goods List of Chapter 3.2, provided that the net quantity per inner packaging and net quantity per package are as prescribed in 3.5.1.2 and 3.5.1.3; or;

(b) Limited quantities as indicated in column (7a) of the Dangerous Goods List of Chapter 3.2, provided that the net quantity per inner packaging does not exceed 250 ml or 250 g.

Components must not react dangerously (see 4.1.1.6). The total quantity of dangerous goods in any one kit must not exceed either 1 L or 1 kg. The packing group assigned to the kit as a whole will be the most stringent packing group assigned to any individual substance in the kit.

Where the kit contains only dangerous goods to which no packing group is assigned, no packing group need be indicated on the dangerous goods transport document.

Kits which are carried on board vehicles for first-aid or operating purposes are not subject to this Code.

Chemical kits and first aid kits containing dangerous goods in inner packagings which do not exceed the quantity limits applicable to individual substances as specified in column 7 of the Dangerous Goods List may be transported in accordance with Chapter 3.4.

252 Provided the ammonium nitrate remains in solution under all conditions of transport, aqueous solutions of ammonium nitrate, with not more than 0.2% combustible material, in a concentration not exceeding 80%, are not subject to this Code.

266 This substance, when containing less alcohol, water or phlegmatise than specified, must not be transported unless specifically authorised by the competent authority.

267 Any explosives, blasting, type C containing chlorates must be segregated from explosives containing ammonium nitrate or other ammonium salts.

270 Aqueous solutions of Division 5.1 inorganic solid nitrate substances are considered as not meeting the criteria of Division 5.1 if the concentration of the substances in solution at the minimum temperature encountered in transport is not greater than 80% of the saturation limit.

271 Lactose or glucose or similar materials, may be used as a phlegmatiser provided that the substance contains not less than 90%, by mass, of phlegmatiser. The competent authority may authorise these mixtures to be classified in Division 4.1 on the basis of a test Series 6(c) of Section 16 of Part I of the Manual of Tests and Criteria on at least three packages as prepared for transport.

Mixtures containing at least 98%, by mass, of phlegmatiser are not subject to this Code. Packages containing mixtures with not less than 90%, by mass, of phlegmatiser need not bear a TOXIC subsidiary hazard label.

272 This substance must not be transported under the provisions of Division 4.1 unless specifically authorised by the competent authority (see UN 0143 or UN 0150 as appropriate).
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

273 Maneb and maneb preparations stabilised against self-heating need not be classified in Division 4.2 when it can be demonstrated by testing that a cubic volume of 1 m3 of substance does not self-ignite and that the temperature at the centre of the sample does not exceed 200 °C, when the sample is maintained at a temperature of not less than 75 °C ± 2 °C for a period of 24 hours.

274 For the purposes of documentation and package marking, the proper shipping name must be supplemented with the technical name (see 3.1.2.8).

For UN 3077 and UN 3082 only, the technical name may be a name shown in capital letters in column 2 of the Dangerous Goods List, provided that this name does not include "N.O.S." and that special provision 274 is not assigned. The name which most appropriately describes the substance or mixture shall be used, e.g.:

UN 3082, ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S., (PAINT)

UN 3082, ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S., (PERFUMERY PRODUCTS)

276 This includes any substance which is not covered by any of the other classes but which has narcotic, noxious or other properties such that, in the event of spillage or leakage on an aircraft, annoyance or discomfort could be caused to crew members so as to prevent the correct performance of assigned duties.

277 For aerosols or receptacles containing toxic substances the limited quantity value is 120 ml. For all other aerosols or receptacles the limited quantity value is 1000 ml.

278 These substances must not be classified and transported unless authorised by the competent authority on the basis of results from Series 2 tests and a Series 6(c) test of Part I of the Manual of Tests and Criteria on packages as prepared for transport (see 2.1.3.1). The competent authority will assign the packing group on the basis of the Chapter 2.3 criteria and the package type used for the Series 6(c) test.

279 The substance is assigned to this classification or packing group based on human experience rather than the strict application of classification criteria set out in this Code.

280 This entry applies to safety devices for vehicles, vessels or aircraft, e.g. air bag inflators, air bag modules, seat-belt pretensioners, and pyromechanical devices, which contain dangerous goods of Class 1 or of other classes, when transported as component parts and if these articles as presented for transport have been tested in accordance with Test Series 6(c) of Part 1 of the Manual of Tests and Criteria, with no explosion of the device, no fragmentation of device casing or pressure receptacle, and no projection hazard nor thermal effect which would significantly hinder fire-fighting or emergency response efforts in the immediate vicinity. This entry does not apply to life saving appliances described in special provision 296 (UN Nos. 2990 and 3072).
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

281 The transport by sea of hay, straw or bhusa, wet, damp or contaminated with oil is prohibited. Transport by other modes is also prohibited except with special authorisation by the competent authorities.

Hay, straw and bhusa, when not wet, damp or contaminated with oil, are not subject to this Code and are thus Dangerous Goods only when transported by sea.

283 Articles, containing gas, intended to function as shock absorbers, including impact energy-absorbing devices, or pneumatic springs are not subject to this Code provided:

(a) each article has a gas space capacity not exceeding 1.6 litres and a charge pressure not exceeding 280 bar where the product of the capacity (litres) and charge pressure (bars) does not exceed 80 (i.e. 0.5 litre gas space and 160 bar charge pressure, 1 litre gas space and 80 bar charge pressure, 1.6 litre gas space and 50 bar charge pressure, 0.28 litre gas space and 280 bar charge pressure); and
(b) each article has a minimum burst pressure of 4 times the charge pressure at 20°C for products not exceeding 0.5 litre gas space capacity and 5 times charge pressure for products greater than 0.5 litre gas space capacity; and
(c) each article is manufactured from material which will not fragment upon rupture; and
(d) each article is manufactured in accordance with a quality assurance standard acceptable to the competent authority; and
(e) the design type has been subjected to a fire test demonstrating that pressure in the article is relieved by means of a fire degradable seal or other pressure relief device, such that the article will not fragment and that the article does not rocket.

284 An oxygen generator, chemical, containing oxidising substances must meet the following conditions:

(a) The generator when containing an explosive actuating device must only be transported under this entry when excluded from Class 1 in accordance with 2.1.1.1 (b) of this Code; and
(b) The generator, without its packaging, must be capable of withstanding a 1.8 m drop test onto a rigid, non-resilient, flat and horizontal surface, in the position most likely to cause damage, without loss of its contents and without actuation; and
(c) When a generator is equipped with an actuating device, it must have at least two positive means of preventing unintentional actuation.

286 Nitrocellulose membrane filters covered by this entry, each with a mass not exceeding 0.5 g, are not subject to this Code when contained individually in an article or a sealed packet.

288 These substances must not be classified and transported unless authorised by the competent authority on the basis of results from Series 2 tests and a Series 6(c) test of the Manual of Tests and Criteria on packages as prepared for transport (see 2.1.3.1).

289 Safety devices, electrically initiated and safety devices, pyrotechnic installed in vehicles, vessels or aircraft or in completed components such as steering columns, door panels, seats, etc. are not subject to this Code.
When this radioactive material meets the definitions and criteria of other classes or divisions as defined in Part 2, it must be classified in accordance with the following:

(a) Where the substance meets the criteria for dangerous goods in excepted quantities as set out in Chapter 3.5, the packagings must be in accordance with 3.5.2 and meet the testing requirements of 3.5.3. All other requirements applicable to radioactive material, excepted packages as set out in 1.5.1.5 of must apply without reference to the other class or division;

(b) Where the quantity exceeds the limits specified in 3.5.1.2 the substance must be classified in accordance with the predominant subsidiary hazard. The dangerous goods transport document must describe the substance with the UN number and proper shipping name applicable to the other class supplemented with the name applicable to the radioactive excepted package according to Column 2 in the Dangerous Goods List of Chapter 3.2, and the substance must be transported in accordance with the provisions applicable to that UN number. An example of the information shown on the dangerous goods transport document is:

UN 1993, Flammable liquid, N.O.S. (ethanol and toluene mixture), Radioactive material, excepted package - limited quantity of material, Class 3, PG II.

In addition, the requirements of 2.7.2.4.1 apply.

(c) The provisions of Chapter 3.4 for the transport of dangerous goods packed in limited quantities must not apply to substances classified in accordance with sub-paragraph (b);

(d) When the substance meets a special provision that exempts this substance from all dangerous goods provisions of the other classes it must be classified in accordance with the applicable UN number of class 7 and all requirements specified in 1.5.1.5 of UN20 apply.

Flammable liquefied gases must be contained within refrigerating machine components. Components must be designed and tested to at least three times the pressure of the machinery. The refrigerating machines must be designed and constructed to contain the liquefied gas and preclude the risk of bursting or cracking of the pressure retaining components during normal conditions of transport. Refrigerating machines and refrigerating-machine components are considered not subject to this Code if they contain less than 12 kg of gas.

The following definitions apply to matches:

(a) Fusee matches are matches the heads of which are prepared with a friction-sensitive igniter composition and a pyrotechnic composition which burns with little or no flame, but with intense heat;

(b) Safety matches are matches that combined with or attached to the box, book or card that can be ignited by friction only on a prepared surface;

(c) Strike anywhere matches are matches that can be ignited by friction on a solid surface;
(d) Wax Vesta matches are matches that can be ignited by friction either on a prepared surface or on a solid surface.

294 Safety matches and wax “Vesta” matches in outer packagings not exceeding 25 kg net mass are not subject to any other requirement (except marking) of this Code when packaged in accordance with packing instruction P407.

295 Batteries need not be individually marked and labelled if the pallet bears the appropriate mark and label.

296 These entries apply for life-saving appliances such as life rafts, personal flotation devices and self-inflating slides. UN 2990 applies for self-inflating appliances and UN 3072 applies for life-saving appliances that are not self-inflating. Life-saving appliances may contain:

(a) Signal devices (Class 1) which may include smoke and illumination signal flares packed in packagings that prevent them from being inadvertently activated;

(b) for UN 2990 only, cartridges, power device of Division 1.4, compatibility group S, may be contained for purposes of the self-inflating mechanism and provided that the quantity of explosives per appliance does not exceed 3.2 g;

(c) Division 2.2 compressed or liquefied gases;

(d) Electric storage batteries (Class 8) and lithium batteries (Class 9);

(e) First aid kits or repair kits containing small quantities of dangerous goods (e.g.: Class 3, Division 4.1, Division 5.2, Class 8 or Class 9 substances); or

(f) “Strike anywhere” matches packed in packagings that prevent them from being inadvertently activated.

Life-saving appliances packed in strong rigid outer packagings with a total maximum gross mass of 40 kg, containing no dangerous goods other than Division 2.2 compressed or liquefied gases with no subsidiary hazard in receptacles with a capacity not exceeding 120 ml, installed solely for the purpose of the activation of the appliance, are not subject to this Code.

297 <Deleted>

299 Consignments of COTTON, DRY having a density not less than 360 kg/m3 according to ISO 8115:1986 “Cotton bales- Dimensions and density” are not subject to this Code when transported in closed cargo transport units.

300 Fish meal, fish scrap and krill meal must not be transported if the temperature at the time of loading exceeds 35 °C or 5 °C above the ambient temperature whichever is higher.

301 This entry only applies to articles such as machinery, apparatus or devices containing dangerous goods as a residue or an integral element of the machinery or apparatus. It must not be used for articles for which a proper shipping name already exists in the Dangerous Goods List. Articles transported under this entry may only contain dangerous goods which are authorised to be transported in accordance with the provisions of Chapter 3.4 (Limited quantities). The quantity of dangerous goods in articles must not exceed the quantity specified in Column 7a of the Dangerous Goods
List for each item of dangerous goods contained. If the articles contain more than one item of dangerous goods, the individual dangerous goods shall be enclosed to prevent them reacting dangerously with one another during transport (see 4.1.1.6). When it is required to ensure liquid dangerous goods remain in their intended orientation, orientation labels must be affixed on at least two opposite vertical sides with the arrows pointing in the correct direction in accordance with 5.2.1.7.1.

The competent authority may exempt from the Code, machinery or apparatus which would otherwise be transported under this entry.

302 Fumigated cargo transport units containing no other dangerous goods are only subject to the provisions of 5.5.2.

303 Receptacles must be assigned to the division and, if any, subsidiary hazard of the gas or mixture of gases contained therein determined in accordance with the provisions of Chapter 2.2.

304 This entry may only be used for the transport of non-activated batteries which contain dry potassium hydroxide and which are intended to be activated prior to use by the addition of an appropriate amount of water to the individual cells.

305 These substances are not subject to this Code when in concentrations of not more than 50 mg/kg.

306 This entry may only be used for substances that are too insensitive for acceptance into Class 1 when tested in accordance to Test Series 2 (see Manual of Tests and Criteria, Part I).

307 This entry may only be used for ammonium nitrate based fertilizers. They shall be classified in accordance with the procedure as set out in the Manual of Tests and Criteria, Part III, Section 39.

308 Stabilization of fishmeal shall be achieved to prevent spontaneous combustion by effective application of ethoxyquin, BHT (butylated hydroxytoluene) or tocopherols (also used in a blend with rosemary extract) at the time of production. The said application shall occur within twelve months prior to shipment. Fish scrap or fish meal shall contain at least 50 ppm (mg/kg) of ethoxyquin, 100 ppm (mg/kg) of BHT or 250 ppm (mg/kg) of tocopherol based antioxidant at the time of consignment.

309 This entry applies to non sensitised emulsions, suspensions and gels consisting primarily of a mixture of ammonium nitrate and fuel, intended to produce a Type E blasting explosive only after further processing prior to use.

The mixture for emulsions typically has the following composition: 60–85% ammonium nitrate; 5–30% water; 2–8% fuel; 0.5–4% emulsifier agent; 0–10% soluble flame suppressants and trace additives. Other inorganic nitrate salts may replace part of the ammonium nitrate.

The mixture for suspensions and gels typically has the following composition: 60–85% ammonium nitrate, 0–5% sodium or potassium perchlorate, 0–17% hexamine nitrate or monomethylamine nitrate, 5–30% water, 2–15% fuel, 0.5–4% thickening agent, 0–10% soluble flame suppressants, and trace additives. Other inorganic nitrate salts may replace part of the ammonium nitrate.
Substances must satisfy the criteria for classification as an ANE of Test Series 8 of the Manual of Tests and Criteria, Part I, Section 18 and be approved by the competent authority.

310 The testing requirements in the Manual of Tests and Criteria, part III subsection 38.3 do not apply to production runs, consisting of not more than 100 cells or batteries, or to pre-production prototypes of cells or batteries when these prototypes are transported for testing when packaged in accordance with packing instruction P910 of 4.1.4.1 or LP905 of 4.1.4.3, as applicable.

The transport document shall include the following statement: “Transport in accordance with special provision 310”.

Damaged or defective cells, batteries, or cells and batteries contained in equipment shall be transported in accordance with special provision 376 and packaged in accordance with packing instructions P908 of 4.1.4.1 or LP904 of 4.1.4.3, as applicable.

Cells, batteries or cells and batteries contained in equipment transported for disposal or recycling may be packaged in accordance with special provision 377 and packing instruction P909 of 4.1.4.1.

311 Substances must not be transported under this entry unless determined by the competent authority on the basis of the results of appropriate tests according to Part I of the Manual of Tests and Criteria. Packaging must ensure that the percentage of diluent does not fall below that stated in the competent authority determination, at any time during transport.

312 <Deleted>

313 <Deleted>

314 (a) These substances are liable to exothermic decomposition at elevated temperatures. Decomposition can be initiated by heat or by impurities (e.g. powdered metals (iron, manganese, cobalt, magnesium) and their compounds);

(b) During the course of transport, these substances must be shaded from direct sunlight and all sources of heat and be placed in adequately ventilated areas.

315 This entry must not be used for Division 6.1 substances which meet the inhalation toxicity criteria for packing group I described in 2.6.2.2.4.3.

316 This entry applies only to calcium hypochlorite, dry, when transported in non-friable tablet form.

317 Fissile-excepted” applies only to those fissile material and packages containing fissile material which are excepted in accordance with 2.7.2.3.5.”Fissile-excepted” applies only to those packages complying with 6.4.11.2.

318 For the purposes of documentation, the proper shipping name must be supplemented with the technical name (see 3.1.2.8). Technical names need not be shown on the package. When the infectious substances to be transported are unknown, but suspected of meeting the criteria for inclusion in category A and assignment to UN 2814 or UN 2900, the words “suspected category A infectious substance” must be shown, in
parentheses, following the proper shipping name on the transport document, but not on the outer packagings.

Substances packed and marked in accordance with packing instruction P650 are not subject to any other requirements in this Code.

These storage systems must always be considered as containing hydrogen.

When transported in non-friable tablet form, these goods are assigned to packing group III.

These storage systems must always be considered as containing hydrogen.

When transported in non-friable tablet form, these goods are assigned to packing group III.

This substance needs to be stabilised when in concentrations of not more than 99%.

In the case of non-fissile or fissile excepted uranium hexafluoride, the material must be classified under UN No 2978.

In the case of fissile uranium hexafluoride, the material must be classified under UN No. 2977.

Waste aerosols or waste gas cartridges consigned in accordance with 11.1.1.4.3(c) may be transported under UN 1950 or UN 2037, as appropriate, for the purposes of reprocessing or disposal. They need not be protected against movement and inadvertent discharge provided that measures to prevent dangerous build up of pressure and dangerous atmospheres are addressed. Waste aerosols, other than those leaking or severely deformed, shall be packed in accordance with packing instruction P207 and special provision PP87, or packing instruction LP200 and special packing provision L2. Waste gas cartridges, other than those leaking or severely deformed, shall be packed in accordance with packing instruction P003 and special packing provisions PP17 an PP96, or packing instruction LP200 and special packing provision L2. Leaking or severely deformed aerosols and gas cartridges shall be transported in salvage pressure receptacles or salvage packagings provided appropriate measures are taken to ensure there is no dangerous build up of pressure. Waste aerosols and waste gas cartridges shall not be transported in closed freight containers.

Waste gas cartridges that were filled with gases of Division 2.2 and have been pierced are not subject to the requirements of the Code.

This entry applies to fuel cell cartridges including when contained in equipment or packed with equipment. Fuel cell cartridges installed in or integral to a fuel cell system are regarded as contained in equipment. Fuel cell cartridge means an article that stores fuel for discharge into the fuel cell through a valve(s) that controls the discharge of fuel into the fuel cell. Fuel cell cartridges, including when contained in equipment, must be designed and constructed to prevent fuel leakage under normal conditions of transport.

Fuel cell cartridge design types using liquids as fuels must pass an internal pressure test at a pressure of 100 kPa (gauge) without leakage.

Except for fuel cell cartridges containing hydrogen in metal hydride which must be in compliance with Special Provision 339, each fuel cell cartridge design type must be shown to pass a 1.2 meter drop test onto an unyielding surface in the orientation most likely to result in failure of the containment system with no loss of contents.

When lithium metal or lithium ion batteries are contained in the fuel cell system, the consignment must be consigned under this entry and under the appropriate entries for UN 3091 LITHIUM METAL BATTERIES CONTAINED IN EQUIPMENT or UN 3481 LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT.

For environmentally hazardous substances meeting the criteria of 2.9.3, an additional mark as specified in 5.2.1.6 and 5.3.2.3 must be applied, subject to Special Provision AU01 in 3.3.3.

Magnesium nitrate hexahydrate is not subject to this Code.

Ethanol and gasoline, motor spirit or petrol mixtures (with more than 10 % Ethanol) for use in spark-ignition engines (e.g. in automobiles, stationary engines and other engines) must be assigned to this entry regardless of variations in volatility.

A fuel cell cartridge may contain an activator provided it is fitted with two independent means of preventing unintended mixing with the fuel during transport.

Mixtures of solids which are not subject to this Code and environmentally hazardous liquids or solids must be classified as UN 3077 and may be transported under this entry, provided there is no free liquid visible at the time the substance is loaded or at the time the packaging or cargo transport unit is closed. Each cargo transport unit must be leakproof when used as a bulk packaging. Sealed packets and articles containing less than 10 ml of an environmentally hazardous liquid, absorbed into a solid material but with no free liquid in the packet or article, or containing less than 10 g of an environmentally hazardous solid, are not subject to this Code.

(See also SP AU01)

A single package of non-combustible solid LSA-II or LSA-III material, if carried by air, must not contain an activity greater than 3000 A2.

Type B(U) and Type B(M) packages, if transported by air, must not contain activities greater than the following:

(a) For low dispersible radioactive material: as authorised for the package design as specified in the certificate of approval;

(b) For special form radioactive material: 3000 A1 or 100 000 A2, whichever is the lower; or

(c) For all other radioactive material: 3000 A2.

Each fuel cell cartridge transported under this entry and designed to contain a liquefied flammable gas must:
(a) Be capable of withstanding, without leakage or bursting, a pressure of at least two times the equilibrium pressure of the contents at 55 °C;
(b) Not contain more than 200 ml liquefied flammable gas, the vapour pressure of which must not exceed 1 000 kPa at 55 °C; and
(c) Pass the hot water bath test prescribed in 6.2.4.1 of Chapter 6.2.

Fuel cell cartridges containing hydrogen in a metal hydride transported under this entry must have a water capacity less than or equal to 120 ml.

The pressure in the fuel cell cartridge must not exceed 5 MPa at 55 °C. The design type must withstand, without leaking or bursting, a pressure of two (2) times the design pressure of the cartridge at 55 °C or 200 kPa more than the design pressure of the cartridge at 55 °C, whichever is greater. The pressure at which this test is conducted is referred to in the Drop Test and the Hydrogen Cycling Test as the “minimum shell burst pressure”.

Fuel cell cartridges must be filled in accordance with procedures provided by the manufacturer. The manufacturer must provide the following information with each fuel cell cartridge:
(a) Inspection procedures to be carried out before initial filling and before refilling of the fuel cell cartridge;
(b) Safety precautions and potential hazards to be aware of;
(c) Method for determining when the rated capacity has been achieved;
(d) Minimum and maximum pressure range;
(e) Minimum and maximum temperature range; and
(f) Any other requirements to be met for initial filling and refilling including the type of equipment to be used for initial filling and refilling.

The fuel cell cartridges must be designed and constructed to prevent fuel leakage under normal conditions of transport. Each cartridge design type, including cartridges integral to a fuel cell, must be subjected to and must pass the following tests:

Drop test
A 1.8 metre drop test onto an unyielding surface in four different orientations:
(a) Vertically, on the end containing the shut-off valve assembly;
(b) Vertically, on the end opposite to the shut-off valve assembly;
(c) Horizontally, onto a 38 mm steel apex, with the steel apex in the upward position; and
(d) At a 45° angle on the end containing the shut-off valve assembly.

There must be no leakage, determined by using a soap bubble solution or other equivalent means on all possible leak locations, when the cartridge is charged to its rated charging pressure. The fuel cell cartridge must then be hydrostatically pressurised to destruction. The recorded burst pressure must exceed 85% of the minimum shell burst pressure.

Fire test
A fuel cell cartridge filled to rated capacity with hydrogen must be subjected to a fire engulfment test. The cartridge design, which may include a vent feature integral to it, is deemed to have passed the fire test if:
(a) The internal pressure vents to zero gauge pressure without rupture of the cartridge; or
(b) The cartridge withstands the fire for a minimum of 20 minutes without rupture.

Hydrogen cycling test

This test is intended to ensure that a fuel cell cartridge design stress limits are not exceeded during use.

The fuel cell cartridge must be cycled from not more than 5% rated hydrogen capacity to not less than 95% rated hydrogen capacity and back to not more than 5% rated hydrogen capacity. The rated charging pressure must be used for charging and temperatures must be held within the operating temperature range. The cycling must be continued for at least 100 cycles.

Following the cycling test, the fuel cell cartridge must be charged and the water volume displaced by the cartridge must be measured. The cartridge design is deemed to have passed the hydrogen cycling test if the water volume displaced by the cycled cartridge does not exceed the water volume displaced by an uncycled cartridge charged to 95% rated capacity and pressurised to 75% of its minimum shell burst pressure.

Production leak test

Each fuel cell cartridge must be tested for leaks at 15 °C ± 5 °C, while pressurised to its rated charging pressure. There must be no leakage, determined by using a soap bubble solution or other equivalent means on all possible leak locations.

Each fuel cell cartridge must be permanently marked with the following information:

(a) The rated charging pressure in megapascals (MPa);
(b) The manufacturer's serial number of the fuel cell cartridges or unique identification number; and
(c) The date of expiry based on the maximum service life (year in four digits; month in two digits).

340 Chemical kits, first aid kits and polyester resin kits containing dangerous substances in inner packagings which do not exceed the quantity limits for excepted quantities applicable to individual substances as specified in column 7b of the Dangerous Goods List of Chapter 3.2 may be transported in accordance with Chapter 3.5. Division 5.2 substances, although not individually authorized as excepted quantities in the Dangerous Goods List of Chapter 3.2, are authorized in such kits and are assigned Code E2 (see 3.5.1.2).

341 Bulk transport of infectious substances in BK1 and BK2 bulk containers is only permitted for infectious substances contained in animal material as defined in 1.2.1 (See 4.3.2.4.1).

342 Glass inner receptacles (such as ampoules or capsules) intended only for use in sterilization devices, when containing less than 30 ml of ethylene oxide per inner packaging with not more than 300 ml per outer packaging, may be transported in accordance with the provisions in Chapter 3.5, irrespective of the indication of “E0” in column 7b of the Dangerous Goods List provided that:
After filling, each glass inner receptacle has been determined to be leak-tight by placing the glass inner receptacle in a hot water bath at a temperature, and for a period of time, sufficient to ensure that an internal pressure equal to the vapour pressure of ethylene oxide at 55 °C is achieved. Any glass inner receptacle showing evidence of leakage, distortion or other defect under this test shall not be transported under the terms of this special provision;

In addition to the packaging required by 3.5.2, each glass inner receptacle is placed in a sealed plastics bag compatible with ethylene oxide and capable of containing the contents in the event of breakage or leakage of the glass inner receptacle; and

Each glass inner receptacle is protected by a means of preventing puncture of the plastics bag (e.g. sleeves or cushioning) in the event of damage to the packaging (e.g. by crushing).

This entry applies to crude oil containing hydrogen sulphide in sufficient concentration that vapours evolved from the crude oil can present an inhalation hazard. The packing group assigned must be determined by the flammability hazard and inhalation hazard, in accordance with the degree of danger presented.

The provisions of 6.2.4 must be met.

This gas contained in open cryogenic receptacles with a maximum capacity of 1 litre constructed with glass double walls having the space between the inner and outer wall evacuated (vacuum insulated) is not subject to this Code provided each receptacle is transported in an outer packaging with suitable cushioning or absorbent materials to protect it from impact damage.

Open cryogenic receptacles conforming to the requirements of packing instruction P203 and containing no dangerous goods except for UN 1977, nitrogen, refrigerated liquid, which is fully absorbed in a porous material are not subject to any other requirements of this Code.

This entry is only to be used if the results of Test series 6 (d) of Part I of the Manual of Tests and Criteria have demonstrated that any hazardous effects arising from functioning are confined within the package.

Batteries manufactured after 31 December 2011 must be marked with the Watt hour rating on the outside case.

Mixtures of a hypochlorite with an ammonium salt are not to be accepted for transport. UN No. 1791 hypochlorite solution is a substance of Class 8.

Ammonium bromate and its aqueous solutions and mixtures of a bromate with an ammonium salt are not to be accepted for transport.

Ammonium chlorate and its aqueous solutions and mixtures of a chlorate with an ammonium salt are not to be accepted for transport.

Ammonium chlorite and its aqueous solutions and mixtures of a chlorite with an ammonium salt are not to be accepted for transport.
Ammonium permanganate and its aqueous solutions and mixtures of a permanganate with an ammonium salt are not to be accepted for transport.

This substance is toxic by inhalation.

Oxygen cylinders for emergency use transported under this entry may include installed actuating cartridges (cartridges, power device of Division 1.4, Compatibility Group C or S), without changing the classification of Division 2.2 provided the total quantity of deflagrating (propellant) explosives does not exceed 3.2 g per oxygen cylinder. The cylinders with the installed actuating cartridges as prepared for transport must have an effective means of preventing inadvertent activation.

Metal hydride storage systems installed in vehicles, vessels, machinery, engines or aircraft or in completed components or intended to be installed in vehicles, vessels, machinery, engines or aircraft must be approved by the competent authority before acceptance for transport. The transport document must include an indication that the package was approved by the competent authority or a copy of the competent authority approval must accompany each consignment.

Petroleum crude oil containing hydrogen sulphide in sufficient concentration that vapours evolved from the crude oil can present an inhalation hazard must be consigned under the entry UN 3494 PETROLEUM SOUR CRUDE OIL, FLAMMABLE, TOXIC.

Nitroglycerin solution in alcohol with more than 1% but not more than 5% nitroglycerin may be classified in Class 3 and assigned to UN 3064 provided all the requirements of packing instruction P300 are complied with.

Nitroglycerin solution in alcohol with more than 1% but not more than 5% nitroglycerin is to be classified in Class 1 and assigned to UN 0144 if not all the requirements of packing instruction P300 are complied with.

Vehicles only powered by lithium metal batteries or lithium ion batteries must be assigned to the entry UN 3171 BATTERY POWERED VEHICLE. Lithium batteries installed in cargo transport units, designed only to provide power external to the transport unit shall be assigned to entry UN 3536 LITHIUM BATTERIES INSTALLED IN CARGO TRANSPORT UNIT.

This entry applies to electric double layer capacitors with an energy storage capacity greater than 0.3 Wh. Capacitors with an energy storage capacity of 0.3 Wh or less are not subject to this Code. Energy storage capacity means the energy held by a capacitor, as calculated using the nominal voltage and capacitance. All capacitors to which this entry applies, including capacitors containing an electrolyte that does not meet the classification criteria of any class or division of dangerous goods, must meet the following conditions:

(a) Capacitors not installed in equipment must be transported in an uncharged state. Capacitors installed in equipment must be transported either in an uncharged state or protected against short circuit;

(b) Each capacitor must be protected against a potential short circuit hazard in transport as follows:
(i) When a capacitor’s energy storage capacity is less than or equal to 10 Wh or when the energy storage capacity of each capacitor in a module is less than or equal to 10 Wh, the capacitor or module must be protected against short circuit or be fitted with a metal strap connecting the terminals; and

(ii) When the energy storage capacity of a capacitor or a capacitor in a module is more than 10 Wh, the capacitor or module must be fitted with a metal strap connecting the terminals;

(c) Capacitors containing dangerous goods must be designed to withstand a 95 kPa pressure differential;

(d) Capacitors must be designed and constructed to safely relieve pressure that may build-up in use, through a vent or a weak point in the capacitor casing. Any liquid which is released upon venting must be contained by the packaging or by the equipment in which a capacitor is installed; and

(e) Capacitors manufactured after 31 December 2013 shall be marked with the energy storage capacity in Wh.

Capacitors containing an electrolyte not meeting the classification criteria of any class or division of dangerous goods, including when installed in equipment, are not subject to other provisions of this Code.

Capacitors containing an electrolyte meeting the classification criteria of any class or division of dangerous goods, with an energy storage capacity of 10 Wh or less are not subject to other provisions of this Code when they are capable of withstanding a 1.2 metre drop test unpackaged on an unyielding surface without loss of contents.

Capacitors containing an electrolyte meeting the classification criteria of any class or division of dangerous goods that are not installed in equipment and with an energy storage capacity of more than 10 Wh are subject to this Code.

Capacitors installed in equipment and containing an electrolyte meeting the classification criteria of any class or division of dangerous goods, are not subject to other provisions of this Code provided the equipment is packaged in a strong outer packaging constructed of suitable material and of adequate strength and design, in relation to the packaging’s intended use and in such a manner as to prevent accidental functioning of capacitors during transport. Large robust equipment containing capacitors may be offered for transport unpackaged or on pallets when capacitors are afforded equivalent protection by the equipment in which they are contained.

NOTE: Capacitors which by design maintain a terminal voltage (e.g. asymmetrical capacitors) do not belong to this entry.

This entry applies to liquids, pastes or powders, pressurised with a propellant which meets the definition of a gas in 2.2.1.1 and 2.2.1.2 (a) or (b).

NOTE: A chemical under pressure in an aerosol dispenser must be transported under UN 1950.

The following provisions apply:
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

(a) The chemical under pressure must be classified based on the hazard characteristics of the components in the different states:
 • The propellant;
 • The liquid; or
 • The solid.

If one of these components, which can be a pure substance or a mixture, needs to be classified as flammable, the chemical under pressure must be classified as flammable in Division 2.1. Flammable components are flammable liquids and liquid mixtures, flammable solids and solid mixtures or flammable gases and gas mixtures meeting the following criteria:
 (i) A flammable liquid is a liquid having a flashpoint of not more than 93 °C;
 (ii) A flammable solid is a solid which meets the criteria in 2.4.2.2 of this Code;
 (iii) A flammable gas is a gas which meets the criteria in 2.2.2.1 of this Code;

(b) Gases of Division 2.3 and gases with a subsidiary hazard of 5.1 must not be used as a propellant in a chemical under pressure;

(c) Where the liquid or solid components are classified as dangerous goods of Division 6.1, packing groups II or III, or Class 8, packing groups II or III, the chemical under pressure must be assigned a subsidiary hazard of Division 6.1 or Class 8 and the appropriate UN number must be assigned. Components classified in Division 6.1, packing group I, or Class 8, packing group I, must not be used for transport under this proper shipping name;

(d) In addition, chemicals under pressure with components meeting the properties of: Class I, explosives; Class 3, liquid desensitised explosives; Division 4.1, self-reactive substances and solid desensitised explosives; Division 4.2, substances liable to spontaneous combustion; Division 4.3, substances which, in contact with water, emit flammable gases; Division 5.1 oxidising substances; Division 5.2, organic peroxides; Division 6.2, Infectious substances or Class 7, Radioactive material, must not be used for transport under this proper shipping name;

(e) Substances to which PP86 or TP7 are assigned in Column 9 and Column 11 of the Dangerous Goods List in Chapter 3.2 and therefore require air to be eliminated from the vapour space, must not be used for transport under this UN number but must be transported under their respective UN numbers as listed in the Dangerous Goods List of Chapter 3.2.

This entry may only be used when the conditions of this special provision are met. No other requirements of this Code applies.

(a) This entry applies to engines or machinery, powered by fuels classified as dangerous goods via internal combustion systems or fuel cells (e.g. combustion engines, generators, compressors, turbines, heating units, etc.), except those which are assigned under UN No. 3166 or UN No. 3363.

(b) Engines or machinery which are empty of liquid or gaseous fuels and which do not contain other dangerous goods, are not subject to this Code.
NOTE 1: An engine or machinery is considered to be empty of liquid fuel when the liquid fuel tank has been drained and the engine or machinery cannot be operated due to a lack of fuel. Engine or machinery components such as fuel lines, fuel filters and injectors do not need to be cleaned, drained or purged to be considered empty of liquid fuels. In addition, the liquid fuel tank does not need to be cleaned or purged.

NOTE 2: An engine or machinery is considered to be empty of gaseous fuels when the gaseous fuel tanks are empty of liquid (for liquefied gases), the positive pressure in the tanks does not exceed 2 bar and the fuel shut-off or isolation valve is closed and secured.

(c) Engines and machinery containing fuels meeting the classification criteria of Class 3, shall be consigned under the entries UN No. 3528 ENGINE, INTERNAL COMBUSTION, FLAMMABLE LIQUID POWERED or UN No. 3528 ENGINE, FUEL CELL, FLAMMABLE LIQUID POWERED or UN No. 3528 MACHINERY, INTERNAL COMBUSTION, FLAMMABLE LIQUID POWERED or UN No. 3528 MACHINERY, FUEL CELL, FLAMMABLE LIQUID POWERED, as appropriate.

(d) Engines and machinery containing fuels meeting the classification criteria of Division 2.1, shall be consigned under the entries UN No. 3529 ENGINE, INTERNAL COMBUSTION, FLAMMABLE GAS POWERED or UN No. 3529 ENGINE, FUEL CELL, FLAMMABLE GAS POWERED or UN No. 3529 MACHINERY, INTERNAL COMBUSTION, FLAMMABLE GAS POWERED or UN No. 3529 MACHINERY, FUEL CELL, FLAMMABLE GAS POWERED, as appropriate. Engines and machinery powered by both a flammable gas and a flammable liquid shall be consigned under the appropriate UN No. 3529 entry.

(e) Engines and machinery containing liquid fuels meeting the classification criteria of 2.9.3 for environmentally hazardous substances and not meeting the classification criteria of any other Class or Division, shall be consigned under the entries UN No. 3530 ENGINE, INTERNAL COMBUSTION or UN No. 3530 MACHINERY, INTERNAL COMBUSTION, as appropriate.

(f) Engines or machinery may contain other dangerous goods than fuels (e.g. batteries, fire extinguishers, compressed gas accumulators or safety devices) required for their functioning or safe operation without being subject to any additional requirements for these other dangerous goods, unless otherwise specified in this Code. However, lithium batteries shall meet the provisions of 2.9.4, except that 2.9.4 (a) does not apply when pre-production prototype batteries or batteries of a small production run, consisting of not more than 100 batteries, are installed in machinery or engines.

Where a lithium battery installed in a machinery or an engine is damaged or defective, the machinery or engine shall be transported as defined by the competent authority;

(g) The engine or machinery, including the means of containment containing dangerous goods, shall be in compliance with the construction requirements specified by the competent authority;
(h) Any valves or openings (e.g. venting devices) shall be closed during transport;

(i) The engines or machinery shall be oriented to prevent inadvertent leakage of dangerous goods and secured by means capable of restraining the engines or machinery to prevent any movement during transport which would change the orientation or cause them to be damaged;

(j) For UN No. 3528 and UN No. 3530:
Where the engine or machinery contains more than 60 l of liquid fuel and has a capacity of not more than 450 l, the labelling requirements of 5.2.2 must apply.
Where the engine or machinery contains more than 60 l of liquid fuel and has a capacity of more than 450 l but not more than 3 000 l, it must be labelled on two opposing sides in accordance with 5.2.2.
Where the engine or machinery contains more than 60 l of liquid fuel and has a capacity of more than 3 000 l, it shall be placarded on two opposing sides. Placards shall correspond to the class indicated in Column 3 of the Dangerous Goods List of Chapter 3.2 and shall conform to the specifications given in 5.3.1.2.1;

(k) For UN No. 3529:
Where the fuel tank of the engine or machinery has a water capacity of not more than 450 l, the labelling requirements of 5.2.2 shall apply.
Where the fuel tank of the engine or machinery has a water capacity of more than 450 l but not more than 1 000 l, it shall be labelled on two opposing sides in accordance with 5.2.2.
Where the fuel tank of the engine or machinery has a water capacity of more than 1 000 l, it shall be placarded on two opposing sides. Placards shall correspond to the class indicated in Column 3 of the Dangerous Goods List in Chapter 3.2 and shall conform to the specifications given in 5.3.1.2.1;

(l) A transport document in accordance with 5.4 is required, except for UN No. 3528 and UN No. 3530, where a transport document is only required when the engine or machinery contains more than 60 l of liquid fuels. This transport document shall contain the following additional statement “Transport in accordance with special provision 363”;

(m) The requirements specified in packing instruction P005 of 4.1.4.1 shall be met.

364 This article may only be transported under the provisions of Chapter 3.4 if, as presented for transport, the package is capable of passing the test in accordance with Test Series 6(d) of Part I of the Manual of Tests and Criteria as determined by the competent authority.

365 For manufactured instruments and articles containing mercury, see UN 3506.

366 For land and sea transport, manufactured instruments and articles containing not more than 1 kg of mercury are not subject to this Code. For air transport, articles containing not more than 15 g of mercury are not subject to this Code.
For the purposes of documentation and package marking:

The proper shipping name “Paint related material” may be used for consignments of packages containing “Paint” and “Paint related material” in the same package;

The proper shipping name “Paint related material, corrosive, flammable” may be used for consignments of packages containing “Paint, corrosive, flammable” and “Paint related material, corrosive, flammable” in the same package;

The proper shipping name “Paint related material, flammable, corrosive” may be used for consignments of packages containing “Paint, flammable, corrosive” and “Paint related material, flammable, corrosive” in the same package; and

The proper shipping name “Printing ink related material” may be used for consignments of packages containing “Printing Ink” and “Printing ink related material” in the same package.

In the case of non-fissile or fissile-excepted uranium hexafluoride, the material must be classified under UN 3507 or UN 2978.

In accordance with 2.0.3.2, this radioactive material in an excepted package possessing toxic and corrosive properties is classified in Division 6.1 with radioactivity and corrosivity subsidiary hazards.

In addition to the provisions applicable to the transport of Division 6.1 substances with a corrosivity subsidiary hazards, the provisions of 5.1.3.2, 5.1.5.2.2, 5.1.5.4.1(b), 7.1.8.5.1 to 7.1.8.5.4 and 7.1.8.6.1 must apply. No Class 7 label is required to be displayed.

This entry only applies to ammonium nitrate that meets one of the following criteria:

(a) ammonium nitrate with more than 0.2% combustible substances, including any organic substance calculated as carbon, to the exclusion of any added substance; or

(b) ammonium nitrate with not more than 0.2% combustible substances, including any organic substance calculated as carbon, to the exclusion of any added substance, that gives a positive result when tested in accordance with Test Series 2 (see Manual of Tests and Criteria, Part I). See also UN No. 1942.

This entry shall not be used for ammonium nitrate for which a proper shipping name already exists in the Dangerous Goods List of Chapter 3.2 including ammonium nitrate mixed with fuel oil (ANFO) or any of the commercial grades of ammonium nitrate.

(1) This entry also applies to articles, containing a small pressure receptacle with a release device. Such articles must comply with the following requirements:

(a) The water capacity of the pressure receptacle must not exceed 0.5 litres and the working pressure must not exceed 25 bar at 15 °C;

(b) The minimum burst pressure of the pressure receptacle must be at least four times the pressure of the gas at 15 °C;
(c) Each article must be manufactured in such a way that unintentional firing or release is avoided under normal conditions of handling, packing, transport and use. This may be fulfilled by an additional locking device linked to the activator;

(d) Each article must be manufactured in such a way as to prevent hazardous projections of the pressure receptacle or parts of the pressure receptacle;

(e) Each pressure receptacle must be manufactured from material which will not fragment upon rupture;

(f) The design type of the article must be subjected to a fire test. For this test, the provisions of paragraphs 16.6.1.2 except letter g, 16.6.1.3.1 to 16.6.1.3.6, 16.6.1.3.7 (b) and 16.6.1.3.8 of the Manual of Tests and Criteria must be applied. It must be demonstrated that the article relieves its pressure by means of a fire degradable seal or other pressure relief device, in such a way that the pressure receptacle will not fragment and that the article or fragments of the article do not rocket more than 10 metres;

(g) The design type of the article must be subjected to the following test. A stimulating mechanism must be used to initiate one article in the middle of the packaging. There must be no hazardous effects outside the package such as disruption of the package, metal fragments or a receptacle which passes through the packaging.

(2) The manufacturer must produce technical documentation of the design type, manufacture as well as the tests and their results. The manufacturer must apply procedures to ensure that articles produced in series are made of good quality, conform to the design type and are able to meet the requirements in (1). The manufacturer must provide such information to the Competent Authority on request.

This entry applies to asymmetric capacitors with an energy storage capacity greater than 0.3 Wh. Capacitors with an energy storage capacity of 0.3 Wh or less are not subject to this Code.

Energy storage capacity means the energy stored in a capacitor, as calculated according to the following equation:

\[Wh = \frac{1}{2}C_N(U_R^2 - U_L^2) \times (1/3600), \]

using the nominal capacitance \(C_N\), rated voltage \(U_R\) and rated lower limit voltage \(U_L\).

All asymmetric capacitors to which this entry applies must meet the following conditions:

(a) Capacitors or modules must be protected against short circuit;

(b) Capacitors must be designed and constructed to safely relieve pressure that may build-up in use, through a vent or a weak point in the capacitor casing. Any liquid which is released upon venting must be contained by packaging or by equipment in which a capacitor is installed;

(c) Capacitors manufactured after 31 December 2015, must be marked with the energy storage capacity in Wh; and
(d) Capacitors containing an electrolyte meeting the classification criteria of any class or division of dangerous goods must be designed to withstand a 95 kPa pressure differential;

Capacitors containing an electrolyte not meeting the classification criteria of any class or division of dangerous goods, including when configured in a module or when installed in equipment are not subject to other provisions of this Code.

Capacitors containing an electrolyte meeting the classification criteria of any class or division of dangerous goods, with an energy storage capacity of 20 Wh or less, including when configured in a module, are not subject to other provisions of this Code when the capacitors are capable of withstanding a 1.2 metre drop test unpackaged on an unyielding surface without loss of contents.

Capacitors containing an electrolyte meeting the classification criteria of any class or division of dangerous goods that are not installed in equipment and with an energy storage capacity of more than 20 Wh are subject to this Code.

Capacitors installed in equipment and containing an electrolyte meeting the classification criteria of any class or division of dangerous goods, are not subject to other provisions of this Code provided that the equipment is packaged in a strong outer packaging constructed of suitable material, and of adequate strength and design, in relation to the packaging’s intended use and in such a manner as to prevent accidental functioning of capacitors during transport. Large robust equipment containing capacitors may be offered for transport unpackaged or on pallets when capacitors are afforded equivalent protection by the equipment in which they are contained.

NOTE: Notwithstanding the provisions of this special provision, nickel-carbon asymmetric capacitors containing Class 8 alkaline electrolytes must be transported as UN 2795, BATTERIES, WET, FILLED WITH ALKALI, electric storage.

373 Neutron radiation detectors containing non-pressurized boron trifluoride gas may be transported under this entry provided that the following conditions are met.

(a) Each radiation detector must meet the following conditions.

(i) The pressure in each detector must not exceed 105 kPa absolute at 20°C;

(ii) The amount of gas must not exceed 13 g per detector;

(iii) Each detector must be manufactured under a registered quality assurance programme;

 NOTE: The application of ISO 9001:2008 may be considered acceptable for this purpose.

(iv) Each neutron radiation detector must be of welded metal construction with brazed metal to ceramic feed through assemblies. These detectors must have a minimum burst pressure of 1800 kPa as demonstrated by design type qualification testing; and

(v) Each detector must be tested to a 1×10^{-10} cm3/s leaktightness standard before filling.
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

(b) Radiation detectors transported as individual components must be transported as follows:

(i) Detectors must be packed in a sealed intermediate plastics liner with sufficient absorbent or adsorbant material to absorb or adsorb the entire gas contents;

(ii) They must be packed in strong outer packaging. The completed package must be capable of withstanding a 1.8 m drop test without leakage of gas contents from detectors;

(iii) The total amount of gas from all detectors per outer packaging must not exceed 52 g.

(c) Completed neutron radiation detection systems containing detectors meeting the conditions of paragraph (a) must be transported as follows:

(i) The detectors must be contained in a strong sealed outer casing;

(ii) The casing must contain sufficient absorbent material to absorb the entire gas contents;

(iii) The completed systems must be packed in strong outer packagings capable of withstanding a 1.8 m drop test without leakage unless a system’s outer casing affords equivalent protection.

Packing instruction P200 of 4.1.4.1 is not applicable.

The transport document must include the following statement “Transport in accordance with special provision 373”.

Neutron radiation detectors containing not more than 1 g of boron trifluoride, including those with solder glass joints, are not subject to this Code provided they meet the requirements in paragraph (a) and are packed in accordance with paragraph (b). Radiation detection systems containing such detectors are not subject to this Code provided they are packed in accordance with paragraph

374 This entry may only be used, as authorised by the competent authority, for packagings, large packagings or intermediate bulk containers (IBC), or parts thereof, which have contained dangerous goods, other than radioactive material, which are transported for disposal, recycling or recovery of their material, other than reconditioning, repair, routine maintenance, remanufacturing or reuse, and which have been emptied to the extent that only residues of dangerous goods adhering to the packaging parts are present when they are handed over for transport.

375 These substances when transported in single or combination packagings containing a net quantity per single or inner packaging of 5 l or less for liquids or having a net mass per single or inner packaging of 5 kg or less for solids, are not subject to any other provisions of this Code provided the packagings meet the general provisions of 4.1.1.1, 4.1.1.2 and 4.1.1.4 to 4.1.1.8.

376 Lithium ion cells or batteries and lithium metal cells or batteries identified as being damaged or defective such that they do not conform to the type tested according to the applicable provisions of the Manual of Tests and Criteria must comply with the requirements of this special provision.
For the purposes of this special provision, these may include, but are not limited to:
- Cells or batteries identified as being defective for safety reasons;
- Cells or batteries that have leaked or vented;
- Cells or batteries that cannot be diagnosed prior to transport; or
- Cells or batteries that have sustained physical or mechanical damage.

NOTE: In assessing a cell or battery as damaged or defective, an assessment or evaluation should be performed based on safety criteria from the cell, battery or product manufacturer or by a technical expert with knowledge of the cell’s or battery’s safety features. An assessment or evaluation may include, but is not limited to, the following criteria:

(a) Acute hazard, such as gas, fire, or electrolyte leaking;
(b) The use or misuse of the cell or battery;
(c) Signs of physical damage, such as deformation to cell or battery casing, or colours on the casing;
(d) External and internal short circuit protection, such as voltage or isolation measures;
(e) The condition of the cell or battery safety features; or
(f) Damage to any internal safety components, such as the battery management system.

Cells and batteries must be transported according to the provisions applicable to UN 3090, UN 3091, UN 3480 and UN 3481, except special provision 230 and as otherwise stated in this special provision.

Cells and batteries must be packed in accordance with packing instructions P908 of 4.1.4.1 or LP904 of 4.1.4.3, as applicable.

Cells and batteries identified as damaged or defective and liable to rapidly disassemble, dangerously react, produce a flame or a dangerous evolution of heat or a dangerous emission of toxic, corrosive or flammable gases or vapours under normal conditions of transport shall be packed and transported in accordance with packing instruction P911 of 4.1.4.1 or LP906 of 4.1.4.3, as applicable. Alternative packing and/or transport conditions may be authorized by the competent authority.

Packages shall be marked “DAMAGED/DEFECTIVE” in addition to the proper shipping name, as stated in 5.2.1.

The transport document shall include the following statement “Transport in accordance with special provision 376”.

Lithium ion and lithium metal cells and batteries and equipment containing such cells and batteries transported for disposal or recycling, either packed together with or packed without non-lithium batteries, may be packaged in accordance with packing instruction P909 of 4.1.4.1.

These cells and batteries are not subject to the requirements of section 2.9.4. Additional exemptions may be provided under the conditions defined by modal transport regulations.

Packages must be marked “LITHIUM BATTERIES FOR DISPOSAL” or “LITHIUM BATTERIES FOR RECYCLING”.

Identified damaged or defective batteries must be transported in accordance with special provision 376 and packaged in accordance with P908 of 4.1.4.1 or LP904 of 4.1.4.3, as applicable.

378 Radiation detectors containing this gas in non-refillable pressure receptacles not meeting the requirements of Chapter 6.2 and packing instruction P200 of 4.1.4.1 may be transported under this entry provided:

(a) The working pressure in each receptacle does not exceed 50 bar;
(b) The receptacle capacity does not exceed 12 litres;
(c) Each receptacle has a minimum burst pressure of at least 3 times the working pressure when a relief device is fitted and at least 4 times the working pressure when no relief device is fitted;
(d) Each receptacle is manufactured from material which will not fragment upon rupture;
(e) Each detector is manufactured under a registered quality assurance programme;

NOTE: ISO 9001:2008 may be used for this purpose.

(f) Detectors are transported in strong outer packagings. The complete package shall be capable of withstanding a 1.2 metre drop test without breakage of the detector or rupture of the outer packaging. Equipment that includes a detector shall be packed in a strong outer packaging unless the detector is afforded equivalent protection by the equipment in which it is contained; and

(g) The transport document includes the following statement “Transport in accordance with special provision 378”. Radiation detectors, including detectors in radiation detection systems, are not subject to any other requirements of this Code if the detectors meet the requirements in (a) to (f) above and the capacity of detector receptacles does not exceed 50 ml.

379 Anhydrous ammonia adsorbed or absorbed on a solid contained in ammonia dispensing systems or receptacles intended to form part of such systems are not subject to the other provisions of this Code if the following conditions are observed:

(a) The adsorption or absorption presents the following properties:
 (i) The pressure at a temperature of 20 °C in the receptacle is less than 0.6 bar;
 (ii) The pressure at a temperature of 35 °C in the receptacle is less than 1 bar;
 (iii) The pressure at a temperature of 85 °C in the receptacle is less than 12 bar.
(b) The adsorbent or absorbent material shall not have dangerous properties listed in Classes 1 to 8;
(c) The maximum contents of a receptacle shall be 10 kg of ammonia; and
(d) Receptacles containing adsorbed or absorbed ammonia must meet the following conditions:
 (i) Receptacles shall be made of a material compatible with ammonia as specified in ISO 11114-1:2012 + Amd 1:2017;
 (ii) Receptacles and their means of closure must be hermetically sealed and able to contain the generated ammonia;
(iii) Each receptacle must be able to withstand the pressure generated at 85 °C with a volumetric expansion no greater than 0.1%;

(iv) Each receptacle shall be fitted with a device that allows for gas evacuation once pressure exceeds 15 bar without violent rupture, explosion or projection; and

(v) Each receptacle must be able to withstand a pressure of 20 bar without leakage when the pressure relief device is deactivated. When transported in an ammonia dispenser, the receptacles must be connected to the dispenser in such a way that the assembly is guaranteed to have the same strength as a single receptacle. The properties of mechanical strength mentioned in this special provision must be tested using a prototype of a receptacle and/or dispenser filled to nominal capacity, by increasing the temperature until the specified pressures are reached. The test results must be documented, must be traceable and must be communicated to the relevant authorities upon request.

Large packagings conforming to the packing group III performance level used in accordance with packing instruction LP02 of 4.1.4.3, as prescribed in the 18th revised edition of the United Nations Recommendations on the Transport of Dangerous Goods, Model Regulations, may be used until 31 December 2022.

Polymeric beads may be made from polystyrene, poly (methyl methacrylate) or other polymeric material. When it can be demonstrated that no flammable vapour, resulting in a flammable atmosphere, is evolved according to test U1 (Test method for substances liable to evolve flammable vapours) of Part III, sub-section 38.4.4 of the Manual of Tests and Criteria, polymeric beads, expandable need not be classified under this UN number. This test should only be performed when de-classification of a substance is considered.

Table tennis balls manufactured from celluloid are not subject to this Code where the net mass of each table tennis ball does not exceed 3.0 g and the total net mass of table tennis balls does not exceed 500 g per package.

The label to be used is Model No 9A, see 5.2.2.2.2. However, for placarding of cargo transport units, the placard shall correspond to Model No 9.

NOTE: The Class 9 label (Model No 9) may continue to be used until 31 December 2018.

When substances are stabilized by temperature control, the provisions of 7.1.6 apply. When chemical stabilization is employed, the person offering the packaging, IBC or tank for transport must ensure that the level of stabilization is sufficient to prevent the substance in the
packaging, IBC or tank from dangerous polymerization at a bulk mean temperature of 50 °C, or, in the case of a portable tank, 45 °C. Where chemical stabilization becomes ineffective at lower temperatures within the anticipated duration of transport, temperature control is required. In making this determination factors to be taken into consideration include, but are not limited to, the capacity and geometry of the packaging, IBC or tank and the effect of any insulation present, the temperature of the substance when offered for transport, the duration of the journey and the ambient temperature conditions typically encountered in the journey (considering also the season of year), the effectiveness and other properties of the stabilizer employed, applicable operational controls imposed by regulation (e.g. requirements to protect from sources of heat, including other cargo transported at a temperature above ambient) and any other relevant factors.

387 Lithium batteries in conformity with 2.9.4 (f) containing both primary lithium metal cells and rechargeable lithium ion cells shall be assigned to UN Nos. 3090 or 3091 as appropriate. When such batteries are transported in accordance with special provision 188, the total lithium content of all lithium metal cells contained in the battery shall not exceed 1.5 g and the total capacity of all lithium ion cells contained in the battery shall not exceed 10 Wh.

388 UN No. 3166 entries apply to vehicles powered by flammable liquid or gas internal combustion engines or fuel cells. Vehicles powered by a fuel cell engine shall be assigned to the entries UN 3166 VEHICLE, FUEL CELL, FLAMMABLE GAS POWERED or UN 3166 VEHICLE, FUEL CELL, FLAMMABLE LIQUID POWERED, as appropriate. These entries include hybrid electric vehicles powered by both a fuel cell and an internal combustion engine with wet batteries, sodium batteries, lithium metal batteries or lithium ion batteries, transported with the battery(ies) installed.

Other vehicles which contain an internal combustion engine shall be consigned under the entries UN 3166 VEHICLE, FLAMMABLE GAS POWERED or UN 3166 VEHICLE, FLAMMABLE LIQUID POWERED, as appropriate. These entries include hybrid electric vehicles powered by both an internal combustion engine and wet batteries, sodium batteries, lithium metal batteries or lithium ion batteries, transported with the battery(ies) installed.

If a vehicle is powered by a flammable liquid and a flammable gas internal combustion engine, it shall be assigned to UN 3166 VEHICLE, FLAMMABLE GAS POWERED

Entry UN 3171 only applies to vehicles powered by wet batteries, sodium batteries, lithium metal batteries or lithium ion batteries and equipment powered by wet batteries or sodium batteries transported with these batteries installed.

For the purpose of this special provision, vehicles are self-propelled apparatus designed to carry one or more persons or goods. Examples of such vehicles are cars, motorcycles, scooters, three- and four-wheeled...
vehicles or motorcycles, trucks, locomotives, bicycles (pedal cycles with a motor) and other vehicles of this type (e.g. self-balancing vehicles or vehicles not equipped with at least one seating position), wheelchairs, lawn tractors, self-propelled farming and construction equipment, boats and aircraft. This includes vehicles transported in a packaging. In this case some parts of the vehicle may be detached from its frame to fit into the packaging.

Examples of equipment are lawnmowers, cleaning machines or model boats and model aircraft. Equipment powered by lithium metal batteries or lithium ion batteries shall be consigned under the entries UN 3091 LITHIUM METAL BATTERIES CONTAINED IN EQUIPMENT or UN 3091 LITHIUM METAL BATTERIES PACKED WITH EQUIPMENT or UN 3481 LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT or UN 3481 LITHIUM ION BATTERIES PACKED WITH EQUIPMENT, as appropriate. Lithium ion batteries or lithium metal batteries installed in a cargo transport unit and designed only to provide power external to the cargo transport unit shall be assigned to the entry UN 3536 LITHIUM BATTERIES INSTALLED IN CARGO TRANSPORT UNIT lithium ion batteries or lithium metal batteries.

Dangerous goods, such as batteries, airbags, fire extinguishers, compressed gas accumulators, safety devices and other integral components of the vehicle that are necessary for the operation of the vehicle or for the safety of its operator or passengers, shall be securely installed in the vehicle and are not otherwise subject to this Code. However, lithium batteries shall meet the provisions of 2.9.4, except that 2.9.4 (a) does not apply when pre-production prototype batteries or batteries of a small production run, consisting of not more than 100 batteries, are installed in vehicles or equipment.

Where a lithium battery installed in a vehicle or equipment is damaged or defective, the vehicle or equipment shall be transported as defined by the competent authority.

This entry only applies to lithium ion batteries or lithium metal batteries installed in a cargo transport unit and designed only to provide power external to the cargo transport unit. The lithium batteries shall meet the requirements of 2.9.4 (a) to (g) and contain the necessary systems to prevent overcharge and over discharge between the batteries.

The batteries shall be securely attached to the interior structure of the cargo transport unit (e.g., by means of placement in racks, cabinets, etc.) in such a manner as to prevent short circuits, accidental operation, and significant movement relative to the cargo transport unit under the shocks, loadings and vibrations normally incident to transport. Dangerous goods necessary for the safe and proper operation of the cargo transport unit (e.g., fire extinguishing systems and air conditioning systems), shall be properly secured to or installed in the cargo transport unit and are not otherwise subject to this Code. Dangerous goods not necessary for the safe and proper operation of the cargo transport unit shall not be transported within the cargo transport unit.
The batteries inside the cargo transport unit are not subject to marking or labelling requirements. The cargo transport unit shall display the UN number in accordance with 5.3.2.1.2 and be placarded on two opposing sides in accordance with 5.3.1.1.2.

When a package contains a combination of lithium batteries contained in equipment and lithium batteries packed with equipment, the following requirements apply for the purposes of package marking and documentation:

(a) the package must be marked “UN 3091 Lithium metal batteries packed with equipment”, or “UN 3481 Lithium ion batteries packed with equipment”, as appropriate. If a package contains both lithium ion batteries and lithium metal batteries packed with and contained in equipment, the package must be marked as required for both battery types. However, button cell batteries installed in equipment (including circuit boards) need not be considered.

(b) the transport document must indicate “UN 3091 Lithium metal batteries packed with equipment” or “UN 3481 Lithium ion batteries packed with equipment”, as appropriate. If a package contains both lithium metal batteries and lithium ion batteries packed with and contained in equipment, then the transport document must indicate both “UN 3091 Lithium metal batteries packed with equipment” and “UN 3481 Lithium ion batteries packed with equipment”.

Articles containing dangerous goods of Division 2.3, or Division 4.2, or Division 4.3, or Division 5.1, or Division 5.2 or Division 6.1 for substances of inhalation toxicity requiring Packing Group I and articles containing more than one of the hazards listed in 2.0.3.1 (b), (c), or (d) shall be transported under conditions approved by the competent authority.

For the transport of fuel gas containment systems designed and approved to be fitted in motor vehicles containing this gas the provisions of sub-section 4.1.4.1 and Chapter 6.2 of these Regulations need not be applied when transported for disposal, recycling, repair, inspection, maintenance or from where they are manufactured to a vehicle assembly plant, provided the following conditions are met:

(a) The fuel gas containment systems shall meet the requirements of the standards or regulations for fuel tanks for vehicles, as applicable. Examples of applicable standards and regulations are:

<table>
<thead>
<tr>
<th>LPG tanks</th>
<th>Uniform provisions concerning: I. Approval of specific equipment of vehicles of category M and N using liquefied petroleum gases in their propulsion system; II. Approval of vehicles of category M and N fitted with specific equipment for the use of liquefied petroleum gases in their propulsion system with regard to the installation of such equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE Regulation No. 67 Revision 2</td>
<td></td>
</tr>
<tr>
<td>Regulation</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ECE Regulation No. 115</td>
<td>Uniform provisions concerning the approval of: I. Specific LPG (liquefied petroleum gases) retrofit systems to be installed in motor vehicles for the use of LPG in their propulsion systems; II. Specific CNG (compressed natural gas) retrofit systems to be installed in motor vehicles for the use of CNG in their propulsion system</td>
</tr>
<tr>
<td>CNG tanks</td>
<td></td>
</tr>
<tr>
<td>ECE Regulation No. 110</td>
<td>Uniform provisions concerning the approval of: I. Specific components of motor vehicles using compressed natural gas (CNG) and/or liquefied natural gas (LNG) in their propulsion system; II. Vehicles with regard to the installation of specific components of an approved type for the use of compressed natural gas (CNG) and/or liquefied natural gas (LNG) in their propulsion system</td>
</tr>
<tr>
<td>ISO 11439:2013</td>
<td>Gas cylinders — High pressure cylinders for the onboard storage of natural gas as a fuel for automotive vehicles</td>
</tr>
<tr>
<td>ISO 15500-Series</td>
<td>ISO 15500: Road vehicles -- Compressed natural gas (CNG) fuel system components – several parts as applicable</td>
</tr>
<tr>
<td>ANSI NGV 2</td>
<td>Compressed natural gas vehicle fuel containers</td>
</tr>
<tr>
<td>CSA B51 Part 2: 2014</td>
<td>Boiler, pressure vessel, and pressure piping code Part 2 Requirements for high-pressure cylinders for onboard storage of fuels for automotive vehicles</td>
</tr>
<tr>
<td>Hydrogen pressure tanks</td>
<td></td>
</tr>
<tr>
<td>ECE Regulation No. 134</td>
<td>Uniform provisions concerning the approval of motor vehicles and their components with regards to the safety-related performance of hydrogen and fuel cell vehicles (HFCV)</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>CSA B51 Part 2: 2014</td>
<td>Boiler, pressure vessel, and pressure piping code Part 2 Requirements for high-pressure cylinders for on-board storage of fuels for automotive vehicles</td>
</tr>
</tbody>
</table>

Gas tanks designed and constructed in accordance with previous versions of relevant standards or regulations for gas tanks for motor vehicles, which were applicable at the time of the certification of the vehicles for which the gas tanks were designed and constructed may continue to be transported;

(b) The fuel gas containment systems shall be leakproof and shall not exhibit any signs of external damage which may affect their safety;

NOTE 1: Criteria may be found in standard ISO 11623:2015 Gas cylinders – Composite construction – Periodic inspection and testing (or ISO 19078:2013 Gas cylinders – Inspection of the cylinder installation, and requalification of high pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles).

NOTE 2: If the fuel gas containment systems are not leakproof or are overfilled or if they exhibit damage that could affect their safety (e.g. in case of a safety related recall), they shall only be carried in salvage pressure receptacles in conformity with these Regulations.

(c) If a fuel gas containment system is equipped with two valves or more integrated in line, the two valves shall be closed as to be gastight under normal conditions of transport. If only one valve exists or only one valve works, all openings with the exception of the opening of the pressure relief device shall be closed as to be gastight under normal conditions of transport;

(d) Fuel gas containment systems shall be transported in such a way as to prevent obstruction of the pressure relief device or any damage to the valves and any other pressurised part of the fuel gas containment systems and unintentional release of the gas under normal conditions of transport. The fuel gas containment system shall be secured in order to prevent slipping, rolling or vertical movement;

(e) Valves shall be protected by one of the methods described in 4.1.6.1.8 (a) to (e);

(f) Except for the case of fuel gas containment systems removed for disposal, recycling, repair, inspection or maintenance, they shall be filled with not more than 20 % of their nominal filling ratio or nominal working pressure, as applicable;
(g) Notwithstanding the provisions of Chapter 5.2, when fuel gas containment systems are consigned in a handling device, markings and labels may be affixed to the handling device; and

(h) Notwithstanding the provisions of 5.4.1.5 the information on the total quantity of dangerous goods may be replaced by the following information:

(i) The number of fuel gas containment systems; and

(ii) In the case of liquefied gases the total net mass (kg) of gas of each fuel gas containment system and, in the case of compressed gases, the total water capacity (l) of each fuel gas containment system followed by the nominal working pressure.

Examples for information in the transport document:

Example 1: “UN 1971 natural gas, compressed, 2.1, 1 fuel gas containment system of 50 l in total, 200 bar”.

Example 2: “UN 1965 hydrocarbon gas mixture, liquefied, n.o.s., 2.1, 3 fuel gas containment systems, each of 15 kg net mass of gas”.

393 The nitrocellulose must meet the criteria of the Bergmann-Junk test or methyl violet paper test in the Manual of Tests and Criteria Appendix 10. Tests of type 3 (c) need not be applied.

394 The nitrocellulose must meet the criteria of the Bergmann-Junk test or methyl violet paper test in the Manual of Tests and Criteria Appendix 10.

395 This entry shall only be used for solid medical waste of Category A transported for disposal.
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

3.3.3 AUSTRALIAN SPECIAL PROVISIONS

The Special Provisions in this Section 3.3.3 are peculiar to this Code and are therefore not applicable to international transport, or to air or sea transport within Australia.

SP No.

AU01 Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082 are not subject to this Code when transported by road or rail in;

(a) packagings that do not incorporate a receptacle exceeding 500 kg(L); or
(b) IBCs.

AU02 GAS OIL or DIESEL OIL or HEATING OIL, LIGHT or PETROLEUM DISTILLATE is not subject to this Code if it does not meet the criteria of Chapter 2.3 for assignment to Class 3; i.e. if the flash point is more than 60°C and the substance is not offered for transport at a temperature above its flash point.

Such substances will normally be C1 combustible liquids which are not classified as dangerous goods for transport purposes. However, the presence of a C1 combustible liquid in one or more compartments of a tank vehicle or portable tank transporting other refined petroleum products must be considered when determining the application of UN Number 12700 in accordance with 3.2.5.4 and 5.3.1.3.3.

AU03 Unodourised LP Gas or Propane or Butane may only be transported if each of the following conditions is met:

(a) each route used for the transport must have been determined by an appropriate risk management assessment; and
(b) each load must be accompanied by a gas detector suitable for the detection of LP Gas or Propane or Butane, in accordance with AS 1596, and by a person trained in its operation; and
(c) that person must use the gas detector to check for the presence of LP Gas or Propane or Butane in the vicinity of the load at each routine stop that the vehicle makes, and on any other occasion when there is a significant risk that LP Gas may have leaked, and must record in writing the details of each test; and
(d) the word "Unodourised" must be included as part of the shipping name displayed on vehicle emergency information panels; and
(e) a copy of the Transport Emergency Response Plan must be provided to the relevant hazmat incident combat agency, before the journey commences.

This provision does not apply to South Australia. The transport of unodourised LP Gas or Propane or Butane is prohibited in South Australia unless exempted by the Competent Authority in South Australia.

AU04 Natural ‘greasy wool’ fleece and bales are not subject to this Code.

AU05 <omitted>

AU06 GMMOs and GMOs to which 2.9.2.2 applies are not subject to this Code.
UN 1017 CHLORINE has a subsidiary hazard 5.1, as well as 8. Despite this, when transported in cylinders, pressure drums, MEGCs or tanks, chlorine gas is not considered incompatible with dangerous goods of Class 8 or 9, or Division 6.1, or combustible liquids.

For automotive batteries, the acid volume may be used when calculating the aggregate quantity of dangerous goods in the load.

If the acid volume is not known, a nominal figure of 25% of the gross weight of the battery may be used.
CHAPTER 3.4 - DANGEROUS GOODS PACKED IN LIMITED QUANTITIES

Introductory Notes

NOTE 1: Chapter 3.4 was amended in 2020 (Code Edition 7.7).

The provisions in this Chapter set out the following requirements:

- packing design and construction
- marking and labelling of packaging
- segregation
- use of overpacks
- transport documentation

Other relevant provisions of the Code, dealing with matters not provided for in this Chapter, continue to apply. In the event of inconsistency or duplication between this Chapter and other provisions of the Code, the provisions of this Chapter prevail.

NOTE 2: Under Regulation 1.1.5, 1.1.6 or 1.1.7, the transport of certain small quantities of dangerous goods may be conditionally exempt from the Regulations and this Code.

NOTE 3: The concessions in 3.4.6 and 3.4.11 - 3.4.13 of this Chapter also apply to Domestic Consumable Dangerous Goods (defined in 1.2.1) that are packed and intended for retail distribution.

NOTE 4: When transporting UN0337 fireworks (bonbons, party poppers and sparklers only) refer to the relevant jurisdictional explosives regulations for any additional requirements.

3.4.1 LIMITED QUANTITY AMOUNTS

A quantity of dangerous goods is a limited quantity if:

a) The dangerous goods has a limited quantity amount (more than 0), listed in column 7a Limited Quantities in the Dangerous Goods List, Table 3.2.3; and

b) The dangerous goods are packed in an inner packaging with:

 i) if solids, a mass that is less than or equal to the number shown in column 7a of the Dangerous Goods List, Table 3.2.3, when that number is expressed in kilograms;

 ii) if liquids, a volume that is less than or equal to the number shown in column 7a of the Dangerous Goods List, Table 3.2.3 when that number is expressed in litres;

 iii) if gases, including a gas in a liquefied form, are contained in one or more means of containment each of which has a capacity less than or equal to the number shown in column 7a of the Dangerous Goods List, Table 3.2.3, when that number is expressed in litres.
3.4.2 PACKAGING REQUIREMENTS FOR LIMITED QUANTITIES

3.4.2.1 General requirements applicable to all packagings used for dangerous goods packed in limited quantities.

Dangerous goods transported in accordance with this chapter must be packed in packages that meet the following criteria:

a) packagings must be designed, constructed, filled, closed, secured and maintained so that under normal conditions of transport, including handling, there will be no accidental release of the dangerous goods; and
b) all packagings must meet the provisions of 4.1.1.1, 4.1.1.2 and 4.1.1.4 to 4.1.1.8; and

c) all packagings must meet the construction requirements of 6.1.4, 6.2.1.2 and 6.2.4; and

d) for articles of Division 1.4, Compatibility Group S, packagings must also fully comply with the provisions of 4.1.5.

3.4.2.2 Inner packagings are compulsory, except for articles such as aerosols or “receptacles, small, containing gas.

3.4.2.3 Intermediate packagings:

a) are compulsory for liquid goods of Class 8, packing group II which have inner packagings of glass, porcelain or stoneware. The intermediate packaging must be compatible and rigid.

b) are compulsory for inner packagings that are liable to break or be easily punctured, such as those made of glass, porcelain, stoneware or certain plastics where the outer packaging is shrink wrapped or stretch wrapped.

c) may be used at any other time.

3.4.2.4 Outer packagings

Limited quantities must be packed in an outer packaging which must meet the following criteria:

a) dangerous goods packed in limited quantities amounts must be placed in a suitable outer packaging

b) except for articles of Division 1.4, Compatibility Group S, shrink wrapped or stretch wrapped trays meeting the conditions of 4.1.1.1, 4.1.1.2 and 4.1.1.4 to 4.1.1.8 are acceptable as outer packagings, provided the total gross mass of the package does not exceed 20kg

c) inner packagings that are liable to break or be easily punctured must be packed in outer packagings not exceeding a total gross mass of 20kg.

d) all other outer packagings must not exceed a total gross mass of 30kg.
3.4.6 SEGREGATION FOR PACKAGES CONTAINING LIMITED QUANTITIES

3.4.6.1 Different dangerous goods packed in limited quantities may be placed in the same outer packaging provided they will not interact dangerously in the event of leakage.

3.4.6.2 Any segregation provisions elsewhere in this Code do not apply to dangerous goods packed in limited quantities within a cargo transport unit. This includes the need to segregate food and food packaging.

3.4.7 MARK FOR PACKAGES CONTAINING LIMITED QUANTITIES

3.4.7.1 Except for air transport, packages containing dangerous goods in limited quantities must bear the mark shown in Figure 3.4.1:

![Figure 3.4.1: Mark for packages containing limited quantities](image)

The mark must be readily visible, legible and able to withstand open weather exposure without a substantial reduction in effectiveness.

The mark must be in the form of a square set at an angle of 45 degrees (diamond-shaped). The top and bottom portions and the surrounding line must be black. The centre area must be white or a suitable contrasting background. The minimum dimensions must be 100 mm x 100 mm and the minimum width of line forming the diamond must be 2 mm. Where dimensions are not specified, all features must be in approximate proportion to those shown.

3.4.7.2 If the size of the package so requires, the minimum outer dimensions shown in Figure 3.4.1 may be reduced to be not less than 50 mm x 50 mm provided the mark remains clearly visible. The minimum width of the line forming the diamond may be reduced to a minimum of 1 mm.
3.4.8 MARK FOR PACKAGES CONTAINING LIMITED QUANTITIES CONFORMING TO PART 3, CHAPTER 4 OF THE ICAO TECHNICAL INSTRUCTIONS FOR THE SAFE TRANSPORT OF DANGEROUS GOODS BY AIR

3.4.8.1 Packages containing dangerous goods packed in conformity with the provisions of Part 3, Chapter 4 of the ICAO Technical Instructions for the Transport of Dangerous Goods may bear the mark shown in Figure 3.4.2 to certify conformity with these provisions:

![Figure 3.4.2: Mark for packages containing limited quantities conforming to Part 3, Chapter 4 of the ICAO Technical Instructions for the Safe Transport of Dangerous Goods by Air](image)

The mark must be readily visible, legible and able to withstand open weather exposure without a substantial reduction in effectiveness.

The mark must be in the form of a square set at an angle of 45 degrees (diamond-shaped). The top and bottom portions and the surrounding line must be black. The centre area must be white or a suitable contrasting background. The minimum dimensions must be 100 mm x 100 mm and the minimum width of the line forming the diamond must be 2 mm. The symbol “Y” must be placed in the centre of the mark and must be clearly visible. Where dimensions are not specified, all features must be in approximate proportion to those shown.

3.4.8.2 If the size of the package so requires, the minimum outer dimensions shown in Figure 3.4.2 may be reduced to be not less than 50 mm x 50 mm provided the mark remains clearly visible. The minimum width of the line forming the diamond may be reduced to a minimum of 1 mm. The symbol “Y” must remain in approximate proportion to that shown in Figure 3.4.2.

3.4.8.3 Packages containing dangerous goods bearing the mark shown in 3.4.8 with or without the additional labels and marks for air transport must be deemed to meet the provisions of section 3.4.1 as appropriate and of sections 3.4.2 to 3.4.7 and need not bear the mark shown in 3.4.7.
3.4.8.4 Packages containing dangerous goods in limited quantities bearing the mark shown in 3.4.7 and conforming with the provisions of the ICAO Technical Instructions for the Safe Transport of Dangerous Goods by Air, including all necessary marks and labels specified in Parts 5 and 6, must be deemed to meet the provisions of section 3.4.1 as appropriate and of sections 3.4.2 to 3.4.7 when transported by land or by sea.

3.4.9 <RESERVED>

3.4.10 <RESERVED>

3.4.11 USE OF OVERPACKS

3.4.11.1 For an overpack containing dangerous goods packed in limited quantities, the following applies:

Unless the marks representative of all dangerous goods in an overpack are visible, the overpack must be:

a) marked with the word “OVERPACK”. The lettering of the “OVERPACK” mark shall be at least 12 mm high; and

b) marked with the marks required by this chapter. Except for air transport, the other provisions of 5.1.2.1 apply only if other dangerous goods which are not packed in limited quantities are contained in the overpack and only in relation to these other dangerous goods.

Except for air transport, the other provisions of 5.1.2.1 apply only if other dangerous goods which are not packed in limited quantities are contained in the overpack and only in relation to these other dangerous goods.

3.4.11.2 Despite 3.4.11.1, an overpack intended only for transport by road or rail within Australia need not be marked with the word "OVERPACK".

3.4.12.1 INFORMATION TO BE AVAILABLE DURING TRANSPORT

Prior to transporting, the consignor of the dangerous goods packed in limited quantities must inform the prime contractor, in a form readily ascertainable during transport, of:

a) the total gross mass of such goods to be consigned, and, if the goods consist of multiple consignments for different consignees, the gross mass of each consignment; and

b) if the goods to be consigned include an aggregate quantity of 2000 kg(L) or greater of any one UN Number - the UN Number, Proper Shipping Name and total aggregate quantity for that UN number.

3.4.12.2 The prime contractor must ensure that the information provided to them under 3.4.12.1 is readily ascertainable during transport of the dangerous goods.
3.4.13 DOCUMENTATION

3.4.13.1 A dangerous goods transport document is not required for dangerous goods that meet the requirements of this Chapter.

3.4.13.2 Any transport document for the consignment (e.g. consignment note, bill of lading, etc.) must include the notation ‘Contains Dangerous Goods Packed in Limited Quantities’

NOTE 1: Placard limit requirements for Limited Quantities (LQ) are set out in Table 5.3.

NOTE 2: Appropriate placards for limited quantity loads are given in 5.2.2.2.3 and 5.2.2.2.4.
CHAPTER 3.5 - DANGEROUS GOODS PACKED IN EXCEPTED QUANTITIES

3.5.1 EXCEPTED QUANTITIES

3.5.1.1 Excepted quantities of dangerous goods of certain classes, other than articles, meeting the provisions of this Chapter are not subject to any other provisions of this Code except for:

(a) The training requirements in Chapter 1.3;

(b) The classification procedures and packing group criteria in Part 2;

(c) The packaging requirements of 4.1.1.1, 4.1.1.2, 4.1.1.4, 4.1.1.4.1 and 4.1.1.6.

NOTE: In the case of radioactive material, the requirements for radioactive material in excepted packages in 1.5.1.5 apply.

3.5.1.2 Dangerous goods which may be carried as excepted quantities in accordance with the provisions of this Chapter are shown in column 7b of the dangerous goods list of Chapter 3.2 by means of an alphanumeric code as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Maximum net quantity per inner packaging</th>
<th>Maximum net quantity per outer packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(in grams for solids and ml for liquids and gases)</td>
<td>(in grams for solids and ml for liquids and gases, or sum of grams and ml in the case of mixed packing)</td>
</tr>
<tr>
<td>E0</td>
<td>Not permitted as Excepted Quantity</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>E2</td>
<td>30</td>
<td>500</td>
</tr>
<tr>
<td>E3</td>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>E4</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>E5</td>
<td>1</td>
<td>300</td>
</tr>
</tbody>
</table>

For gases, the volume indicated for inner packagings refers to the water capacity of the inner receptacle and the volume indicated for outer packagings refers to the combined water capacity of all inner packagings within a single outer packaging.

3.5.1.3 Where dangerous goods in excepted quantities for which different codes are assigned are packaged together the total quantity per outer packaging shall be limited to that corresponding to the most restrictive code.

3.5.1.4 Excepted quantities of dangerous goods assigned to codes E1, E2, E4 and E5 are not subject to this Code provided that:

(a) The maximum net quantity of material per inner packaging is limited to 1 ml for liquids and gases and 1 g for solids;
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

(b) The provisions of 3.5.2 are met, except that an intermediate packaging is not required if the inner packagings are securely packed in an outer packaging with cushioning material in such a way that, under normal conditions of transport, they cannot break, be punctured, or leak their contents; and for liquids, the outer packaging contains sufficient absorbent material to absorb the entire contents of the inner packagings;

(c) The provisions of 3.5.3 are complied with; and

(c) The maximum net quantity of dangerous goods per outer packaging does not exceed 100 g for solids or 100 ml for liquids and gases.

3.5.2 PACKAGINGS

Packagings used for the transport of dangerous goods in excepted quantities shall be in compliance with the following:

(a) There shall be an inner packaging and each inner packaging shall be constructed of plastic (when used for liquid dangerous goods it shall have a thickness of not less than 0.2 mm), or of glass, porcelain, stoneware, earthenware or metal (see also 4.1.1.2) and the closure of each inner packaging shall be held securely in place with wire, tape or other positive means; any receptacle having a neck with moulded screw threads shall have a leak proof threaded type cap. The closure shall be resistant to the contents;

(b) Each inner packaging shall be securely packed in an intermediate packaging with cushioning material in such a way that, under normal conditions of transport, it cannot break, be punctured or leak its contents. For liquid dangerous goods, the intermediate or outer packaging shall contain sufficient absorbent material to absorb the entire contents of the inner packagings. When placed in the intermediate packaging, the absorbent material may be the cushioning material. Dangerous goods shall not react dangerously with cushioning, absorbent material and packaging material or reduce the integrity or function of the materials. Regardless of its orientation, the package shall completely contain the contents in case of breakage or leakage;

(c) The intermediate packaging shall be securely packed in a strong, rigid outer packaging (wooden, fibreboard or other equally strong material);

(d) Each package type shall be in compliance with the provisions in 3.5.3;

(e) Each package shall be of such a size that there is adequate space to apply all necessary marks; and

(f) Overpacks may be used and may also contain packages of dangerous goods or goods not subject to this Code.
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

3.5.3 TESTS FOR PACKAGES

3.5.3.1 The complete package as prepared for transport, with inner packagings filled to not less than 95% of their capacity for solids or 98% for liquids, shall be capable of withstanding, as demonstrated by testing which is appropriately documented, without breakage or leakage of any inner packaging and without significant reduction in effectiveness:

(a) Drops onto a rigid, non-resilient, flat and horizontal surface from a height of 1.8 m:

(i) Where the sample is in the shape of a box, it shall be dropped in each of the following orientations:
 - flat on the base;
 - flat on the top;
 - flat on the longest side;
 - flat on the shortest side;
 - on a corner;

(ii) Where the sample is in the shape of a drum, it shall be dropped in each of the following orientations:
 - diagonally on the top chime, with the centre of gravity directly above the point of impact;
 - diagonally on the base chime;
 - flat on the side.

NOTE: Each of the above drops may be performed on different but identical packages.

(b) A force applied to the top surface for a duration of 24 hours, equivalent to the total weight of identical packages if stacked to a height of 3 m (including the sample).

3.5.3.2 For the purposes of testing, the substances to be transported in the packaging may be replaced by other substances except where this would invalidate the results of the tests. For solids, when another substance is used, it must have the same physical characteristics (mass, grain size, etc.) as the substance to be carried. In the drop tests for liquids, when another substance is used, its relative density (specific gravity) and viscosity should be similar to those of the substance to be transported.

3.5.4 MARKING OF PACKAGES

3.5.4.1 Packages containing excepted quantities of dangerous goods prepared in accordance with this Chapter shall be durably and legibly marked with the mark shown in Figure 3.5.1. The primary hazard class or, when assigned, the division of each of the dangerous goods contained in the package shall be shown in the mark. Where the name of the consignor or
3.5.4.2 Excepted quantities mark

Figure 3.5.1: Excepted quantities mark

The mark shall be in the form of a square. The hatching and symbol shall be of the same colour, black or red, on white or suitable contrasting background. The minimum dimensions shall be 100 mm x 100 mm. Where dimensions are not specified, all features shall be in approximate proportion to those shown.

* The Class or, when assigned, the Division number(s) shall be shown in this location.

** The name of the consignor or of the consignee shall be shown in this location if not shown elsewhere on the package.

3.5.4.3 Use of overpacks

For an overpack containing dangerous goods packed in excepted quantities, the following applies:

Unless the marks representative of all dangerous goods in an overpack are visible, the overpack shall be:

– marked with the word “OVERPACK”. The lettering of the “OVERPACK” mark shall be at least 12 mm high; and

– marked with the marks required by this chapter.

The other provisions of 5.1.2.1 apply only if other dangerous goods which are not packed in excepted quantities are contained in the overpack and only in relation to these other dangerous goods.

NOTE: 5.1.2.1.2 provides that an overpack intended only for transport by road or rail within Australia need not be marked with the word “OVERPACK”
PART 3: DANGEROUS GOODS LISTS, SPECIAL PROVISIONS AND EXCEPTIONS

3.5.5 MAXIMUM NUMBER OF PACKAGES IN AN CARGO TRANSPORT UNIT

The number of packages in any cargo transport unit shall not exceed 1000.

3.5.6 DOCUMENTATION

3.5.6.1 A dangerous goods transport document is not required for dangerous goods that meet the requirements of this Chapter.

3.5.6.2 If a document (such as a bill of lading or air waybills) accompanies dangerous goods in excepted quantities, it shall include the statement “Dangerous Goods in Excepted Quantities” and indicate the number of packages.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS
CHAPTER 4.1 - USE OF PACKAGINGS, INCLUDING INTERMEDIATE BULK CONTAINERS (IBCS) AND LARGE PACKAGINGS

Introductory Notes

NOTE 1: This part reproduces in full the Packing provisions of Part 4 of UN20. It includes detailed Packing Instructions for all classes of dangerous goods, as referenced from column 8 (for packages, IBCs and Large Packagings) and column 10 (for portable tanks and bulk containers) of the Dangerous Goods List in Chapter 3.2, together with special packing provisions as referenced from columns 9 and 11.

NOTE 2: For Class 1 and Class 7 dangerous goods which are not subject to this Code except and insofar as they are transported with other dangerous goods, the information is provided for guidance only. For those classes, reference should be made to the Australian Explosives Code and the Codes of Practice for the Safe Transport of Radioactive Substances. The use of Packing Instructions from this Chapter that are not included in those Codes may require approval from the relevant Competent Authority.

4.1.1 GENERAL PROVISIONS FOR THE PACKING OF DANGEROUS GOODS IN PACKAGINGS, INCLUDING IBCS AND LARGE PACKAGINGS

NOTE: The general provisions of this section apply to all dangerous goods in packagings. However they only apply to the packing of goods of Class 2 and Division 6.2 where indicated in 4.1.8.2 (Division 6.2, UN 2814 and UN 2900) and in the applicable packing instructions of 4.1.4 (P201, P207 and LP02 for Class 2 and P620, P621, P622, IBC620, LP621 and LP622 for Division 6.2).

4.1.1.1 Dangerous goods must be packed in good quality packagings, including IBCs and large packagings, which must be strong enough to withstand the shocks and loadings normally encountered during transport, including trans-shipment between cargo transport units and between cargo transport units and warehouses as well as any removal from a pallet or overpack for subsequent manual or mechanical handling. Packagings, including IBCs and large packagings, must be constructed and closed so as to prevent any loss of contents when prepared for transport which may be caused under normal conditions of transport, by vibration, or by changes in temperature, humidity or pressure (resulting from altitude, for example). Packagings, including IBCs and large packagings, must be closed in accordance with the information provided by the manufacturer. No dangerous residue must adhere to the outside of packages, IBCs and large packagings during transport. These provisions apply, as appropriate, to new, reused, reconditioned or remanufactured packagings, and to new, reused, repaired or remanufactured IBCs, and to new, reused or remanufactured large packagings.

4.1.1.2 Parts of packagings, including IBCs and large packagings, which are in direct contact with dangerous goods:
(a) must not be affected or significantly weakened by those dangerous goods; and
(b) must not cause a dangerous effect e.g. catalysing a reaction or reacting with the dangerous goods; and
(c) must not allow permeation of the dangerous goods that could constitute a danger under normal conditions of transport.

Where necessary, they must be provided with a suitable inner coating or treatment.

4.1.1.3 Unless provided elsewhere in this Code, each packaging, including IBCs and large packagings, except inner packagings, must conform to a design type successfully tested in accordance with the requirements of 6.1.5, 6.3.5, 6.5.6 or 6.6.5, as applicable. However, IBCs manufactured before 1 January 2011 and conforming to a design type which has not passed the vibration test of 6.5.6.13 or which was not required to meet the criteria of 6.5.6.9.5 (d) at the time it was subjected to the drop test, may still be used.

4.1.1.3.1 Packagings, including IBCs and large packagings, may conform to one or more than one successfully tested design type and may bear more than one mark.

4.1.1.4 When filling packagings, including IBCs and large packagings, with liquids, sufficient ullage (outage) must be left to ensure that neither leakage nor permanent distortion of the packaging occurs as a result of an expansion of the liquid caused by temperatures likely to occur during transport. Unless specific requirements are prescribed, liquids must not completely fill a packaging at a temperature of 55 °C. However, sufficient ullage must be left in an IBC to ensure that at the mean bulk temperature of 50 °C it is not filled to more than 98% of its water capacity.

4.1.1.4.1 For air transport, packagings intended to contain liquids must also be capable of withstanding a pressure differential without leakage as specified in the international regulations for air transport.

4.1.1.5 Inner packagings must be packed in an outer packaging in such a way that, under normal conditions of transport, they cannot break, be punctured or leak their contents into the outer packaging. Inner packagings containing liquids must be packaged with their closures upward and placed within outer packagings consistent with any orientation marks (see 5.2.1.7). Inner packagings that are liable to break or be punctured easily, such as those made of glass, porcelain or stoneware or of certain plastics materials, etc., must be secured in outer packagings with suitable cushioning material. Any leakage of the contents must not substantially impair the protective properties of the cushioning material or of the outer packaging.

4.1.1.5.1 Where an outer packaging of a combination packaging or a large packaging has been successfully tested with different types of inner packagings, a variety of such different inner packagings may also be assembled in this outer packaging or large packaging. In addition, provided an equivalent level of performance is maintained, the following variations in inner packagings are allowed without further testing of the package:

(a) Inner packagings of equivalent or smaller size may be used provided:
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

(i) The inner packagings are of similar design to the tested inner packagings (e.g. shape - round, rectangular, etc.);
(ii) The material of construction of the inner packagings (glass, plastics, metal, etc.) offers resistance to impact and stacking forces equal to or greater than that of the originally tested inner packaging;
(iii) The inner packagings have the same or smaller openings and the closure is of similar design (e.g. screw cap, friction lid, etc.);
(iv) Sufficient additional cushioning material is used to take up void spaces and to prevent significant movement of the inner packagings; and
(v) Inner packagings are oriented within the outer packaging in the same manner as in the tested package.

(b) A lesser number of the tested inner packagings, or of the alternative types of inner packagings identified in (a) above, may be used provided sufficient cushioning is added to fill the void space(s) and to prevent significant movement of the inner packagings.

4.1.1.5.2 Use of supplementary packagings within an outer packaging (e.g. an intermediate packaging or a receptacle inside a required inner packaging) additional to what is required by the packing instructions is authorised provided all relevant requirements are met, including those of 4.1.1.3, and, if appropriate, suitable cushioning is used to prevent movement within the packaging.

4.1.1.6 Dangerous goods must not be packed together in the same outer packaging or in large packagings, with dangerous or other goods if they react dangerously with each other.

4.1.1.7 The closures of packagings containing wetted or diluted substances must be such that the percentage of liquid (water, solvent or phlegmatiser) does not fall below the prescribed limits during transport.

4.1.1.7.1 Where two or more closure systems are fitted in series on an IBC, that nearest to the substance being carried must be closed first.

4.1.1.8 Where pressure may develop in a package by the emission of gas from the contents (as a result of temperature increase or other causes), the packaging or IBC, may be fitted with a vent, provided that the gas emitted will not cause danger on account of its toxicity, its flammability, the quantity released, etc.

A venting device must be fitted if dangerous overpressure may develop due to normal decomposition of substances. The vent must be so designed that, when the packaging or IBC is in the attitude in which it is intended to be transported, leakages of liquid and the penetration of foreign substances are prevented under normal conditions of transport.

4.1.1.8.1 Liquids may only be filled into inner packagings which have an appropriate resistance to internal pressure that may be developed under normal conditions of transport.

4.1.1.8.2 Venting of the package is not permitted for air transport.
4.1.1.9 New, remanufactured or reused packagings, including IBCs and large packagings, or reconditioned packagings and repaired or routinely maintained IBCs must be capable of passing the tests prescribed in 6.1.5, 6.3.2, 6.5.6 or 6.6.5, as applicable. Before being filled and handed over for transport, every packaging, including IBCs and large packagings, must be inspected to ensure that it is free from corrosion, contamination or other damage and every IBC must be inspected with regard to the proper functioning of any service equipment. Any packaging, which shows signs of reduced strength as compared with the approved design type must no longer be used or must be so reconditioned, that it is able to withstand the design type tests. Any IBC which shows signs of reduced strength as compared with the tested design type must no longer be used or must be so repaired or routinely maintained that it is able to withstand the design type tests.

4.1.1.10 Liquids must be filled only into packagings, including IBCs, which have an appropriate resistance to the internal pressure that may develop under normal conditions of transport. Packagings and IBCs marked with the hydraulic test pressure prescribed in 6.1.3.1(d) and 6.5.2.2.1, respectively, must be filled only with a liquid having a vapour pressure:

(a) such that the total gauge pressure in the packaging or IBC (i.e. the vapour pressure of the filling substance plus the partial pressure of air or other inert gases, less 100 kPa) at 55 °C, determined on the basis of a maximum degree of filling in accordance with 4.1.1.4 and a filling temperature of 15 °C, will not exceed two thirds of the marked test pressure; or

(b) at 50 °C less than four sevenths of the sum of the marked test pressure plus 100 kPa; or

(c) at 55 °C less than two thirds of the sum of the marked test pressure plus 100 kPa.

IBCs intended for the carriage of liquids must not be used to carry liquids having a vapour pressure of more than 110 kPa (1.1 bar) at 50 °C or 130 kPa (1.3 bar) at 55 °C.

Examples of required marked test pressures for packagings, including IBCs, calculated as in 4.1.1.10 (c)

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name</th>
<th>Class</th>
<th>Packaging group</th>
<th>Vp55 (kPa)</th>
<th>Vp55 x 1.5 (kPa)</th>
<th>(Vp55 x 1.5) minus 100 (kPa)</th>
<th>Required minimum test pressure gauge under 6.1.5.5.4.(c) (kPa)</th>
<th>Minimum test pressure (gauge) to be marked on the packaging (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2056</td>
<td>Tetrahydrofuran</td>
<td>3</td>
<td>II</td>
<td>70</td>
<td>105</td>
<td>5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2247</td>
<td>n-Decane</td>
<td>3</td>
<td>III</td>
<td>1.4</td>
<td>2.1</td>
<td>-97.9</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1593</td>
<td>Dichloromethane</td>
<td>6.1</td>
<td>III</td>
<td>164</td>
<td>246</td>
<td>146</td>
<td>146</td>
<td>150</td>
</tr>
<tr>
<td>1155</td>
<td>Diethyl ether</td>
<td>3</td>
<td>I</td>
<td>199</td>
<td>299</td>
<td>199</td>
<td>199</td>
<td>250</td>
</tr>
</tbody>
</table>

NOTE 1: For pure liquids the vapour pressure at 55 °C (Vp55) can often be obtained from scientific tables.

NOTE 2: The table refers to the use of 4.1.1.10(c) only, which means that the marked test pressure must exceed 1.5 times the vapour pressure at 55 °C less 100 kPa. When, for example, the test pressure for n-decane is
determined according to 6.1.5.5.4 (a), the minimum marked test pressure may be lower.

NOTE 3: For diethyl ether the required minimum test pressure under 6.1.5.5.5 is 250 kPa.

4.1.1.11 Empty packagings, including IBCs and large packagings, that have contained a dangerous substance, must be treated in the same manner as is required by this Code for a filled packaging, unless adequate measures have been taken to nullify any hazard.

4.1.1.12 Every packaging as specified in Chapter 6.1 intended to contain liquids must successfully undergo a suitable leakproofness test. This test is part of a quality assurance program as stipulated in 6.1.1.4 which shows the capability of meeting the appropriate test level indicated in 6.1.5.4.3:

(a) before it is first used for transport, except as permitted by 4.1.1.12.1;
(b) after remanufacturing or reconditioning of any packaging, before it is re-used for transport;

For this test the packaging need not have its closures fitted. The inner receptacle of a composite packaging may be tested without the outer packaging, provided the test results are not affected. This test is not necessary for inner packagings of combination packagings or large packagings.

4.1.1.12.1 Except where tested in accordance with 4.1.1.12, the leakproofness of tinplate cans constructed in accordance with AS 2854 and having a capacity not exceeding 15 L must be assured in accordance with a quality management system that complies with AS/NZS ISO 9001 or equivalent.

4.1.1.13 Packagings, including IBCs, used for solids which may become liquid at temperatures likely to be encountered during transport must also be capable of containing the substance in the liquid state.

4.1.1.14 Packagings, including IBCs, used for powdery or granular substances must be siftproof or must be provided with a liner.

4.1.1.15 For plastics drums and jerricans, rigid plastics IBCs and composite IBCs with plastics inner receptacles, unless otherwise exempted by the competent authority, the period of use permitted for the transport of dangerous substances is five years from the date of manufacture of the receptacles, except where a shorter period of use is prescribed because of the nature of the substance to be transported.

4.1.1.16 Where ice is used as a coolant it must not affect the integrity of the packaging.

4.1.1.17 Explosives, self-reactive substances and organic peroxides

Unless specific provision to the contrary is made in this Code or the Australian Explosives Code, the packagings, including IBCs and large packagings, used for goods of Class 1, self-reactive substances of Division 4.1 and organic peroxides of Division 5.2 must comply with the provisions for the medium danger group (packing group II).

4.1.1.18 Use of salvage packagings and large salvage packagings
4.1.1.18.1 Damaged, defective, leaking or non-conforming packages, or dangerous goods that have spilled or leaked may be transported in salvage packagings mentioned in 6.1.5.1.11 and 6.6.5.1.9. This does not prevent the use of a larger size packaging or large packaging of appropriate type and performance level under the conditions of 4.1.1.18.2 and 4.1.1.18.3.

4.1.1.18.2 Appropriate measures must be taken to prevent excessive movement of the damaged or leaking packages within a salvage packaging. When the salvage packaging contains liquids, either:

(a) the salvage packaging must be able to retain the liquid during transport with closures complying with 6.1.4.3.5 or 6.1.4.8.6 as applies; or

(b) sufficient inert absorbent material must be added to eliminate the presence of free liquid.

4.1.1.18.3 Appropriate measures must be taken to ensure there is no dangerous build up of pressure.

4.1.1.19 Use of salvage pressure receptacles

4.1.1.19.1 In the case of damaged, defective, leaking or non-conforming pressure receptacles, salvage pressure receptacles according to 6.2.3 may be used.

NOTE: A salvage pressure receptacle may be used as an overpack in accordance with 5.1.2. When used as an overpack, marks must be in accordance with 5.1.2.1 instead of 5.2.1.3.

4.1.1.19.2 Pressure receptacles must be placed in salvage pressure receptacles of suitable size. The maximum size of the placed pressure receptacle is limited to a water capacity of 1,000 litres. More than one pressure receptacle may be placed in the same salvage pressure receptacle only if the contents are known and do not react dangerously with each other (see 4.1.1.6). In this case the total sum of water capacities of the placed pressure receptacles must not exceed 1,000 litres. Measures must be taken to prevent movement of the pressure receptacles within the salvage pressure receptacle e.g. by partitioning, securing or cushioning.

4.1.1.19.3 A pressure receptacle may only be placed in a salvage pressure receptacle if:

(a) The salvage pressure receptacle is in accordance with 6.2.3.5 and a copy of the approval certificate is available;

(b) Parts of the salvage pressure receptacle which are, or are likely to be in direct contact with the dangerous goods will not be affected or weakened by those dangerous goods and will not cause a dangerous effect (e.g. catalyzing reaction or reacting with the dangerous goods); and

(c) The contents of the contained pressure receptacle(s) is limited in pressure and volume so that if totally discharged into the salvage pressure receptacle, the pressure in the salvage pressure receptacle at 65 °C will not exceed the test pressure of the salvage pressure receptacle (for gases, see packing instruction in P200 (3) 4.1.4.1). The reduction of the useable water capacity of the salvage pressure...
The proper shipping name, the UN Number preceded by the letters "UN" and label(s) as required for packages in Chapter 5.2 applicable to the dangerous goods inside the contained pressure receptacle(s) must be applied to the salvage pressure receptacle for transport.

Salvage pressure receptacles must be cleaned, purged and visually inspected internally and externally after each use. They must be periodically inspected and tested in accordance with 6.2.1.6 at least once every five years.

Each packaging must be examined before re-use. If the packaging exhibits signs of interior or exterior damage or deterioration affecting its ability to withstand performance testing, it must not be re-used to transport dangerous goods.

Plastics drums and jerricans must not be re-used to transport dangerous goods of packing group I.

A plastics packaging must not be re-used to transport dangerous goods more than five years after the date of its manufacture.

Before a packaging is reused for the transport of dangerous goods:

(a) any irrelevant marks and labels must be removed;
(b) any packaging that uses a vented cap must be fitted with a new closure of original specification;
(c) any composite packaging with a flexible plastics inner receptacle (other than a poly-lined steel drum) must be fitted with a new inner receptacle of original specification.

A reprocessed steel drum must not be used to transport dangerous goods of packing group I.

A reprocessed steel drum must not be used to transport dangerous goods unless it is suitable for use with the dangerous goods in accordance with this Part and has been reprocessed in accordance with and subject to all the conditions imposed by Appendix D of this Code, the Code of Practice for Reprocessing Steel Drums.

When IBCs are used for the transport of liquids with a flash point of 60 °C (closed cup) or lower, or of powders liable to dust explosion, measures must be taken to prevent a dangerous electrostatic discharge.

Every metal, rigid plastics and composite IBC, must be inspected and tested, as relevant, in accordance with 6.5.4.4 or 6.5.4.5:

- before it is put into service;
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

- thereafter at intervals not exceeding two and a half and five years, as appropriate;
- after the repair or remanufacture, before it is re-used for transport.

An IBC must not be filled and offered for transport after the date of expiry of the last periodic test or inspection. However, an IBC filled prior to the date of expiry of the last periodic test or inspection may be transported for a period not to exceed three months beyond the date of expiry of the last periodic test or inspection. In addition, an IBC may be transported after the date of expiry of the last periodic test or inspection:

(a) after emptying but before cleaning, for purposes of performing the required test or inspection prior to refilling; and
(b) unless otherwise exempted by the competent authority, for a period not to exceed six months beyond the date of expiry of the last periodic test or inspection in order to allow the return of dangerous goods or residues for proper disposal or recycling. Reference to this exemption must be entered in the transport document.

4.1.2.3 IBCs of type 31HZ2 must be filled to at least 80% of the volume of the outer casing and always be carried in closed cargo transport units.

4.1.2.4 Except for routine maintenance of metal, rigid plastics, composite and flexible IBCs performed by the owner of the IBC, whose State and name or authorised symbol is durably marked on the IBC, the party performing routine maintenance must durably mark the IBC near the manufacturer's UN design type mark to show:

(a) the State in which the routine maintenance was carried out; and
(b) the name or authorised symbol of the party performing the routine maintenance.

4.1.3 GENERAL PROVISIONS CONCERNING PACKING INSTRUCTIONS

4.1.3.1 Packing instructions applicable to dangerous goods of Classes 1 to 9 are specified in 4.1.4. They are subdivided depending on the type of packagings to which they apply:

Sub-section 4.1.4.1 for packagings other than IBCs and large packagings; these packing instructions are designated by an alphanumeric code comprising the letter "P";

Sub-section 4.1.4.2 for IBCs; these are designated by an alphanumeric code comprising the letters "IBC";

Sub-section 4.1.4.3 for large packagings; these are designated by an alphanumeric code comprising the letters "LP".

Generally, packing instructions specify that the general provisions of 4.1.1, 4.1.2 and/or 4.1.3, as appropriate, are applicable. They may also require compliance with the special provisions of sections 4.1.5, 4.1.6, 4.1.7, 4.1.8 or 4.1.9 when appropriate. Special packing provisions may also be specified in the packing instruction for individual substances or articles. They are also designated by an alphanumeric code comprising the letters:
"PP" for packagings other than IBCs and large packagings
"B" for IBCs
"L" for large packagings.

Unless otherwise specified, each packaging must conform to the applicable requirements of Part 6. Generally packing instructions do not provide guidance on compatibility and the user should not select a packaging without checking that the substance is compatible with the packaging material selected (e.g. most fluorides are unsuitable for glass receptacles). Where glass receptacles are permitted in the packing instructions porcelain, earthenware and stoneware packagings are also allowed.

4.1.3.2 Column 8 of the Dangerous Goods List shows for each article or substance the packing instruction(s) that must be used. Column 9 indicates the special packing provisions applicable to specific substances or articles.

4.1.3.3 Each packing instruction shows, where applicable, the acceptable single and combination packagings. For combination packagings, the acceptable outer packagings, inner packagings and when applicable the maximum quantity permitted in each inner or outer packaging, are shown. Maximum net mass and maximum capacity are as defined in 1.2.1.1.

4.1.3.4 The following packagings must not be used when the substances being transported are liable to become liquid during transport:

Packagings:
- Drums: 1D and 1G
- Boxes: 4C1, 4C2, 4D, 4F, 4G and 4H1
- Bags: 5L1, 5L2, 5L3, 5H1, 5H2, 5H3, 5H4, 5M1 and 5M2
- Composite packagings: 6HC, 6HD2, 6HG1, 6HG2, 6HD1, 6PC, 6PD1, 6PD2, 6PG1, 6PG2 and 6PH1

Large packagings:
- Flexible plastics: 51H (outer packaging)

IBCs:
- For substances of packing group I: All types of IBCs;
- For substances of packing groups II and III:
 - Wooden: 11C, 11D and 11F
 - Fibreboard: 11G
 - Flexible: 13H1, 13H2, 13H3, 13H4, 13H5, 13L1, 13L2, 13L3, 13L4, 13M1 and 13M2
 - Composite: 11HZ2 and 21HZ2.

4.1.3.5 Where the packing instructions in this chapter authorise the use of a particular type of packaging (e.g. 4G; 1A2), packagings bearing the same packaging identification code followed by the letters "V", "U" or "W"
marked in accordance with the requirements of Part 6 (e.g. 4GV, 4GU or 4GW; 1A2V, 1A2U or 1A2W) may also be used under the same conditions and limitations applicable to the use of that type of packaging according to the relevant packing instructions. For example, a combination packaging marked with the packaging code "4GV" may be used whenever a combination packaging marked "4G" is authorised, provided the requirements in the relevant packing instruction regarding types of inner packagings and quantity limitations are respected.

4.1.3.6 Pressure receptacles for liquids and solids

4.1.3.6.1 Unless otherwise indicated in this Code, pressure receptacles conforming to:

(a) the applicable requirements of Chapter 6.2; or

(b) the National or International standards on the design, construction, testing, manufacturing and inspection, as applied by the country in which the pressure receptacles are manufactured, provided that the provisions of 4.1.3.6 and 6.2.3.3 are met,

are authorised for the transport of any liquid or solid substance other than explosives, thermally unstable substances, organic peroxides, self-reactive substances, substances where significant pressure may develop by evolution of chemical reaction and radioactive material (unless permitted in 4.1.9).

This sub-section is not applicable to the substances mentioned in 4.1.4.1, packing instruction P200, Table 3.

4.1.3.6.2 Every design type of pressure receptacle must be approved by the competent authority of the country of manufacture or as indicated in Chapter 6.2.

4.1.3.6.3 Unless otherwise indicated, pressure receptacles having a minimum test pressure of 0.6 MPa must be used.

4.1.3.6.4 Unless otherwise indicated, pressure receptacles may be provided with an emergency pressure relief device designed to avoid bursting in case of overfill or fire accidents.

Pressure receptacle valves must be designed and constructed in such a way that they are inherently able to withstand damage without release of the contents or must be protected from damage which could cause inadvertent release of the contents of the pressure receptacle, by one of the methods as given in 4.1.6.1.8 (a) to (e).

4.1.3.6.5 The level of filling must not exceed 95% of the capacity of the pressure receptacle at 50 °C. Sufficient ullage (outage) must be left to ensure that the pressure receptacle will not be liquid full at a temperature of 55 °C.

4.1.3.6.6 Unless otherwise indicated pressure receptacles must be subjected to a periodic inspection and test every 5 years. The periodic inspection must include an external examination, an internal examination or alternative method as approved by the competent authority, a pressure test or equivalent effective non-destructive testing with the agreement of the competent authority including an inspection of all accessories (e.g. tightness of valves, emergency relief valves of fusible elements). Pressure
receptacles must not be filled after they become due for periodic inspection and test but may be transported after the expiry of the time limit. Pressure receptacle repairs must meet the requirements of 4.1.6.1.11.

4.1.3.6.7 Prior to filling, the pressure receptacle must be inspected to ensure that the pressure receptacle is authorised for the substances to be transported and that the provisions of this Code have been met. Shut-off valves must be closed after filling and remain closed during transport. A further inspection must verify that the closures and equipment are not leaking prior to consignment.

4.1.3.6.8 Refillable pressure receptacles must not be filled with a substance different from that previously contained unless the necessary operations for change of service have been performed.

4.1.3.6.9 Marking of pressure receptacles for liquids and solids according to 4.1.3.6 (not conforming to the requirements of Chapter 6.2) must be in accordance with the requirements of the competent authority of the country of manufacturing.

4.1.3.7 Use of alternative packagings
Packagings or IBCs not specifically authorised in the applicable packing instruction must not be used for the transport of a substance or article unless specifically determined by the competent authority and provided:

(a) the alternative packaging complies with the general requirements of this Part; and

(b) when the packing instruction indicated in the Dangerous Goods List so specifies, the alternative packaging meets the requirements of Part 6; and

(c) the competent authority determines that the alternative packaging provides at least the same level of safety as if the substance were packed in accordance with a method specified in the particular packing instruction indicated in the Dangerous Goods List; and

(d) a copy of the competent authority determination accompanies each consignment or the transport document includes all information required under the determination.

NOTE: The competent authorities making such determinations should take action to amend this Code to include the provisions covered by the determination as appropriate.

4.1.3.8 <Reserved>

4.1.3.9 Reprocessed steel drums may only be used as packagings for the transport of dangerous goods if they have been reprocessed in accordance with Appendix D. Reprocessed steel drums must not be used for the transport of dangerous goods of packing group I.
4.1.4 LIST OF PACKING INSTRUCTIONS

4.1.4.1 Packing instructions concerning the use of packagings (except IBCs and large packagings)

The following packagings are authorized provided that the general provisions of 4.1.1 and 4.1.3 are met:

<table>
<thead>
<tr>
<th>Maximum capacity/Net mass (see 4.1.3.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing group I</td>
</tr>
</tbody>
</table>

Combination packagings

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Outer packagings</th>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass 10 l</td>
<td>Drums</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics 30 l</td>
<td>steel (1A1, 1A2)</td>
<td>250 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>Metal 40 l</td>
<td>aluminium (1B1, 1B2)</td>
<td>250 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>other metal (1N1, 1N2)</td>
<td>250 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>plastics (1H1, 1H2)</td>
<td>250 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>plywood (1D)</td>
<td>150 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>fibre (1G)</td>
<td>75 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (4A)</td>
<td></td>
<td>250 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>aluminium (4B)</td>
<td></td>
<td>250 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>other metal (4N)</td>
<td></td>
<td>250 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>natural wood (4C1, 4C2)</td>
<td></td>
<td>150 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>plywood (4D)</td>
<td></td>
<td>150 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td></td>
<td>75 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td></td>
<td>75 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>expanded plastics (4H1)</td>
<td></td>
<td>60 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>solid plastics (4H2)</td>
<td></td>
<td>150 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>Jerricans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (3A1, 3A2)</td>
<td></td>
<td>120 kg</td>
<td>120 kg</td>
<td>120 kg</td>
</tr>
<tr>
<td>aluminium (3B1, 3B2)</td>
<td></td>
<td>120 kg</td>
<td>120 kg</td>
<td>120 kg</td>
</tr>
<tr>
<td>plastics (3H1, 3H2)</td>
<td></td>
<td>120 kg</td>
<td>120 kg</td>
<td>120 kg</td>
</tr>
</tbody>
</table>

Single packagings

<table>
<thead>
<tr>
<th>Drums</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>steel, non-removable head (1A1)</td>
<td>250 L</td>
<td>450 L</td>
<td>450 L</td>
</tr>
<tr>
<td>steel, removable head (1A2)</td>
<td>250 L a</td>
<td>450 L a</td>
<td>450 L a</td>
</tr>
<tr>
<td>aluminium, non-removable head (1B1)</td>
<td>250 L</td>
<td>450 L</td>
<td>450 L</td>
</tr>
<tr>
<td>aluminium, removable head (1B2)</td>
<td>250 L a</td>
<td>450 L a</td>
<td>450 L a</td>
</tr>
<tr>
<td>other metal, non-removable head (1N1)</td>
<td>250 L</td>
<td>450 L</td>
<td>450 L</td>
</tr>
<tr>
<td>other metal, removable head (1N2)</td>
<td>250 L a</td>
<td>450 L a</td>
<td>450 L a</td>
</tr>
<tr>
<td>plastics, non-removable head (1H1)</td>
<td>250 L</td>
<td>450 L</td>
<td>450 L</td>
</tr>
<tr>
<td>plastics, removable head (1H2)</td>
<td>250 L a</td>
<td>450 L a</td>
<td>450 L a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jerricans</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>steel, non-removable head (3A1)</td>
<td>60 L</td>
<td>60 L</td>
<td>60 L</td>
</tr>
<tr>
<td>steel, removable head (3A2)</td>
<td>60 L a</td>
<td>60 L a</td>
<td>60 L a</td>
</tr>
<tr>
<td>aluminium, non-removable head (3B1)</td>
<td>60 L</td>
<td>60 L</td>
<td>60 L</td>
</tr>
<tr>
<td>aluminium, removable head (3B2)</td>
<td>60 L a</td>
<td>60 L a</td>
<td>60 L a</td>
</tr>
<tr>
<td>plastics, non-removable head (3H1)</td>
<td>60 L</td>
<td>60 L</td>
<td>60 L</td>
</tr>
<tr>
<td>plastics, removable head (3H2)</td>
<td>60 L a</td>
<td>60 L a</td>
<td>60 L a</td>
</tr>
</tbody>
</table>

Cont’d on next page

* Only substances with a viscosity more than 200 mm²/s are permitted.
Packagings in Liquids

Composite Packagings

<table>
<thead>
<tr>
<th>Description</th>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastics receptacle in steel or aluminium or plastics drum (6HA1, 6HB1, 6HH1)</td>
<td>250 L</td>
<td>250 L</td>
<td>250 L</td>
</tr>
<tr>
<td>Plastics receptacle in fibre or plywood drum (6HG1, 6HD1)</td>
<td>120 L</td>
<td>250 L</td>
<td>250 L</td>
</tr>
<tr>
<td>Plastics receptacle in steel or aluminium crate or box or plastic receptacle in wooden, plywood, fibreboard or solid plastics box (6HA2, 6HB2, 6HC, 6HD2, 6HG2 or 6HH2)</td>
<td>60 L</td>
<td>60 L</td>
<td>60 L</td>
</tr>
<tr>
<td>Glass receptacle in steel, aluminium, fibre, plywood, expanded plastics or solid plastics drum (6PA1, 6PB1, 6PG1, 6PD1, 6PH1 or 6PH2) or in steel, aluminium, wooden or fibreboard box or in a wickerwork hamper (6PA2, 6PB2, 6PC, 6PG2 or 6PD2)</td>
<td>60 L</td>
<td>60 L</td>
<td>60 L</td>
</tr>
</tbody>
</table>

Pressure Receptacles

Provided that the general provisions of 4.1.3.6 are met.

Special Packing Provisions

PP1

For UN Nos. 1133, 1210, 1263 and 1866, and for adhesives, printing inks, printing ink related materials, paints, paint related materials and resin solutions which are assigned to UN 3082, metal or plastics packagings for substances of packing groups II and III in quantities of 5 litres or less per packaging are not required to meet the performance tests in Chapter 6.1 when transported:

- **(a)** In palletized loads, a pallet box or unit load device, e.g. individual packagings placed or stacked and secured by strapping, shrink or stretch-wrapping or other suitable means to a pallet. For sea transport, the palletized loads, pallet boxes or unit load devices shall be firmly packed and secured in closed cargo transport units; or
- **(b)** As an inner packaging of a combination packaging with a maximum net mass of 40 kg.

PP2

For UN 3065, wooden barrels with a maximum capacity of 250 litres and which do not meet the provisions of Chapter 6.1 may be used.

PP4

For UN 1774, packagings shall meet the packing group II performance level.

PP5

For UN 1204, packagings shall be so constructed that explosion is not possible by reason of increased internal pressure. Gas cylinders and gas receptacles shall not be used for these substances.

PP10

For UN 1791, packing group II, the packaging shall be vented.

PP31

For UN 1131, packagings shall be hermetically sealed.

PP33

For UN 1308, packing groups I and II, only combination packagings with a maximum gross mass of 75 kg are allowed.

PP81

For UN 1790 with more than 60% but not more than 85% hydrogen fluoride and UN 2031 with more than 55% nitric acid, the permitted use of plastics, drums and jerricans as single packagings shall be two years from their date of manufacture.

PP93

For UN Nos. 3532 and 3534, packagings shall be designed and constructed to permit the release of gas or vapour to prevent a build-up of pressure that could rupture the packagings in the event of loss of stabilization.

Only substances with a viscosity more than 200 mm²/s are permitted.

UN20 extended PP1 to adhesives, printing inks, printing ink related materials, paints, paint related materials and resin solutions which are assigned to UN3082. However, such materials are not subject to this Code under SP AU01.
The following packagings are authorized provided that the general provisions of 4.1.1 and 4.1.3 are met:

<table>
<thead>
<tr>
<th>Maximum net mass (see 4.1.3.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing group I</td>
</tr>
</tbody>
</table>

Combination packagings

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>Drums</td>
</tr>
<tr>
<td>10 kg</td>
<td>steel (1A1, 1A2)</td>
</tr>
<tr>
<td>50 kg</td>
<td>aluminium (1B1, 1B2)</td>
</tr>
<tr>
<td>50 kg</td>
<td>other metal (1N1, 1N2)</td>
</tr>
<tr>
<td>50 kg</td>
<td>plastics (1H1, 1H2)</td>
</tr>
<tr>
<td>50 kg</td>
<td>plywood (1D)</td>
</tr>
<tr>
<td>50 kg</td>
<td>fibre (1G)</td>
</tr>
</tbody>
</table>

Boxes

- steel (4A)
- aluminium (4B)
- other metal (4N)
- natural wood (4C1)
- natural wood with sift proof walls (4C2)
- plywood (4D)
- reconstituted wood (4F)
- fibreboard (4G)
- expanded plastics (4H1)
- solid plastics (4H2)

Jerricans

- steel (3A1, 3A2)
- aluminium (3B1, 3B2)
- plastics (3H1, 3H2)

Single packagings

<table>
<thead>
<tr>
<th>Drums</th>
<th>400 kg</th>
<th>400 kg</th>
<th>400 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>steel (1A1 or 1A2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1 or 1B2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metal, other than steel, or aluminium (1N1 or 1N2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics (1H1 or 1H2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibre (1G)</td>
<td>400 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
<tr>
<td>plywood (1D)</td>
<td>400 kg</td>
<td>400 kg</td>
<td>400 kg</td>
</tr>
</tbody>
</table>

Jerricans

- Steel (3A1 or 3A2)
- Aluminium (3B1 or 3B2)
- plastics (3H1 or 3H2)

These inner packagings shall be siftproof.

These inner packagings shall not be used when the substances being transported may become liquid during transport (see 4.1.3.4).

Paper and fibre inner packagings shall not be used for substances of packing group I.

These packagings shall not be used for substances of packing group I that may become liquid during transport (see 4.1.3.4).

These packagings shall not be used when the substances being transported may become liquid during transport (see 4.1.3.4).
Single packagings (cont’d)

Boxes
- **steel (4A)**: Not allowed
- **aluminium (4B)**: Not allowed
- **other metal (4N)**: Not allowed
- **natural wood (4C1)**: Not allowed
- **plywood (4D)**: Not allowed
- **reconstituted wood (4F)**: Not allowed
- **natural wood with sift proof walls (4C2)**: Not allowed
- **fibreboard (4G)**: Not allowed
- **solid plastics (4H2)**: Not allowed

Bags
- **bags (5H3, 5H4, 5L3, 5M2)**: Not allowed

Composite packagings
- **plastics receptacle in steel, aluminium, plywood, fibre or plastics drum (6HA1, 6HB1, 6HG1*, 6HD1*, or 6HH1)**: 400 kg
- **plastics receptacle in steel or aluminium crate or box, wooden box, plywood box, fibreboard box or solid plastics box (6HA2, 6HB2, 6HC, 6HD2*, 6HG2* or 6HH2)**: 75 kg
- **glass receptacle in steel, aluminium, plywood or fibre drum (6PA1, 6PB1, 6PD1* or 6PG1*) or in steel, aluminium, wooden or fibreboard box or in wickerwork hamper (6PA2, 6PB2, 6PC, 6PG2*, or 6PD2*) or in expanded or solid plastics packaging (6PH1 or 6PH2*)**: 75 kg

Pressure receptacles
- provided that the general provisions of 4.1.3.6 are met.

Special packing provisions:

PP7 For UN 2000, celluloid may be transported unpacked on pallets, wrapped in plastic film and secured by appropriate means, such as steel bands as a full load in closed cargo transport units. Each pallet shall not exceed 1000 kg.

PP8 For UN 2002, packagings shall be so constructed that explosion is not possible by reason of increased internal pressure. Gas cylinders and gas receptacles shall not be used for these substances.

PP9 For UN 3175, UN 3243 and UN 3244, packagings shall conform to a design type that has passed a leakproofness test at the packing group II performance level. For UN 3175 the leakproofness test is not required when the liquids are fully absorbed in solid material contained in sealed bags.

PP11 For UN 1309, packing group III, and UN 1362, 5H1, 5L1 and 5M1 bags are allowed if they are overpacked in plastic bags and are wrapped in shrink or stretch wrap on pallets.

PP12 For UN 1361, UN 2213 and UN 3077, 5H1, 5L1 and 5M1 bags are allowed when transported in closed cargo transport units.

PP13 For articles classified under UN 2870, only combination packagings meeting the packing group I performance level are authorized.

PP14 For UN 2211, UN 2698 and UN 3314, packagings are not required to meet the performance tests in Chapter 6.1.

PP15 For UN 1324 and UN 2623, packagings shall meet the packing group III performance level.

These packagings shall not be used when the substances being transported may become liquid during transport (see 4.1.3.4).
PACKING INSTRUCTION (SOLIDS) (cont’d):

PP20	For UN 2217, any siftproof, tearproof receptacle may be used.
PP30	For UN 2471, paper or fibre inner packagings are not permitted.
PP34	For UN 2969 (as whole beans), 5H1, 5L1 and 5M1 bags are permitted.
PP37	For UN 2590 and UN 2212, 5M1 bags are permitted. All bags of any type shall be transported in closed cargo transport units or be placed in closed rigid overpacks.
PP38	For UN 1309, packing group II, bags are permitted only in closed cargo transport units.
PP84	For UN 1057, rigid outer packagings meeting the packing group II performance level shall be used. The packagings shall be designed and constructed and arranged to prevent movement, inadvertent ignition of the devices or inadvertent release of flammable gas or liquid.
PP85	For UN Nos. 1748, 2208, 2880, 3485, 3486 and 3487, if bags are used as single packagings they should be adequately separated to allow for the dissipation of heat. For transport by sea, bags are not allowed as single packagings.
PP92	For UN Nos. 3531 and 3533, packagings shall be designed and constructed to permit the release of gas or vapour to prevent a build-up of pressure that could rupture the packagings in the event of loss of stabilization.

PACKING INSTRUCTION:

Dangerous goods must be placed in suitable outer packagings. The packagings must meet the provisions of 4.1.1.1, 4.1.1.2, 4.1.1.4, 4.1.1.8 and 4.1.3 and be so designed that they meet the construction requirements of 6.1.4. Outer packagings constructed of suitable material, and of adequate strength and design in relation to the packaging capacity and its intended use, must be used. Where this packing instruction is used for the transport of articles or inner packagings of combination packagings the packaging must be designed and constructed to prevent inadvertent discharge of articles during normal conditions of transport.

Special packing provisions:

| PP16 | For UN 2800:
	(a) batteries must be protected from short circuit within the packagings
PP17	For UN 2037, packages must not exceed 55 kg net mass for fibreboard packagings or 125 kg net mass for other packagings.
PP18	For UN 1845, packagings must be designed and constructed to permit the release of carbon dioxide gas to prevent a build-up of pressure that could rupture the packagings.
PP19	For UN Nos. 1327, 1364, 1365, 1856 and 3360 transport as bales is authorised.
PP20	For UN Nos. 1363, 1386, 1408 and 2793 any siftproof, tearproof receptacle may be used.
PP32	UN Nos. 2857 and 3358 and robust articles consigned under UN 3164 may be transported unpackaged, in crates or in appropriate overpacks.
PP96	For UN 2037 waste gas cartridges carried in accordance with special provision 327, the packagings shall be adequately ventilated to prevent the creation of dangerous atmospheres and the build-up of pressure.
PP90	For UN 3506, sealed inner liners or bags of strong leak-proof and puncture resistant material impervious to mercury which will prevent escape of the substance from the package irrespective of the position of the package must be used. For air transport additional requirements may apply.
PP91	For UN 1044, large fire extinguishers may also be transported unpackaged provided that the requirements of 4.1.3.8 (a) to (e) are met, the valves are protected by one of the methods in accordance with 4.1.6.1.8 (a) to (d) and other equipment mounted on the fire extinguisher is protected to prevent accidental activation. For the purpose of this special packing provision, “large fire extinguishers” means fire extinguishers as described in indents (c) to (e) of special provision 225 of Chapter 3.3.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

P004 PACKING INSTRUCTION

This instruction applies to UN Nos. 3473, 3476, 3477, 3478 and 3479.

The following packagings are authorised:

(1) For fuel cell cartridges, provided that the general provisions of 4.1.1.1, 4.1.1.2, 4.1.1.3, 4.1.1.6 and 4.1.3 are met:

Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
Jerricans (3A2, 3B2, 3H2).

Packagings must conform to the packing group II performance level.

(2) For fuel cell cartridges packed with equipment: strong outer packagings which meet the general provisions of 4.1.1.1, 4.1.1.2, 4.1.1.6 and 4.1.3.

When fuel cell cartridges are packed with equipment, they must be packed in inner packagings or placed in the outer packaging with cushioning material or divider(s) so that the fuel cell cartridges are protected against damage that may be caused by the movement or placement of the contents within the outer packaging.

The equipment must be secured against movement within the outer packaging.

For the purpose of this packing instruction, "equipment" means apparatus requiring the fuel cell cartridges with which it is packed for its operation.

(3) For fuel cell cartridges contained in equipment: strong outer packagings which meet the general provisions of 4.1.1.1, 4.1.1.2, 4.1.1.6 and 4.1.3.

Large robust equipment (see 4.1.3.8) containing fuel cell cartridges may be transported unpackaged. For fuel cell cartridges contained in equipment, the entire system must be protected against short circuit and inadvertent operation.

P005 PACKING INSTRUCTION (LIQUIDS) (Table 4.1.4.1)

This instruction applies to UN Nos. 3528, 3529 and 3530.

If the engine or machinery is constructed and designed so that the means of containment containing the dangerous goods affords adequate protection, an outer packaging is not required.

Dangerous goods in engines or machinery must otherwise be packed in outer packagings constructed of suitable material, and of adequate strength and design in relation to the packaging capacity and its intended use, and meeting the applicable requirements of 4.1.1.1, or they must be fixed in such a way that they will not become loose during normal conditions of transport, e.g. in cradles or crates or other handling devices.

In addition, the manner in which means of containment are contained within the engine or machinery, must be such that under normal conditions of transport, damage to the means of containment containing the dangerous goods is prevented; and in the event of damage to the means of containment containing liquid dangerous goods, no leakage of the dangerous goods from the engine or machinery is possible (a leakproof liner may be used to satisfy this requirement).

Means of containment containing dangerous goods must be so installed, secured or cushioned as to prevent their breakage or leakage and so as to control their movement within the engine or machinery during normal conditions of transport. Cushioning material must not react dangerously with the content of the means of containment. Any leakage of the contents must not substantially impair the protective properties of the cushioning material.

Additional requirement:

Other dangerous goods (e.g. batteries, fire extinguishers, compressed gas accumulators or safety devices) required for the functioning or safe operation of the engine or machinery must be securely mounted in the engine or machine.
This instruction applies to UN Nos. 3537, 3538, 3540, 3541, 3546, 3547 and 3548.

(1) The following packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met:
 - Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
 - Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
 - Jerricans (3A2, 3B2, 3H2).
 Packagings shall conform to the packing group II performance level.

(2) In addition, for robust articles the following packagings are authorized:
 - Strong outer packagings constructed of suitable material and of adequate strength and design in relation to the packaging capacity and its intended use. The packagings shall meet the provisions of 4.1.1.1, 4.1.1.2, 4.1.1.8 and 4.1.3 in order to achieve a level of protection that is at least equivalent to that provided by Chapter 6.1. Articles may be transported unpackaged or on pallets when the dangerous goods are afforded equivalent protection by the article in which they are contained.

(3) Additionally, the following conditions shall be met:
 - (a) Receptacles within articles containing liquids or solids shall be constructed of suitable materials and secured in the article in such a way that, under normal conditions of transport, they cannot break, be punctured or leak their contents into the article itself or the outer packaging;
 - (b) Receptacles containing liquids with closures shall be packed with their closures correctly oriented. The receptacles shall in addition conform to the internal pressure test provisions of 6.1.5.5;
 - (c) Receptacles that are liable to break or be punctured easily, such as those made of glass, porcelain or stoneware or of certain plastics materials shall be properly secured. Any leakage of the contents shall not substantially impair the protective properties of the article or of the outer packaging;
 - (d) Receptacles within articles containing gases shall meet the requirements of Section 4.1.6 and Chapter 6.2 as appropriate or be capable of providing an equivalent level of protection as packing instructions P200 or P208;
 - (e) Where there is no receptacle within the article, the article shall fully enclose the dangerous substances and prevent their release under normal conditions of transport.

(4) Articles shall be packed to prevent movement and inadvertent operation during normal conditions of transport.
The following packagings are authorised provided that the general provisions of 4.1.1 and 4.1.3 are met:

<table>
<thead>
<tr>
<th>Combination packagings</th>
<th>Maximum net mass (see 4.1.3.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner packagings</td>
<td>Outer packagings</td>
</tr>
<tr>
<td>Glass 1 L</td>
<td>Drums</td>
</tr>
<tr>
<td>Metal 40 L</td>
<td>steel (1A1, 1A2)</td>
</tr>
<tr>
<td></td>
<td>plastics (1H1, 1H2)</td>
</tr>
<tr>
<td></td>
<td>plywood (1D)</td>
</tr>
<tr>
<td></td>
<td>fibre (1G)</td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td></td>
<td>natural wood (4C1, 4C2)</td>
</tr>
<tr>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td>expanded plastics (4H1)</td>
</tr>
<tr>
<td></td>
<td>solid plastics (4H2)</td>
</tr>
<tr>
<td>Single packagings</td>
<td>Maximum capacity (see 4.1.3.3)</td>
</tr>
<tr>
<td>Drums</td>
<td>steel, non-removable head (1A1)</td>
</tr>
<tr>
<td>Jerricans</td>
<td>steel, non-removable head (3A1)</td>
</tr>
<tr>
<td>Composite packagings</td>
<td>Plastics receptacle in steel drums (6HA1)</td>
</tr>
<tr>
<td>Steel pressure receptacles, provided that the general provisions of 4.1.3.6 are met.</td>
<td></td>
</tr>
</tbody>
</table>

Only packagings which are determined to be suitable for these goods by the competent authority may be used (see 4.1.3.7). A copy of the competent authority determination must accompany each consignment or the transport document must include an indication that the packaging was authorised by the competent authority.

Only packagings which are approved by the competent authority may be used. The distinguishing sign used on vehicles in international road traffic of the country for which the authority acts, shall be marked on the transport documents as follows:

"Packaging approved by the competent authority of..."

Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
P110(a) PACKING INSTRUCTION

The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td>Drums</td>
</tr>
<tr>
<td>plastics</td>
<td>plastics</td>
<td>steel, removable head (1A1, 1A2)</td>
</tr>
<tr>
<td>textile, plastic coated or lined</td>
<td>textile, plastic coated or lined</td>
<td>metal, other than steel or aluminium (1N1, 1N2)</td>
</tr>
<tr>
<td>rubber</td>
<td>rubber</td>
<td>plastics, removable head (1H1, 1H2)</td>
</tr>
<tr>
<td>textile, rubberised</td>
<td>textile, rubberised</td>
<td></td>
</tr>
<tr>
<td>textile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional requirements:

1. The intermediate packagings must be filled with water saturated material such as an anti-freeze solution or wetted cushioning.
2. Outer packagings must be filled with water saturated material such as an anti-freeze solution or wetted cushioning. Outer packagings must be constructed and sealed to prevent evaporation of the wetting solution, except for UN 0224 when carried dry.

P110(b) PACKING INSTRUCTION

The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptacles</td>
<td></td>
<td>Boxes</td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td>natural wood, sift-proof wall (4C2)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td>rubber, conductive</td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td>plastics, conductive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bags</td>
<td></td>
<td>Dividing partitions</td>
</tr>
<tr>
<td>rubber, conductive</td>
<td></td>
<td>metal</td>
</tr>
<tr>
<td>plastics, conductive</td>
<td></td>
<td>wood</td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td>plastics</td>
</tr>
</tbody>
</table>

Special packing provision:

PP42 For UN Nos. 0074, 0113, 0114, 0129, 0130, 0135 and 0224, the following conditions must be met:

(a) inner packagings must not contain more than 50 g of explosive substance (quantity corresponding to dry substance); and

(b) compartments between dividing partitions must not contain more than one inner packaging, firmly fitted; and

(c) the outer packaging may be partitioned into up to 25 compartments.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paper, waterproofed</td>
<td></td>
<td>Boxes</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td>textile, rubberised</td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td>Wood</td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>Sheets</td>
<td></td>
<td>natural wood, sift-proof (4C2)</td>
</tr>
<tr>
<td>Plastics</td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td>Textile, rubberised</td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, expanded (4H1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
<tr>
<td></td>
<td>Not necessary</td>
<td>Drums</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel, removable head (1A1, 1A2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (1B1, 1B2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (1N1, 1N2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (1D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (1G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics (1H1, 1H2)</td>
</tr>
</tbody>
</table>

Special packing provision:

PP43 For UN 0159, inner packagings are not required when metal (1A1, 1A2, 1B1, 1B2, 1N1 or 1N2) or plastics (1H1 or 1H2) drums are used as outer packagings.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td>Bags</td>
<td>Boxes</td>
</tr>
<tr>
<td>paper, multiwall, water resistant plastics textile textile, rubberised woven plastics</td>
<td>plastics textile, plastic coated or lined</td>
<td>steel (4A) aluminium (4B) other metal (4N) natural wood, ordinary (4C1) natural wood, sift-proof (4C2) plywood (4D) reconstituted wood (4F) fibreboard (4G) plastics, expanded (4H1) plastics, solid (4H2)</td>
</tr>
<tr>
<td>Receptacles</td>
<td>Receptacles</td>
<td>Drums</td>
</tr>
<tr>
<td>metal plastics wood</td>
<td>metal plastics wood</td>
<td>steel (1A1, 1A2) aluminium (1B1, 1B2) other metal (1N1, 1N2) plywood (1D) fibre (1G) plastics (1H1, 1H2)</td>
</tr>
</tbody>
</table>

Additional requirement: Intermediate packagings are not required if leakproof removable head drums are used as the outer packaging.

Special packing provisions:

PP26 For UN Nos. 0004, 0076, 0078, 0154, 0219 and 0394, packagings must be lead free.

PP45 For UN 0072 and UN 0226, intermediate packagings are not required.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td>Bags (for UN 0150 only)</td>
<td>Bags</td>
</tr>
<tr>
<td>paper, kraft</td>
<td>plastics</td>
<td>woven plastics, sift-proof (5H2)</td>
</tr>
<tr>
<td>paper, multiwall,</td>
<td>textile, plastic coated or lined</td>
<td>woven plastics, water-resistant (5H3)</td>
</tr>
<tr>
<td>water resistant plastics</td>
<td></td>
<td>plastics, film (5H4)</td>
</tr>
<tr>
<td>textile</td>
<td></td>
<td>textile, sift-proof (5L2)</td>
</tr>
<tr>
<td>textile, rubberised</td>
<td></td>
<td>textile, water resistant (5L3)</td>
</tr>
<tr>
<td>woven plastics</td>
<td></td>
<td>paper, multiwall, water resistant (5M2)</td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (4A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (4B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (4N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, ordinary (4C1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, sift-proof (4C2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (4D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics, expanded (4H1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics, solid (4H2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (1A1, 1A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1, 1B2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (1N1, 1N2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (1D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibre (1G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics (1H1, 1H2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special packing provisions:

PP26 For UN Nos. 0004, 0076, 0078, 0154, 0216, 0219 and 0386, packagings must be lead free.

PP46 For UN 0209, bags, sift-proof (5H2) are recommended for flake or prilled TNT in the dry state and a maximum net mass of 30 kg.

PP47 For UN 0222 inner packagings are not required when the outer packaging is a bag.
P112(c) PACKING INSTRUCTION (Solid dry powder 1.1D) P112(c)

The following packagings are authorised, provided the general packing provisions of *4.1.1, 4.1.3* and special packing provisions of *4.1.5* are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paper, multiwall,</td>
<td>paper, multiwall, water</td>
<td>Boxes</td>
</tr>
<tr>
<td>water resistant</td>
<td>resistant with inner</td>
<td>steel (4A)</td>
</tr>
<tr>
<td>plastics</td>
<td>lining plastics</td>
<td>metal, other than steel or aluminium (4N)</td>
</tr>
<tr>
<td>woven plastics</td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>natural wood, sft-proof (4C2)</td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (1A1, 1A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1, 1B2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (1N1, 1N2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (1D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibre (1G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics (1H1, 1H2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional requirements:
1. Inner packagings are not required if drums are used as the outer packaging.
2. The packaging must be sift-proof.

Special packing provision:
- **PP26** For UN Nos. 0004, 0076, 0078, 0154, 0216, 0219 and 0386, packagings must be lead free.
- **PP46** For UN 0209, bags, sift-proof (5H2) are recommended for flake or prilled TNT in the dry state and a maximum net mass of 30 kg.
- **PP48** For UN 0504, metal packagings must not be used. Packagings of other material with a small amount of metal, for example metal closures or other metal fittings such as those mentioned in 6.1.4, are not considered metal packagings.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paper</td>
<td></td>
<td>Boxes</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td>textile, rubberised</td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td>Not necessary</td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (4A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (4B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (4N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, ordinary (4C1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, sift-proof walls (4C2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (4D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics, solid (4H2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (1A1, 1A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1, 1B2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (1N1, 1N2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (1D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibre (1G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics (1H1, 1H2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional requirement:
The packaging must be sift-proof.

Special packing provisions:
- **PP49** For UN 0094 and UN 0305, no more than 50 g of substance must be packed in an inner packaging.
- **PP50** For UN 0027, inner packagings are not necessary when drums are used as the outer packaging.
- **PP51** For UN 0028, paper kraft or waxed paper sheets may be used as inner packagings.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td>Bags</td>
<td>Boxes</td>
</tr>
<tr>
<td>plastics</td>
<td>plastics</td>
<td>steel (4A)</td>
</tr>
<tr>
<td>textile</td>
<td>textile, plastic coated</td>
<td>metal, other than steel or aluminium (4N)</td>
</tr>
<tr>
<td>woven plastics</td>
<td>or lined</td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>Receptacles</td>
<td>Receptacles</td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td>metal</td>
<td>metal</td>
<td>plywood (4D)</td>
</tr>
<tr>
<td>plastics</td>
<td>plastics</td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td>wood</td>
<td>Dividing partitions</td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td>wood</td>
<td>plastics, solid (4H2)</td>
</tr>
</tbody>
</table>

Additional requirement:
Intermediate packagings are not required if leakproof removable head drums are used as the outer packaging.

Special packing provisions:
- **PP26** For UN Nos. 0077, 0132, 0234, 0235 and 0236, packagings must be lead free.
- **PP43** For UN 0342, inner packagings are not required when metal (1A1, 1A2, 1B1, 1B2, 1N1 or 1N2) or plastics (1H1 or 1H2) drums are used as outer packagings.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td>Not necessary</td>
<td>Boxes</td>
</tr>
<tr>
<td>paper, kraft</td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td>textile, sift-proof</td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td>woven plastics, sift-proof</td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td>Drums</td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td>steel (1A1, 1A2)</td>
</tr>
<tr>
<td>paper</td>
<td></td>
<td>aluminium (1B1, 1B2)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>other metal (1N1, 1N2)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>plywood (1D)</td>
</tr>
<tr>
<td>woven plastics, sift-proof</td>
<td></td>
<td>fibre (1G)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>plastics (1H1, 1H2)</td>
</tr>
</tbody>
</table>

Special packing provisions:

PP26 For UN Nos. 0077, 0132, 0234, 0235 and 0236, packagings must be lead free.

PP48 For UN Nos. 0508 and 0509, metal packagings must not be used. Packagings of other material with a small amount of metal, for example metal closures or other metal fittings such as those mentioned in 6.1.4, are not considered metal packagings.

PP50 For UN Nos. 0160, 0161 and 0508, inner packagings are not necessary if drums are used as the outer packaging.

PP52 For UN 0160 and UN 0161, when metal drums (1A1, 1A2, 1B1, 1B2, 1N1 or 1N2) are used as the outer packaging, metal packagings must be so constructed that the risk of explosion, by reason of increase internal pressure from internal or external causes is prevented.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met.

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptacles</td>
<td>Bags</td>
<td>Boxes</td>
</tr>
<tr>
<td>plastics</td>
<td>plastics in metal receptacles</td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>wood</td>
<td>Drums</td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td></td>
<td>Receptacles</td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td>wood</td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drums</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel (1A1, 1A2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (1B1, 1B2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (1N1, 1N2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (1D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibre (1G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics (1H1, 1H2)</td>
</tr>
</tbody>
</table>

Special packing provisions:

PP45 For UN 0144, intermediate packagings are not required.

PP53 For UN Nos. 0075, 0143, 0495 and 0497, when boxes are used as the outer packaging, inner packagings must have taped screw cap closures and be not more than 5 litres capacity each. Inner packagings must be surrounded with non-combustible absorbent cushioning materials. The amount of absorbent cushioning material must be sufficient to absorb the liquid contents. Metal receptacles must be cushioned from each other. Net mass of propellant is a limited to 30 kg for each package when outer packagings are boxes.

PP54 For UN Nos. 0075, 0143, 0495 and 0497, when drums are used as the outer packaging and when intermediate packagings are drums, they must be surrounded with non-combustible cushioning material in a quantity sufficient to absorb the liquid contents. A composite packaging consisting of a plastic receptacle in a metal drum may be used instead of the inner and intermediate packagings. The net volume of propellant in each package must not exceed 120 litres.

PP55 For UN 0144, absorbent cushioning material must be inserted.

PP56 For UN 0144, metal receptacles may be used as inner packagings.

PP57 For UN Nos. 0075, 0143, 0495 and 0497, bags must be used as intermediate packagings when boxes are used as outer packagings.

PP58 For UN Nos. 0075, 0143, 0495 and 0497, drums must be used as intermediate packagings when drums are used as outer packagings.

PP59 For UN 0144, fibreboard boxes (4G) may be used as outer packagings.

PP60 For UN 0144, aluminium drums (1B1 and 1B2) and metal, other than steel or aluminium, drums (1N1 and 1N2) must not be used.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met.

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td>Not necessary</td>
<td>Bags</td>
</tr>
<tr>
<td>paper, water and oil resistant plastics</td>
<td></td>
<td>woven plastics (5H1, 5H2, 5H3)</td>
</tr>
<tr>
<td>textile, plastic coated or lined woven plastics, silt-proof</td>
<td></td>
<td>paper, multiwall, water resistant (5M2)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>Boxes</td>
</tr>
<tr>
<td>fibreboard, water resistant metal plastics wood, silt-proof</td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td>Sheets</td>
<td></td>
<td>Drums</td>
</tr>
<tr>
<td>paper, water resistant paper, waxed plastics</td>
<td></td>
<td>steel (1A1, 1A2)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>Jerricans</td>
</tr>
<tr>
<td>sheets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paper, water resistant paper, waxed plastics</td>
<td></td>
<td>steel (3A1, 3A2)</td>
</tr>
<tr>
<td>Special packing provisions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP61 For UN Nos. 0082, 0241, 0331 and 0332, inner packagings are not required if leakproof removable head drums are used as the outer packaging.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP62 For UN Nos. 0082, 0241, 0331 and 0332, inner packagings are not required when the explosive is contained in a material impervious to liquid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP63 For UN 0081, inner packagings are not required when contained in rigid plastics which is impervious to nitric esters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP64 For UN 0331, inner packagings are not required when bags (5H2), (5H3) or (5H4) are used as outer packagings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP65 <Deleted></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP66 For UN 0081, bags must not be used as outer packagings.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P130 PACKING INSTRUCTION

The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met.

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not necessary</td>
<td>Not necessary</td>
<td>Boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>natural wood, silt-proof walls (4C2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, expanded (4H1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
</tbody>
</table>

Drums

- steel (1A1, 1A2)
- aluminium (1B1, 1B2)
- other metal (1N1, 1N2)
- plywood (1D)
- fibre (1G)
- plastics (1H1, 1H2)

Special packing provision:

PP67 The following applies to UN Nos. 0006, 0009, 0010, 0015, 0016, 0018, 0019, 0034, 0035, 0038, 0039, 0048, 0056, 0137, 0138, 0168, 0169, 0171, 0181, 0182, 0183, 0186, 0221, 0243, 0244, 0245, 0246, 0254, 0280, 0281, 0286, 0287, 0297, 0299, 0300, 0301, 0303, 0321, 0328, 0329, 0344, 0345, 0346, 0347, 0362, 0363, 0370, 0412, 0424, 0425, 0434, 0435, 0436, 0437, 0438, 0451, 0488, 0502 and 0510: Large and robust explosives articles, normally intended for military use, without their means of initiation or with their means of initiation containing at least two effective protective features, may be carried unpackaged. When such articles have propelling charges or are self-propelled, their ignition systems must be protected against stimuli encountered during normal conditions of transport. A negative result in Test Series 4 on an unpackaged article indicates that the article can be considered for transport unpackaged. Such unpackaged articles may be fixed to cradles or contained in crates or other suitable handling devices.
PACKING INSTRUCTION

The following packagings are authorized, provided that the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td>Not necessary</td>
<td>Boxes</td>
</tr>
<tr>
<td>paper</td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td>Reels</td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
</tbody>
</table>

Special packing provision:

PP68 For UN Nos. 0029, 0267 and 0455, bags and reels shall not be used as inner packagings.

PACKING INSTRUCTION

(Articles consisting of closed metal, plastics or fibreboard casings that contain a detonating explosive, or consisting of plastics-bonded detonating explosives)

The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not necessary</td>
<td>Not necessary</td>
<td>Boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wood, natural, ordinary (4C1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wood, natural, sift-proof walls (4C2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
</tbody>
</table>
PACKING INSTRUCTION

(Articles without closed casings)

The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptacles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td>Boxes</td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td>Sheets</td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>paper</td>
<td></td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
<tr>
<td>Not necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (4A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (4B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (4N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, ordinary (4C1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, sift-proof walls (4C2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (4D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics, solid (4H2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional requirement:

Receptacles are only required as intermediate packagings when the inner packagings are trays.

Special packing provision:

PP69 For UN Nos. 0043, 0212, 0225, 0268 and 0306, trays must not be used as inner packagings.
PACKING INSTRUCTION

The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water resistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard, corrugated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Tubes**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibreboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (4A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (4B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (4N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, ordinary (4C1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, sift-proof walls (4C2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (4D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics, expanded (4H1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics, solid (4H2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (1A1, 1A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1, 1B2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (1N1, 1N2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (1D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibre (1G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics (1H1, 1H2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PACKING INSTRUCTION

The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (4A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (4B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (4N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, ordinary (4C1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, sift-proof walls (4C2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (4D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics, expanded (4H1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics, solid (4H2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (1A1, 1A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1, 1B2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (1N1, 1N2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (1D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibre (1G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics (1H1, 1H2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dividing partitions in the outer packagings</td>
<td>Not necessary</td>
<td></td>
</tr>
<tr>
<td>steel (1A1, 1A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1, 1B2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (1N1, 1N2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (1D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibre (1G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics (1H1, 1H2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags plastics</td>
<td>Not necessary</td>
<td>Boxes steel (4A)</td>
</tr>
<tr>
<td>Boxes Fibreboard wood</td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td>Tubes fibresboard metal plastics</td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td>Dividing partitions in the outer packagings</td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plastics, Solid (4H2)</td>
</tr>
</tbody>
</table>

Special packing provision:

PP70 For UN Nos. 0059, 0439, 0440 and 0441, when the shaped charges are packed singly, the conical cavity must face downwards and the package must be marked in accordance with 5.2.1.7.1. When the shaped charges are packed in pairs, the conical cavities must face inwards to minimise the jetting effect in the event of accidental initiation.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td>Plastics</td>
<td>Not necessary</td>
</tr>
</tbody>
</table>

Bags

Plastics

Boxes

- steel (4A)
- aluminium (4B)
- other metal (4N)
- natural wood, ordinary (4C1)
- natural wood, sift-proof walls (4C2)
- plywood (4D)
- reconstituted wood (4F)
- fibreboard (4G)
- plastics, solid (4H2)

Drums

- steel (1A1, 1A2)
- aluminium (1B1, 1B2)
- other metal (1N1, 1N2)
- plywood (1D)
- fibre (1G)
- plastics (1H1, 1H2)

Additional requirement:

If the ends of the articles are sealed, inner packagings are not necessary.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td>Boxes</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td>Reels</td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td>Sheets</td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td>paper</td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>Drums</td>
</tr>
</tbody>
</table>

Special packing provisions:

PP71 For UN Nos. 0065, 0102, 0104, 0289 and 0290, the ends of the detonating cord must be sealed, for example, by a plug firmly fixed so that the explosive cannot escape. The ends of flexible detonating cord must be fastened securely.

PP72 For UN 0065 and UN 0289, inner packagings are not required when they are in coils.
P140 PACKING INSTRUCTION P140

The following packagings are authorised, provided the general packing provisions of [4.1.1, 4.1.3] and special packing provisions of [4.1.5] are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td>Boxes</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td>Reels</td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td>paper, kraft</td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td>Sheets</td>
<td></td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td>Not necessary</td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
</tbody>
</table>

Special packing provisions:

PP73 For UN 0105, no packagings are required if the ends are sealed.

PP74 For UN 0101, the packaging must be sift-proof except when the fuse is covered by a paper tube and both ends of the tube are covered with removable caps.

PP75 For UN 0101, steel or aluminium boxes or drums must not be used.
PACKING INSTRUCTION

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptacles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trays, fitted with dividing partitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dividing partitions in the outer packagings</td>
<td>Not necessary</td>
<td>Boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (4A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (4B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (4N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, ordinary (4C1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>natural wood, sift-proof walls (4C2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (4D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics, solid (4H2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (1A1, 1A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1, 1B2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (1N1, 1N2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (1D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibre (1G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics (1H1, 1H2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P143 | PACKING INSTRUCTION | P143
---|---|---
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paper, kraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>textile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>textile, rubberised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trays, fitted with dividing partitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not necessary</td>
<td></td>
<td>Boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>natural wood, ordinary (4C1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>natural wood, sift-proof walls (4C2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconstituted wood (4F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (1A1, 1A2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1, 1B2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other metal (1N1, 1N2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (1D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibre (1G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics (1H1, 1H2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional requirement:
Instead of the above inner and outer packagings, composite packagings (6HH2) (plastic receptacle with outer solid box) may be used.

Special packing provisions:
PP76 For UN Nos. 0271, 0272, 0415 and 0491, when metal packagings are used, metal packagings must be so constructed that the risk of explosion, by reason of increase in internal pressure from internal or external causes is prevented.
The following packagings are authorised, provided the general packing provisions of 4.1.1, 4.1.3 and special packing provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptacles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibreboard</td>
<td>Not necessary</td>
<td>Boxes</td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td>Dividing partitions in the outer packagings.</td>
<td></td>
<td>natural wood, ordinary with metal liner (4C1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (4D) with metal liner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconstituted wood (4F) with metal liner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, expanded (4H1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td>steel (1A1, 1A2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (1B1, 1B2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (1N1, 1N2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics (1H1, 1H2)</td>
</tr>
</tbody>
</table>

Special packing provision:

PP77 For UN Nos. 0248 and 0249, packagings must be protected against the ingress of water. When water-activated contrivances are transported unpackaged, they must be provided with at least two independent protective features which prevent the ingress of water.
For pressure receptacles, the general packing requirements of 4.1.6.1 must be met. In addition, for MEGCs, the general requirements of 4.2.4 must be met.

Cylinders, tubes, pressure drums, bundles of cylinders constructed as specified in Chapter 6.2 and MEGCs constructed as specified in 6.7.5 are authorised for the transport of a specific substance when specified in the following tables. For some substances the special packing provisions may prohibit a particular type of cylinder, tube, pressure drum or bundle of cylinders.

1. Pressure receptacles containing toxic substances with an LC50 less than or equal to 200 ml/m3 (ppm) as specified in the table must not be equipped with any pressure relief device. Pressure relief devices must be fitted on pressure receptacles used for the transport of UN 1013 carbon dioxide and UN 1070 nitrous oxide. Other pressure receptacles must be fitted with a pressure relief device if specified by the competent authority of the country of use. The type of pressure relief device, the set to discharge pressure and relief capacity of pressure relief devices, if required, must be specified by the competent authority of the country of use.

2. The following three tables cover compressed gases (Table 1), liquefied and dissolved gases (Table 2) and substances not in Class 2 (Table 3). They provide:
 (a) the UN number, name and description, and classification of the substance;
 (b) the LC50 for toxic substances;
 (c) the types of pressure receptacles authorised for the substance, shown by the letter "X";
 (d) the maximum test period for periodic inspection of the pressure receptacles;

 NOTE: For pressure receptacles which make use of composite materials, the maximum test period shall be 5 years. The test period may be extended to that specified in Tables 1 and 2 (ie up to 10 years), if approved by the competent authority of the country of use.

 (e) the minimum test pressure of the pressure receptacles;
 (f) the maximum working pressure of the pressure receptacles for compressed gases (where no value is given, the working pressure must not exceed two thirds of the test pressure) or the maximum filling ratio(s) dependent on the test pressure(s) for liquefied and dissolved gases;
 (g) special packing provisions that are specific to a substance.

3. In no case must pressure receptacles be filled in excess of the limit permitted in the following requirements.
 (a) For compressed gases, the working pressure must be not more than two thirds of the test pressure of the pressure receptacles. Restrictions to this upper limit on working pressure are imposed by (5), special packing provision "o". In no case may the internal pressure at 65°C exceed the test pressure.
 (b) For high pressure liquefied gases, the filling ratio must be such that the settled pressure at 65°C does not exceed the test pressure of the pressure receptacles. The use of test pressures and filling ratios other than those in the table is permitted, except where (5), special packing provision "o" applies provided that:
 (i) the criterion of (5) special packing provision "r" is met where applicable; or
 (ii) the above criterion is met in all other cases.

For high pressure liquefied gases for which data is not provided in the table, the maximum filling ratio (FR) must be determined as follows:

\[FR = 8.5 \times 10^{-4} \times d_g \times P_h \]

where:
- \(FR \) = maximum filling ratio
- \(d_g \) = gas density (at 15 °C, 1 bar)(in g/L)
- \(P_h \) = minimum test pressure (in bar)

If the density of the gas is unknown, the maximum filling ratio must be determined as follows:

\[FR = \frac{P_h \times MM \times 10^{-3}}{R \times 338} \]

where:
- \(FR \) = maximum filling ratio
- \(P_h \) = minimum test pressure (in bar)
- \(MM \) = molecular mass (in g/mol)
- \(R \) = 8.31451 \times 10^{-2} \text{ bar. L/mol.K (gas constant)}
For gas mixtures, the average molecular mass is to be taken, taking into account the volumetric concentrations of the various components;

(c) For low pressure liquefied gases, the maximum mass of contents per litre of water capacity must equal 0.95 times the density of the liquid phase at 50 °C; in addition, the liquid phase must not fill the pressure receptacle at any temperature up to 60 °C. The test pressure of the pressure receptacle must be at least equal to the vapour pressure (absolute) of the liquid at 65 °C, minus 100 kPa (1 bar).

For low pressure liquefied gases and gas mixtures for which relevant data are not available, the maximum filling ratio must be determined as follows:

\[
FR = (0.0032 \times BP - 0.24) \times d_1
\]

where

- \(FR \) = maximum filling ratio
- \(BP \) = boiling point (in Kelvin)
- \(d_1 \) = density of the liquid at boiling point (in kg/L)

(d) For UN 1001, acetylene, dissolved, and UN 3374 acetylene, solvent free, see (5), special packing provision "p".

(e) For liquefied gases charged with compressed gases, both components – the liquefied gas and the compressed gas – have to be taken into consideration in the calculation of the internal pressure in the pressure receptacle.

The maximum mass of contents per litre of water capacity must not exceed 0.95 times the density of the liquid phase at 50 °C; in addition, the liquid phase must not completely fill the pressure receptacle at any temperature up to 60 °C.

When filled, the internal pressure at 65 °C must not exceed the test pressure of the pressure receptacles. The vapour pressures and volumetric expansions of all substances in the pressure receptacles must be considered. When experimental data is not available, the following steps must be carried out:

- (i) Calculation of the vapour pressure of the liquefied gas and of the partial pressure of the compressed gas at 15 °C (filling temperature);
- (ii) Calculation of the volumetric expansion of the liquid phase resulting from the heating from 15 °C to 65 °C and calculation of the remaining volume for the gaseous phase;
- (iii) Calculation of the partial pressure of the compressed gas at 65 °C considering the volumetric expansion of the liquid phase;

 NOTE: The compressibility factor of the compressed gas at 15 °C and 65 °C must be considered.
- (iv) Calculation of the vapour pressure of the liquefied gas at 65 °C;
- (v) The total pressure is the sum of the vapour pressure of the liquified gas and the partial pressure of the compressed gas at 65 °C;
- (vi) Consideration of the solubility of the compressed gas at 65 °C in the liquid phase;

The test pressure of the pressure receptacle must not be less than the calculated total pressure minus 100 kPa (1 bar).

If the solubility of the compressed gas in the liquid phase is not known for the calculation, the test pressure can be calculated without taking the gas solubility (sub-paragraph (vi)) into account.
The filling of pressure receptacles shall be carried out by qualified staff using appropriate equipment and procedures.

The procedures should include checks of:
- The conformity of receptacles and accessories with this Code;
- Their compatibility with the product to be transported;
- The absence of damage which might affect safety;
- Compliance with the degree or pressure of filling, as appropriate;
- Marks and identification.

These requirements are deemed to be met if the following standards are applied:

- **ISO 11372: 2011** Gas cylinders – Acetylene cylinders – Filling conditions and filling inspection
- **ISO 11755: 2005** Gas cylinders – Cylinder bundles for compressed and liquefied gases (excluding acetylene) – Inspection at time of filling
- **ISO 13088: 2011** Gas cylinders – Acetylene cylinder bundles – Filling conditions and filling inspection
- **ISO 24431:2016** Gas cylinders – Seamless, welded and composite cylinders for compressed and liquefied gases (excluding acetylene) – Inspection at time of filling

(5) Special packing provisions:

Material compatibility
- a: Aluminium alloy pressure receptacles must not be used.
- b: Copper valves must not be used.
- c: Metal parts in contact with the contents must not contain more than 65% copper.
- d: When steel pressure receptacles are used, only those bearing the "H" mark in accordance with 6.2.2.7.4 (p) are permitted.

Requirements for toxic substances with an LC50 less than or equal to 200 ml/m³ (ppm)
- k: Valve outlets must be fitted with pressure retaining gas-tight plugs or caps having threads that match those of the valves outlets.
 Each cylinder within a bundle must be fitted with an individual valve that must be closed during transport. After filling, the manifold must be evacuated, purged and plugged.
 Bundles containing UN 1045 Fluorine, compressed, may be constructed with isolation valves on groups of cylinders not exceeding 150 litres total water capacity instead of isolation valves on every cylinder.
 Cylinders and individual cylinders in a bundle must have a test pressure greater than or equal to 200 bar and a minimum wall thickness of 3.5 mm for aluminium alloy or 2 mm for steel. Individual cylinders not complying with this requirement must be transported in a rigid outer packaging that will adequately protect the cylinder and its fittings and meeting the packing group I performance level.
 Pressure drums must have a minimum wall thickness as specified by the competent authority.
 Pressure receptacles must not be fitted with a pressure relief device.

Continued next page
Cylinders and individual cylinders in a bundle must be limited to a maximum water capacity of 85 litres. Each valve must be capable of withstanding the test pressure of the pressure receptacle and be connected directly to the pressure receptacle by either a taper thread or other means which meets the requirements of ISO 10692-2:2001.

Each valve must either be of the packless type with non-perforated diaphragm, or be of a type which prevents leakage through or past the packing.

Each pressure receptacle must be tested for leakage after filling.

Gas specific provisions

l: UN 1040 ethylene oxide may also be packed in hermetically sealed glass or metal inner packagings suitably cushioned in fibreboard, wooden or metal boxes meeting the packing group I performance level. The maximum quantity permitted in any glass inner packaging is 30 g, and the maximum quantity permitted in any metal inner packaging is 200 g. After filling, each inner packaging must be determined to be leak-tight by placing the inner packaging in a hot water bath at a temperature, and for a period of time, sufficient to ensure that an internal pressure equal to the vapour pressure of ethylene oxide at 55 °C is achieved. The maximum net mass in any outer packaging must not exceed 2.5 kg.

m: Pressure receptacles must be filled to a working pressure not exceeding 5 bar.

n: Cylinders and individual cylinders in a bundle must contain not more than 5 kg of the gas. When bundles containing UN 1045 Fluorine, compressed, are divided into groups of cylinders in accordance with special packing provision “k”, each group must contain not more than 5 kg of the gas.

o: In no case must the working pressure or filling ratio shown in the table be exceeded.

p: For UN 1001 acetylene, dissolved and UN 3374 acetylene, solvent free: cylinders must be filled with a homogeneous monolithic porous material; the working pressure and the quantity of acetylene must not exceed the values prescribed in the approval or in ISO 3807-1:2000, ISO 3807-2:2000, ISO 3807-2:2013 or AS 2030.2, as applicable.

For UN 1001 acetylene, dissolved: cylinders must contain a quantity of acetone or suitable solvent as specified in the approval (see ISO 3807-1:2000, ISO 3807-2:2000, ISO 3807-2:2013 or AS 2030.2, as applicable); cylinders fitted with pressure relief devices or manifolded together must be transported vertically.

The test pressure of 52 bar applies only to cylinders fitted with a fusible plug.

q: Valve outlets of pressure receptacles for pyrophoric gases or flammable mixtures of gases containing more than 1% of pyrophoric compounds must be fitted with gas-tight plugs or caps. When these pressure receptacles are manifolded in a bundle, each of the pressure receptacles must be fitted with an individual valve that must be closed during transport, and the outlet of the manifold valve must be fitted with a pressure retaining gas-tight plug or cap. Gas-tight plugs or caps must have threads that match those of the valves outlets.

r: The filling ratio of this gas must be limited such that, if complete decomposition occurs, the pressure does not exceed two thirds of the test pressure of the pressure receptacle.

ra: This gas may also be packed in capsules under the following conditions:

(a) The mass of gas must not exceed 150 g per capsule;

(b) The capsules must be free from faults liable to impair the strength;

(c) The leakproofness of the closure must be ensured by an additional device (cap, crown, seal, binding, etc.) capable of preventing any leakage of the closure during transport;

(d) The capsules must be placed in an outer packaging of sufficient strength. A package must not weigh more than 75 kg.

Continued next page
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

P200 PACKING INSTRUCTION (Cont.)

s: Aluminium alloy pressure receptacles must be:
 - Equipped only with brass or stainless steel valves; and
 - Cleaned in accordance with ISO 11621:1997 and not contaminated with oil.

t: (i) The wall thickness of pressure receptacles must be not less than 3 mm.
 (ii) Prior to transport it must be ensured that the pressure has not risen due to potential hydrogen generation.

Periodic inspection

u: The interval between periodic tests may be extended to 10 years for aluminium alloy pressure receptacles when the alloy of the pressure receptacle has been subjected to stress corrosion testing as specified in ISO 7866:2012 + Cor 1:2014.

v: The interval between periodic inspections for steel cylinders may be extended to 15 years if approved by the competent authority of the country of use.

Requirements for N.O.S. descriptions and for mixtures

z: The construction materials of the pressure receptacles and their accessories must be compatible with the contents and must not react to form harmful or dangerous compounds therewith.

 The test pressure and filling ratio must be calculated in accordance with the relevant requirements of (3).

 Toxic substances with an LC₅₀ less than or equal to 200 ml/m³ must not be transported in tubes, pressure drums or MEGCs and must meet the requirements of special packing provision “k”. However, UN 1975 Nitric oxide and dinitrogen tetroxide mixture may be transported in pressure drums.

 For pressure receptacles containing pyrophoric gases or flammable mixtures of gases containing more than 1% pyrophoric compounds, the requirements of special packing provision “q” must be met.

 The necessary steps must be taken to prevent dangerous reactions (i.e. polymerisation or decomposition) during transport. If necessary, stabilisation or addition of an inhibitor must be required.

 Mixtures containing UN 1911 diborane, must be filled to a pressure such that, if complete decomposition of the diborane occurs, two thirds of the test pressure of the pressure receptacle must not be exceeded.

 Mixtures containing UN 2192 germane, other than mixtures of up to 35% germane in hydrogen or nitrogen or up to 28% germane in helium or argon, must be filled to a pressure such that, if complete decomposition of the germane occurs, two thirds of the test pressure of the pressure receptacle must not be exceeded.
<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and description</th>
<th>Class or Division</th>
<th>Subsidiary hazard</th>
<th>LCG30 ml/l m³</th>
<th>Cylinders</th>
<th>Tubes</th>
<th>Pressure drums</th>
<th>Bundles of cylinders</th>
<th>MEGCs</th>
<th>Test period, years</th>
<th>Test pressure, bar</th>
<th>Maximum working pressure, bar</th>
<th>Special packing provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1002</td>
<td>AIR, COMPRESSED</td>
<td>2.2</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1006</td>
<td>ARGON, COMPRESSED</td>
<td>2.2</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1016</td>
<td>CARBON MONOXIDE, COMPRESSED</td>
<td>2.3</td>
<td>2.1</td>
<td>3760</td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>u</td>
</tr>
<tr>
<td>1023</td>
<td>COAL GAS, COMPRESSED</td>
<td>2.3</td>
<td>2.1</td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1045</td>
<td>FLUORINE, COMPRESSED</td>
<td>2.3</td>
<td>5.1</td>
<td>185</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>200</td>
<td>30</td>
<td>a, k, n, o</td>
<td></td>
</tr>
<tr>
<td>1046</td>
<td>HELIUM, COMPRESSED</td>
<td>2.2</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1049</td>
<td>HYDROGEN, COMPRESSED</td>
<td>2.1</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>1056</td>
<td>KRYPTON, COMPRESSED</td>
<td>2.2</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1065</td>
<td>NEON, COMPRESSED</td>
<td>2.2</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1066</td>
<td>NITROGEN, COMPRESSED</td>
<td>2.2</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1071</td>
<td>OIL GAS, COMPRESSED</td>
<td>2.3</td>
<td>2.1</td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1072</td>
<td>OXYGEN, COMPRESSED</td>
<td>2.2</td>
<td>5.1</td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>1612</td>
<td>HEXAETHYL TETRAPHOSPHATE AND COMPRESSED GAS MIXTURE</td>
<td>2.3</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>1660</td>
<td>NITRIC OXIDE, COMPRESSED</td>
<td>2.3</td>
<td>5.1</td>
<td>115</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>225</td>
<td>33</td>
<td>k, o</td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S.</td>
<td>2.3</td>
<td>2.1</td>
<td>≤ 5000</td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z</td>
</tr>
<tr>
<td>1954</td>
<td>COMPRESSED GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td></td>
<td></td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>z</td>
</tr>
</tbody>
</table>

Table 4.1.4.1A: COMPRESSED GASES
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

<table>
<thead>
<tr>
<th>P200</th>
<th>PACKING INSTRUCTION (cont'd)</th>
<th>P200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1.4.1A: COMPRESSED GASES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Test Pressure</th>
<th>Working Pressure</th>
<th>Temp.</th>
<th>UN Code</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1955</td>
<td>COMPRESSED GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td>≤ 5000</td>
<td>X X X X X X 5</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>COMPRESSED GAS, N.O.S.</td>
<td>2.2</td>
<td>X X X X X X 10</td>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>DEUTERIUM, COMPRESSED</td>
<td>2.1</td>
<td>X X X X X 10</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>HYDROCARBON GAS MIXTURE, COMPRESSED, N.O.S</td>
<td>2.1</td>
<td>X X X X X X 10</td>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>METHANE, COMPRESSED or NATURAL GAS, COMPRESSED with high methane content</td>
<td>2.1</td>
<td>X X X X X X 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>HYDROGEN AND METHANE MIXTURE, COMPRESSED</td>
<td>2.1</td>
<td>X X X X X X 10</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2190</td>
<td>OXYGEN DIFLUORIDE, COMPRESSED</td>
<td>2.3 5.1 8</td>
<td>2.6 X X</td>
<td>X 5 200 30</td>
<td>a, k, n, o</td>
<td></td>
</tr>
<tr>
<td>3156</td>
<td>COMPRESSED GAS, OXIDISING, N.O.S.</td>
<td>2.2 5.1</td>
<td>X X X X X X 10</td>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3303</td>
<td>COMPRESSED GAS, TOXIC, OXIDISING, N.O.S.</td>
<td>2.3 5.1</td>
<td>≤ 5000 X X X X X X 5</td>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3304</td>
<td>COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S.</td>
<td>2.3 8</td>
<td>≤ 5000 X X X X X X 5</td>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3305</td>
<td>COMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.3 2.1 8</td>
<td>≤ 5000 X X X X X X 5</td>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3306</td>
<td>COMPRESSED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
<td>2.3 5.1 8</td>
<td>≤ 5000 X X X X X X 5</td>
<td>z</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table notes:

* Where the entries are blank, the working pressure must not exceed two thirds of the test pressure.
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and description</th>
<th>Class or Division</th>
<th>LC50 m³</th>
<th>Cylinders</th>
<th>Tubes</th>
<th>Pressure drums</th>
<th>Bundles of cylinders</th>
<th>MEGCs</th>
<th>Test period, years</th>
<th>Test pressure, bar</th>
<th>Filling ratio</th>
<th>Special packing provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>ACETYLENE, DISSOLVED</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>60</td>
<td>52</td>
<td>c, p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1005</td>
<td>AMMONIA, ANHYDROUS</td>
<td>2.3</td>
<td>8</td>
<td>4000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>29</td>
<td>0.54</td>
<td>b</td>
</tr>
<tr>
<td>1008</td>
<td>BORON TRIFLUORIDE</td>
<td>2.3</td>
<td>8</td>
<td>387</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>225</td>
<td>0.715</td>
<td>a</td>
</tr>
<tr>
<td>1009</td>
<td>BROMOTRIFLUORO-METHANE (REFRIGERANT GAS R 13B1)</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>42</td>
<td>120</td>
<td>1.13</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>BUTADIENES, STABILISED (1,2-butadiene), or</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>BUTADIENES, STABILISED (1,3-butadiene), or</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>BUTADIENES AND HIDROCARBON MIXTURE, STABILISED, containing more than 40% butadienes</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td></td>
<td>z, v</td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>BUTANE</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>0.52</td>
<td>v</td>
</tr>
<tr>
<td>1012</td>
<td>BUTYLENE (butylenes mixture) or</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>0.50</td>
<td>z</td>
</tr>
<tr>
<td>1012</td>
<td>BUTYLENE (1-butylene) or</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>1012</td>
<td>BUTYLENE (cis-2-butylene) or</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>1012</td>
<td>BUTYLENE (trans-2 butylene)</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>0.54</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>P200</th>
<th>PACKING INSTRUCTION (cont’d)</th>
<th>P200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1013</td>
<td>CARBON DIOXIDE</td>
<td>2.2</td>
</tr>
<tr>
<td>1015</td>
<td>CARBON DIOXIDE AND NITROUS OXIDE MIXTURE*</td>
<td>2.2</td>
</tr>
<tr>
<td>1017</td>
<td>CHLORINE</td>
<td>2.3</td>
</tr>
<tr>
<td>1018</td>
<td>CHLORODIFLUORO-METHANE (REFRIGERANT GAS R 22)</td>
<td>2.2</td>
</tr>
<tr>
<td>1020</td>
<td>CHLOROPENTA-FLUOROETHANE (REFRIGERANT GAS R 115)</td>
<td>2.2</td>
</tr>
<tr>
<td>1021</td>
<td>1-CHLORO-1,2,2-TETRAFLUOROETHANE (REFRIGERANT GAS R 124)</td>
<td>2.2</td>
</tr>
<tr>
<td>1022</td>
<td>CHLOROTRIFLUORO-METHANE (REFRIGERANT GAS R 13)</td>
<td>2.2</td>
</tr>
<tr>
<td>1026</td>
<td>CYANOGEN</td>
<td>2.3</td>
</tr>
<tr>
<td>1027</td>
<td>CYCLOPROPANE</td>
<td>2.1</td>
</tr>
<tr>
<td>1028</td>
<td>DICHLORODIFLUORO-METHANE (REFRIGERANT GAS R 12)</td>
<td>2.2</td>
</tr>
<tr>
<td>1029</td>
<td>DICHLOROFLUORO-METHANE (REFRIGERANT GAS R 21)</td>
<td>2.2</td>
</tr>
<tr>
<td>1030</td>
<td>1,1-DIFLUOROETHANE (REFRIGERANT GAS R 152a)</td>
<td>2.1</td>
</tr>
<tr>
<td>1032</td>
<td>DIMETHYLAMINE, ANHYDROUS</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>P200</th>
<th>PACKING INSTRUCTION (cont’d)</th>
<th>P200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1033</td>
<td>DIMETHYL ETHER</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Table notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>§ See Australian Special Provision, AU07.</td>
<td></td>
</tr>
<tr>
<td>1035</td>
<td>ETHANE</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>1036</td>
<td>ETHYLAMINE</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a, ra</td>
<td></td>
</tr>
<tr>
<td>1039</td>
<td>ETHYL METHYL ETHER</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>1040</td>
<td>ETHYLENE OXIDE, or ETHYLENE</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>OXIDE WITH NITROGEN up to a</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>total pressure of 1MPa (10 bar) at 50 °C</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>1041</td>
<td>ETHYLENE OXIDE AND CARBON</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>DIOXIDE MIXTURE with more than 9% ethylene oxide but not more than 87%</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>1043</td>
<td>FERTILISER AMMONIATING</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>SOLUTION with free ammonia</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b, z</td>
<td></td>
</tr>
<tr>
<td>1048</td>
<td>HYDROGEN BROMIDE, ANHYDROUS</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2860</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a, d</td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td>HYDROGEN CHLORIDE, ANHYDROUS</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2810</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a, d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a, d</td>
<td></td>
</tr>
<tr>
<td>1053</td>
<td>HYDROGEN SULPHIDE</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>712</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d, u</td>
<td></td>
</tr>
<tr>
<td>1055</td>
<td>ISOBUTYLENE</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>X X X X X</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.52</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>UN No.</th>
<th>Compatibility</th>
<th>Temperature</th>
<th>Quantity</th>
<th>Temperature</th>
<th>Quantity</th>
<th>Temperature</th>
<th>Quantity</th>
<th>Temperature</th>
<th>Quantity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1058</td>
<td>LIQUEFIED GASES, non-flammable, charged with nitrogen, carbon dioxide or air</td>
<td>2.2</td>
<td>X X X X X</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1060</td>
<td>METHYLACETYLENE AND PROPADIENE MIXTURE, STABILISED or</td>
<td>2.1</td>
<td>X X X X X</td>
<td>10</td>
<td>c, z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1060</td>
<td>METHYLACETYLENE AND PROPADIENE MIXTURE, STABILISED (Propadiene with 1% to 4% methylacetylene)</td>
<td>2.1</td>
<td>X X X X X</td>
<td>10</td>
<td></td>
<td></td>
<td>22</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>1061</td>
<td>METHYLAMINE, ANHYDROUS</td>
<td>2.1</td>
<td>X X X X X</td>
<td>10</td>
<td>13</td>
<td>0.58</td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1062</td>
<td>METHYL BROMIDE</td>
<td>2.3</td>
<td>850</td>
<td>X X X X X</td>
<td>5, 10</td>
<td>1.51</td>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1063</td>
<td>METHYL CHLORIDE (REFRIGERANT GAS R 40)</td>
<td>2.1</td>
<td>X X X X X</td>
<td>10</td>
<td>17</td>
<td>0.81</td>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1064</td>
<td>METHYL MERCAPTAN</td>
<td>2.3</td>
<td>2.1</td>
<td>1350</td>
<td>X X X X X</td>
<td>5, 10</td>
<td>0.78</td>
<td>d, u</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1067</td>
<td>DINITROGEN TETROXIDE (NITROGEN DIOXIDE)</td>
<td>2.3</td>
<td>5.1 8</td>
<td>115</td>
<td>X X X X</td>
<td>5, 10</td>
<td>1.30</td>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1069</td>
<td>NITROSYL CHLORIDE</td>
<td>2.3</td>
<td>8</td>
<td>35</td>
<td>X X</td>
<td>5, 13</td>
<td>1.10</td>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1070</td>
<td>NITROUS OXIDE</td>
<td>2.2</td>
<td>5.1</td>
<td>X X X X X</td>
<td>10</td>
<td>180 225 250</td>
<td>0.68 0.74</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1075</td>
<td>PETROLEUM GASES, LIQUEFIED</td>
<td>2.1</td>
<td>X X X X X</td>
<td>10</td>
<td></td>
<td>v, z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1076</td>
<td>PHOSGENE</td>
<td>2.3</td>
<td>8 5</td>
<td>X X X X</td>
<td>5, 20</td>
<td>1.23</td>
<td></td>
<td>a, k</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1077</td>
<td>PROPYLENE</td>
<td>2.1</td>
<td>X X X X X</td>
<td>10</td>
<td>27</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1078</td>
<td>REFRIGERANT GAS, N.O.S.</td>
<td>2.2</td>
<td>X X X X X</td>
<td>10</td>
<td></td>
<td>z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1079</td>
<td>SULPHUR DIOXIDE</td>
<td>2.3</td>
<td>8 2520</td>
<td>X X X X X</td>
<td>5, 12</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P200</td>
<td>PACKING INSTRUCTION (cont’d)</td>
<td>P200</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES</td>
<td></td>
</tr>
<tr>
<td>1080</td>
<td>SULPHUR HEXAFLUORIDE</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>70</td>
<td>140</td>
<td>1.06</td>
<td>1.34</td>
</tr>
<tr>
<td>1081</td>
<td>TETRAFLUORO-ETHYLENE, STABILISED</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>200</td>
<td></td>
<td>m, o</td>
<td></td>
</tr>
<tr>
<td>1082</td>
<td>TRIFLUOROCHLORO-ETHYLENE, STABILISED</td>
<td>2.3</td>
<td>2.1</td>
<td>2000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>19</td>
<td>1.13</td>
</tr>
<tr>
<td>1083</td>
<td>TRIMETHYLAMINE, ANHYDROUS</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td></td>
<td>0.56</td>
<td>b</td>
</tr>
<tr>
<td>1085</td>
<td>VINYL BROMIDE, STABILISED</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1.37</td>
<td>a</td>
</tr>
<tr>
<td>1086</td>
<td>VINYL CHLORIDE, STABILISED</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>12</td>
<td></td>
<td>0.81</td>
<td>a</td>
</tr>
<tr>
<td>1087</td>
<td>VINYL METHYL ETHER, STABILISED</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td></td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>1581</td>
<td>CHLOROPICRIN AND METHYL BROMIDE MIXTURE</td>
<td>2.3</td>
<td>850</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>10</td>
<td>1.51</td>
<td>a</td>
</tr>
<tr>
<td>1582</td>
<td>CHLOROPICRIN AND METHYL CHLORIDE MIXTURE</td>
<td>2.3</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>17</td>
<td>0.81</td>
<td>a</td>
</tr>
<tr>
<td>1589</td>
<td>CYANOGEN CHLORIDE, STABILISED</td>
<td>2.3</td>
<td>8</td>
<td>80</td>
<td>X</td>
<td></td>
<td>X</td>
<td>5</td>
<td>20</td>
<td>1.03</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>1741</td>
<td>BORON TRICHLORIDE</td>
<td>2.3</td>
<td>8</td>
<td>2541</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>10</td>
<td>1.19</td>
</tr>
<tr>
<td>1749</td>
<td>CHLORINE TRIFLUORIDE</td>
<td>2.3</td>
<td>5.1</td>
<td>8</td>
<td>299</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>30</td>
<td>1.40</td>
</tr>
<tr>
<td>1858</td>
<td>HEXAFLUORO-PROPYLENE (REFRIGERANT GAS R 1216)</td>
<td>2.2</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>22</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>1859</td>
<td>SILICON TETRAFLUORIDE</td>
<td>2.3</td>
<td>8</td>
<td>922</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>200</td>
<td>0.74</td>
</tr>
<tr>
<td>1860</td>
<td>VINYL FLUORIDE, STABILISED</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>250</td>
<td></td>
<td>0.64</td>
<td>a</td>
</tr>
<tr>
<td>1911</td>
<td>DIBORANE</td>
<td>2.3</td>
<td>2.1</td>
<td>80</td>
<td>X</td>
<td></td>
<td>X</td>
<td>5</td>
<td>250</td>
<td>0.07</td>
<td>D, k, o</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>Year</th>
<th>Substance Description</th>
<th>Packing Instruction</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>10</th>
<th>17</th>
<th>0.81</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td>METHYL CHLORIDE AND METHYLENE CHLORIDE MIXTURE</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>17</td>
<td>0.81</td>
<td>a</td>
</tr>
<tr>
<td>1952</td>
<td>ETHYLENE OXIDE AND CARBON DIOXIDE MIXTURE with not more than 9% ethylene oxide</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>190</td>
<td>250</td>
<td>0.66</td>
</tr>
<tr>
<td>1958</td>
<td>1,2-DICHLORO-1,1,2,2-TETRAFLUORO-ETHANE (REFRIGERANT GAS R 114)</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>1,1-DIFLUORO-ETHYLENE (REFRIGERANT GAS R 1132a)</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>250</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>ETHYLENE</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>225</td>
<td>300</td>
<td>0.34</td>
</tr>
<tr>
<td>1965</td>
<td>HYDROCARBON GAS MIXTURE, LIQUEFIED, N.O.S.</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>5</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>INSECTICIDE GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>INSECTICIDE GAS, N.O.S.</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>ISOBUTANE</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>0.49</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>CHLORODIFLUORO-METHANE AND CHLOROPENTA-FLUOROETHANE MIXTURE with fixed boiling point, with approximately 49% chlorodifluoromethane (REFRIGERANT GAS R 502)</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>31</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>CHLORODIFLUORO-BROMOMETHANE (REFRIGERANT GAS R 12B1)</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>1.61</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>Year</th>
<th>Substance Description</th>
<th>Packing Group</th>
<th>Temperature (°C)</th>
<th>Compatibility</th>
<th>Quantity</th>
<th>Temperature (°C)</th>
<th>Compatibility</th>
<th>Quantity</th>
<th>Temperature (°C)</th>
<th>Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>NITRIC OXIDE AND DINITROGEN TETROXIDE MIXTURE (NITRIC OXIDE AND NITROGEN DIOXIDE MIXTURE)</td>
<td>2.3</td>
<td>5.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>k, z</td>
</tr>
<tr>
<td>1976</td>
<td>OCTAFLUOROCYCLO-BUTANE (REFRIGERANT GAS RC 318)</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>1978</td>
<td>PROPANE</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>1982</td>
<td>TETRAFLUORO-METHANE (REFRIGERANT GAS R 14)</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>200/300</td>
</tr>
<tr>
<td>1983</td>
<td>1-CHLORO-2,2,2-TRIFLUOROETHANE (REFRIGERANT GAS R 133a)</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1984</td>
<td>TRIFLUOROMETHANE (REFRIGERANT GAS R 23)</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>190/250</td>
</tr>
<tr>
<td>2035</td>
<td>1,1,1-TRIFLUORO-ETHANE (REFRIGERANT GAS R 143a)</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>2036</td>
<td>XENON</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>130</td>
</tr>
<tr>
<td>2044</td>
<td>2,2-DIMETHYL-PROPANE</td>
<td>2.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2073</td>
<td>AMMONIA SOLUTION, relative density less than 0.880 at 15 °C in water</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2073</td>
<td>with more than 35% but not more than 40% ammonia</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2073</td>
<td>with more than 40% but not more than 50% ammonia</td>
<td>2.2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>2188</td>
<td>ARSINE</td>
<td>2.3</td>
<td>2.1</td>
<td>178</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>2189</td>
<td>DICHLOROSILANE</td>
<td>2.3</td>
<td>2.1</td>
<td>314</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>10/200</td>
</tr>
</tbody>
</table>
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>P200</th>
<th>PACKING INSTRUCTION (cont’d)</th>
<th>P200</th>
</tr>
</thead>
<tbody>
<tr>
<td>2191</td>
<td>SULPHURYL FLUORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2192</td>
<td>GERMANE</td>
<td>2.3</td>
</tr>
<tr>
<td>2193</td>
<td>HEXAFLUROETHANE (REFRIGERANT GAS R 116)</td>
<td>2.2</td>
</tr>
<tr>
<td>2194</td>
<td>SELENIUM HEXAFLUORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2195</td>
<td>TELLURIUM HEXAFLUORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2196</td>
<td>TUNGSTEN HEXAFLUORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2197</td>
<td>HYDROGEN IODIDE, ANHYDROUS</td>
<td>2.3</td>
</tr>
<tr>
<td>2198</td>
<td>PHOSPHORUS PENTAFLUORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2199</td>
<td>PHOSPHINE</td>
<td>2.3</td>
</tr>
<tr>
<td>2200</td>
<td>PROPADIENE, STABILISED</td>
<td>2.1</td>
</tr>
<tr>
<td>2202</td>
<td>HYDROGEN SELENIDE, ANHYDROUS</td>
<td>2.3</td>
</tr>
<tr>
<td>2203</td>
<td>SILANE</td>
<td>2.1</td>
</tr>
<tr>
<td>2204</td>
<td>CARBONYL SULPHIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2417</td>
<td>CARBONYL FLUORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2418</td>
<td>SULPHUR TETRAFLUORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2419</td>
<td>BROMOTRIFLUORO-ETHYLENE</td>
<td>2.1</td>
</tr>
<tr>
<td>2420</td>
<td>HEXAFLUORO-ACETONE</td>
<td>2.3</td>
</tr>
<tr>
<td>2421</td>
<td>NITROGEN TRIOXIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2422</td>
<td>OCTAFLUOROBUT-2-ENE (REFRIGERANT GAS R 1318)</td>
<td>2.2</td>
</tr>
<tr>
<td>P200</td>
<td>PACKING INSTRUCTION (cont’d)</td>
<td>P200</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES</td>
<td></td>
</tr>
<tr>
<td>2424</td>
<td>OCTAFLUORO-PROPANE (REFRIGERANT GAS R 218)</td>
<td>2.2</td>
</tr>
<tr>
<td>2451</td>
<td>NITROGEN TRIFLUORIDE</td>
<td>2.2</td>
</tr>
<tr>
<td>2452</td>
<td>ETHYLACETYLENE, STABILISED</td>
<td>2.1</td>
</tr>
<tr>
<td>2453</td>
<td>ETHYL FLUORIDE (REFRIGERANT GAS R 161)</td>
<td>2.1</td>
</tr>
<tr>
<td>2454</td>
<td>METHYL FLUORIDE (REFRIGERANT GAS R 41)</td>
<td>2.1</td>
</tr>
<tr>
<td>2455</td>
<td>METHYL NITRITE</td>
<td>2.2</td>
</tr>
<tr>
<td>2517</td>
<td>1-CHLORO-1,1-DIFLUOROETHANE (REFRIGERANT GAS R 142b)</td>
<td>2.1</td>
</tr>
<tr>
<td>2534</td>
<td>METHYLCHLORO-SILANE</td>
<td>2.3</td>
</tr>
<tr>
<td>2548</td>
<td>CHLORINE PENTAFLUORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>2599</td>
<td>CHLOROTRIFLUORO-METHANE AND TRIFLUOROMETHANE AZEOTROPIC MIXTURE with approximately 60% chlorotrifluoromethane (REFRIGERANT GAS R 503)</td>
<td>2.2</td>
</tr>
<tr>
<td>2601</td>
<td>CYCLOBUTANE</td>
<td>2.1</td>
</tr>
<tr>
<td>2602</td>
<td>DICHLORODIFLUORO-METHANE AND DIFLUOROETHANE AZEOTROPIC MIXTURE with approximately 74% dichlorodifluoromethane (REFRIGERANT GAS R 500)</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>P200</th>
<th>PACKING INSTRUCTION (cont’d)</th>
<th>P200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STIBINE</td>
<td>2.3</td>
</tr>
<tr>
<td>2901</td>
<td>BROMINE CHLORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>3057</td>
<td>TRIFLUOROACETYL CHLORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>3070</td>
<td>ETHYLENE OXIDE AND DICHLORO-DIFLUORO-METHANE MIXTURE with no more than 12,5% ethylene oxide</td>
<td>2.2</td>
</tr>
<tr>
<td>3083</td>
<td>PERCHLORYL FLUORIDE</td>
<td>2.3</td>
</tr>
<tr>
<td>3153</td>
<td>PERFLUORO (METHYL VINYL ETHER)</td>
<td>2.1</td>
</tr>
<tr>
<td>3154</td>
<td>PERFLUORO (ETHYL VINYL ETHER)</td>
<td>2.1</td>
</tr>
<tr>
<td>3157</td>
<td>LIQUEFIED GAS, OXIDISING, N.O.S.</td>
<td>2.2</td>
</tr>
<tr>
<td>3159</td>
<td>1,1,1,2-TETRAFLUORO-ETHANE (REFRIGERANT GAS R 134a)</td>
<td>2.2</td>
</tr>
<tr>
<td>3160</td>
<td>LIQUEFIED GAS, TOXIC, FLAMMABLE, N.O.S.</td>
<td>2.3</td>
</tr>
<tr>
<td>3161</td>
<td>LIQUEFIED GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
</tr>
<tr>
<td>3162</td>
<td>LIQUEFIED GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
</tr>
<tr>
<td>3163</td>
<td>LIQUEFIED GAS, N.O.S.</td>
<td>2.2</td>
</tr>
<tr>
<td>3220</td>
<td>PENTAFLUORO-ETHANE (REFRIGERANT GAS R 125)</td>
<td>2.2</td>
</tr>
<tr>
<td>3252</td>
<td>DIFLUOROMETHANE (REFRIGERANT GAS R 32)</td>
<td>2.1</td>
</tr>
<tr>
<td>3296</td>
<td>HEPTAFLUORO-PROPANE (REFRIGERANT GAS R 227)</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Packing Instruction</th>
<th>Volume Limit</th>
<th>Spill Containment</th>
<th>Other</th>
<th>Weight Limit</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>3297</td>
<td>ETHYLENE OXIDE AND CHLOROTETRA-FLUOROETHANE MIXTURE with not more than 8.8% ethylene oxide</td>
<td>2.2</td>
<td>X X X X X</td>
<td>10 10 1.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3298</td>
<td>ETHYLENE OXIDE AND PENTAFLUORO-ETHANE MIXTURE with not more than 7.9% ethylene oxide</td>
<td>2.2</td>
<td>X X X X</td>
<td>10 26 1.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3299</td>
<td>ETHYLENE OXIDE AND TETRAFLUORO-ETHANE MIXTURE with not more than 5.6% ethylene oxide</td>
<td>2.2</td>
<td>X X X X</td>
<td>10 17 1.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3300</td>
<td>ETHYLENE OXIDE AND CARBON DIOXIDE MIXTURE with more than 87% ethylene oxide</td>
<td>2.3 2.1</td>
<td>More than 2900 X X X X</td>
<td>5 28 0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3307</td>
<td>LIQUEFIED GAS, TOXIC, OXIDISING, N.O.S.</td>
<td>2.3 5.1</td>
<td>≤ 5000 X X X X</td>
<td>5 z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3308</td>
<td>LIQUEFIED GAS, TOXIC, CORROSIVE, N.O.S.</td>
<td>2.3 8</td>
<td>≤ 5000 X X X X</td>
<td>5 z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3309</td>
<td>LIQUEFIED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.3 2.1 8</td>
<td>≤ 5000 X X X X</td>
<td>5 z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3310</td>
<td>LIQUEFIED GAS, TOXIC, OXIDISING, CORROSIVE, N.O.S.</td>
<td>2.3 5.1 8</td>
<td>≤ 5000 X X X X</td>
<td>5 z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3318</td>
<td>AMMONIA SOLUTION, relative density less than 0.880 at 15 °C in water, with more than 50% ammonia</td>
<td>2.3 8</td>
<td>X X X X</td>
<td>5 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3337</td>
<td>REFRIGERANT GAS R 404A</td>
<td>2.2</td>
<td>X X X X</td>
<td>10 36 0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3338</td>
<td>REFRIGERANT GAS R 407A</td>
<td>2.2</td>
<td>X X X X</td>
<td>10 32 0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1.4.1B: LIQUEFIED GASES AND DISSOLVED GASES

<table>
<thead>
<tr>
<th>P200</th>
<th>PACKING INSTRUCTION (cont’d)</th>
<th>P200</th>
</tr>
</thead>
<tbody>
<tr>
<td>3339</td>
<td>REFRIGERANT GAS R 407B</td>
<td>2.2</td>
</tr>
<tr>
<td>3340</td>
<td>REFRIGERANT GAS R 407C</td>
<td>2.2</td>
</tr>
<tr>
<td>3354</td>
<td>INSECTICIDE GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
</tr>
<tr>
<td>3355</td>
<td>INSECTICIDE GAS, TOXIC, FLAMMABLE, N.O.S.</td>
<td>2.3</td>
</tr>
<tr>
<td>3374</td>
<td>ACETYLENE, SOLVENT FREE</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Cont’d on next page
Table 4.1.4.1C: SUBSTANCES NOT IN CLASS 2

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and description</th>
<th>Class or Division</th>
<th>Subsidiary hazard</th>
<th>LC50 m/l</th>
<th>Cylinders</th>
<th>Tubes</th>
<th>Pressure drums</th>
<th>Bundles of cylinders</th>
<th>MEGCs</th>
<th>Test period, years</th>
<th>Test pressure, bar</th>
<th>Filling ratio</th>
<th>Special packing provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1051</td>
<td>HYDROGEN CYANIDE, STABILISED containing less than 3% water</td>
<td>6.1</td>
<td>3</td>
<td>40</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>100</td>
<td>0.55</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>1052</td>
<td>HYDROGEN FLUORIDE, ANHYDROUS</td>
<td>8</td>
<td>6.1</td>
<td>966</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>10</td>
<td>0.84</td>
<td>a, t</td>
<td></td>
</tr>
<tr>
<td>1745</td>
<td>BROMINE PENTAFLUORIDE</td>
<td>5.1</td>
<td>6.1</td>
<td>25</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>10</td>
<td>a</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>1746</td>
<td>BROMINE TRIFLUORIDE</td>
<td>5.1</td>
<td>6.1</td>
<td>50</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>10</td>
<td>a</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>2495</td>
<td>IODINE PENTAFLUORIDE</td>
<td>5.1</td>
<td>6.1</td>
<td>120</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
<td>10</td>
<td>a</td>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

Table note:

a. A minimum ullage of 8% by volume is required.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

P201 PACKING INSTRUCTION

This instruction applies to UN 3167, UN 3168 and UN 3169.

The following packagings are authorised:

1. Cylinders and gas receptacles conforming to the construction, testing and filling requirements approved by the competent authority.

2. The following combination packagings provided that the general provisions of 4.1.1 and 4.1.3 are met:

 - **Outer packagings:**
 - Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G);
 - Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
 - Jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2).

 - **Inner packagings:**
 - For non-toxic gases, hermetically sealed inner packagings of glass or metal with a maximum capacity of 5 litres per package;
 - For toxic gases, hermetically sealed inner packagings of glass or metal with a maximum capacity of 1 litre per package.

Packagings must conform to the packing group III performance level.

P202 PACKING INSTRUCTION

<Reserved> – [by UN]

P203 PACKING INSTRUCTION

This instruction applies to Class 2 refrigerated liquefied gases.

Requirements for closed cryogenic receptacles:

1. The general requirements of 4.1.6.1 must be met.

2. The requirements of Chapter 6.2 must be met.

3. The closed cryogenic receptacles must be so insulated that they do not become coated with frost.

4. Test pressure

 Refrigerated liquids must be filled in closed cryogenic receptacles with the following minimum test pressures:

 - For closed cryogenic receptacles with vacuum insulation, the test pressure must not be less than 1.3 times the sum of the maximum internal pressure of the filled receptacle, including during filling and discharge, plus 100 kPa (1 bar);

 - For other closed cryogenic receptacles, the test pressure must be not less than 1.3 times the maximum internal pressure of the filled receptacle, taking into account the pressure developed during filling and discharge.
Requirements for open cryogenic receptacles:

Only the following non oxidising refrigerated liquefied gases of Division 2.2 may be transported in open cryogenic receptacles:

Open cryogenic receptacles must be constructed to meet the following requirements:

1. The receptacles must be designed, manufactured, tested and equipped in such a way as to withstand all conditions, including fatigue, to which they will be subjected during their normal use and during normal conditions of transport.
2. The capacity must be not more than 450 litres.
3. The receptacle must have a double wall construction with the space between the inner and outer wall being evacuated (vacuum insulation). The insulation must prevent the formation of hoar frost on the exterior of the receptacle.
4. The materials of construction must have suitable mechanical properties at the service temperature.
5. Receptacles of glass double wall construction must have an outer packaging with suitable cushioning or absorbent materials which withstand the pressures and impacts liable to occur under normal conditions of transport.
6. The receptacle must be designed to remain in an upright position during transport, e.g. have a base whose smaller horizontal dimension is greater than the height of the centre of gravity when filled to capacity or be mounted on gimbals.
7. The receptacle must be designed to remain in an upright position during transport eg have a base whose smaller horizontal dimension is greater than the height of the centre of gravity when filled to capacity or be mounted on gimbals.
PACKING INSTRUCTION P203

This instruction applies to Class 2 refrigerated liquefied gases.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td>The openings of the receptacles must be fitted with devices allowing gases to escape, preventing any splashing out of liquid, and so configured that they remain in place during transport.</td>
</tr>
</tbody>
</table>
| (9) | Open cryogenic receptacles must bear the following marks permanently affixed e.g. by stamping, engraving or etching:
- The manufacturer’s name and address;
- The model number or name;
- The serial or batch number;
- The UN number and proper shipping name of gases for which the receptacle is intended;
- The capacity of the receptacle in litres. |

PACKING INSTRUCTION P205

This instruction applies to UN No. 3468.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>For metal hydride storage systems, the general packing requirements of 4.1.6.1 must be met.</td>
</tr>
<tr>
<td>(2)</td>
<td>Only pressure receptacles not exceeding 150 litres in water capacity and having a maximum developed pressure not exceeding 25 MPa are covered by this packing instruction.</td>
</tr>
<tr>
<td>(3)</td>
<td>Metal hydride storage systems meeting the applicable requirements for the construction and testing of pressure receptacles containing gas of Chapter 6.2 are authorised for the transport of hydrogen only.</td>
</tr>
<tr>
<td>(4)</td>
<td>When steel pressure receptacles or composite pressure receptacles with steel liners are used, only those bearing the "H" mark, in accordance with 6.2.2.9.1(j) must be used.</td>
</tr>
<tr>
<td>(5)</td>
<td>Metal hydride storage systems must meet the service conditions, design criteria, rated capacity, type tests, batch tests, routine tests, test pressure, rated charging pressure and provisions for pressure relief devices for transportable metal hydride storage systems specified in ISO 16111:2008 and their conformity and approval must be assessed in accordance with 6.2.2.5.</td>
</tr>
<tr>
<td>(6)</td>
<td>Metal hydride storage systems must be filled with hydrogen at a pressure not exceeding the rated charging pressure shown in the permanent mark on the system as specified by ISO 16111:2008.</td>
</tr>
<tr>
<td>(7)</td>
<td>The periodic test requirements for a metal hydride storage system must be in accordance with ISO 16111:2008 and carried out in accordance with 6.2.2.6, and the maximum interval between periodic inspections must not exceed five years.</td>
</tr>
<tr>
<td>P206</td>
<td>PACKING INSTRUCTION</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>This instruction applies to UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505.</td>
<td></td>
</tr>
</tbody>
</table>

Unless otherwise indicated in this Code, cylinders and pressure drums conforming to the applicable requirements of Chapter 6.2 are authorised.

1. The general packing requirements of 4.1.6.1 must be met.
2. The maximum test period for periodic inspection must be 5 years.
3. Cylinders and pressure drums must be so filled that at 50 °C the non-gaseous phase does not exceed 95% of their water capacity and they are not completely filled at 60 °C. When filled, the internal pressure at 65 °C must not exceed the test pressure of the cylinders and pressure drums. The vapour pressures and volumetric expansion of all substances in the cylinders and pressure drums must be taken into account. For liquids charged with a compressed gas both components – the liquid and the compressed gas – have to be taken into consideration in the calculation of the internal pressure in the pressure receptacle. When experimental data is not available, the following steps shall be carried out:

 a. Calculation of the vapour pressure of the liquid and of the partial pressure of the compressed gas at 15 °C (filling temperature);
 b. Calculation of the volumetric expansion of the liquid phase resulting from the heating from 15 °C to 65 °C and calculation of the remaining volume for the gaseous phase;
 c. Calculation of the partial pressure of the compressed gas at 65 °C considering the volumetric expansion of the liquid phase;

 NOTE: The compressibility factor of the compressed gas at 15 °C and 65 °C shall be considered.
 d. Calculation of the vapour pressure of the liquid at 65 °C;
 e. The total pressure is the sum of the vapour pressure of the liquid and the partial pressure of the compressed gas at 65 °C;
 f. Consideration of the solubility of the compressed gas at 65 °C in the liquid phase. The test pressure of the cylinders or pressure drums shall not be less than the calculated total pressure minus 100 kPa (1 bar).
 If the solubility of the compressed gas in the liquid phase is not known for the calculation, the test pressure can be calculated without taking the gas solubility (sub-paragraph (f)) into account.
4. The minimum test pressure must be in accordance with P200 for the propellant but must not be less than 20 bar.

Additional requirement:

Cylinders and pressure drums must not be offered for transport when connected with spray application equipment such as a hose and wand assembly.

Special packing provisions:

PP89 For UN 3501, 3502, 3503, 3504 and 3505, notwithstanding 4.1.6.1.9 (b), non-refillable cylinders used may have a water capacity in litres not exceeding 1 000 litres divided by the test pressure expressed in bars provided capacity and pressure restrictions of the construction standard comply with ISO 11118:1999, which limits the maximum capacity to 50 litres.

PP97 For fire extinguishing agents assigned to UN 3500 the maximum test period for periodic inspection shall be 10 years. They may be transported in tubes of a maximum water capacity of 450 l conforming to the applicable requirements of Chapter 6.2.
<table>
<thead>
<tr>
<th></th>
<th>PACKING INSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>P207</td>
<td>This instruction applies to UN No. 1950.</td>
</tr>
<tr>
<td></td>
<td>The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:</td>
</tr>
<tr>
<td></td>
<td>(a) Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G); Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2). Packagings must conform to the packing group II performance level.</td>
</tr>
<tr>
<td></td>
<td>(b) Rigid outer packagings with a maximum net mass as follows:</td>
</tr>
<tr>
<td></td>
<td>Fibreboard 55 kg Other than fibreboard 125 kg The provisions of 4.1.1.3 need not be met.</td>
</tr>
<tr>
<td></td>
<td>The packagings must be designed and constructed to prevent excessive movement of the aerosols and inadvertent discharge during normal conditions of transport.</td>
</tr>
<tr>
<td>Special packing provision:</td>
<td>PP87 For UN 1950 waste aerosols transported in accordance with special provision 327, the packagings must have a means of retaining any free liquid that might escape during transport, e.g. absorbent material. The packaging must be adequately ventilated to prevent the creation of dangerous atmospheres and the build-up of pressure.</td>
</tr>
</tbody>
</table>
P208 PACKING INSTRUCTION

This instruction applies to Class 2 adsorbed gases.

(1) The following packagings are authorized provided the general packing requirements of 4.1.6.1. are met:
 (a) Cylinders constructed as specified in 6.2.2 and in accordance with ISO 11513:2011 or ISO 9809-1:2010; and
 (b) Cylinders constructed before 1 January 2016 in accordance with 6.2.3 and a specification approved by the competent authorities of the countries of transport and use.

(2) The pressure of each filled cylinder must be less than 101.3 kPa at 20°C and less than 300 kPa at 50°C.

(3) The minimum test pressure of the cylinder must be 21 bar.

(4) The minimum burst pressure of the cylinder must be 94.5 bar.

(5) The internal pressure at 65°C of the filled cylinder must not exceed the test pressure of the cylinder.

(6) The adsorbent material must be compatible with the cylinder and must not form harmful or dangerous compounds with the gas to be adsorbed. The gas in combination with the adsorbent material must not affect or weaken the cylinder or cause a dangerous reaction (e.g. a catalyzing reaction).

(7) The quality of the adsorbent must be verified at the time of each fill to assure the pressure and chemical stability requirements of this packing instruction are met each time an adsorbed gas package is offered for transport.

(8) The adsorbent material must not meet the criteria of any of the Classes or Divisions in this Code.

(9) Requirements for cylinders and closures containing toxic gases with an LC50 less than or equal to 200 ml/m³ (ppm) (see Table 1) must be as follows:
 (a) Valve outlets must be fitted with pressure retaining gas-tight plugs or caps having threads matching those of the valve outlets.
 (b) Each valve must either be of the packless type with non-perforated diaphragm, or be of a type which prevents leakage through or past the packing.
 (c) Each cylinder and closure must be tested for leakage after filling.
 (d) Each valve must be capable of withstanding the test pressure of the cylinder and be directly connected to the cylinder by either a taper-thread or other means which meets the requirements of ISO 10692-2:2001.
 (e) Cylinders and valves must not be fitted with a pressure relief device.

(10) Valve outlets for cylinders containing pyrophoric gases must be fitted with gas-tight plugs or caps having threads matching those of the valve outlets.

(12) The maximum period for periodic inspections must be 5 years.

(13) Special packing provisions that are specific to a substance (see Table 1).

Material compatibility

a: Aluminium alloy cylinders must not be used.

d: When steel cylinders are used, only those bearing the "H" mark in accordance with 6.2.2.7.4 (p) are permitted.

Gas specific provisions

r: The filling of this gas must be limited such that, if complete decomposition occurs, the pressure does not exceed two thirds of the test pressure of the cylinder.

Material Compatibility for N.O.S Adsorbed Gas Entries

z: The construction materials of the cylinders and their accessories must be compatible with the contents and must not react to form harmful or dangerous compounds.
Table 1: ADSORBED GASES

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Name and description</th>
<th>Class or Division</th>
<th>Subsidiary hazard</th>
<th>LC50 ml/m³</th>
<th>Special Packaging Provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3510</td>
<td>ADSORBED GAS, FLAMMABLE, N.O.S.</td>
<td>2.1</td>
<td></td>
<td></td>
<td>z</td>
</tr>
<tr>
<td>3511</td>
<td>ADSORBED GAS, N.O.S.</td>
<td>2.2</td>
<td></td>
<td></td>
<td>z</td>
</tr>
<tr>
<td>3512</td>
<td>ADSORBED GAS, TOXIC, N.O.S.</td>
<td>2.3</td>
<td>≤ 5000</td>
<td></td>
<td>z</td>
</tr>
<tr>
<td>3513</td>
<td>ADSORBED GAS, OXIDIZING, N.O.S.</td>
<td>2.2</td>
<td>5.1</td>
<td></td>
<td>z</td>
</tr>
<tr>
<td>3514</td>
<td>ADSORBED GAS, TOXIC, FLAMMABLE, N.O.S.</td>
<td>2.3</td>
<td>2.1</td>
<td>≤ 5000</td>
<td>z</td>
</tr>
<tr>
<td>3515</td>
<td>ADSORBED GAS, TOXIC, OXIDIZING, N.O.S.</td>
<td>2.3</td>
<td>5.1</td>
<td>≤ 5000</td>
<td>z</td>
</tr>
<tr>
<td>3516</td>
<td>ADSORBED GAS, TOXIC, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>8</td>
<td>≤ 5000</td>
<td>z</td>
</tr>
<tr>
<td>3517</td>
<td>ADSORBED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>2.1</td>
<td>8</td>
<td>≤ 5000</td>
</tr>
<tr>
<td>3518</td>
<td>ADSORBED GAS, TOXIC, OXIDIZING, CORROSIVE, N.O.S.</td>
<td>2.3</td>
<td>5.1</td>
<td>8</td>
<td>≤ 5000</td>
</tr>
<tr>
<td>3519</td>
<td>BORON TRIFLUORIDE, ADSORBED</td>
<td>2.3</td>
<td>8</td>
<td>387</td>
<td>a</td>
</tr>
<tr>
<td>3520</td>
<td>CHLORINE, ADSORBED</td>
<td>2.3</td>
<td>5.1</td>
<td>293</td>
<td>a</td>
</tr>
<tr>
<td>3521</td>
<td>SILICON TETRAFLUORIDE, ADSORBED</td>
<td>2.3</td>
<td>8</td>
<td>450</td>
<td>a</td>
</tr>
<tr>
<td>3522</td>
<td>ARSINE, ADSORBED</td>
<td>2.3</td>
<td>2.1</td>
<td>20</td>
<td>d</td>
</tr>
<tr>
<td>3523</td>
<td>GERMANE, ADSORBED</td>
<td>2.3</td>
<td>2.1</td>
<td>620</td>
<td>d, r</td>
</tr>
<tr>
<td>3524</td>
<td>PHOSPHOROUS PENTAFLUORIDE, ADSORBED</td>
<td>2.3</td>
<td>8</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>3525</td>
<td>PHOSPHINE, ADSORBED</td>
<td>2.3</td>
<td>2.1</td>
<td>20</td>
<td>d</td>
</tr>
<tr>
<td>3526</td>
<td>HYDROGEN SELENIDE, ADSORBED</td>
<td>2.3</td>
<td>2.1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
P300 PACKING INSTRUCTION

This instruction applies to UN 3064.

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Combination packagings consisting of inner metal cans of not more than 1 litre capacity each and outer wooden boxes (4C1, 4C2, 4D or 4F) containing not more than 5 litres of solution.

Additional requirements:
1. Metal cans must be completely surrounded with absorbent cushioning material.
2. Wooden boxes must be completely lined with suitable material impervious to water and nitroglycerin.

P301 PACKING INSTRUCTION

This instruction applies to UN 3165.

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

1. **Aluminium pressure receptacle made from tubing and having welded heads.**
 - Primary containment of the fuel within this receptacle must consist of a welded aluminium bladder having a maximum internal volume of 46 litres.
 - The outer receptacle must have a minimum design gauge pressure of 1,275 kPa and a minimum burst gauge pressure of 2,755 kPa.
 - Each receptacle must be leak checked during manufacture and before shipment and must be found leakproof.
 - The complete inner primary containment must be securely packed in non-combustible cushioning material, such as vermiculite, in a strong outer tightly closed metal packaging which will adequately protect all fittings.
 - Maximum quantity of fuel per unit and package is 42 litres.

2. **Aluminium pressure receptacle.**
 - Primary containment of the fuel within this receptacle must consist of a welded vapour tight fuel compartment with an elastomeric bladder having a maximum internal volume of 46 litres.
 - The pressure receptacle must have a minimum design gauge pressure of 2,680 kPa and a minimum burst pressure of 5,170 kPa.
 - Each receptacle must be leak-checked during manufacture and before shipment and must be securely packed in non-combustible cushioning material such as vermiculite, in a strong outer tightly closed metal packaging which will adequately protect all fittings.
 - Maximum quantity of fuel per primary containment and package is 42 litres.
PACKING INSTRUCTION P302

This instruction applies to UN 3269.

The following combination packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Outer packagings:
- Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G);
- Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2)
- Jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2);

Inner packagings:
- The activator (organic peroxide) must have a maximum quantity of 125 ml per inner packaging if liquid, and 500 g per inner packaging if solid.
- The base material and the activator must be each separately packed in inner packagings.
- The components may be placed in the same outer packaging provided that they will not interact dangerously in the event of a leakage.

Packagings must conform to the packing group II or III performance level according to the criteria for Class 3 applied to the base material.

PACKING INSTRUCTION P400

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

1. Pressure receptacles may be used provided that the general provisions of 4.1.3.6 are met. They must be made of steel and must be subjected to an initial test and periodic tests every 10 years at a pressure of not less than 1MPa (10 bar, gauge pressure). During carriage, the liquid must be under a layer of inert gas with a gauge pressure of not less than 20 kPa (0.2 bar).

2. Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F or 4G), drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1D or 1G) or jerricans (3A1, 3A2, 3B1 or 3B2) or jerricans (3A2 or 3B2) enclosing hermetically sealed metal cans with inner packagings of glass or metal, with a capacity of not more than 1 litre each, having closures with gaskets. Inner packagings must have threaded closures or closures physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport. Inner packagings must be cushioned on all sides with dry, absorbent, non-combustible material in a quantity sufficient to absorb the entire contents. Inner packagings must not be filled to more than 90% of their capacity. Outer packagings must have a maximum net mass of 125 kg.

3. Steel, aluminium or metal drums (1A1, 1A2, 1B1, 1B2, 1N1 or 1N2), jerricans (3A1, 3A2, 3B1 or 3B2) or boxes (4A, 4B or 4N) with a maximum net mass of 150 kg each with hermetically sealed inner metal cans not more than 4 litre capacity each, with closures fitted with gaskets. Inner packagings must have threaded closures or closures physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport. Inner packagings must be cushioned on all sides with dry, absorbent, non-combustible material in a quantity sufficient to absorb the entire contents. Each layer of inner packagings must be separated by a dividing partition in addition to cushioning material. Inner packagings must not be filled to more than 90% of their capacity.

Special packing provision:

PP86: For UN Nos. 3392 and 3394, air must be eliminated from the vapour space by nitrogen or other means.
P401 PACKING INSTRUCTION

<table>
<thead>
<tr>
<th>The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Pressure receptacles may be used provided that the general provisions of 4.1.3.6 are met. They must be made of steel and subjected to an initial test and periodic tests every 10 years at a pressure of not less than 0.6 MPa (6 bar, gauge pressure). During carriage, the liquid must be under a layer of inert gas with a gauge pressure of not less than 20 kPa (0.2 bar).</td>
</tr>
<tr>
<td>(2) Combination packagings:</td>
</tr>
<tr>
<td>Outer packagings:</td>
</tr>
<tr>
<td>Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G); Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2); Jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2).</td>
</tr>
<tr>
<td>Inner packagings:</td>
</tr>
<tr>
<td>Glass, metal or plastics which have threaded closures with a maximum capacity of 1 litre. Each inner packaging must be surrounded by inert cushioning and absorbent material in a quantity sufficient to absorb the entire contents. The maximum net mass per outer packaging must not exceed 30 kg</td>
</tr>
</tbody>
</table>

P402 PACKING INSTRUCTION

<table>
<thead>
<tr>
<th>The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Pressure receptacles may be used provided that the general provisions of 4.1.3.6 are met. They must be made of steel and subjected to an initial test and periodic tests every 10 years at a pressure of not less than 0.6 MPa (6 bar, gauge pressure). During carriage, the liquid must be under a layer of inert gas with a gauge pressure of not less than 20 kPa (0.2 bar).</td>
</tr>
<tr>
<td>(2) Combination packagings:</td>
</tr>
<tr>
<td>Outer packagings:</td>
</tr>
<tr>
<td>Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G); Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2); Jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2).</td>
</tr>
<tr>
<td>Inner packagings with a maximum net mass as follows:</td>
</tr>
<tr>
<td>Glass 10 kg</td>
</tr>
<tr>
<td>Metal or plastics 15 kg</td>
</tr>
<tr>
<td>Each inner packaging must be fitted with threaded closures. Each inner packaging must be surrounded by inert cushioning and absorbent material in a quantity sufficient to absorb the entire contents. The maximum net mass per outer packaging must not exceed 125 kg.</td>
</tr>
<tr>
<td>(3) Steel drums (1A1) with a maximum capacity of 250 litres.</td>
</tr>
<tr>
<td>(4) Composite packagings consisting of plastics receptacle in a steel or aluminium drum (6HA1 or 6HB1) with a maximum capacity of 250 litres.</td>
</tr>
</tbody>
</table>
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

P403 PACKING INSTRUCTION

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Combination packagings

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Outer packagings</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass 2 kg</td>
<td>Drums steel (1A1, 1A2)</td>
<td>400 kg</td>
</tr>
<tr>
<td>Plastic 15 kg</td>
<td>aluminium (1B1, 1B2)</td>
<td>400 kg</td>
</tr>
<tr>
<td>Metal 20 kg</td>
<td>other metal (1N1, 1N2)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>plastics (1H1, 1H2)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>plywood (1D)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>fibre (1G)</td>
<td>400 kg</td>
</tr>
<tr>
<td>Inner packagings must be hermetically sealed (e.g. by taping or by threaded closures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxes steel (4A)</td>
<td>400 kg</td>
<td></td>
</tr>
<tr>
<td>aluminium (4B)</td>
<td>400 kg</td>
<td></td>
</tr>
<tr>
<td>other metal (4N)</td>
<td>400 kg</td>
<td></td>
</tr>
<tr>
<td>natural wood (4C1)</td>
<td>250 kg</td>
<td></td>
</tr>
<tr>
<td>natural wood with sift proof walls (4C2)</td>
<td>250 kg</td>
<td></td>
</tr>
<tr>
<td>plywood (4D)</td>
<td>250 kg</td>
<td></td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td>125 kg</td>
<td></td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td>125 kg</td>
<td></td>
</tr>
<tr>
<td>expanded plastics (4H1)</td>
<td>60 kg</td>
<td></td>
</tr>
<tr>
<td>solid plastics (4H2)</td>
<td>250 kg</td>
<td></td>
</tr>
<tr>
<td>Jerricans steel (3A1, 3A2)</td>
<td>120 kg</td>
<td></td>
</tr>
<tr>
<td>aluminium (3B1, 3B2)</td>
<td>120 kg</td>
<td></td>
</tr>
<tr>
<td>plastics (3H1, 3H2)</td>
<td>120 kg</td>
<td></td>
</tr>
</tbody>
</table>

Single packagings

<table>
<thead>
<tr>
<th>Drums steel(1A1, 1A2)</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 kg</td>
<td></td>
</tr>
<tr>
<td>aluminium (1B1, 1B2)</td>
<td>250 kg</td>
</tr>
<tr>
<td>metal other than steel or aluminium (1N1, 1N2)</td>
<td>250 kg</td>
</tr>
<tr>
<td>plastics (1H1, 1H2)</td>
<td>250 kg</td>
</tr>
</tbody>
</table>

Jerricans

steel (3A1, 3A2)	120 kg
aluminium (3B1, 3B2)	120 kg
plastics (3H1, 3H2)	120 kg

Composite packagings

| plastics receptacle in steel or aluminium drums (6HA1 or 6HB1) | 250 kg |

Australian Dangerous Goods Code, 2020, Edition 7.7 780
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

<table>
<thead>
<tr>
<th>P403</th>
<th>PACKING INSTRUCTION (cont.)</th>
<th>P403</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastics receptacle in fibre, plastics or plywood drums (6HG1, 6HH1 or 6HD1) plastics receptacle in steel, aluminium, wood, plywood, fibreboard or solid plastics boxes (6HA2, 6HB2, 6HC, 6HD2, 6HG2 or 6HH2)</td>
<td>75 kg 75 kg</td>
<td></td>
</tr>
<tr>
<td>Pressure receptacles may be used provided that the general provisions of 4.1.3.6 are met.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special packing provisions PP83 deleted.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P404</th>
<th>PACKING INSTRUCTION</th>
<th>P404</th>
</tr>
</thead>
<tbody>
<tr>
<td>This instruction applies to pyrophoric solids: UN Nos.: 1383, 1854, 1855, 2005, 2008, 2441, 2545, 2546, 2846, 2881, 3200, 3391, 3393 and 3461.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The following packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Combination packagings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer packagings:</td>
<td>(1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C, 4C2, 4D, 4F, 4G or 4H2)</td>
<td></td>
</tr>
<tr>
<td>Inner packagings:</td>
<td>Metal receptacles with a maximum net mass of 15 kg each. Inner packagings shall be hermetically sealed; Glass receptacles, with a maximum net mass of 1 kg each, having closures with gaskets, cushioned on all sides and contained in hermetically sealed metal cans.</td>
<td></td>
</tr>
<tr>
<td>Outer packagings shall have a maximum net mass of 125 kg. Inner packagings shall have threaded closures or closures physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Metal packagings:</td>
<td>(1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 3A1, 3A2, 3B1 and 3B2). Maximum gross mass: 150 kg</td>
<td></td>
</tr>
<tr>
<td>(3) Composite packagings:</td>
<td>Plastics receptacle in a steel or aluminium drum (6HA1 or 6HB1) Maximum gross mass: 150 kg</td>
<td></td>
</tr>
<tr>
<td>Pressure receptacles, provided that the general provisions of 4.1.3.6 are met.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special packing provision: PP86 For UN Nos. 3391 and 3393, air shall be eliminated from the vapour space by nitrogen or other means.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P405 PACKING INSTRUCTION

This instruction applies to UN No. 1381.

The following packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met:

1. **For UN1381, phosphorus wet:**
 a. **Combination packagings**
 - **Outer packagings:** (4A, 4B, 4N, 4C1, 4C2, 4D or 4F). Maximum net mass: 75 kg
 - **Inner packagings:**
 i. hermetically sealed metal cans, with a maximum net mass of 15 kg; or
 ii. glass inner packagings cushioned on all sides with dry, absorbent, non-combustible material in a quantity sufficient to absorb the entire contents with a maximum net mass of 2 kg; or
 b. **Drums** (1A1, 1A2, 1B1, 1B2, 1N1 or 1N2). Maximum net mass: 400 kg
 c. **Jerricans** (3A1 or 3B1). Maximum net mass: 120 kg.

 These packagings shall be capable of passing the leakproofness test specified in 6.1.5.4 at the packing group II performance level.

2. **For UN1381, dry phosphorus:**
 a. When fused, **drums** (1A2, 1B2 or 1N2) with a maximum net mass of 400 kg; or
 b. In projectiles or hard cased articles when transported without Class 1 components as specified by the competent authority.

P406 PACKING INSTRUCTION

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

1. **Combination packagings**
 - **Outer packagings:** (4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2, 1G, 1D, 1H1, 1H2, 3H1 or 3H2)
 - **Inner packagings:** water-resistant packagings.

2. Plastics, plywood or fibreboard drums (1H2, 1D or 1G) or boxes (4A, 4B, 4N, 4C1, 4D, 4F, 4C2, 4G and 4H2) with a water resistant inner bag, plastics film lining or water resistant coating.

3. **Metal drums** (1A1, 1A2, 1B1, 1B2, 1N1 or 1N2), plastics drums (1H1 or 1H2), metal jerricans (3A1, 3A2, 3B1 or 3B2), plastics jerricans (3H1 or 3H2), plastics receptacle in steel or aluminium drums (6HA1 or 6HB1), plastics receptacle in fibre, plastics or plywood drums (6HG1, 6HH1 or 6HD1), plastics receptacle in steel, aluminium, wood, plywood, fibreboard or solid plastics boxes (6HA2, 6HB2, 6HC, 6HD2, 6HG2 or 6HH2).

Additional requirements:

1. Packagings must be designed and constructed to prevent the loss of water or alcohol content or the content of the phlegmatiser.
2. Packagings must be so constructed and closed so as to avoid an explosive over pressure or pressure build-up of more than 300 kPa (3 bar).
3. The type of packaging and maximum permitted quantity per packaging are limited by the provisions of 2.1.3.5.

Special packing provisions:

PP24 UN 2852, 3364, 3365, 3366, 3367, 3368 and 3369 must not be transported in quantities of more than 500 g per package.

PP25 UN 1347 must not be transported in quantities of more than 15 kg per package.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

P406

<table>
<thead>
<tr>
<th>PACKING INSTRUCTION (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP26 For UN Nos. 1310, 1320, 1321, 1322, 1344, 1347, 1348, 1349, 1517, 2907, 3317, 3344 and 3376 packagings must be lead free.</td>
</tr>
<tr>
<td>PP48 For UN 3474 metal packagings must not be used. Packagings of other material with a small amount of metal, for example metal closures or other metal fittings such as those mentioned in 6.1.4, are not considered metal packagings.</td>
</tr>
<tr>
<td>PP78 UN 3370 must not be transported in quantities of more than 11.5 kg per package.</td>
</tr>
<tr>
<td>PP80 For UN Nos. 2907 and 3344, packagings must meet the packing group II performance level. Packagings meeting the test criteria of packing group I must not be used.</td>
</tr>
</tbody>
</table>

P407

<table>
<thead>
<tr>
<th>PACKING INSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>This instruction applies to UN Nos. 1331, 1944, 1945 and 2254.</td>
</tr>
<tr>
<td>The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:</td>
</tr>
<tr>
<td>Outer packagings:</td>
</tr>
<tr>
<td>Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G);</td>
</tr>
<tr>
<td>Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);</td>
</tr>
<tr>
<td>Jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2).</td>
</tr>
<tr>
<td>Inner packagings:</td>
</tr>
<tr>
<td>Matches must be tightly packed in securely closed inner packagings to prevent accidental ignition under normal conditions of transport.</td>
</tr>
<tr>
<td>The maximum gross mass of the package must not exceed 45 kg except for fibreboard boxes which must not exceed 30 kg.</td>
</tr>
<tr>
<td>Packagings must conform to the packing group III performance level.</td>
</tr>
<tr>
<td>Special packing provision:</td>
</tr>
<tr>
<td>PP27 UN 1331, Strike-anywhere matches must not be packed in the same outer packaging with any other dangerous goods other than safety matches or wax Vesta matches, which must be packed in separate inner packagings. Inner packagings must not contain more than 700 strike-anywhere matches.</td>
</tr>
</tbody>
</table>

P408

<table>
<thead>
<tr>
<th>PACKING INSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>This instruction applies to UN 3292.</td>
</tr>
<tr>
<td>The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:</td>
</tr>
<tr>
<td>(1) For cells:</td>
</tr>
<tr>
<td>Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);</td>
</tr>
<tr>
<td>Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);</td>
</tr>
<tr>
<td>Jerricans (3A2, 3B2, 3H2).</td>
</tr>
<tr>
<td>There must be sufficient cushioning material to prevent contact between cells and between cells and the internal surfaces of the outer packaging and to ensure that no dangerous movement of the cells within the outer packaging occurs in transport.</td>
</tr>
<tr>
<td>Packagings must conform to the packing group II performance level.</td>
</tr>
<tr>
<td>(2) Batteries may be transported unpacked or in protective enclosures (e.g. fully enclosed or wooden slatted crates). The terminals must not support the weight of other batteries or materials packed with the batteries.</td>
</tr>
<tr>
<td>Packagings need not meet the requirements of 4.1.1.3.</td>
</tr>
<tr>
<td>Additional requirement:</td>
</tr>
<tr>
<td>Cells and batteries must be protected against short circuit and must be isolated in such a manner as to prevent short circuits.</td>
</tr>
</tbody>
</table>
P409

PACKING INSTRUCTION

This instruction applies to UN Nos. 2956, 3242 and 3251.

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

1. Fibre drum (1G) which may be fitted with a liner or coating; maximum net mass: 50 kg
2. Combination packagings: Fibreboard box (4G) with a single inner plastic bag; maximum net mass 50 kg
3. Combination packagings: Fibreboard box (4G) or fibre drum (1G) with inner plastic packagings each containing a maximum of 5 kg; maximum net mass: 25 kg

P410

PACKING INSTRUCTION

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Combination packagings

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Outer packagings</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Packing group II</td>
</tr>
<tr>
<td>Glass 10 kg</td>
<td>Drums</td>
<td>400 kg</td>
</tr>
<tr>
<td>Plastics a 30 kg</td>
<td>steel (1A1, 1A2)</td>
<td></td>
</tr>
<tr>
<td>Metal 40 kg</td>
<td>aluminium (1B1, 1B2)</td>
<td>400 kg</td>
</tr>
<tr>
<td>Paper a b 10 kg</td>
<td>other metal (1N1, 1N2)</td>
<td>400 kg</td>
</tr>
<tr>
<td>Fibre a b 10 kg</td>
<td>plastics (1H1, 1H2)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>plywood (1D)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>fibre (1G) a</td>
<td>400 kg</td>
</tr>
<tr>
<td>Boxes</td>
<td>drum (4A)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>aluminium (4B)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>other metal (4N)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>natural wood (4C1)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>natural wood with sift proof walls (4C2)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>plywood (4D)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>reconstituted wood (4F)</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>fibreboard (4G) a</td>
<td>400 kg</td>
</tr>
<tr>
<td></td>
<td>expanded plastics (4H1)</td>
<td>60 kg</td>
</tr>
<tr>
<td></td>
<td>solid plastics (4H2)</td>
<td>400 kg</td>
</tr>
<tr>
<td>Jerricans</td>
<td>steel (3A1, 3A2)</td>
<td>120 kg</td>
</tr>
<tr>
<td></td>
<td>aluminium (3B1, 3B2)</td>
<td>120 kg</td>
</tr>
<tr>
<td></td>
<td>plastics (3H1, 3H2)</td>
<td>120 kg</td>
</tr>
</tbody>
</table>

Table notes:

a Packagings must be siftproof

b These inner packagings must not be used when the substances being transported may become liquid during transport (see 4.1.3.4).

Cont’d on next page
The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Single packagings

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Outer packagings</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Packing group II</td>
</tr>
<tr>
<td>Drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (1A1 or 1A2)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>aluminium (1B1 or 1B2)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>metal other than steel, or aluminium (1N1 or 1N2)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>plastics (1H1 or 1H2)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>Jerricans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (3A1 or 3A2)</td>
<td></td>
<td>120 kg</td>
</tr>
<tr>
<td>aluminium (3B1 or 3B2)</td>
<td></td>
<td>120 kg</td>
</tr>
<tr>
<td>plastics (3H1 or 3H2)</td>
<td></td>
<td>120 kg</td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (4A)(^c)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>aluminium (4B)(^c)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>other metal (4N)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>natural wood (4C1)(^c)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>plywood (4D)(^c)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>reconstituted wood (4F)(^c)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>natural wood with sift proof walls (4C2)(^c)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>fibreboard (4G)(^c)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>solid plastics (4H2)(^c)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>Bags</td>
<td>bags (5H3, 5H4, 5L3, 5M2)(^c)(^d)</td>
<td>50 kg</td>
</tr>
<tr>
<td>Composite packaging</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>plastics receptacle in steel, aluminium, plywood, fibre or plastics drum (6HA1, 6HB1, 6HG1, 6HD1, or 6HH1)</td>
<td></td>
<td>400 kg</td>
</tr>
<tr>
<td>plastics receptacle in steel or aluminium crate or box, wooden box, plywood box, fibreboard box or solid plastics box (6HA2, 6HB2, 6HC, 6HD2, 6HG2 or 6HH2)</td>
<td></td>
<td>75 kg</td>
</tr>
<tr>
<td>glass receptacle in steel, aluminium, plywood or fibre drum (6PA1, 6PB1, 6PD1 or 6PG1) or in steel, aluminium, wood, plywood or fibreboard box (6PA2, 6PB2, 6PC, 6PD2, or 6PG2) or in solid or expanded plastics packaging (6PH1 or 6PH2)</td>
<td></td>
<td>75 kg</td>
</tr>
</tbody>
</table>

Pressure receptacles may be used provided that the general provisions of 4.1.3.6 are met.

Cont’d on next page
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

PACKING INSTRUCTION (cont.)

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Single packagings

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Outer packagings</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Packing group II</td>
</tr>
</tbody>
</table>

Special packing provisions:

PP39 For UN 1378, for metal packagings a venting device is required.

PP40 For UN Nos. 1326, 1352, 1358, 1437 and 1871, and for UN 3182, packing group II, bags are not allowed.

PP83

Table notes:

c These packagings must not be used when the substances being transported may become liquid during transport (see 4.1.3.4).

d For packing group II substances, these packagings may only be used when transported in a closed cargo transport unit.

PACKING INSTRUCTION

This instruction applies to UN 3270.

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

- Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
- Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
- Jerricans (3A2, 3B2, 3H2);

provided that explosion is not possible by reason of increased internal pressure.

The maximum net mass must not exceed 30 kg.

PACKING INSTRUCTION

This instruction applies to UN No. 3527

The following combination packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met:

1. **Outer packagings:**
 - Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G);
 - Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
 - Jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2);

2. **Inner packagings:**
 - The activator (organic peroxide) shall have a maximum quantity of 125 ml per inner packaging if liquid, and 500 g per inner packaging if solid.
 - The base material and the activator shall be each separately packed in inner packagings.

The components may be placed in the same outer packaging provided that they will not interact dangerously in the event of a leakage.

Packagings shall conform to the packing group II or III performance level according to the criteria for Division 4.1 applied to the base material.
This instruction applies to UN 3356.

The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

- Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
- Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
- Jerricans (3A2, 3B2, 3H2).

Packagings must conform to the packing group II performance level.

The generator(s) must be transported in a package which meets the following requirements when one generator in the package is actuated:

1. Other generators in the package will not be actuated;
2. Packaging material will not ignite; and
3. The outside surface temperature of the completed package must not exceed 100 °C.
This instruction applies to UN No. 2015.

The following packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met:

<table>
<thead>
<tr>
<th>Combination packagings</th>
<th>Inner packaging maximum capacity</th>
<th>Outer packaging maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4H2) or drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D) or jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2) with glass, plastics or metal inner packagings</td>
<td>5 L</td>
<td>125 kg</td>
</tr>
<tr>
<td>(2) Fibreboard box (4G) or fibre drum (1G), with plastics or metal inner packagings each in a plastics bag</td>
<td>2 L</td>
<td>50 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single packagings</th>
<th>Maximum capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drums</td>
<td></td>
</tr>
<tr>
<td>steel (1A1)</td>
<td>250 L</td>
</tr>
<tr>
<td>aluminium (1B1)</td>
<td>250 L</td>
</tr>
<tr>
<td>metal other than steel or aluminium (1N1)</td>
<td>250 L</td>
</tr>
<tr>
<td>plastics (1H1)</td>
<td>250 L</td>
</tr>
<tr>
<td>Jerricans</td>
<td></td>
</tr>
<tr>
<td>steel (3A1)</td>
<td>60 L</td>
</tr>
<tr>
<td>aluminium (3B1)</td>
<td>60 L</td>
</tr>
<tr>
<td>plastics (3H1)</td>
<td>60 L</td>
</tr>
<tr>
<td>Composite packagings</td>
<td></td>
</tr>
<tr>
<td>plastics receptacle in steel or aluminium drum (6HA1, 6HB1)</td>
<td>250 L</td>
</tr>
<tr>
<td>plastics receptacle in fibre, plastics or plywood drum (6HG1, 6HH1, 6HD1)</td>
<td>250 L</td>
</tr>
<tr>
<td>plastics receptacle in steel or aluminium crate or box or plastic receptacle in wood, plywood, fibreboard or solid plastics box (6HA2, 6HB2, 6HC, 6HD2, 6HG2 or 6HH2)</td>
<td>60 L</td>
</tr>
<tr>
<td>glass receptacle in steel, aluminium, fibre or plywood drum (6PA1, 6PB1, 6PD1 or 6PG1) or in a steel, aluminium, wood or fibreboard box or in wickerwork hamper (6PA2, 6PB2, 6PC, 6PG2 or 6PD2) or in expanded or solid plastics packaging (6PH1 or 6PH2).</td>
<td>60 L</td>
</tr>
</tbody>
</table>

Additiona l requirements:
1. Packagings shall have a minimum ullage of 10%.
2. Packagings shall be vented.
The following packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Combination packagings

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Outer packagings</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass 5 l</td>
<td>Drums</td>
<td></td>
</tr>
<tr>
<td>Metal 5 l</td>
<td>steel (1A1, 1A2)</td>
<td>125 kg</td>
</tr>
<tr>
<td>Plastic 5 l</td>
<td>aluminium (1B1, 1B2)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>other metal (1N1, 1N2)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>plywood (1D)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>fibre (1G)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>plastics (1H1, 1H2)</td>
<td>125 kg</td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>steel (4A)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>aluminium (4B)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>other metal (4N)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>natural wood (4C1)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>natural wood with sift proof walls (4C2)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>plywood (4D)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>reconstituted wood (4F)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>fibreboard (4G)</td>
<td>125 kg</td>
</tr>
<tr>
<td></td>
<td>expanded plastics (4H1)</td>
<td>60 kg</td>
</tr>
<tr>
<td></td>
<td>solid plastics (4H2)</td>
<td>125 kg</td>
</tr>
</tbody>
</table>

Single packagings

<table>
<thead>
<tr>
<th>Outer packagings</th>
<th>Maximum capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drums</td>
<td></td>
</tr>
<tr>
<td>steel (1A1)</td>
<td>250 L</td>
</tr>
<tr>
<td>aluminium (1B1)</td>
<td>250 L</td>
</tr>
<tr>
<td>plastics (1H1)</td>
<td>250 L</td>
</tr>
<tr>
<td>Jerricans</td>
<td></td>
</tr>
<tr>
<td>steel (3A1)</td>
<td>60 L</td>
</tr>
<tr>
<td>aluminium (3B1)</td>
<td>60 L</td>
</tr>
<tr>
<td>plastics (3H1)</td>
<td>60 L</td>
</tr>
</tbody>
</table>

Composite packagings

<table>
<thead>
<tr>
<th>Outer packagings</th>
<th>Maximum capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>plastics receptacle in steel or aluminium drum (6HA1, 6HB1)</td>
<td>250 L</td>
</tr>
<tr>
<td>plastics receptacle in fibre, plastics or plywood drum (6HG1, 6HH1, 6HD1)</td>
<td>250 L</td>
</tr>
<tr>
<td>plastics receptacle in steel or aluminium crate or box or plastics receptacle in wood, plywood, fibreboard or solid plastics box (6HA2, 6HB2, 6HC, 6HD2, 6HG2 or 6HH2)</td>
<td>60 L</td>
</tr>
<tr>
<td>glass receptacle in steel, aluminium, fibre or plywood drum (6PA1, 6PB1, 6PD1 or 6PG1) or in a steel, aluminium, wood or fibreboard box or in wickerwork hamper (6PA2, 6PB2, 6PC, 6PG2 or 6PD2) or in expanded or solid plastics packaging (6PH1 or 6PH2).</td>
<td>60 L</td>
</tr>
</tbody>
</table>

Special packing provision:

PP28 For UN No. 1873, parts of packagings which are in direct contact with perchloric acid shall be constructed of glass or plastics.
The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

<table>
<thead>
<tr>
<th>Inner packagings:</th>
<th>Drums</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass 5 kg</td>
<td>steel (1A1, 1A2)</td>
<td>125 kg</td>
</tr>
<tr>
<td>Metal 5 kg</td>
<td>aluminium (1B1, 1B2)</td>
<td>125 kg</td>
</tr>
<tr>
<td>Plastic 5 kg</td>
<td>other metal (1N1, 1N2)</td>
<td>125 kg</td>
</tr>
<tr>
<td>Glass 5 kg</td>
<td>plywood (1D)</td>
<td>125 kg</td>
</tr>
<tr>
<td>Metal 5 kg</td>
<td>fibre (1G)</td>
<td>125 kg</td>
</tr>
<tr>
<td>Plastic 5 kg</td>
<td>plastics (1H1, 1H2)</td>
<td>125 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boxes</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>steel (4A)</td>
<td>125 kg</td>
</tr>
<tr>
<td>aluminium (4B)</td>
<td>125 kg</td>
</tr>
<tr>
<td>other metal (4N)</td>
<td>125 kg</td>
</tr>
<tr>
<td>natural wood (4C1)</td>
<td>125 kg</td>
</tr>
<tr>
<td>natural wood with sift proof walls (4C2)</td>
<td>125 kg</td>
</tr>
<tr>
<td>plywood (4D)</td>
<td>125 kg</td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td>125 kg</td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td>40 kg</td>
</tr>
<tr>
<td>expanded plastics (4H1)</td>
<td>60 kg</td>
</tr>
<tr>
<td>solid plastics (4H2)</td>
<td>125 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single packagings</th>
<th>Maximum capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal drums (1A1, 1A2, 1B1, 1B2, 1N1 or 1N2)</td>
<td>250 kg</td>
</tr>
<tr>
<td>Fibreboard (1G) or plywood drums (1D) fitted with inner liners</td>
<td>200 kg</td>
</tr>
</tbody>
</table>
The following packagings are authorised, provided that the general provisions of 4.1.1 and 4.1.3 are met:

<table>
<thead>
<tr>
<th>Combination packagings</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Outer packagings: (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H2)</td>
<td>75 kg</td>
</tr>
<tr>
<td>Inner packagings: Glass receptacles with a maximum capacity of 5 litres</td>
<td></td>
</tr>
<tr>
<td>(2) Outer packagings: (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H2)</td>
<td>75 kg</td>
</tr>
<tr>
<td>Inner packagings: Plastic receptacles with a maximum capacity of 30 litres</td>
<td></td>
</tr>
<tr>
<td>(3) Outer packagings: 1G, 4F or 4G</td>
<td>125 kg</td>
</tr>
<tr>
<td>Inner packagings: Metal receptacles with a maximum capacity of 40 litres</td>
<td></td>
</tr>
<tr>
<td>(4) Outer packagings: (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H2)</td>
<td>225 kg</td>
</tr>
<tr>
<td>Inner packagings: Metal receptacles with a maximum capacity of 40 litres</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single packagings</th>
<th>Maximum capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drums</td>
<td></td>
</tr>
<tr>
<td>steel, non-removable head (1A1)</td>
<td>250 L</td>
</tr>
<tr>
<td>aluminium, non-removable head (1B1)</td>
<td>250 L</td>
</tr>
<tr>
<td>metal other than steel or aluminium, non-removable head (1N1)</td>
<td>250 L</td>
</tr>
<tr>
<td>plastics, non-removable head (1H1)</td>
<td>250 L</td>
</tr>
<tr>
<td>Jerricans</td>
<td></td>
</tr>
<tr>
<td>steel non-removable head (3A1)</td>
<td>60 L</td>
</tr>
<tr>
<td>aluminium non-removable head (3B1)</td>
<td>60 L</td>
</tr>
<tr>
<td>plastics non-removable head (3H1)</td>
<td>60 L</td>
</tr>
<tr>
<td>Composite packagings</td>
<td></td>
</tr>
<tr>
<td>plastics receptacle in steel or aluminium drum (6HA1, 6HB1)</td>
<td>250 L</td>
</tr>
<tr>
<td>plastics receptacle in fibre, plastics or plywood drum (6HG1, 6HH1, 6HD1)</td>
<td>120 L</td>
</tr>
<tr>
<td>plastics receptacle in steel or aluminium crate or box or plastic receptacle in wood, plywood, fibreboard or solid plastics box (6HA2, 6HB2, 6HC, 6HD2, 6HG2 or 6HH2)</td>
<td>60 L</td>
</tr>
<tr>
<td>Glass receptacle in steel, aluminium, fibre or plywood drum (6PA1, 6PB1, 6PD1 or 6PG1) or in a steel, aluminium, wood or fibreboard box or in wickerwork hamper (6PA2, 6PB2, 6PC, 6PG2 or 6PD2) or in solid or expanded plastics packaging (6PH1 or 6PH2).</td>
<td>60 L</td>
</tr>
</tbody>
</table>

Special packing provision:

PP10 For UN Nos. 2014 and 3149, the packaging must be vented.
PACKING INSTRUCTION P505

This instruction applies to UN No. 3375

The following packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Combination packagings

<table>
<thead>
<tr>
<th>Inner Packaging Maximum Capacity</th>
<th>Outer Packaging Maximum Net Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxes (4B, 4C1, 4C2, 4D, 4G, 4H2) or drums (1B2, 1G, 1N2, 1H2, 1D) jerricans (3B2, 3H2) with glass, plastics or metal inner packagings</td>
<td>5 L</td>
</tr>
</tbody>
</table>

Single packagings:

<table>
<thead>
<tr>
<th>Maximum Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drums</td>
</tr>
<tr>
<td>aluminium (1B1, 1B2), plastics (1H1, 1H2)</td>
</tr>
<tr>
<td>Jerricans</td>
</tr>
<tr>
<td>aluminium (3B1, 3B2), plastics (3H1, 3H2)</td>
</tr>
</tbody>
</table>

Composite packagings

Plastics receptacle with outer aluminium drum (6HB1)	250 L
Plastics receptacle with outer fibre, plastics or plywood drum (6HG1, 6HH1, 6HD1)	250 L
Plastics receptacle with outer aluminium crate or box or plastics receptacle with outer wooden, plywood, fibreboard or solid plastics box (6HB2, 6HC, 6HD2, 6HG2 or 6HH2)	60 L
Glass receptacle with outer aluminium, fibre or plywood drum (6PB1, 6PG1, 6PD1) or with outer solid plastics or expanded plastics receptacles (6PH1 or 6PH2) or with outer aluminium crate or box or with outer wooden or fibreboard box or with outer wickerwork hamper (6PB2, 6PC, 6PG2 or 6PD2)	60 L
This instruction applies to organic peroxides of Division 5.2 and self-reactive substances of Division 4.1. The packagings listed below are authorised provided the general provision of 4.1.1 and 4.1.3 and special provisions of 4.1.7 are met. The packing methods are designated OP1 to OP8. The packing methods appropriate for the individual currently assigned organic peroxides and self-reactive substances are listed in 2.4.2.3.2.3 and 2.5.3.2.4.

The quantities specified for each packing method are the maximum quantities authorised per package. The following packagings are authorised:

(1) Combination packagings with outer packagings comprising boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1 and 4H2), drums (1A1, 1A2, 1B1, 1B2, 1G, 1H1, 1H2 and 1D), jerricans (3A1, 3A2, 3B1, 3B2, 3H1 and 3H2);

(2) Single packagings consisting of drums (1A1, 1A2, 1B1, 1B2, 1G, 1H1, 1H2 and 1D) and jerricans (3A1, 3A2, 3B1, 3B2, 3H1 and 3H2);

(3) Composite packagings with plastics inner receptacles (6HA1, 6HA2, 6HB1, 6HB2, 6HC, 6HD1, 6HD2, 6HG1, 6HG2, 6HH1 and 6HH2).

Cont’d on next page
PACKING INSTRUCTION (Cont.)

PP22 UN 3241, 2-Bromo-2-nitropropane-1, 3-diol, must be packed in accordance with packing method OP6.

PP94 Very small amounts of energetic samples of section 2.0.4.3 may be carried under UN 3223 or UN 3224, as appropriate, provided that:

1. Only combination packaging with outer packaging comprising boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1 and 4H2) are used;
2. The samples are carried in microtiter plates or multi-tier plates made of plastics, glass, porcelain or stoneware as inner packaging;
3. The maximum amount per individual inner cavity does not exceed 0.01 g for solids or 0.01 ml for liquids;
4. The maximum net quantity per outer packaging is 20 g for solids or 20 ml for liquids, or in the case of mixed packing the sum of grams and millilitres does not exceed 20; and
5. When dry ice or liquid nitrogen is optionally used as a coolant for quality control measures, the requirements of 5.5.3 are complied with. Interior supports shall be provided to secure the inner packagings in their original position. The inner and outer packagings shall maintain their integrity at the temperature of the refrigerant used as well as the temperatures and the pressures which could result if refrigeration were lost.

PP95 Small amounts of energetic samples of section 2.0.4.3 may be carried under UN 3223 or UN 3224, as appropriate, provided that:

1. The outer packaging consist only of corrugated fibreboard of type 4G having minimum dimensions of 60 cm (length) by 40.5 cm (width) by 30 cm (height) and minimum wall thickness of 1.3 cm;
2. The individual substance is contained in an inner packaging of glass or plastics of maximum capacity 30 ml placed in an expandable polyethylene foam matrix of at least 130 mm thickness having a density of 18 ± 1 g/l;
3. Within the foam carrier, inner packagings are segregated from each other by a minimum distance of 40 mm and from the wall of the outer packaging by a minimum distance of 70 mm. The package may contain up to two layers of such foam matrices, each carrying up to 28 inner packagings;
4. The maximum content of each inner packaging does not exceed 1 g for solids or 1 ml for liquids;
5. The maximum net quantity per outer packaging is 56 g for solids or 56 ml for liquids, or in the case of mixed packing the sum of grams and millilitres does not exceed 56; and
6. When dry ice or liquid nitrogen is optionally used as a coolant for quality control measures, the requirements of 5.5.3 are complied with. Interior supports shall be provided to secure the inner packagings in their original position. The inner and outer packagings shall maintain their integrity at the temperature of the refrigerant used as well as the temperatures and the pressures which could result if refrigeration were lost.

This instruction applies to UN Nos. 1700, 2016 and 2017.

The following packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 are met:

Outer packagings: (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H2) meeting the packing group II performance level. The articles must be individually packaged and separated from each other using partitions, dividers, inner packagings or cushioning material to prevent inadvertent discharge during normal conditions of transport.

Maximum net mass: 75 kg
P601 PACKING INSTRUCTION

The following packagings are authorised provided the general provisions of 4.1.1 and 4.1.3 are met and the packagings are hermetically sealed:

1. Combination packagings with a maximum gross mass of 15 kg, consisting of:
 - one or more glass inner packaging(s) with a net quantity of 1 litre each and filled to not more than 90% of their capacity; the closure(s) of which must be physically held in place by any means capable of preventing back-off or loosening by impact or vibration during transport, individually placed in:
 - metal receptacles together with cushioning and absorbent material sufficient to absorb the entire contents of the glass inner packaging(s), further packed in:
 - 1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G or 4H2 outer packagings.

2. Combination packagings consisting of metal or plastic inner packagings not exceeding 5 litres in capacity individually packed with absorbent material sufficient to absorb the contents and inert cushioning material in 1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G or 4H2 outer packagings with a maximum gross mass of 75 kg. Inner packagings must not be filled to more than 90% of their capacity. The closure of each inner packaging must be physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport.

3. Packagings consisting of:
 - Outer packagings:
 Steel or plastics drums (1A1, 1A2, 1H1 or 1H2), tested in accordance with the test requirements in 6.1.5 at a mass corresponding to the mass of the assembled package either as a packaging intended to contain inner packagings, or as a single packaging intended to contain solids or liquids, and marked accordingly.
 - Inner packagings:
 Drums and composite packagings (1A1, 1B1, 1N1, 1H1 or 6HA1), meeting the requirements of Chapter 6.1 for single packagings), subject to the following conditions:
 (a) The hydraulic pressure test must be conducted at a pressure of at least 3 bar (gauge pressure);
 (b) The design and production leakproofness tests must be conducted at a test pressure of 0.30 bar;
 (c) They must be isolated from the outer drum by the use of inert shock-mitigating cushioning material which surrounds the inner packaging on all sides;
 (d) Their capacity must not exceed 125 litres;
 (e) Closures must be of a screw cap type that are:
 (i) physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport; and
 (ii) provided with a cap seal.
 (f) The outer and inner packagings must be subjected periodically to a leakproofness test according to (b) at intervals of not more than two and a half years; and
 (g) The outer and inner packagings must bear in clearly legible and durable characters:
 (i) the date (month, year) of the initial testing and the latest periodical test;
 (ii) the name or authorised symbol of the party performing the tests and inspections.

4. Pressure receptacles may be used provided that the general provisions of 4.1.3.6 are met. They must be subjected to an initial test and periodic tests every 10 years at a pressure of not less than 1MPa (10 bar) (gauge pressure). Pressure receptacles may not be equipped with any pressure relief device. Each pressure receptacle containing a toxic by inhalation liquid with an LC50 less than or equal to 200 ml/m3 (ppm) must be closed with a plug or valve conforming to the following:

Cont’d on next page
PACKING INSTRUCTION (Cont.)

<table>
<thead>
<tr>
<th>P601</th>
<th>P601</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Each plug or valve must have a taper-threaded connection directly to the pressure receptacle and be capable of withstanding the test pressure of the pressure receptacle without damage or leakage;</td>
<td>(a) Each plug or valve must have a taper-threaded connection directly to the pressure receptacle and be capable of withstanding the test pressure of the pressure receptacle without damage or leakage;</td>
</tr>
<tr>
<td>(b) Each valve must be of the packless type with non-perforated diaphragm, except that, for corrosive materials, a valve may be of the packed type with an assembly made gas-tight by means of a seal cap with gasket joint attached to the valve body or the pressure receptacle to prevent loss of material through or past the packing;</td>
<td>(b) Each valve must be of the packless type with non-perforated diaphragm, except that, for corrosive materials, a valve may be of the packed type with an assembly made gas-tight by means of a seal cap with gasket joint attached to the valve body or the pressure receptacle to prevent loss of material through or past the packing;</td>
</tr>
<tr>
<td>(c) Each valve outlet must be sealed by a threaded cap or threaded solid plug and inert gasket material;</td>
<td>(c) Each valve outlet must be sealed by a threaded cap or threaded solid plug and inert gasket material;</td>
</tr>
<tr>
<td>(d) The materials of construction for the pressure receptacle, valves, plugs, outlet caps, luting and gaskets must be compatible with each other and with the lading.</td>
<td>(d) The materials of construction for the pressure receptacle, valves, plugs, outlet caps, luting and gaskets must be compatible with each other and with the lading.</td>
</tr>
</tbody>
</table>

Each pressure receptacle with a wall thickness at any point of less than 2.0 mm and each pressure receptacle that does not have fitted valve protection must be transported in an outer packaging. Pressure receptacles must not be manifolded or interconnected.

PACKING INSTRUCTION

<table>
<thead>
<tr>
<th>P602</th>
<th>P602</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following packagings are authorised provided the general provisions of 4.1.1 and 4.1.3 are met and the packagings are hermetically sealed:</td>
<td>The following packagings are authorised provided the general provisions of 4.1.1 and 4.1.3 are met and the packagings are hermetically sealed:</td>
</tr>
<tr>
<td>(1) Combination packagings with a maximum gross mass of 15 kg, consisting of:</td>
<td>(1) Combination packagings with a maximum gross mass of 15 kg, consisting of:</td>
</tr>
<tr>
<td>– one or more glass inner packaging(s) with a net quantity of 1 litre each and filled to not more than 90% of their capacity; the closure(s) of which must be physically held in place by any means capable of preventing back-off or loosening by impact or vibration during transport, individually placed in:</td>
<td>– one or more glass inner packaging(s) with a net quantity of 1 litre each and filled to not more than 90% of their capacity; the closure(s) of which must be physically held in place by any means capable of preventing back-off or loosening by impact or vibration during transport, individually placed in:</td>
</tr>
<tr>
<td></td>
<td>– metal receptacles together with cushioning and absorbent material sufficient to absorb the entire contents of the glass inner packaging(s), further packed in:</td>
</tr>
<tr>
<td></td>
<td>– 1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G or 4H2 outer packagings.</td>
</tr>
<tr>
<td>(2) Combination packagings consisting of metal or plastic inner packagings individually packed with absorbent material sufficient to absorb the contents and inert cushioning material in 1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G or 4H2 outer packagings with a maximum gross mass of 75 kg. Inner packagings must not be filled to more than 90% of their capacity. The closure of each inner packaging must be physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport. Inner packagings must not exceed 5 litres in capacity.</td>
<td>(2) Combination packagings consisting of metal or plastic inner packagings individually packed with absorbent material sufficient to absorb the contents and inert cushioning material in 1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G or 4H2 outer packagings with a maximum gross mass of 75 kg. Inner packagings must not be filled to more than 90% of their capacity. The closure of each inner packaging must be physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport. Inner packagings must not exceed 5 litres in capacity.</td>
</tr>
<tr>
<td>(3) Drums and composite packagings (1A1, 1B1, 1N1, 1H1, 6HA1 or 6HH1), subject to the following conditions:</td>
<td>(3) Drums and composite packagings (1A1, 1B1, 1N1, 1H1, 6HA1 or 6HH1), subject to the following conditions:</td>
</tr>
<tr>
<td>(a) The hydraulic pressure test must be conducted at a pressure of at least 3 bar (gauge pressure); and</td>
<td>(a) The hydraulic pressure test must be conducted at a pressure of at least 3 bar (gauge pressure); and</td>
</tr>
<tr>
<td>(b) The design and production leakproofness tests must be conducted at a test pressure of 0.30 bar; and</td>
<td>(b) The design and production leakproofness tests must be conducted at a test pressure of 0.30 bar; and</td>
</tr>
<tr>
<td>(c) Closures must be of a screw cap type that are:</td>
<td>(c) Closures must be of a screw cap type that are:</td>
</tr>
<tr>
<td>(i) physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport; and</td>
<td>(i) physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport; and</td>
</tr>
<tr>
<td>(ii) provided with a cap seal.</td>
<td>(ii) provided with a cap seal.</td>
</tr>
</tbody>
</table>

Cont’d on next page
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

P602

PACKING INSTRUCTION (cont.)

(4) Pressure receptacles may be used provided that the general provisions of 4.1.3.6 are met. They must be subjected to an initial test and periodic tests every 10 years at a pressure of not less than 1MPa (10 bar) (gauge pressure). Pressure receptacles may not be equipped with any pressure relief device. Each pressure receptacle containing a toxic by inhalation liquid with an LC$_{50}$ less than or equal to 200 ml/m3 (ppm) must be closed with a plug or valve conforming to the following:

(a) Each plug or valve must have a taper-threaded connection directly to the pressure receptacle and be capable of withstanding the test pressure of the pressure receptacle without damage or leakage;

(b) Each valve must be of the packless type with non-perforated diaphragm, except that, for corrosive materials, a valve may be of the packed type with an assembly made gas-tight by means of a seal cap with gasket joint attached to the valve body or the pressure receptacle to prevent loss of material through or past the packing;

(c) Each valve outlet must be sealed by a threaded cap or threaded solid plug and inert gasket material;

(d) The materials of construction for the pressure receptacle, valves, plugs, outlet caps, luting and gaskets must be compatible with each other and with the lading.

Each pressure receptacle with a wall thickness at any point of less than 2.0 mm and each pressure receptacle that does not have fitted valve protection must be transported in an outer packaging. Pressure receptacles must not be manifolded or interconnected.

P603

PACKING INSTRUCTION

This instruction applies to UN 3507.

The following packagings are authorized provided that the general provisions of 4.1.1 and 4.1.3 and the special packing provisions of 4.1.9.1.2, 4.1.9.1.4 and 4.1.9.1.7 are met:

Packagings consisting of:

(a) Metal or plastic primary receptacle(s); in
(b) Leakproof rigid secondary packaging(s); in
(c) A rigid outer packaging:

- Drums (1A2, 1B2, 1H2, 1D, 1G);
- Boxes (4A, 4B, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
- Jerricans (3A2, 3B2, 3H2).

Additional requirements:

1. Primary inner receptacles must be packed in secondary packagings in a way that, under normal conditions of transport, they cannot break, be punctured or leak their contents into the secondary packaging. Secondary packagings must be secured in outer packagings with suitable cushioning material to prevent movement. If multiple primary receptacles are placed in a single secondary packaging, they must be either individually wrapped or separated so as to prevent contact between them;

2. The contents must comply with the provisions of 2.7.2.4.5.2;

3. The provisions of 6.4.4 must be met.

Special Packing Provision:

In the case of fissile-exception material, limits specified in 2.7.2.3.5 must be met.
P620 PACKING INSTRUCTION

This instruction applies to UN Nos. 2814 and 2900.

The following packagings are authorised provided the special packing provisions of 4.1.8 are met:

Packagings meeting the requirements of Chapter 6.3 and approved accordingly consisting of:

(a) Inner packagings comprising:
 (i) leakproof primary receptacle(s);
 (ii) a leakproof secondary packaging;
 (iii) other than for solid infectious substances, an absorbent material in sufficient quantity to absorb the entire contents placed between the primary receptacle(s) and the secondary packaging; if multiple primary receptacles are placed in a single secondary packaging, they must be either individually wrapped or separated so as to prevent contact between them;

(b) A rigid outer packaging:
 - Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G);
 - Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
 - Jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2).

The smallest external dimension must be not less than 100 mm.

Additional requirements:

1. Inner packagings containing infectious substances must not be consolidated with inner packagings containing unrelated types of goods. Complete packages may be overpacked in accordance with the provisions of 1.2.1 and 5.1.2: such an overpack may contain dry ice.

2. Other than for exceptional consignments, e.g. whole organs which require special packaging, the following additional requirements must apply:
 (a) Substances consigned at ambient temperatures or at a higher temperature. Primary receptacles must be of glass, metal or plastics. Positive means of ensuring a leakproof seal must be provided, e.g. a heat seal, a skirted stopper or a metal crimp seal. If screw caps are used, they must be secured by positive means, e.g., tape, paraffin sealing tape or manufactured locking closure;
 (b) Substances consigned refrigerated or frozen. Ice, dry ice or other refrigerant must be placed around the secondary packaging(s) or alternatively in an overpack with one or more complete packages marked in accordance with 6.3.3. Interior supports must be provided to secure secondary packaging(s) or packages in position after the ice or dry ice has dissipated. If ice is used, the outer packaging or overpack must be leakproof. If dry ice is used, the outer packaging or overpack must permit the release of carbon dioxide gas. The primary receptacle and the secondary packaging must maintain their integrity at the temperature of the refrigerant used;
 (c) Substances consigned in liquid nitrogen. Plastics primary receptacles capable of withstanding very low temperature must be used. The secondary packaging must also be capable of withstanding very low temperatures, and in most cases will need to be fitted over the primary receptacle individually. Provisions for the consignment of liquid nitrogen must also be fulfilled. The primary receptacle and the secondary packaging must maintain their integrity at the temperature of the liquid nitrogen.
 (d) Lyophilised substances may also be transported in primary receptacles that are flame-sealed glass ampoules or rubber-stoppered glass vials fitted with metal seals;

3. Whatever the intended temperature of the consignment, the primary receptacle or the secondary packaging must be capable of withstanding without leakage an internal pressure producing a pressure differential of not less than 95 kPa. This primary receptacle or secondary packaging shall also be capable of withstanding temperatures in the range -40 °C to +55 °C.

Cont'd on next page
4. Other dangerous goods must not be packed in the same packaging as Division 6.2 infectious substances unless they are necessary for maintaining the viability, stabilising or preventing degradation or neutralising the hazards of the infectious substances. A quantity of 30 ml or less of dangerous goods included in Classes 3, 8 or 9 may be packed in each primary receptacle containing infectious substances. These small quantities of dangerous goods of Classes 3, 8 or 9 are not subject to any additional requirements of this Code when packed in accordance with this packing instruction.

5. Alternative packagings for the transport of animal material may be authorised by the competent authority in accordance with the provisions of 4.1.3.7.

<table>
<thead>
<tr>
<th>P620</th>
<th>PACKING INSTRUCTION (cont.)</th>
<th>P620</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Other dangerous goods must not be packed in the same packaging as Division 6.2 infectious substances unless they are necessary for maintaining the viability, stabilising or preventing degradation or neutralising the hazards of the infectious substances. A quantity of 30 ml or less of dangerous goods included in Classes 3, 8 or 9 may be packed in each primary receptacle containing infectious substances. These small quantities of dangerous goods of Classes 3, 8 or 9 are not subject to any additional requirements of this Code when packed in accordance with this packing instruction.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P621</th>
<th>PACKING INSTRUCTION</th>
<th>P621</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Other dangerous goods must not be packed in the same packaging as Division 6.2 infectious substances unless they are necessary for maintaining the viability, stabilising or preventing degradation or neutralising the hazards of the infectious substances. A quantity of 30 ml or less of dangerous goods included in Classes 3, 8 or 9 may be packed in each primary receptacle containing infectious substances. These small quantities of dangerous goods of Classes 3, 8 or 9 are not subject to any additional requirements of this Code when packed in accordance with this packing instruction.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P621</th>
<th>PACKING INSTRUCTION</th>
<th>P621</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Other dangerous goods must not be packed in the same packaging as Division 6.2 infectious substances unless they are necessary for maintaining the viability, stabilising or preventing degradation or neutralising the hazards of the infectious substances. A quantity of 30 ml or less of dangerous goods included in Classes 3, 8 or 9 may be packed in each primary receptacle containing infectious substances. These small quantities of dangerous goods of Classes 3, 8 or 9 are not subject to any additional requirements of this Code when packed in accordance with this packing instruction.</td>
<td></td>
</tr>
</tbody>
</table>

This instruction applies to UN No 3291.

The following packagings are authorised provided that the general provisions of 4.1.1 except 4.1.1.15 and 4.1.3 are met:

(1) Provided that there is sufficient absorbent material to absorb the entire amount of liquid present and the packaging is capable of retaining liquids:
 - Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
 - Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
 - Jerricans (3A2, 3B2, 3H2).
 Packagings must conform to the packing group II performance level for solids.

(2) For packages containing larger quantities of liquid:
 - Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G);
 - Jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2);
 - Composites (6HA1, 6HB1, 6HG1, 6HH1, 6HD1, 6HA2, 6HB2, 6HC, 6HD2, 6HG2, 6HH2, 6PA1, 6PB1, 6PG1, 6PD1, 6PH1, 6PH2, 6PA2, 6PB2, 6PC, 6PG2 or 6PD2).
 Packagings must conform to the packing group II performance level for liquids.

Additional requirement:
Packagings intended to contain sharp objects such as broken glass and needles must be resistant to puncture and retain liquids under the performance test conditions in Chapter 6.1.
PACKING INSTRUCTION

This instruction applies to waste of UN 3549 transported for disposal.

The following packagings are authorized provided the general provisions of 4.1.1 and 4.1.3 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>metal plastics</td>
<td>metal plastics</td>
<td>Boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel (4A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (4B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (4D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (4G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (4N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics, solid (4H2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drums</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel (1A2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (1B2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (1D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibre (1G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (1N2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics (1H2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jerricans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steel (3A2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (3B2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics (3H2)</td>
</tr>
</tbody>
</table>

The outer packaging shall conform to the packing group I performance level for solids.

Additional requirements:

1. Fragile articles shall be contained in either a rigid inner packaging or rigid intermediate packagings.
2. Inner packagings containing sharps objects such as broken glass and needles shall be rigid and resistant to puncture.
3. The inner packaging, the intermediate packaging, and the outer packaging shall be capable of retaining liquids. Outer packagings that are not capable of retaining liquids by design shall be fitted with a liner or suitable measure of retaining liquids.
4. The inner packaging and/or the intermediate packaging may be flexible. When flexible packagings are used, they shall be capable of passing the impact resistance test to at least 165 g according to ISO 7765-1:1988 “Plastics film and sheeting – Determination of impact resistance by the free-falling dart method – Part 1: Staircase methods” and the tear resistance test to at least 480 g in both parallel and perpendicular planes with respect to the length of the bag in accordance with ISO 6383-2:1983 “Plastics – Film and sheeting – Determination of tear resistance – Part 2: Elmendorf method”. The maximum net mass of each flexible inner packaging shall be 30kg.
5. Each flexible intermediate packaging shall contain only one inner packaging.
6. Inner packagings containing a small amount of free liquid may be included in intermediate packaging provided that there is sufficient absorbent or solidifying material in the inner or intermediate packaging to absorb or solidify all the liquid content present. Suitable absorbent material which withstands the temperatures and vibrations liable to occur under normal conditions of transport shall be used.
7. Intermediate packagings shall be secured in outer packagings with suitable cushioning and/or absorbent material.
This packing instruction applies to UN 3373.

(1) The packaging must be of good quality, strong enough to withstand the shocks and loadings normally encountered during transport, including transhipment between cargo transport units and between cargo transport units and warehouses as well as any removal from a pallet or overpack for subsequent manual or mechanical handling. Packagings must be constructed and closed to prevent any loss of contents that might be caused under normal conditions of transport by vibration or by changes in temperature, humidity or pressure.

(2) The packaging must consist of at least three components:
 (a) a primary receptacle,
 (b) a secondary packaging, and
 (c) an outer packaging,
 of which either the secondary or the outer packaging must be rigid.

(3) Primary receptacles must be packed in secondary packagings in such a way that, under normal conditions of transport, they cannot break, be punctured or leak their contents into the secondary packaging. Secondary packagings must be secured in outer packagings with suitable cushioning material. Any leakage of the contents must not compromise the integrity of the cushioning material or of the outer packaging.

(4) For transport, the mark illustrated here must be displayed on the external surface of the outer packaging on a background of a contrasting colour and must be clearly visible and legible. The mark must be in the form of a square set at an angle of 45° (diamond-shaped) with each side have a length of at least 50 mm, the width of the line must be at least 2 mm; the letters and numbers must be at least 6 mm high. The proper shipping name "BIOLOGICAL SUBSTANCE, CATEGORY B" in letters at least 6 mm high must be marked on the outer packaging adjacent to the diamond-shaped mark.

(5) At least one surface of the outer packaging must have a minimum dimension of 100 mm x 100 mm.

(6) The completed package must be capable of successfully passing the drop test in 6.3.5.3 as specified in 6.3.5.2 of this Code at a height of 1.2 m. Following the appropriate drop sequence, there must be no leakage from the primary receptacle(s) which must remain protected by absorbent material, when required, in the secondary packaging.

(7) For liquid substances
 (a) The primary receptacle(s) must be leakproof;
 (b) The secondary packaging must be leakproof;
 (c) If multiple fragile primary receptacles are placed in a single secondary packaging, they must be either individually wrapped or separated to prevent contact between them;
 (d) Absorbent material must be placed between the primary receptacle(s) and the secondary packaging. The absorbent material must be in quantity sufficient to absorb the entire contents of the primary receptacle(s) so that any release of the liquid substance will not compromise the integrity of the cushioning material or of the outer packaging.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

<table>
<thead>
<tr>
<th>P650</th>
<th>PACKING INSTRUCTION (cont.)</th>
<th>P650</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td>The primary receptacle or the secondary packaging must be capable of withstanding, without leakage, an internal pressure of 95 kPa (0.95 bar). (8) For solid substances</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) The primary receptacle(s) must be siftproof;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) The secondary packaging must be siftproof;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) If multiple fragile primary receptacles are placed in a single secondary packaging, they must be either individually wrapped or separated to prevent contact between them.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) If there is any doubt as to whether or not residual liquid may be present in the primary receptacle during transport then a packaging suitable for liquids, including absorbent materials, must be used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9) Refrigerated or frozen specimens: Ice, dry ice and liquid nitrogen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) When dry ice or liquid nitrogen is used as a coolant, the requirements of 5.5.3 apply. When used, ice must be placed outside the secondary packagings or in the outer packaging or an overpack. Interior supports must be provided to secure the secondary packagings in the original position. If ice is used, the outside packaging or overpack must be leakproof.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) The primary receptacle and the secondary packaging must maintain their integrity at the temperature of the refrigerant used as well as the temperatures and the pressures which could result if refrigeration were lost.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) When packages are placed in an overpack, the package markings required by this packing instruction must either be clearly visible or be reproduced on the outside of the overpack.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11) Infectious substances assigned to UN 3373 which are packed and marked in accordance with this packing instruction are not subject to any other requirement in this Code.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12) Clear instructions on filling and closing such packages must be provided by packaging manufacturers and subsequent distributors to the consignor or to the person who prepares the package (e.g. patient) to enable the package to be correctly prepared for transport.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13) Other dangerous goods must not be packed in the same packaging as Division 6.2 infectious substances unless they are necessary for maintaining the viability, stabilising or preventing degradation or neutralising the hazards of the infectious substances. A quantity of 30 ml or less of dangerous goods included in Classes 3, 8 or 9 may be packed in each primary receptacle containing infectious substances. When these small quantities of dangerous goods are packed with infectious substances in accordance with this packing instruction no other requirements in this Code need be met.</td>
<td></td>
</tr>
</tbody>
</table>

Additional requirement:
Alternative packagings for the transport of animal material may be authorised by the competent authority in accordance with the provisions of 4.1.3.7.
This instruction applies to UN 3291 Clinical Waste that is transported in cargo transport units that are dedicated to clinical waste transport, where those units consist of a vehicle with a body that is:

(a) separate to the cabin; and
(b) totally enclosed, of strong, rigid, weatherproof construction with lockable doors; and
(c) leak proof, bunded or configured to contain spillages.

The following packages are authorised:

Rigid packaging with a lid that is able to be secured during transport. The packages must be:

(a) designed or have a means enabling them to be easily handled or moved; and
(b) strong enough to withstand manual or mechanical handling and the shocks and loadings normally encountered during transport, including trans-shipment between transport units and between transport units and warehouses; and
(c) able to retain liquid under normal conditions of transport; and
(d) easily identifiable by their colour and have the correct labelling and symbols indicating that they contain UN3291 clinical waste.

Additional requirement:

Packagings intended to contain sharp objects such as broken glass and needles must be resistant to puncture and comply with AS 4031, AS/NZS 4261 or AS 4939, as applicable.
This instruction applies to UN Nos. 2809 and 2803.

The following packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 are met:

1. Pressure receptacles may be used provided that the general provisions of 4.1.3.6 are met,
2. Steel flasks or bottles with threaded closures with a capacity not exceeding 3.0 L; or
3. Combination packagings which conform to the following requirements:
 a. Inner packagings may comprise glass, metal or rigid plastics intended to contain liquids with a maximum net mass of 15 kg each.
 b. The inner packagings must be packed with sufficient cushioning material to prevent breakage.
 c. Either the inner packagings or the outer packagings must have inner liners or bags of strong leakproof and puncture-resistant material impervious to the contents and completely surrounding the contents to prevent it from escaping from the package irrespective of its position or orientation.
 d. The following outer packagings and maximum net masses are authorised:

<table>
<thead>
<tr>
<th>Outer packaging:</th>
<th>Maximum net mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drums</td>
<td></td>
</tr>
<tr>
<td>steel (1A2)</td>
<td>400 kg</td>
</tr>
<tr>
<td>other metal (1N2)</td>
<td>400 kg</td>
</tr>
<tr>
<td>plastics (1H2)</td>
<td>400 kg</td>
</tr>
<tr>
<td>plywood (1D)</td>
<td>400 kg</td>
</tr>
<tr>
<td>fibre (1G)</td>
<td>400 kg</td>
</tr>
<tr>
<td>Boxes</td>
<td></td>
</tr>
<tr>
<td>steel (4A)</td>
<td>400 kg</td>
</tr>
<tr>
<td>metal, other than steel or aluminium (4N)</td>
<td>400 kg</td>
</tr>
<tr>
<td>natural wood (4C1)</td>
<td>250 kg</td>
</tr>
<tr>
<td>natural wood with sift proof walls (4C2)</td>
<td>250 kg</td>
</tr>
<tr>
<td>plywood (4D)</td>
<td>250 kg</td>
</tr>
<tr>
<td>reconstituted wood (4F)</td>
<td>125 kg</td>
</tr>
<tr>
<td>fibreboard (4G)</td>
<td>125 kg</td>
</tr>
<tr>
<td>expanded plastics (4H1)</td>
<td>60 kg</td>
</tr>
<tr>
<td>solid plastics (4H2)</td>
<td>125 kg</td>
</tr>
</tbody>
</table>

Special packing provision:

PP41 For UN 2803, when it is necessary to transport Gallium at low temperatures in order to maintain it in a completely solid state, the above packagings may be overpacked in a strong, water-resistant outer packaging which contains dry ice or other means of refrigeration. If a refrigerant is used, all of the above materials used in the packaging of gallium must be chemically and physically resistant to the refrigerant and must have impact resistance at the low temperatures of the refrigerant employed. If dry ice is used, the outer packaging must permit the release of carbon dioxide gas.
P801 PACKING INSTRUCTION

This instruction applies to UN Nos. 2794, 2795 or 3028.

The following packagings are authorized, provided that the provisions of 4.1.1.1, 4.1.1.2, 4.1.1.6, and 4.1.3 are met:

1. **Rigid outer packagings, wooden slatted crates or pallets.**
 - Additionally, the following conditions must be met:
 a. Batteries stacks must be in tiers separated by a layer of electrically non-conductive material;
 b. Battery terminals must not support the weight of other superimposed elements;
 c. Batteries must be packaged or secured to prevent inadvertent movement;
 d. Batteries must not leak under normal conditions of transport or appropriate measures must be taken to prevent the release of electrolyte from the package (e.g. individually packaging batteries or other equally effective methods); and
 e. Batteries must be protected against short circuits.

2. **Stainless steel or plastics bins may also be used to transport used batteries.**
 - Additionally, the following conditions must be met:
 a. The bins must be resistant to the electrolyte that was contained in the batteries;
 b. The bins must not be filled to a height greater than the height of their sides;
 c. The outside of the bins must be free of residues of electrolyte contained in the batteries;
 d. Under normal conditions of transport, no electrolyte may leak from the bins;
 e. Measures must be taken to ensure that filled bins cannot lose their content; and
 f. Measures must be taken to prevent short circuits (e.g. batteries are discharged, individual protection of the battery terminals, etc.).

P802 PACKING INSTRUCTION

The following packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 are met:

1. **Combination packagings**
 - Outer packagings: 1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G or 4H2; maximum net mass: 75 kg.
 - Inner packagings: glass or plastics; maximum capacity: 10 litres.

2. **Combination packagings**
 - Outer packagings: 1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G or 4H2; maximum net mass: 125 kg.
 - Inner packagings: metal; maximum capacity: 40 litres.

3. **Composite packagings:**
 - Glass receptacle in steel, aluminium or plywood drum (6PA1, 6PB1 or 6PD1) or in a steel, aluminium or wood box or in wickerwork hamper (6PA2, 6PB2, 6PC or 6PD2) or in solid plastics packaging (6PH2); maximum capacity: 60 litres.

4. **Steel drums (1A1) with a maximum capacity of 250 litres.**

5. **Pressure receptacles may be used provided that the general provisions of 4.1.3.6 are met.**

Special packing provision:

PP79 For UN 1790 with more than 60% but not more than 85% hydrogen fluoride, see P001
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

P803

PACKING INSTRUCTION

This instruction applies to UN 2028.

The following packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 are met:

1. Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
2. Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H2);

Maximum net mass: 75 kg.

The articles must be individually packaged and separated from each other using partitions, dividers, inner packagings or cushioning material to prevent inadvertent discharge during normal conditions of transport.

P804

PACKING INSTRUCTION

This instruction applies to UN 1744.

The following packagings are authorised provided the general provisions of 4.1.1 and 4.1.3 are met:

1. **Combination packagings** with a maximum gross mass of 25 kg, consisting of
 - one or more glass inner packaging(s) with a maximum capacity of 1.3 litres each and filled to not more than 90% of their capacity, the closure(s) of which must be physically held in place by any means capable of preventing back-off or loosening by impact or vibration during transport, individually placed in
 - metal or rigid plastics receptacles together with cushioning and absorbent material sufficient to absorb the entire contents of the glass inner packaging(s), further packed in
 - 1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G or 4H2 outer packagings.

2. **Combination packagings** consisting of metal or polyvinylidene fluoride (PVDF) inner packagings, not exceeding 5 litres in capacity individually packed with absorbent material sufficient to absorb the contents and inert cushioning material in 1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G, 4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G or 4H2 outer packagings with a maximum gross mass of 75 kg. Inner packagings must not be filled to more than 90% of their capacity. The closure of each inner packaging must be physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport;

3. **Packagings** consisting of:
 - **Outer packagings:** Steel or plastics drums (1A1, 1A2, 1H1 or 1H2) tested in accordance with the test requirements in 6.1.5 at a mass corresponding to the mass of the assembled package either as a packaging intended to contain inner packagings, or as a single packaging intended to contain solids or liquids, and marked accordingly;
 - **Inner packagings:** Drums and composite packagings (1A1, 1B1, 1N1, 1H1 or 6HA1) meeting the requirements of Chapter 6.1 for single packagings, subject to the following conditions:
 - (a) The hydraulic pressure test must be conducted at a pressure of at least 300 kPa (3 bar) (gauge pressure);
 - (b) The design and production leakproofness tests must be conducted at a test pressure of 30 kPa (0.3 bar);
 - (c) They must be isolated from the outer drum by the use of inert shock-mitigating cushioning material which surrounds the inner packaging on all sides;
 - (d) Their capacity must not exceed 125 litres;
 - (e) Closures must be of a screw type that are:
 - (i) physically held in place by any means capable of preventing back-off or loosening of the closure by impact or vibration during transport;
 - (ii) provided with a cap seal;
 - (f) The outer and inner packagings must be subjected periodically to an internal inspection and leakproofness test according to (b) at intervals of not more than two and a half years; and
The outer and inner packagings must bear in clearly legible and durable characters:
 (i) the date (month, year) of the initial test and the latest periodic test and inspection of the inner packaging; and
 (ii) the name or authorised symbol of the expert performing the tests and inspections;

(4) Pressure receptacles, provided that the general provisions of 4.1.3.6 are met.
(a) They must be subjected to an initial test and periodic tests every 10 years at a pressure of not less than 1 MPa (10 bar) (gauge pressure);
(b) They must be subjected periodically to an internal inspection and leakproofness test at intervals of not more than two and a half years;
(c) They may not be equipped with any pressure relief device;
(d) Each pressure receptacle must be closed with a plug or valve(s) fitted with a secondary closure device; and
(e) The materials of construction for the pressure receptacle, valves, plugs, outlet caps, luting and gaskets must be compatible with each other and with the contents.

This instruction applies to UN 2216.
The following packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 are met:
(1) Packagings according to P002; or
(2) Bags (5H1, 5H2, 5H3, 5H4, 5L1, 5L2, 5L3, 5M1 or 5M2) with a maximum net mass of 50 kg.
Fish meal may also be transported unpackaged when it is packed in closed cargo transport units and the free air space has been restricted to a minimum.

This instruction applies to UN 3316.
The following combination packagings are authorised provided the general provisions of 4.1.1 and 4.1.3 are met:
Drums (1A1, 1A2, 1B1, 1B2, 1N1, 1N2, 1H1, 1H2, 1D, 1G);
Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
Jerricans (3A1, 3A2, 3B1, 3B2, 3H1, 3H2).
Packagings must conform to the performance level consistent with the packing group assigned to the kit as a whole (see 3.3.1, special provision 251). Where the kit contains only dangerous goods to which no packing group is assigned, packagings must meet Packing Group II performance level.
Maximum quantity of dangerous goods per outer packaging: 10 kg excluding the mass of any carbon dioxide, solid (dry ice) used as a refrigerant.

Additional requirement:
Dangerous goods in kits must be packed in inner packagings must be protected from other materials in the kit.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

P902 PACKING INSTRUCTION P902

This instruction applies to UN 3268.

Packaged articles:
The following packagings are authorised provided the general provisions of 4.1.1 and 4.1.3 are met:
- Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
- Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
- Jerricans (3A2, 3B2, 3H2).
Packagings must conform to the packing group III performance level.
The packagings must be designed and constructed so as to prevent movement of the articles and inadvertent operation during normal conditions of transport.

Unpackaged articles:
The articles may also be transported unpackaged in dedicated handling devices, vehicles or containers when moved to, from, or between where they are manufactured and an assembly plant including intermediate handling locations.

Additional requirement:
Any pressure receptacle must be in accordance with the requirements of the competent authority for the substance(s) contained therein.

P903 PACKING INSTRUCTION P903

This instruction applies to UN Nos. 3090, 3091, 3480 and 3481.

For the purpose of this packing instruction, “equipment” means apparatus for which the lithium cells or batteries will provide electrical power for its operation. The following packagings are authorised provided that the general provisions of 4.1.1 and 4.1.3 are met:

(1) For cells and batteries:
- Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
- Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
- Jerricans (3A2, 3B2, 3H2).

Cells or batteries must be packed in packagings so that the cells or batteries are protected against damage that may be caused by the movement or placement of the cells or batteries within the packaging.
Packagings must conform to the packing group II performance level.

(2) In addition for cells or batteries with a gross mass of 12 kg or more employing a strong, impact resistant outer casing, and assemblies of such cells or batteries:
- (a) Strong outer packagings;
- (b) Protective enclosures (e.g., fully enclosed or wooden slatted crates); or
- (c) Pallets or other handling devices.

Cells or batteries must be secured to prevent inadvertent movement, and the terminals must not support the weight of other superimposed elements.
Packagings need not meet the requirements of 4.1.1.3.

(3) For cells or batteries packed with equipment:
Packagings conforming to the requirements in paragraph (1) of this packing instruction, then placed with the equipment in an outer packaging; or
Packagings that completely enclose the cells or batteries, then placed with equipment in a packaging conforming to the requirements in paragraph (1) of this packing instruction.
The equipment must be secured against movement within the outer packaging.

Cont’d on next page
(4) For cells or batteries contained in equipment:
Strong outer packagings constructed of suitable material, and of adequate strength and
design in relation to the packaging capacity and its intended use. They must be constructed in
such a manner as to prevent accidental operation during transport. Packagings need not meet
the requirements of 4.1.1.3.
Large equipment can be offered for transport unpackaged or on pallets when the cells or
batteries are afforded equivalent protection by the equipment in which they are contained.
Devices such as radio frequency identification (RFID) tags, watches and temperature loggers,
which are not capable of generating a dangerous evolution of heat, may be transported when
intentionally active in strong outer packagings. When active, these devices must meet defined
standards for electromagnetic radiation to ensure that the operation of the device does not
interfere with aircraft systems.

(5) For packaging containing both cells or batteries packed with equipment and contained in
equipment:
(a) For cells and batteries, packagings that completely enclose the cells or batteries, then
placed with equipment in a packaging conforming to the requirements in paragraph (1)
of this packing instruction; or
(b) Packagings conforming to the requirements in paragraph (1) of this packing instruction,
then placed with the equipment in a strong outer packaging constructed of suitable
material, and of adequate strength and design in relation to the packaging capacity and
its intended use. The outer packaging shall be constructed in such a manner as to
prevent accidental operation during transport and need not meet the requirements of
4.1.1.3.
The equipment shall be secured against movement within the outer packaging.
Devices such as radio frequency identification (RFID) tags, watches and temperature loggers,
which are not capable of generating a dangerous evolution of heat, may be transported when
intentionally active in strong outer packagings. When active, these devices shall meet defined
standards for electromagnetic radiation to ensure that the operation of the devices does not
interfere with aircraft systems.

Additional requirement: Batteries must be protected against short circuit.
This instruction applies to UN 3245.

The following packagings are authorised:

1. Packagings meeting the provisions of 4.1.1.1, 4.1.1.2, 4.1.1.4, 4.1.1.8, and 4.1.3 and so designed that they meet the construction requirements of 6.1.4. Outer packagings constructed of suitable material, and of adequate strength and design in relation to the packaging capacity and its intended use, must be used. Where this packing instruction is used for the transport of inner packagings of combination packagings the packaging must be designed and constructed to prevent inadvertent discharge during normal conditions of transport.

2. Packagings, which need not conform to the packaging test requirements of Part 6, but conforming to the following:
 (a) An inner packaging comprising:
 (i) primary receptacle(s) and a secondary packaging, the primary receptacle(s) or the secondary packaging must be leakproof for liquids or siftproof for solids;
 (ii) for liquids, absorbent material placed between the primary receptacle(s) and the secondary packaging. The absorbent material must be in a quantity sufficient to absorb the entire contents of the primary receptacle(s) so that any release of the liquid substance will not compromise the integrity of the cushioning material or of the outer packaging;
 (iii) if multiple fragile primary receptacles are placed in a single secondary packaging they must be individually wrapped or separated to prevent contact between them;
 (b) An outer packaging must be strong enough for its capacity, mass and intended use, and with a smallest external dimension of at least 100 mm.

For transport, the mark illustrated below must be displayed on the external surface of the outer packaging on a background of a contrasting colour and must be clearly visible and legible. The mark must be in the form of a square set at an angle of 45° (diamond-shaped) with each side having a length of at least 50 mm; the width of the line must be at least 2 mm and the letters and numbers must be at least 6 mm high.

Additional requirement:

Ice, dry ice and liquid nitrogen

When dry ice or liquid nitrogen is used as a coolant, the requirements of 5.5.3 apply. When used, ice must be placed outside the secondary packagings or in the outer packaging or an overpack. Interior supports must be provided to secure the secondary packaging in the original position. If ice is used, the outside packaging or overpack must be leakproof.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

<table>
<thead>
<tr>
<th>P905</th>
<th>PACKING INSTRUCTION</th>
<th>P905</th>
</tr>
</thead>
<tbody>
<tr>
<td>This instruction applies to UN Nos. 3072 and 2990.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any suitable packaging is authorised, provided the general provisions of 4.1.1 and 4.1.3 are met, except that packagings need not conform to the requirements of Part 6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When the life saving appliances are constructed to incorporate or are contained in rigid outer weatherproof casings (such as for lifeboats), they may be transported unpackaged.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional requirements:

1. All dangerous substances and articles contained as equipment within the appliances must be secured to prevent inadvertent movement and in addition:
 1. Signal devices of Class 1 must be packed in plastics or fibreboard inner packagings; and
 2. Gases (Division 2.2) must be contained in cylinders as specified by the competent authority, which may be connected to the appliance; and
 3. Electric storage batteries (Class 8) and lithium batteries (Class 9) must be disconnected or electrically isolated and secured to prevent any spillage of liquid; and
 4. Small quantities of other dangerous substances (for example in Class 3 or Divisions 4.1 and 5.2) must be packed in strong inner packagings.

2. Preparation for transport and packaging must include provisions to prevent any accidental inflation of the appliance.

<table>
<thead>
<tr>
<th>P906</th>
<th>PACKING INSTRUCTION</th>
<th>P906</th>
</tr>
</thead>
<tbody>
<tr>
<td>This instruction applies to UN Nos. 2315, 3151, 3152 and 3432.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The following packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 are met:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. For liquids and solids containing or contaminated with PCBs or polyhalogenated biphenyls or polyhalogenated terphenyls or halogenated monomethylphenylmethanes: Packagings in accordance with P001 or P002, as appropriate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. For transformers and condensers and other articles:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Packagings in accordance with packing instructions P001 or P002. The articles must be secured with suitable cushioning material to prevent inadvertent movement during normal conditions of transport; or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Leakproof packagings which are capable of containing, in addition to the articles, at least 1.25 times the volume of the liquid PCBs, polyhalogenated biphenyls or polyhalogenated terphenyls or halogenated monomethylphenylmethanes present in them. There must be sufficient absorbent material in the packagings to absorb at least 1.1 times the volume of liquid which is contained in the articles. In general, transformers and condensers must be carried in leakproof metal packagings which are capable of holding, in addition to the transformers and condensers, at least 1.25 times the volume of the liquid present in them.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notwithstanding the above, liquids and solids not packaged in accordance with P001 and P002 and unpackaged transformers and condensers may be transported in cargo transport units fitted with a leakproof metal tray to a height of at least 800 mm, containing sufficient inert absorbent material to absorb at least 1.1 times the volume of any free liquid.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional requirement:

Adequate provisions must be taken to seal the transformers and condensers to prevent leakage during normal conditions of transport.
P907 PACKING INSTRUCTION

This instruction applies to articles such as machinery, apparatus or devices of UN 3363

If the article is constructed and designed so that the receptacles containing the dangerous goods are afforded adequate protection, an outer packaging is not required. Dangerous goods in an article must otherwise be packed in outer packagings constructed of suitable material, and of adequate strength and design in relation to the packaging capacity and its intended use, and meeting the applicable requirements of 4.1.1.1.

Receptacles containing dangerous goods must conform to the general provisions in 4.1.1, except that 4.1.1.3, 4.1.1.4, 4.1.1.12 and 4.1.1.14 do not apply. For Division 2.2 gases, the inner cylinder or receptacle, its contents and filling ratio must be to the satisfaction of the competent authority of the country in which the cylinder or receptacle is filled.

In addition, the manner in which receptacles are contained within the article, must be such that under normal conditions of transport, damage to receptacles containing the dangerous goods is unlikely; and in the event of damage to receptacles containing solid or liquid dangerous goods, no leakage of the dangerous goods from the machinery or apparatus is possible (a leakproof liner may be used to satisfy this requirement). Receptacles containing dangerous goods must be so installed, secured or cushioned as to prevent their breakage or leakage and so as to control their movement within the article during normal conditions of transport. Cushioning material must not react dangerously with the content of the receptacles. Any leakage of the contents must not substantially impair the protective properties of the cushioning material.

P908 PACKING INSTRUCTION

This instruction applies to damaged or defective lithium ion cells and batteries and damaged or defective lithium metal cells and batteries, including those contained in equipment, of UN Nos. 3090, 3091, 3480 and 3481.

The following packagings are authorized provided the general provisions of 4.1.1 and 4.1.3 are met:

For cells and batteries and equipment containing cells and batteries:

- Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G)
- Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2)
- Jerricans (3A2, 3B2, 3H2)

Packagings must conform to the packing group II performance level.

1. Each damaged or defective cell or battery or equipment containing such cells or batteries must be individually packed in inner packaging and placed inside of an outer packaging. The inner packaging or outer packaging must be leak-proof to prevent the potential release of electrolyte.

2. Each inner packaging must be surrounded by sufficient non-combustible and electrically non-conductive thermal insulation material to protect against a dangerous evolution of heat.

3. Sealed packagings must be fitted with a venting device when appropriate.

4. Appropriate measures must be taken to minimize the effects of vibrations and shocks, prevent movement of the cells or batteries within the package that may lead to further damage and a dangerous condition during transport. Cushioning material that is non-combustible and electrically non-conductive may also be used to meet this requirement.

5. Non combustibility must be assessed according to a standard recognized in the country where the packaging is designed or manufactured.

For leaking cells or batteries, sufficient inert absorbent material must be added to the inner or outer packaging to absorb any release of electrolyte.

A cell or battery with a net mass of more than 30 kg must be limited to one cell or battery per outer packaging.

Additional requirements:

Cells or batteries must be protected against short circuit.
This packing instruction applies to UN Nos. 3090, 3091, 3480 and 3481 transported for disposal or recycling, either packed together with or packed without non-lithium batteries:

<table>
<thead>
<tr>
<th>P909</th>
<th>PACKING INSTRUCTION</th>
<th>P909</th>
</tr>
</thead>
</table>

(1) Cells and batteries must be packed in accordance with the following:
 - (a) The following packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3, are met: Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G); Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H2); and Jerricans (3A2, 3B2, 3H2).
 - (b) Packagings must conform to the packing group II performance level.
 - (c) Metal packagings must be fitted with an electrically non-conductive lining material (e.g., plastics) of adequate strength for the intended use.

(2) However, lithium ion cells with a Watt-hour rating of not more than 20 Wh, lithium ion batteries with a Watt-hour rating of not more than 100 Wh, lithium metal cells with a lithium content of not more than 1 g and lithium metal batteries with an aggregate lithium content of not more than 2 g may be packed in accordance with the following:
 - (a) In strong outer packaging up to 30 kg gross mass meeting the general provisions of 4.1.1, except 4.1.1.3, and 4.1.3.
 - (b) Metal packagings must be fitted with an electrically non-conductive lining material (e.g., plastics) of adequate strength for the intended use.

(3) For cells or batteries contained in equipment, strong outer packagings constructed of suitable material, and of adequate strength and design in relation to the packaging capacity and its intended use, may be used. Packagings need not meet the requirements of 4.1.1.3. Equipment may also be offered for transport unpackaged or on pallets when the cells or batteries are afforded equivalent protection by the equipment in which they are contained.

(4) In addition, for cells or batteries with a gross mass of 12 kg or more employing a strong, impact resistant outer casing, strong outer packagings constructed of suitable material and of adequate strength and design in relation to the packagings capacity and its intended use, may be used. Packagings need not meet the requirements of 4.1.1.3.

Additional requirements:
1. Cells and batteries must be designed or packed to prevent short circuits and the dangerous evolution of heat.
2. Protection against short circuits and the dangerous evolution of heat includes, but is not limited to,
 - individual protection of the battery terminals,
 - inner packaging to prevent contact between cells and batteries,
 - batteries with recessed terminals designed to protect against short circuits, or
 - the use of a electrically non-conductive and non-combustible cushioning material to fill empty space between the cells or batteries in the packaging.
3. Cells and batteries must be secured within the outer packaging to prevent excessive movement during transport (e.g. by using a non-combustible and electrically non-conductive cushioning material or through the use of a tightly closed plastics bag).
This instruction applies to UN Nos. 3090, 3091, 3480 and 3481 production runs consisting of not more than 100 cells or batteries and to pre-production prototypes of cells or batteries when these prototypes are transported for testing.

The following packagings are authorized provided that the general provisions of 4.1.1 and 4.1.3 are met:

1. For cells and batteries, including when packed with equipment:
 - Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
 - Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
 - Jerricans (3A2, 3B2, 3H2).

Packagings shall conform to the packing group II performance level and shall meet the following requirements:

 a. Batteries and cells, including equipment, of different sizes, shapes or masses shall be packaged in an outer packaging of a tested design type listed above provided the total gross mass of the package does not exceed the gross mass for which the design type has been tested;
 b. Each cell or battery shall be individually packed in an inner packaging and placed inside an outer packaging;
 c. Each inner packaging shall be completely surrounded by sufficient non-combustible and electrically non-conductive thermal insulation material to protect against a dangerous evolution of heat;
 d. Appropriate measures shall be taken to minimize the effects of vibration and shocks and prevent movement of the cells or batteries within the package that may lead to damage and a dangerous condition during transport. Cushioning material that is non-combustible and electrically non-conductive may be used to meet this requirement;
 e. Non-combustibility shall be assessed according to a standard recognized in the country where the packaging is designed or manufactured;
 f. A cell or battery with a net mass of more than 30 kg shall be limited to one cell or battery per outer packaging.

2. For cells and batteries contained in equipment:
 - Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);
 - Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);
 - Jerricans (3A2, 3B2, 3H2).

Packagings shall conform to the packing group II performance level and shall meet the following requirements:

 a. Equipment of different sizes, shapes or masses shall be packaged in an outer packaging of a tested design type listed above provided the total gross mass of the package does not exceed the gross mass for which the design type has been tested;
 b. The equipment shall be constructed or packaged in such a manner as to prevent accidental operation during transport;
 c. Appropriate measures shall be taken to minimize the effects of vibration and shocks and prevent movement of the equipment within the package that may lead to damage and a dangerous condition during transport. When cushioning material is used to meet this requirement it shall be non-combustible and electrically non-conductive; and
 d. Non-combustibility shall be assessed according to a standard recognized in the country where the packaging is designed or manufactured.

3. The equipment or the batteries may be transported unpackaged under conditions specified by the competent authority. Additional conditions that may be considered in the approval process include, but are not limited to:
 a. The equipment or the battery shall be strong enough to withstand the shocks and loadings normally encountered during transport, including trans-shipment between cargo transport units and between cargo transport units and warehouses as well as any removal from a pallet for subsequent manual or mechanical handling; and
 b. The equipment or the battery shall be fixed in cradles or crates or other handling devices in such a way that it will not become loose during normal conditions of transport.

Cont’d on next page
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

<table>
<thead>
<tr>
<th>PACKING INSTRUCTION (Cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P910 Additional requirements</td>
</tr>
<tr>
<td>The cells and batteries shall be protected against short circuit; Protection against short circuits includes, but is not limited to,</td>
</tr>
<tr>
<td>-individual protection of the battery terminals,</td>
</tr>
<tr>
<td>-inner packaging to prevent contact between cells and batteries,</td>
</tr>
<tr>
<td>-batteries with recessed terminals designed to protect against short circuits, or</td>
</tr>
<tr>
<td>-the use of an electrically non-conductive and non-combustible cushioning material to fill empty space between the cells or batteries in the packaging.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PACKING INSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>P911 This instruction applies to damaged or defective cells and batteries of UN Nos. 3090, 3091, 3480 and 3481 liable to rapidly disassemble, dangerously react, produce a flame or a dangerous evolution of heat or a dangerous emission of toxic, corrosive or flammable gases or vapours under normal conditions of transport.</td>
</tr>
<tr>
<td>The following packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met:</td>
</tr>
<tr>
<td>For cells and batteries and equipment containing cells and batteries:</td>
</tr>
<tr>
<td>Drums (1A2, 1B2, 1N2, 1H2, 1D, 1G);</td>
</tr>
<tr>
<td>Boxes (4A, 4B, 4N, 4C1, 4C2, 4D, 4F, 4G, 4H1, 4H2);</td>
</tr>
<tr>
<td>Jerricans (3A2, 3B2, 3H2)</td>
</tr>
<tr>
<td>The packagings shall conform to the packing group I performance level.</td>
</tr>
<tr>
<td>(1) The packaging must be capable of meeting the following additional performance requirements in case of rapid disassembly, dangerous reaction, production of a flame or a dangerous evolution of heat or a dangerous emission of toxic, corrosive or flammable gases or vapours of the cells or batteries:</td>
</tr>
<tr>
<td>(a) The outside surface temperature of the completed package shall not have a temperature of more than 100°C. A momentary spike in temperature up to 200°C is acceptable;</td>
</tr>
<tr>
<td>(b) No flame shall occur outside the package</td>
</tr>
<tr>
<td>(c) No projectiles shall exit the package;</td>
</tr>
<tr>
<td>(d) The structural integrity of the package shall be maintained;</td>
</tr>
<tr>
<td>(e) The packagings shall have a gas management system (e.g. filter system, air circulation, containment for gas, gas tight packaging etc.), as appropriate.</td>
</tr>
<tr>
<td>(2) The additional packaging performance requirements shall be verified by a test as specified by the competent authority.</td>
</tr>
<tr>
<td>A verification report shall be available on request. As a minimum requirement, the cell or battery name, the cell or battery number, the mass, type, energy content of the cells or batteries, the packaging identification and the test data according to the verification method as specified by the competent authority shall be listed in the verification report.</td>
</tr>
<tr>
<td>(3) When dry ice or liquid nitrogen is used as a coolant, the requirements of section 5.5.3 shall apply. The inner packaging and outer packaging shall maintain their integrity at the temperature of the refrigerant used as well as the temperatures and the pressures which could result if refrigeration were lost.</td>
</tr>
<tr>
<td>Additional requirement:</td>
</tr>
<tr>
<td>Cells or batteries must be protected against short circuit.</td>
</tr>
</tbody>
</table>

Cont’d on next page
Table note:
* The following criteria, as relevant, may be considered to assess the performance of the packaging:

(a) The assessment shall be done under a quality management system (as described e.g. in section 2.9.4 (e)) allowing for the traceability of tests results, reference data and characterization models used;

(b) The list of hazards expected in case of thermal runaway for the cell or battery type, in the condition it is transported (e.g. usage of an inner packaging, state of charge (SOC), use of sufficient non-combustible, electrically non-conductive and nonabsorbent cushioning material etc.), shall be clearly identified and quantified; the reference list of possible hazards for lithium cells or batteries (rapidly disassemble, dangerously react, produce a flame or a dangerous evolution of heat or a dangerous emission of toxic, corrosive or flammable gases or vapours) can be used for this purpose. The quantification of these hazards shall rely on available scientific literature;

(c) The mitigating effects of the packaging shall be identified and characterized, based on the nature of the protections provided and the construction material properties. A list of technical characteristics and drawings shall be used to support this assessment (Density [kg m\(^{-3}\)], specific heat capacity [J kg\(^{-1}\) K\(^{-1}\)], heating value [kJ kg\(^{-1}\)], thermal conductivity [W m\(^{-1}\) K\(^{-1}\)], melting temperature and flammability temperature [K], heat transfer coefficient of the outer packaging [W m\(^{-2}\) K\(^{-1}\)], …);

(d) The test and any supporting calculations shall assess the result of a thermal run-away of the cell or battery inside the packaging in the normal conditions of transport;

(e) In case the SOC of the cell or battery is not known, the assessment used, shall be done with the highest possible SOC corresponding to the cell or battery use conditions;

(f) The surrounding conditions in which the packaging may be used and transported shall be described (including for possible consequences of gas or smoke emissions on the environment, such as ventilation or other methods) according to the gas management system of the packaging;

(g) The tests or the model calculation shall consider the worst case scenario for the thermal runaway triggering and propagation inside the cell or battery: this scenario includes the worst possible failure in the normal transport condition, the maximum heat and flame emissions for the possible propagation of the reaction;

(h) These scenarios shall be assessed over a period long enough to allow all possible consequences to occur (e.g. 24 hours).
4.1.4.2: Packing instructions concerning the use of IBCs

<table>
<thead>
<tr>
<th>IBC01</th>
<th>PACKING INSTRUCTION</th>
<th>IBC01</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following IBCs are authorised, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 are met:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal (31A, 31B and 31N).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBC02</th>
<th>PACKING INSTRUCTION</th>
<th>IBC02</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following IBCs are authorised, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 are met:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Metal (31A, 31B and 31N);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Rigid plastics (31H1 and 31H2);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Composite (31HZ1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special packing provisions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5 For UN Nos. 1791, 2014, 2984 and 3149, IBCs must be provided with a device to allow venting during transport. The inlet to the venting device must be sited in the vapour space of the IBC under maximum filling conditions during transport.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B7 For UN Nos. 1222 and 1865, IBCs with a capacity greater than 450 litres are not permitted due to the substance's potential for explosion when transported in large volumes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8 The pure form of this substance must not be transported in IBCs since it is known to have a vapour pressure of more than 110 kPa at 50 °C or 130 kPa at 55 °C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B15 For UN 2031 with more than 55% nitric acid, the permitted use of rigid plastics IBCs and of composite IBCs with a rigid plastics inner receptacle must not exceed two years from their date of manufacture.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B16 For UN 3375, IBCs of type 31A and 31N are not allowed without competent authority approval.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBC03</th>
<th>PACKING INSTRUCTION</th>
<th>IBC03</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following IBCs are authorised, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 are met:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Metal (31A, 31B and 31N);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Rigid plastics (31H1 and 31H2);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Composite (31HZ1 and 31HA2, 31HB2, 31HN2, 31HD2 and 31HH2).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special packing provisions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B8 The pure form of this substance must not be transported in IBCs since it is known to have a vapour pressure of more than 110 kPa at 50 °C or 130 kPa at 55 °C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B11 Notwithstanding the provisions of 4.1.1.10, UN 2672 ammonia solution in concentrations not exceeding 25% may be transported in rigid or composite plastics IBCs (31H1, 31H2 and 31HZ1).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B19 For UN Nos. 3532 and 3534, IBCs must be designed and constructed to permit the release of gas or vapour to prevent a build-up of pressure that could rupture the IBCs in the event of loss of stabilization.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBC04</td>
<td>PACKING INSTRUCTION</td>
<td>IBC04</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>The following IBCs are authorised, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 are met: Metal (11A, 11B, 11N, 21A, 21B and 21N, 31A, 31B and 31N).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special packing provision:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1 For packing group I substances, IBCs must be transported in closed cargo transport units.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBC05</th>
<th>PACKING INSTRUCTION</th>
<th>IBC05</th>
</tr>
</thead>
</table>
| The following IBCs are authorised, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 are met:
(1) Metal (11A, 11B, 11N, 21A, 21B and 21N, 31A, 31B and 31N);
(2) Rigid plastics (11H1, 11H2, 21H1 and 21H2, 31H1 and 31H2);
(3) Composite (11HZ1 and 21HZ1 and 31HZ1). | | |
| Special packing provision: | | |
| **B1** For packing group I substances, IBCs must be transported in closed cargo transport units. | | |
| **B2** For solid substances in IBCs other than metal or rigid plastics IBCs, the IBCs must be transported in closed cargo transport units. | | |

<table>
<thead>
<tr>
<th>IBC06</th>
<th>PACKING INSTRUCTION</th>
<th>IBC06</th>
</tr>
</thead>
</table>
| The following IBCs are authorised, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 are met:
(1) Metal (11A, 11B, 11N, 21A, 21B and 21N, 31A, 31B and 31N);
(2) Rigid plastics (11H1, 11H2, 21H1 and 21H2, 31H1 and 31H2);
(3) Composite (11HZ1, 11HZ2 and 21HZ2, 31HZ1). | | |
| Additional requirement: | | |
| Where the solid may become liquid during transport see 4.1.3.4. | | |
| Special packing provision: | | |
| **B1** For packing group I substances, IBCs must be transported in closed cargo transport units. | | |
| **B2** For solid substances in IBCs other than metal or rigid plastics IBCs, the IBCs must be transported in closed cargo transport units. | | |
| **B12** For UN 2907, IBCs must meet the packing group II performance level. IBCs meeting the test criteria of packing group I must not be used. | | |
IBC07 PACKING INSTRUCTION

The following IBCs are authorised, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 are met:

1. Metal (11A, 11B, 11N, 21A, 21B and 21N, 31A, 31B and 31N);
2. Rigid plastics (11H1, 11H2, 21H1 and 21H2, 31H1 and 31H2);
3. Composite (11HZ1, 11HZ2 and 21HZ2, 31HZ1).

Additional requirement:

1. Where the solid may become liquid during transport see 4.1.3.4.
2. Liners of wooden IBCs must be silt-proof.

Special packing provision:

- **B1** For packing group I substances, IBCs must be transported in closed cargo transport units.
- **B2** For solid substances in IBCs other than metal or rigid plastics IBCs, the IBCs must be transported in closed cargo transport units.
- **B18** For UN Nos. 3531 and 3533, IBCs must be designed and constructed to permit the release of gas or vapour to prevent a build-up of pressure that could rupture the IBCs in the event of loss of stabilization.

IBC08 PACKING INSTRUCTION

The following IBCs are authorised, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 are met:

1. Metal (11A, 11B, 11N, 21A, 21B and 21N, 31A, 31B and 31N);
2. Rigid plastics (11H1, 11H2, 21H1 and 21H2, 31H1 and 31H2);
3. Composite (11HZ1, 11HZ2 and 21HZ2, 31HZ1).
4. Fibreboard (11G);
5. Wooden (11C, 11D and 11F);
6. Flexible (13H1, 13H2, 13H3, 13H4, 13H5, 13L1, 13L2, 13L3, 13L4, 13M1 or 13M2).

Additional requirement:

Where the solid may become liquid during transport see 4.1.3.4.

Special packing provisions:

- **B2** For solid substances in IBCs other than metal or rigid plastics IBCs, the IBCs must be transported in closed cargo transport units.
- **B3** Flexible IBCs must be silt-proof and water resistant or must be fitted with a silt-proof and water resistant liner.
- **B4** Flexible, fibreboard or wooden IBCs must be silt-proof and water resistant or must be fitted with a silt-proof and water resistant liner.
- **B6** For UN Nos. 1327, 1363, 1364, 1365, 1386, 1408, 1841, 2211, 2217, 2793 and 3314, IBCs are not required to meet the IBC testing requirements of Chapter 6.5.
- **B13** For UN Nos. 1748, 2208, 2880, 3485, 3486 and 3487, transport by sea in IBCs is prohibited.

IBC99 PACKING INSTRUCTION

Only IBCs which are determined to be suitable for these goods by the competent authority may be used (see 4.1.3.7). A copy of the competent authority determination must accompany each consignment or the transport document must include an indication that the packaging was authorised by the competent authority.
IBC100 PACKING INSTRUCTION

This instruction applies to UN Nos. 0082, 0222, 0241, 0331 and 0332.

The following IBCs are authorised, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 and special provisions of 4.1.5 are met:

2. Flexible (13H2, 13H3, 13H4, 13L2, 13L3, 13L4 and 13M2);
3. Rigid plastics (11H1, 11H2, 21H1, 21H2, 31H1, and 31H2);
4. Composite (11HZ1, 11HZ2, 21HZ1, 21HZ2, 31HZ1 and 31HZ2).

Additional requirements:
1. IBCs must only be used for free flowing substances.
2. Flexible IBCs must only be used for solids.

Special packing provisions:

- **B2** For UN No. 0222 in IBCs other than metal or rigid plastics IBCs, the IBCs must be transported in closed cargo transport units.
- **B3** Flexible IBCs must be silt-proof and water resistant or must be fitted with a silt-proof and water resistant liner. For UN No. 0222, flexible IBCs must be silt-proof and water resistant or must be fitted with a silt-proof and water resistant liner.
- **B9** For UN 0082, this packing instruction may only be used when the substances are mixtures of ammonium nitrate or other inorganic nitrates with other combustible substances which are not explosive ingredients. Such explosives must not contain nitroglycerin, similar liquid organic nitrates, or chlorates. Metal IBCs are not authorised.
- **B10** For UN 0241, this packing instruction may only be used for substances which consist of water as an essential ingredient and high proportions of ammonium nitrate or other oxidising substances some or all of which are in solution. The other constituents may include hydrocarbons or aluminium powder, but must not include nitro-derivatives such as trinitrotoluene. Metal IBCs are not authorised.
- **B17** For UN No. 0222, metal IBCs are not authorised.
This instruction applies to organic peroxides and self-reactive substances of type F.

The IBCs listed below are authorised for the formulations listed, provided the general provisions of 4.1.1, 4.1.2 and 4.1.3 and special provisions of 4.1.7.2 are met. The formulations listed below may also be transported packed in accordance with packing method OP8 of packing instruction P520 of 4.1.4.1, with the same control and emergency temperatures, if applicable.

For formulations not listed below, only IBCs which are determined to be suitable by the competent authority may be used (see 4.1.7.2.2).

<table>
<thead>
<tr>
<th>UN No.</th>
<th>Organic peroxide</th>
<th>Type of IBC</th>
<th>Maximum quantity (litres)</th>
<th>Control temperature</th>
<th>Emergency temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>3109</td>
<td>ORGANIC PEROXIDE, TYPE F, LIQUID</td>
<td>tert-Butyl cumyl peroxide</td>
<td>31HA1</td>
<td>1000</td>
<td>31A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tert-Butyl hydroperoxide, not more than 72% with water</td>
<td>31A</td>
<td>1250</td>
<td>31HA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tert-Butyl peroxyacetate, not more than 32% in diluent type A</td>
<td>31A</td>
<td>1250</td>
<td>31HA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tert-Butyl peroxybenzoate, not more than 32% in diluent type A</td>
<td>31A</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tert-Butyl peroxy-3,5,5-trimethylhexanoate, not more than 37% in diluent type A</td>
<td>31A</td>
<td>1250</td>
<td>31HA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cumyl hydroperoxide, not more than 90% in diluent type A</td>
<td>31HA1</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane, not more than 52% in diluent type A</td>
<td>31HA1</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibenzoyl peroxide, not more than 42% as a stable dispersion</td>
<td>31H1</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di-tert-butyl peroxide, not more than 52% in diluent type A</td>
<td>31A</td>
<td>1250</td>
<td>31HA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1-Di-(tert-butylperoxy) cyclohexane, not more than 42% in diluent type A</td>
<td>31H1</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1-Di-(tert-butylperoxy) cyclohexane, not more than 32% in diluent type A</td>
<td>31A</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dilauroyl peroxide, not more than 42%, stable dispersion, in water</td>
<td>31HA1</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isopropyl cumyl hydroperoxide, not more than 72% in diluent type A</td>
<td>31HA1</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-Menthyl hydroperoxide, not more than 72% in diluent type A</td>
<td>31HA1</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peroxyacetic acid, stabilised, not more than 17%</td>
<td>31H1</td>
<td>1500</td>
<td>31HA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,6,9-Triethyl-3,6,9-trimethyl-1,4,7-triperoxonane not more than 27% in diluent type A</td>
<td>31HA1</td>
<td>1000</td>
<td>31H2</td>
</tr>
</tbody>
</table>

Cont’d on next page
PACKING INSTRUCTION (cont.)

<table>
<thead>
<tr>
<th>IBC520</th>
<th>ORGANIC PEROXIDE, TYPE F, SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>3110</td>
<td>Dicumyl peroxide</td>
</tr>
<tr>
<td></td>
<td>31A</td>
</tr>
<tr>
<td></td>
<td>31H</td>
</tr>
<tr>
<td></td>
<td>31HA1</td>
</tr>
<tr>
<td></td>
<td>2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBC520</th>
<th>ORGANIC PEROXIDE, TYPE F, LIQUID, TEMPERATURE CONTROLLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>3119</td>
<td>tert-Amyl peroxy-2-ethylhexanoate, not more than 62% in diluent type A</td>
</tr>
<tr>
<td></td>
<td>31HA1 1000 +15 °C +20 °C</td>
</tr>
<tr>
<td></td>
<td>tert-Amyl peroxypivalate, not more than 32% in diluent type A</td>
</tr>
<tr>
<td></td>
<td>31A 1250 +10 °C +15 °C</td>
</tr>
<tr>
<td></td>
<td>tert-Butyl peroxy-2-ethylhexanoate, not more than 32% in diluent type B</td>
</tr>
<tr>
<td></td>
<td>31HA1 1000 +30 °C +35 °C</td>
</tr>
<tr>
<td></td>
<td>31A 1250 +30 °C +35 °C</td>
</tr>
<tr>
<td></td>
<td>tert-Butyl peroxyneodecanoate, not more than 32% in diluent type A</td>
</tr>
<tr>
<td></td>
<td>31A 1250 0 °C +10 °C</td>
</tr>
<tr>
<td></td>
<td>tert-Amyl peroxypivalate, not more than 42% as a stable dispersion in water</td>
</tr>
<tr>
<td></td>
<td>31HA1 1 000 0 °C +10 °C</td>
</tr>
<tr>
<td></td>
<td>tert-Butyl peroxypivalate, not more than 42% in a diluent type A</td>
</tr>
<tr>
<td></td>
<td>31HA1 1 000 +10 °C +15 °C</td>
</tr>
<tr>
<td></td>
<td>31A 1250 +10 °C +15 °C</td>
</tr>
<tr>
<td></td>
<td>tert-Butyl peroxyneodecanoate, not more than 52% stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31A 1250 - 5 °C +5 °C</td>
</tr>
<tr>
<td></td>
<td>tert-Butyl peroxypivalate, not more than 27% in diluent type B</td>
</tr>
<tr>
<td></td>
<td>31HA1 1000 +10 °C +15 °C</td>
</tr>
<tr>
<td></td>
<td>31A 1250 +10 °C +15 °C</td>
</tr>
<tr>
<td></td>
<td>Cumyl peroxyneodecanoate, not more than 52%, stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31A 1250 - 15 °C - 5 °C</td>
</tr>
<tr>
<td></td>
<td>Di-(4-tert-butylcyclohexyl) peroxycarbonate, not more than 42%, stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31HA1 1000 +30 °C +35 °C</td>
</tr>
<tr>
<td></td>
<td>Dicetyl peroxycarbonate, not more than 42%, stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31HA1 1000 +30 °C +35 °C</td>
</tr>
<tr>
<td></td>
<td>Dicyclohexylperoxycarbonate, not more than 42% as a stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31A 1250 + 10 °C + 15 °C</td>
</tr>
<tr>
<td></td>
<td>Di-(2-ethylhexyl) peroxycarbonate, not more than 62%, stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31A 1250 - 20 °C - 10 °C</td>
</tr>
<tr>
<td></td>
<td>31HA1 1000 - 20 °C - 10 °C</td>
</tr>
<tr>
<td></td>
<td>Dimyristyl peroxycarbonate, not more than 42%, stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31HA1 1000 +15 °C +20 °C</td>
</tr>
<tr>
<td></td>
<td>Di-(2-neodecanoylperoxyisopropyl)benzene, not more than 42%, stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31A 1250 -15 °C -5 °C</td>
</tr>
<tr>
<td></td>
<td>Di-(3,5,5-trimethylhexanoyl) peroxide, not more than 52% in diluent type A</td>
</tr>
<tr>
<td></td>
<td>31HA1 1000 +10 °C +15 °C</td>
</tr>
<tr>
<td></td>
<td>31A 1250 +10 °C +15 °C</td>
</tr>
<tr>
<td></td>
<td>Di-(3,5,5-trimethylhexanoyl) peroxide, not more than 52%, stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31A 1250 +10 °C +15 °C</td>
</tr>
<tr>
<td></td>
<td>3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate, not more than 52%, stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31A 1250 -15 °C -5 °C</td>
</tr>
<tr>
<td></td>
<td>1,1,3,3-Tetramethylbutyl peroxyneodecanoate, not more than 52%, stable dispersion, in water</td>
</tr>
<tr>
<td></td>
<td>31HA1 1000 - 5 °C + 5 °C</td>
</tr>
<tr>
<td></td>
<td>31A 1250 - 5 °C + 5 °C</td>
</tr>
</tbody>
</table>

Cont’d on next page
<table>
<thead>
<tr>
<th>IBC520</th>
<th>PACKING INSTRUCTION (cont.)</th>
<th>IBC520</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,3,3-Tetramethylbutyl peroxo-2-ethylhexanoate, not more than 67%, in diluent type A</td>
<td>31HA1 1000</td>
<td>+15 °C +20 °C</td>
</tr>
<tr>
<td>Diisobutryl peroxide, not more than 28% as a stable dispersion in water</td>
<td>31HA1 31A 1000 1 250</td>
<td>-20 °C -20 °C -10 °C</td>
</tr>
<tr>
<td>Diisobutryl peroxide, not more than 42% as a stable dispersion in water</td>
<td>31HA1 31A 1000 1 250</td>
<td>-25 °C -25 °C -15 °C</td>
</tr>
</tbody>
</table>

3120 ORGANIC PEROXIDE, TYPE F, SOLID, TEMPERATURE CONTROLLED

Additional requirements:

1. IBCs must be provided with a device to allow venting during transport. The inlet to the pressure-relief device must be sited in the vapour space of the IBC under maximum filling conditions during transport.
2. To prevent explosive rupture of metal IBCs or composite IBCs with complete metal casing, the emergency-relief devices must be designed to vent all the decomposition products and vapours evolved during self-accelerating decomposition or during a period of not less than one hour of complete fire-engulfment as calculated by the formula in 4.2.1.13.8. The control and emergency temperatures specified in this packing instruction are based on a non-insulated IBC. When consigning an organic peroxide in an IBC in accordance with this instruction, it is the responsibility of the consignor to ensure that:
 (a) the pressure and emergency relief devices installed on the IBC are designed to take appropriate account of the self-accelerating decomposition of the organic peroxide and of fire-engulfment; and
 (b) when applicable, the control and emergency temperatures indicated are appropriate, taking into account the design (e.g. insulation) of the IBC to be used.

<table>
<thead>
<tr>
<th>IBC620</th>
<th>PACKING INSTRUCTION</th>
<th>IBC620</th>
</tr>
</thead>
<tbody>
<tr>
<td>This instruction applies to UN 3291.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The following IBCs are authorised, provided the general provisions of 4.1.1, except 4.1.1.15, 4.1.2 and 4.1.3 and the special provisions of 4.1.8 are met:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigid, leakproof IBCs conforming to the packing group II performance level.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional requirements:

1. There must be sufficient absorbent material to absorb the entire amount of liquid present in the IBC.
2. IBCs must be capable of retaining liquids.
3. IBCs intended to contain sharp objects such as broken glass and needles must be resistant to puncture.
Table 4.1.4.3: Packing instructions concerning the use of large packagings

PACKING INSTRUCTION (LIQUIDS)

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Large outer packagings</th>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>steel (50A)</td>
<td>Not allowed</td>
<td>Not allowed</td>
<td>Maximum capacity: 3 m³</td>
</tr>
<tr>
<td>10 litre</td>
<td>aluminium (50B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics</td>
<td>metal other than steel or aluminium (50N)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 litre</td>
<td>rigid plastics (50H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>natural wood (50C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 litre</td>
<td>plywood (50D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reconstituted wood (50F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rigid fibreboard (50G)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PACKING INSTRUCTION (SOLIDS)

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Large outer packagings</th>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>steel (50A)</td>
<td>Not allowed</td>
<td>Not allowed</td>
<td>Maximum capacity: 3 m³</td>
</tr>
<tr>
<td>10 kg</td>
<td>aluminium (50B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics</td>
<td>metal other than steel or aluminium (50N)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 kg</td>
<td>rigid plastics (50H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>natural wood (50C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 kg</td>
<td>plywood (50D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>flexible plastics (51H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 kg</td>
<td>rigid plastics (50H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre</td>
<td>natural wood (50C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 kg</td>
<td>plywood (50D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reconstituted wood (50F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rigid fibreboard (50G)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special packing provisions:
- L2 deleted
- L3 For UN Nos. 2208 and 3486, transport by sea in large packagings is prohibited.

Table notes:
- a. These packagings must not be used when the substances being transported may become liquid during transport.
- b. Packagings must be siftproof.
- c. To be used with flexible inner packagings only.
LP03
PACKING INSTRUCTION

This instruction applies to UN Nos. 3537, 3538, 3540, 3541, 3546, 3547 and 3548.

(1) The following large packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met: Rigid large packagings conforming to the packing group II performance level made of:
- steel (50A);
- aluminium (50B);
- metal other than steel or aluminium (50N);
- rigid plastics (50H);
- natural wood (50C);
- plywood (50D);
- reconstituted wood (50F);
- rigid fibreboard (50G).

(2) Additionally, the following conditions shall be met:

(a) Receptacles within articles containing liquids or solids shall be constructed of suitable materials and secured in the article in such a way that, under normal conditions of transport, they cannot break, be punctured or leak their contents into the article itself or the outer packaging;

(b) Receptacles containing liquids with closures shall be packed with their closures correctly oriented. The receptacles shall in addition conform to the internal pressure test provisions of 6.1.5.5;

(c) Receptacles that are liable to break or be punctured easily, such as those made of glass, porcelain or stoneware or of certain plastics materials shall be properly secured. Any leakage of the contents shall not substantially impair the protective properties of the article or of the outer packaging;

(d) Receptacles within articles containing gases shall meet the requirements of Section 4.1.6 and Chapter 6.2 as appropriate or be capable of providing an equivalent level of protection as packing instructions P200 or P208; and

(e) Where there is no receptacle within the article, the article shall fully enclose the dangerous substances and prevent their release under normal conditions of transport.

(3) Articles shall be packed to prevent movement and inadvertent operation during normal conditions of transport.

LP99
PACKING INSTRUCTION

Only large packagings which are determined to be suitable for these goods by the Competent Authority may be used (see 4.1.3.7). A copy of the competent authority determination must accompany each consignment or the transport document must include an indication that the packaging was authorised by the competent authority.
LP101 PACKING INSTRUCTION

The following large packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 and special provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Large packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not necessary</td>
<td>Not necessary</td>
<td>steel (50A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (50B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>metal other than steel or aluminium (50N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rigid plastics (50H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>natural wood (50C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (50D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reconstituted wood (50F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rigid fibreboard (50G)</td>
</tr>
</tbody>
</table>

Special packing provision:

L1 For UN Nos. 0006, 0009, 0010, 0015, 0016, 0018, 0019, 0034, 0035, 0038, 0039, 0048, 0056, 0137, 0138, 0168, 0169, 0171, 0181, 0182, 0183, 0186, 0221, 0243, 0244, 0245, 0246, 0254, 0280, 0281, 0286, 0287, 0297, 0299, 0300, 0301, 0303, 0321, 0328, 0329, 0344, 0345, 0346, 0347, 0362, 0363, 0370, 0412, 0424, 0425, 0434, 0435, 0436, 0437, 0438, 0451, 0488, 0502 and 0510:

Large and robust explosives articles, normally intended for military use, without their means of initiation or with their means of initiation containing at least two effective protective features, may be carried unpackaged. When such articles have propelling charges or are self-propelled, their ignition systems must be protected against stimuli encountered during normal conditions of transport. A negative result in Test Series 4 on an unpackaged article indicates that the article can be considered for transport unpackaged. Such unpackaged articles may be fixed to cradles or contained in crates or other suitable handling devices.

LP102 PACKING INSTRUCTION

The following large packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 and special provisions of 4.1.5 are met:

<table>
<thead>
<tr>
<th>Bags</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>water resistant</td>
<td>Not necessary</td>
<td>steel (50A)</td>
</tr>
<tr>
<td>Receptacles</td>
<td></td>
<td>aluminium (50B)</td>
</tr>
<tr>
<td>fibreboard</td>
<td></td>
<td>metal other than steel or aluminium (50N)</td>
</tr>
<tr>
<td>metal</td>
<td></td>
<td>rigid plastics (50H)</td>
</tr>
<tr>
<td>plastics</td>
<td></td>
<td>natural wood (50C)</td>
</tr>
<tr>
<td>wood</td>
<td></td>
<td>plywood (50D)</td>
</tr>
<tr>
<td>Sheets</td>
<td></td>
<td>reconstituted wood (50F)</td>
</tr>
<tr>
<td>fibreboard, corrugated</td>
<td></td>
<td>rigid fibreboard (50G)</td>
</tr>
<tr>
<td>Tubes</td>
<td>fibreboard</td>
<td></td>
</tr>
</tbody>
</table>
This instruction applies to UN 1950 and UN 2037.

The following large packagings are authorized for aerosols and gas cartridges, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Rigid large packagings conforming to the packing group II performance level, made of:
- steel (50A);
- aluminium (50B);
- metal other than steel or aluminium (50N);
- rigid plastics (50H);
- natural wood (50C);
- plywood (50D);
- reconstituted wood (50F);
- rigid fibreboard (50G).

Special packing provision L2 The large packagings shall be designed and constructed to prevent dangerous movement and inadvertent discharge during normal conditions of transport. For waste aerosols transported in accordance with special provision 327, the large packagings shall have a means of retaining any free liquid that might escape during transport, e.g. absorbent material.

For waste aerosols and waste gas cartridges carried in accordance with special provision 327, the large packagings shall be adequately ventilated to prevent the creation of dangerous atmospheres and the build-up of pressure.

LP621 PACKING INSTRUCTION LP621

This instruction applies to UN 3291.

The following large packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 are met:

(1) For clinical waste placed in inner packagings: Rigid, leakproof large packagings conforming to the requirements of Chapter 6.6 for solids, at the packing group II performance level, provided there is sufficient absorbent material to absorb the entire amount of liquid present and the large packaging is capable of retaining liquids.

(2) For packages containing larger quantities of liquid: Large rigid packagings conforming to the requirements of Chapter 6.6, at the packing group II performance level, for liquids.

Additional requirement:

Large packagings intended to contain sharp objects such as broken glass and needles must be resistant to puncture and retain liquids under the performance test conditions in Chapter 6.6.
PACKING INSTRUCTION

This instruction applies to waste of UN 3549 transported for disposal.

The following packagings are authorized provided the general provisions of 4.1.1 and 4.1.3 are met:

<table>
<thead>
<tr>
<th>Inner packagings</th>
<th>Intermediate packagings</th>
<th>Outer packagings</th>
</tr>
</thead>
<tbody>
<tr>
<td>metal plastics</td>
<td>metal plastics</td>
<td>steel (50A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aluminium (50B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plywood (50D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fibreboard (50G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other metal (50N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>plastics (50H)</td>
</tr>
</tbody>
</table>

The outer packaging shall conform to the packing group I performance level for solids.

Additional requirements:

1. Fragile articles must be contained in either a rigid inner packaging or a rigid intermediate packagings.
2. Inner packagings containing sharps objects such as broken glass and needles must be rigid and resistant to puncture.
3. The inner packaging, the intermediate packaging and the outer packaging must be capable of retaining liquids. Outer packagings that are not capable of retaining liquids by design must be fitted with a liner or suitable measure of retaining liquids.
4. The inner packaging and/or the intermediate packaging may be flexible. When flexible packagings are used, they must be capable of passing the impact resistance test to at least 165g according to ISO 7765-1:1988 “Plastics film and sheeting – Determination of impact resistance by the free-falling dart method – Part 1: Staircase methods” and the tear resistance test to at least 480g in both parallel and perpendicular planes with respect to the length of the bag in accordance with ISO 6383-2:1983 “Plastics – Film and sheeting – Determination of tear resistance – Part 2: Elmendorf method”. The maximum net mass of each flexible inner packaging must be 30kg.
5. Each flexible intermediate packaging must contain only one inner packaging.
6. Inner packagings containing a small amount of free liquid may be included in intermediate packaging provided that there is sufficient absorbent or solidifying material in the inner or intermediate packaging to absorb or solidify all the liquid content present. Suitable absorbent material which withstands the temperatures and vibrations liable to occur under normal conditions of transport must be used.
7. Intermediate packagings must be secured in outer packagings with suitable cushioning and/or absorbent material.
Packaging LP902

Packing Instruction

This instruction applies to UN 3268.

Packaged articles:

The following large packagings are authorised, provided the general provisions of 4.1.1 and 4.1.3 are met:

Rigid large packagings conforming to the packing group III performance level, made of:
- steel (50A);
- aluminium (50B);
- metal other than steel or aluminium (50N);
- rigid plastics (50H); natural wood (50C);
- plywood (50D);
- reconstituted wood (50F);
- rigid fibreboard (50G).

The packagings must be designed and constructed to prevent movement of the articles and inadvertent operation during normal conditions of transport.

Unpackaged articles:

The articles may also be transported unpackaged in dedicated handling devices, vehicles, containers or wagons when moved to, from, or between where they are manufactured and an assembly plant including intermediate handling locations.

Additional requirement:

Any pressure receptacle must be in accordance with the requirements of the competent authority for the substance(s) contained in the pressure receptacle(s).

Packaging LP903

Packing Instruction

This instruction applies to UN Nos. 3090, 3091, 3480 and 3481.

The following large packagings are authorised for a single battery, and for a single item of equipment containing batteries, provided that the general provisions of 4.1.1 and 4.1.3 are met:

Rigid large packagings conforming to the packing group II performance level, made of:
- steel (50A);
- aluminium (50B);
- metal other than steel or aluminium (50N);
- rigid plastics (50H);
- natural wood (50C); plywood (50D); reconstituted wood (50F);
- rigid fibreboard (50G).

The battery or the equipment shall be packed so that the battery or the equipment is protected against damage that may be caused by its movement or placement within the large packaging.

Additional requirement:

Batteries must be protected against short circuit.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

<table>
<thead>
<tr>
<th>LP904</th>
<th>PACKING INSTRUCTION</th>
<th>LP904</th>
</tr>
</thead>
<tbody>
<tr>
<td>This instruction applies to single damaged or defective batteries and to single items of equipment containing damaged or defective cells and batteries of UN Nos. 3090, 3091, 3480 and 3481.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The following large packagings are authorized for a single damaged or defective battery and for a single item of equipment containing damaged or defective cells and batteries, provided the general provisions of 4.1.1 and 4.1.3 are met.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For batteries and equipment containing cells and batteries:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigid large packagings conforming to the packing group II performance level, made of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel (50A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium (50B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metal other than steel or aluminium (50N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rigid plastics (50H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plywood (50D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. The damaged or defective battery or equipment containing such cells or batteries shall be individually packed in an inner packaging and placed inside of an outer packaging. The inner packaging or outer packaging must be leak-proof to prevent the potential release of electrolyte.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. The inner packaging must be surrounded by sufficient non-combustible and electrically non-conductive thermal insulation material to protect against a dangerous evolution of heat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Sealed packagings must be fitted with a venting device when appropriate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Appropriate measures must be taken to minimise the effects of vibrations and shocks, prevent movement of the battery or the equipment within the package that may lead to further damage and a dangerous condition during transport. Cushioning material that is non-combustible and electrically non-conductive may also be used to meet this requirement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Non combustibility must be assessed according to a standard recognised in the country where the packaging is designed or manufactured.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For leaking batteries and cells, sufficient inert absorbent material must be added to the inner or outer packaging to absorb any release of electrolyte.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional requirement:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batteries must be protected against short circuit.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This instruction applies to UN Nos. 3090, 3091, 3480 and 3481 production runs consisting of not more than 100 cells or batteries and to pre-production prototypes of cells or batteries when these prototypes are transported for testing.

The following large packagings are authorized for a single battery and for a single item of equipment containing cells or batteries, provided that the general provisions of 4.1.1 and 4.1.3 are met:

1. **For a single battery:**
 - Rigid large packagings conforming to the packing group II performance level, made of:
 - steel (50A);
 - aluminium (50B);
 - metal other than steel or aluminium (50N);
 - rigid plastics (50H); natural wood (50C); plywood (50D);
 - reconstituted wood (50F);
 - rigid fibreboard (50G).
 - Large packagings shall also meet the following requirements:
 - A battery of different size, shape or mass may be packed in an outer packaging of a tested design type listed above provided the total gross mass of the package does not exceed the gross mass for which the design type has been tested;
 - The battery shall be packed in an inner packaging and placed inside the outer packaging;
 - The inner packaging shall be completely surrounded by sufficient non-combustible and electrically non-conductive thermal insulation material to protect against a dangerous evolution of heat;
 - Appropriate measures shall be taken to minimize the effects of vibration and shocks and prevent movement of the battery within the package that may lead to damage and a dangerous condition during transport. When cushioning material is used to meet this requirement it shall be non-combustible and electrically non-conductive; and
 - Non-combustibility shall be assessed according to a standard recognized in the country where the large packaging is designed or manufactured.

2. **For a single item of equipment containing cells or batteries:**
 - Rigid large packagings conforming to the packing group II performance level, made of:
 - Steel (50A);
 - Aluminium (50B);
 - Metal other than steel or aluminium (50N);
 - Rigid plastics (50H);
 - Natural wood (50C);
 - Plywood (50D);
 - Reconstituted wood (50F);
 - Rigid fibreboard (50G).
 - Large packagings shall also meet the following requirements:
 - A single item of equipment of different size, shape or mass may be packed in an outer packaging of a tested design type listed above provided the total gross mass of the package does not exceed the gross mass for which the design type has been tested;
 - The equipment shall be constructed or packed in such a manner as to prevent accidental operation during transport;
 - Appropriate measures shall be taken to minimize the effects of vibration and shocks and prevent movement of the equipment within the package that may lead to damage and a dangerous condition during transport. When cushioning material is used to meet this requirement it shall be non-combustible and electrically non-conductive; and
 - Non-combustibility shall be assessed according to a standard recognized in the country where the large packaging is designed or manufactured.

Additional requirement:

Cells and batteries shall be protected against short circuit.
PACKING INSTRUCTION

This instruction applies to damaged or defective batteries of UN Nos. 3090, 3091, 3480 and 3481 liable to rapidly disassemble, dangerously react, produce a flame or a dangerous evolution of heat or a dangerous emission of toxic, corrosive or flammable gases or vapours under normal conditions of transport.

The following large packagings are authorized, provided that the general provisions of 4.1.1 and 4.1.3 are met:

For a single battery and for a single item of equipment containing batteries:

Rigid large packagings conforming to the packing group I performance level, made of:
- steel (50A);
- aluminium (50B);
- metal other than steel or aluminium (50N);
- rigid plastics (50H);
- plywood (50D);
- rigid fibreboard (50G)

1. The large packaging shall be capable of meeting the following additional performance requirements in case of rapid disassembly, dangerous reaction, production of a flame or a dangerous evolution of heat or a dangerous emission of toxic, corrosive or flammable gases or vapours of the battery:
 - (a) The outside surface temperature of the completed package shall not have a temperature of more than 100 °C. A momentary spike in temperature up to 200 °C is acceptable;
 - (b) No flame shall occur outside the package;
 - (c) No projectiles shall exit the package;
 - (d) The structural integrity of the package shall be maintained; and
 - (e) The large packagings shall have a gas management system (e.g. filter system, air circulation, containment for gas, gas tight packaging etc.), as appropriate.

2. The additional large packaging performance requirements shall be verified by a test as specified by the competent authority.
 A verification report shall be available on request. As a minimum requirement, the battery name, the battery number, the mass, type, energy content of the batteries, the large packaging identification and the test data according to the verification method as specified by the competent authority shall be listed in the verification report.

3. When dry ice or liquid nitrogen is used as a coolant, the requirements of section 5.5.3 shall apply.

Additional requirement:
Batteries shall be protected against short circuit.

The following criteria, as relevant, may be considered to assess the performance of the large packaging:

(a) The assessment shall be done under a quality management system (as described e.g. in section 2.9.4 allowing for the traceability of tests results, reference data and characterization models used);

(b) The list of hazards expected in case of thermal runaway for the battery type, in the condition it is transported (e.g. usage of an inner packaging, state of charge (SOC), use of sufficient non-combustible, electrically nonconductive and absorbent cushioning material etc.), shall be clearly identified and quantified; the reference list of possible hazards for lithium batteries (rapidly disassemble, dangerously react, produce a flame or a dangerous evolution of heat or a dangerous emission of toxic, corrosive or flammable gases or vapours) can be purpose. The quantification of these hazards shall rely on available scientific literature;

(c) The mitigating effects of the large packaging shall be identified and characterized, based on the nature of the protections provided and the construction material properties. A list of technical characteristics and drawings shall be used to support this assessment (Density [kg·m⁻³], specific heat capacity [J·kg⁻¹·K⁻¹], heating value [kJ·kg⁻¹], thermal conductivity [W·m⁻¹·K⁻¹], melting temperature and flammability temperature [K], heat transfer coefficient of the outer packaging [W·m⁻²·K⁻¹], …);

(d) The test and any supporting calculations shall assess the result of a thermal run-away of the battery inside the large packaging in the normal conditions of transport;

(e) In case the SOC of the battery is not known, the assessment used, shall be done with the highest possible SOC corresponding to the battery use conditions;

(f) The surrounding conditions in which the large packaging may be used and transported shall be described (including for possible consequences of gas or smoke emissions on the environment, such as ventilation or other methods) according to the gas management system of the large packaging;
(g) The tests or the model calculation shall consider the worst case scenario for the thermal runaway triggering and propagation inside the battery: this scenario includes the worst possible failure in the normal transport condition, the maximum heat and flame emissions for the possible propagation of the reaction;

(h) These scenarios shall be assessed over a period of time long enough to allow all possible consequences to occur (e.g. 24 hours).

4.1.5 SPECIAL PACKING PROVISIONS FOR GOODS OF CLASS 1

NOTE: These special provisions for Class 1 are included for information only.

4.1.5.1 The general provisions of section 4.1.1 must be met.

4.1.5.2 All packagings for Class 1 goods must be so designed and constructed that:

(a) They will protect the explosives, prevent them escaping and cause no increase in the risk of unintended ignition or initiation when subjected to normal conditions of transport including foreseeable changes in temperature, humidity and pressure; and

(b) The complete package can be handled safely in normal conditions of transport; and

(c) The packages will withstand any loading imposed on them by foreseeable stacking to which they will be subject during transport so that they do not add to the risk presented by the explosives, the containment function of the packagings is not harmed, and they are not distorted in a way or to an extent which will reduce their strength or cause instability of a stack.

4.1.5.3 All explosive substances and articles, as prepared for transport, must have been classified in accordance with the procedures detailed in 2.1.3.

4.1.5.4 Class 1 goods must be packed in accordance with the appropriate packing instruction shown in Column 8 of the Dangerous Goods List, as detailed in 4.1.4.

4.1.5.5 Unless otherwise specified in this Code, packagings, including IBCs and large packagings, must conform to the requirements of chapters 6.1, 6.5 or 6.6, as appropriate, and must meet their test requirements for packing group II.

4.1.5.6 The closure device of packagings containing liquid explosives must ensure a double protection against leakage.

4.1.5.7 The closure device of metal drums must include a suitable gasket; if a closure device includes a screw-thread, the ingress of explosive substances into the screw-thread must be prevented.

4.1.5.8 Packagings for water soluble substances must be water resistant. Packagings for desensitised or phlegmatised substances must be closed to prevent changes in concentration during transport.

4.1.5.9 When the packaging includes a double envelope filled with water which may freeze during transport, a sufficient quantity of an anti-freeze agent
must be added to the water to prevent freezing. Anti-freeze that could create a fire hazard because of its inherent flammability must not be used.

4.1.5.10 Nails, staples and other closure devices made of metal without protective covering must not penetrate to the inside of the outer packaging unless the inner packaging adequately protects the explosives against contact with the metal.

4.1.5.11 Inner packagings, fittings and cushioning materials and the placing of explosive substances or articles in packages must be accomplished in a manner which prevents the explosive substances or articles from becoming loose in the outer packaging under normal conditions of transport. Metallic components of articles must be prevented from making contact with metal packagings. Articles containing explosive substances not enclosed in an outer casing must be separated from each other in order to prevent friction and impact. Padding, trays, partitioning in the inner or outer packaging, mouldings or receptacles may be used for this purpose.

4.1.5.12 Packagings must be made of materials compatible with, and impermeable to, the explosives contained in the package, so that neither interaction between the explosives and the packaging materials, nor leakage, causes the explosive to become unsafe to transport, or the hazard division or compatibility group to change.

4.1.5.13 The ingress of explosive substances into the recesses of seamed metal packagings must be prevented.

4.1.5.14 Plastics packagings must not be liable to generate or accumulate sufficient static electricity so that a discharge could cause the packaged explosive substances or articles to initiate, ignite or function.

4.1.5.15 Large and robust explosives articles, normally intended for military use, without their means of initiation or with their means of initiation containing at least two effective protective features, may be carried unpackaged. When such articles have propelling charges or are self-propelled, their ignition systems must be protected against stimuli encountered during normal conditions of transport. A negative result in Test Series 4 on an unpackaged article indicates that the article can be considered for transport unpackaged. Such unpackaged articles may be fixed to cradles or contained in crates or other suitable handling, storage or launching devices in such a way that they will not become loose during normal conditions of transport.

Where such large explosive articles are as part of their operational safety and suitability tests subjected to test regimes that meet the intentions of UN21 and such tests have been successfully undertaken, the competent authority may approve such articles to be transported under the relevant Regulations.

4.1.5.16 Explosive substances must not be packed in inner or outer packagings where the differences in internal and external pressures, due to thermal or other effects, could cause an explosion or rupture of the package.

4.1.5.17 Whenever loose explosive substances or the explosive substance of an uncased or partly cased article may come into contact with the inner
4.1.5.18 Packing instruction P101 may be used for any explosive provided the package has been approved by a competent authority regardless of whether the packaging complies with the packing instruction assignment in the Dangerous Goods List.

4.1.6 SPECIAL PACKING PROVISIONS FOR GOODS OF CLASS 2

4.1.6.1 General requirements

4.1.6.1.1 This section provides general requirements applicable to the use of pressure receptacles for the transport of Class 2 gases and other dangerous goods in pressure receptacles (e.g. UN 1051 hydrogen cyanide, stabilised). Pressure receptacles must be constructed and closed so as to prevent any loss of contents which might be caused under normal conditions of transport, including by vibration, or by changes in temperature, humidity or pressure (resulting from change in altitude, for example).

4.1.6.1.2 Parts of pressure receptacles which are in direct contact with dangerous goods must not be affected or weakened by those dangerous goods and must not cause a dangerous effect (e.g. catalysing a reaction or reacting with the dangerous goods). The provisions of ISO 11114-1:2012 + Amd 1:2017 and ISO 11114-2:2013 must be met as applicable.

4.1.6.1.3 Pressure receptacles, including their closures, must be selected to contain a gas or a mixture of gases according to the requirements of 6.2.1.2 and the requirements of the specific packing instructions of 4.1.4.1. This section also applies to pressure receptacles which are elements of MEGCs.

4.1.6.1.4 Refillable pressure receptacles must not be filled with a gas or gas mixture different from that previously contained unless the necessary operations for change of gas service have been performed. The change of service for compressed and liquefied gases must be in accordance with ISO 11621:1997 or AS 2030.1, as applicable. In addition, a pressure receptacle that previously contained a Class 8 corrosive substance or a substance of another class with a corrosive subsidiary hazard must not be authorised for the transport of a Class 2 substance unless the necessary inspection and testing as specified in 6.2.1.6 have been performed.

4.1.6.1.5 Prior to filling, the filler must perform an inspection of the pressure receptacle and ensure that the pressure receptacle is authorised for the gas and, in case of a chemical under pressure, for the propellant, to be transported and that the provisions of this Code have been met. Shut-off valves must be closed after filling and remain closed during transport. The consignor must verify that the closures and equipment are not leaking.

4.1.6.1.6 Pressure receptacles must be filled according to the working pressures, filling ratios and provisions specified in the appropriate packing instruction.
for the specific substance being filled. Reactive gases and gas mixtures must be filled to a pressure such that if complete decomposition of the gas occurs, the working pressure of the pressure receptacle must not be exceeded. Bundles of cylinders must not be filled in excess of the lowest working pressure of any given cylinder in the bundle.

4.1.6.1.7 Pressure receptacles, including their closures, must conform to the design, construction, inspection and testing requirements detailed in Chapter 6.2. When outer packagings are prescribed, the pressure receptacles must be firmly secured therein. Unless otherwise specified in the detailed packing instructions, one or more inner packagings may be enclosed in an outer packaging.

4.1.6.1.8 Valves must be designed and constructed in such a way that they are inherently able to withstand damage without release of the contents or must be protected from damage which could cause inadvertent release of the contents of the pressure receptacle, by one of the following methods:

(a) Valves are placed inside the neck of the pressure receptacle and protected by a threaded plug or cap; or
(b) Valves are protected by caps. Caps must possess vent-holes of sufficient cross-sectional area to evacuate the gas if leakage occurs at the valves; or
(c) Valves are protected by shrouds or guards; or
(d) Pressure receptacles are transported in frames, (e.g. bundles); or
(e) Pressure receptacles are transported in an outer packaging. The packaging as prepared for transport must be capable of meeting the drop test specified in 6.1.5.3 at the packing group I performance level.

For pressure receptacles with valves as described in (b) and (c), the requirements of either ISO 11117:1998 or ISO 11117:2008 + Cor 1:2009 must be met; for valves with inherent protection, the requirements of annex A of ISO 10297:2006, annex A of ISO 10297:2014 or annex A of ISO 10297 + Amd 1:2017 must be met. For pressure receptacles with self-closing valves with inherent protection, the requirements of annex A of ISO 17879:2017 must be met.

For metal hydride storage systems, the valve protection requirements specified in ISO 16111:2008 must be met.

4.1.6.1.9 Non-refillable pressure receptacles must:

(a) be transported in an outer packaging, such as a box, or crate, or in shrink-wrapped trays or stretch-wrapped trays; and
(b) be of a water capacity less than or equal to 1.25 litres when filled with flammable or toxic gas; and
(c) not be used for toxic gases with an LC₅₀ less than or equal to 200 ml/m³; and
(d) not be repaired after being put into service.

4.1.6.1.10 Refillable pressure receptacles, other than cryogenic receptacles, must be periodically inspected according to the provisions of 6.2.1.6 and
packing instruction P200, P205 or P206, as applicable. Pressure relief valves for closed cryogenic receptacles must be subject to periodic inspections and tests according to the provisions of 6.2.1.6.3 and packing instruction P203.

4.1.6.1.11 Repairs must be consistent with the fabrication and testing requirements of the applicable design and construction standards and are only permitted as indicated in the relevant periodic inspection standards specified in AS 2030.

4.1.6.1.12 Pressure receptacles must not be offered for filling:
(a) when damaged to such an extent that the integrity of the pressure receptacle or its service equipment may be affected; or
(b) unless the pressure receptacle and its service equipment has been examined and found to be in good working order; or
(c) unless the required certification, retest, and filling marks are legible.

4.1.6.1.13 Filled pressure receptacles must not be offered for transport:
(a) when leaking; or
(b) when damaged to such an extent that the integrity of the pressure receptacle or its service equipment may be affected; or
(c) unless the pressure receptacle and its service equipment has been examined and found to be in good working order; or
(d) unless the required certification, retest, and filling marks are legible.

4.1.7 SPECIAL PACKING PROVISIONS FOR ORGANIC PEROXIDES (DIVISION 5.2) AND SELF-REACTIVE SUBSTANCES OF DIVISION 4.1

4.1.7.0.1 For organic peroxides, all receptacles must be "effectively closed". Where significant internal pressure may develop in a package by the evolution of a gas, a vent may be fitted, provided the gas emitted will not cause danger, otherwise the degree of filling must be limited. Any venting device must be so constructed that liquid will not escape when the package is in an upright position and it must be able to prevent ingress of impurities. The outer packaging, if any, must be so designed as not to interfere with the operation of the venting device.

4.1.7.1 Use of Packagings (Except IBCS)

4.1.7.1.1 Packagings for organic peroxides and self-reactive substances must conform to the requirements of Chapter 6.1 and must meet its test requirements for packing group II.

4.1.7.1.2 The packing methods for organic peroxides and self-reactive substances are listed in packing instruction P520 and are designated OP1 to OP8. The quantities specified for each packing method are the maximum quantities authorised per package.
4.1.7.1.3 The packing methods appropriate for the individual currently assigned organic peroxides and self-reactive substances are listed in 2.4.2.3.2.3 and 2.5.3.2.4.

4.1.7.1.4 For new organic peroxides, new self-reactive substances or new formulations of currently assigned organic peroxides or self-reactive substances, the following procedure must be used to assign the appropriate packing method:

(a) ORGANIC PEROXIDE, TYPE B or SELF-REACTIVE SUBSTANCE, TYPE B:

Packing method OP5 must be assigned, provided that the organic peroxide (or self-reactive substance) satisfies the criteria of 2.5.3.3.2(b) (resp. 2.4.2.3.3.2(b)) in a packaging authorised by the packing method. If the organic peroxide (or self-reactive substance) can only satisfy these criteria in a smaller packaging than those authorised by packing method OP5 (viz. one of the packagings listed for OP1 to OP4), then the corresponding packing method with the lower OP number is assigned;

(b) ORGANIC PEROXIDE, TYPE C or SELF-REACTIVE SUBSTANCE, TYPE C:

Packing method OP6 must be assigned, provided that the organic peroxide (or self-reactive substance) satisfies the criteria of 2.5.3.3.2(c) (resp. 2.4.2.3.3.2(c)) in packaging authorised by the packing method. If the organic peroxide (or self-reactive substance) can only satisfy these criteria in a smaller packaging than those authorised by packing method OP6 then the corresponding packing method with the lower OP number is assigned;

(c) ORGANIC PEROXIDE, TYPE D or SELF-REACTIVE SUBSTANCE, TYPE D:

Packing method OP7 must be assigned to this type of organic peroxide or self-reactive substance;

(d) ORGANIC PEROXIDE, TYPE E or SELF-REACTIVE SUBSTANCE, TYPE E:

Packing method OP8 must be assigned to this type of organic peroxide or self-reactive substance;

(e) ORGANIC PEROXIDE, TYPE F or SELF-REACTIVE SUBSTANCE, TYPE F:

Packing method OP8 must be assigned to this type of organic peroxide or self-reactive substance.

4.1.7.2 Use of intermediate bulk containers

4.1.7.2.1 The currently assigned organic peroxides specifically listed in packing instruction IBC520 may be transported in IBCs in accordance with this
packing instruction. IBCs must conform to the requirements of Chapter 6.5 and must meet its test requirements for packing group II.

4.1.7.2.2 Other organic peroxides and self-reactive substances of type F may be transported in IBCs under conditions determined by the competent authority of the jurisdiction of origin when, on the basis of the appropriate tests, that competent authority is satisfied that such transport may be safely conducted. The tests undertaken must include those necessary:

(a) to prove that the organic peroxide (or self-reactive substance) complies with the principles for classification given in 2.5.3.2(f), exit box F of Figure 2.5.1; (resp. 2.4.2.3.2 (f), exit box F of Figure 2.4.1); and

(b) to prove the compatibility of all materials normally in contact with the substance during the transport; and

(c) to determine, when applicable, the control and emergency temperatures associated with the transport of the product in the IBC concerned as derived from the SADT; and

(d) to design, when applicable, pressure and emergency relief devices; and

(e) to determine if any special provisions are necessary for safe transport of the substance.

4.1.7.2.3 For self-reactive substances temperature control is required according to 2.4.2.3.4. For organic peroxides temperature control is required according to 2.5.3.4.1. Temperature control provisions are given in 7.1.5.3.1.

4.1.7.2.4 Emergencies to be taken into account are self-accelerating decomposition and fire engulfment. To prevent explosive rupture of metal IBCs with a complete metal casing, the emergency-relief devices must be designed to vent all the decomposition products and vapours evolved during self-accelerating decomposition or during a period of not less than one hour of complete fire engulfment calculated by the equations given in 4.2.1.13.8.

4.1.8 SPECIAL PACKING PROVISIONS FOR INFECTIOUS SUBSTANCES OF CATEGORY A (DIVISION 6.2, UN 2814 AND UN 2900)

4.1.8.1 Packages of infectious substances must be prepared in such a manner that they arrive at their destination in good condition and present no hazard to persons or animals during transport.

4.1.8.2 The definitions in 1.2.1 and the general packing provisions of 4.1.1.1 to 4.1.1.14, except 4.1.1.10 to 4.1.1.12, apply to infectious substances packages. However, liquids must only be filled into packagings, which have an appropriate resistance to the internal pressure that may develop under normal conditions of transport.

4.1.8.3 An itemised list of contents must be enclosed between the secondary packaging and the outer packaging. When the infectious substances to be transported are unknown, but suspected of meeting the criteria for inclusion in category A, the words "suspected category A infectious
"substance" must be shown, in parentheses, following the proper shipping name on the document inside the outer packaging.

4.1.8.4 Before an empty packaging is returned to the consignor, or sent elsewhere, it must be disinfected or sterilised to nullify any hazard and any label or mark indicating that it had contained an infectious substance must be removed or obliterated.

4.1.8.5 Provided an equivalent level of performance is maintained, the following variations in the primary receptacles placed within a secondary packaging are allowed without further testing of the completed package:

(a) Primary receptacles of equivalent or smaller size as compared to the tested primary receptacles may be used provided:
 (i) The primary receptacles are of similar design to the tested primary receptacle (e.g. shape: round, rectangular, etc.);
 (ii) The material of construction of the primary receptacle (glass, plastics, metal, etc.) offers resistance to impact and stacking forces equal to or greater than that of the originally tested primary receptacle;
 (iii) The primary receptacles have the same or smaller openings and the closure is of similar design (e.g. screw cap, friction lid, etc.);
 (iv) Sufficient additional cushioning material is used to take up void spaces and to prevent significant movement of the primary receptacles; and
 (v) Primary receptacles are oriented within the secondary packaging in the same manner as in the tested packaging;

(b) A lesser number of the tested primary receptacles, or of the alternative types of primary receptacles identified in (a) above, may be used provided sufficient cushioning is added to fill the void space(s) and to prevent significant movement of the primary receptacles.

4.1.9 SPECIAL PACKING PROVISIONS FOR RADIOACTIVE MATERIAL

<Reserved>

NOTE: The following information from the Australian Radiation Protection and Nuclear Safety Authority (ARPANSA) now replaces the information found in earlier editions of the ADG Code.

RPS 2 Code of Practice for the Safe Transport of Radioactive Material

RPS No. 2.1 - Safety Guide for the Safe Transport of Radioactive Material

RPS No. 2.2 - Safety Guide for the Approval Processes for the Safe Transport of Radioactive Materials (2012)

See general comments on page xivi.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

CHAPTER 4.2 - USE OF PORTABLE TANKS AND MULTIPLE-ELEMENT GAS CONTAINERS (MEGCS)

4.2.1 GENERAL PROVISIONS FOR THE USE OF PORTABLE TANKS FOR THE TRANSPORT OF SUBSTANCES OF CLASS 1 AND CLASSES 3 TO 9

4.2.1.1 This section provides general requirements applicable to the use of portable tanks for the transport of substances of Classes 1, 3, 4, 5, 6, 7, 8 and 9. In addition to these general requirements, portable tanks must conform to the design, construction, inspection and testing requirements detailed in 6.7.2. Substances must be transported in portable tanks conforming to the applicable portable tank instruction identified in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6 (T1 to T23) and the portable tank special provisions assigned to each substance in Column 11 of the Dangerous Goods List and described in 4.2.5.3. For Classes 1 and 7 see general comments on page xivi.

4.2.1.2 During transport, portable tanks must be adequately protected against damage to the shell and service equipment resulting from lateral and longitudinal impact and overturning. If the shell and service equipment are so constructed as to withstand impact or overturning it need not be protected in this way. Examples of such protection are given in 6.7.2.17.5.

4.2.1.3 Certain substances are chemically unstable. They are accepted for transport only when the necessary steps have been taken to prevent their dangerous decomposition, transformation or polymerisation during transport. To this end, care must in particular be taken to ensure that shells do not contain any substances liable to promote these reactions.

4.2.1.4 The temperature of the outer surface of the shell excluding openings and their closures or of the thermal insulation must not exceed 70 °C during transport. When necessary, the shell must be thermally insulated.

4.2.1.5 Empty portable tanks not cleaned and not gas-free must comply with the same requirements as portable tanks filled with the previous substance.

4.2.1.6 Substances must not be transported in the same or adjoining compartments of shells when they may react dangerously with each other and cause:

(a) combustion and/or evolution of considerable heat;
(b) evolution of flammable, toxic or asphyxiant gases;
(c) the formation of corrosive substances;
(d) the formation of unstable substances;
(e) dangerous rise in pressure.

4.2.1.7 <Reserved>

4.2.1.8 <Reserved>

4.2.1.9 Degree of Filling

4.2.1.9.1 Prior to filling, steps must be taken to ensure that the appropriate portable tank is used and that the portable tank is not loaded with substances
which in contact with the materials of the shell, gaskets, service equipment
and any protective linings, are likely to react dangerously with them to
form dangerous products or appreciably weaken these materials. It may
be necessary to consult the manufacturer of the substance in conjunction
with the competent authority for guidance on the compatibility of the
substance with the portable tank materials.

4.2.1.9.1.1 Portable tanks must not be filled above the extent provided in 4.2.1.9.2 to
4.2.1.9.6. The applicability of 4.2.1.9.2, 4.2.1.9.3 or 4.2.1.9.5.1 to
individual substances is specified in the applicable portable tank
instructions or special provisions in 4.2.5.2.6 or 4.2.5.3 and Columns 10
or 11 of the Dangerous Goods List.

4.2.1.9.2 The maximum degree of filling (in %) for general use is determined by the
formula:

\[
\text{Degree of filling} = \frac{97}{1 + \alpha (t_f - t_r)}
\]

4.2.1.9.3 The maximum degree of filling (in %) for liquids of Division 6.1 and Class
8, in packing groups I and II, and liquids with an absolute vapour pressure
of more than 175 kPa (1.75 bar) at 65 °C, is determined by the formula:

\[
\text{Degree of filling} = \frac{95}{1 + \alpha (t_f - t_r)}
\]

4.2.1.9.4 In these formulae, \(\alpha \) is the mean coefficient of cubical expansion of the
liquid between the mean temperature of the liquid during filling (\(t_f \)) and the
maximum mean bulk temperature during transport (\(t_r \)) (both in °C). For
liquids transported under ambient conditions \(\alpha \) could be calculated by the
formula:

\[
\alpha = \frac{d_{15} - d_{50}}{35d_{50}}
\]

in which \(d_{15} \) and \(d_{50} \) are the densities of the liquid at 15 °C and 50 °C,
respectively.

4.2.1.9.4.1 The maximum mean bulk temperature (\(t_r \)) must be taken as 50 °C except
that, for journeys under temperate or extreme climatic conditions, the
competent authorities concerned may agree to a lower or require a higher
temperature, as appropriate.
4.2.1.9.5 The requirements of 4.2.1.9.2 to 4.2.1.9.4.1 do not apply to portable tanks which contain substances maintained at a temperature above 50 °C during transport (e.g. by means of a heating device). For portable tanks equipped with a heating device, a temperature regulator must be used to ensure the maximum degree of filling is not more than 95% full at any time during transport.

4.2.1.9.5.1 The maximum degree of filling (in %) for solids transported above their melting points and for elevated temperature liquids must be determined by the following formula:

\[\text{Degree of filling} = 95 \frac{d_r}{d_f} \]

in which \(d_f \) and \(d_r \) are the densities of the liquid at the mean temperature of the liquid during filling and the maximum mean bulk temperature during transport respectively.

4.2.1.9.6 Portable tanks must not be offered for transport:

(a) with a degree of filling, for liquids having a viscosity less than 2,680 \(\text{mm}^2/\text{s} \) at 20 °C or maximum temperature of the substance during transport in the case of the heated substance, of more than 20% but less than 80% unless the shells of portable tanks are divided, by partitions or surge plates, into sections of not more than 7,500 litres capacity; or

(b) with residue of substances previously transported adhering to the outside of the shell or service equipment; or

(c) when leaking or damaged to such an extent that the integrity of the portable tank or its lifting or securing arrangements may be affected; and

(d) unless the service equipment has been examined and found to be in good working order.

4.2.1.9.7 Forklift pockets of portable tanks must be closed off when the tank is filled. This provision does not apply to portable tanks which according to 6.7.2.17.4 need not be provided with a means of closing off the forklift pockets.

4.2.1.10 Additional provisions applicable to the transport of Class 3 substances in portable tanks

4.2.1.10.1 All portable tanks intended for the transport of flammable liquids must be closed and be fitted with relief devices in accordance with 6.7.2.8 to 6.7.2.15.

4.2.1.10.1.1 <Reserved>

4.2.1.11 Additional provisions applicable to the transport of Class 4 substances (other than Division 4.1 self-reactive substances) in portable tanks
NOTE: For Division 4.1 self-reactive substances, see 4.2.1.13.1.

4.2.1.12 Additional provisions applicable to the transport of Division 5.1 substances in portable tanks

4.2.1.13 Additional provisions applicable to the transport of Division 5.2 substances and Division 4.1 self-reactive substances in portable tanks

4.2.1.13.1 Each substance must have been tested as necessary:

(a) to prove the compatibility of all materials normally in contact with the substance during transport; and

(b) to provide data for the design of the pressure and emergency relief devices taking into account the design characteristics of the portable tank.

Any additional provision necessary for safe transport of the substance must be clearly described in the test report.

4.2.1.13.2 The following provisions apply to portable tanks intended for the transport of Type F organic peroxides or Type F self-reactive substances with a Self-Accelerating Decomposition Temperature (SADT) of 55 °C or more. In case of conflict these provisions prevail over those specified in section 6.7.2. Emergencies to be taken into account are self-accelerating decomposition of the substance and fire-engulfment as described in 4.2.1.13.8.

4.2.1.13.3 The additional provisions for transport of organic peroxides or self-reactive substances with an SADT less than 55 °C in portable tanks must be determined by the competent authority of the jurisdiction of origin. Notification thereof must be sent to the competent authority of the jurisdiction of destination.

4.2.1.13.4 The portable tank must be designed for a test pressure of at least 0.4 MPa (4 bar).

4.2.1.13.5 Portable tanks must be fitted with temperature sensing devices.

4.2.1.13.6 Portable tanks must be fitted with pressure-relief devices and emergency-relief devices. Vacuum-relief devices may also be used. Pressure-relief devices must operate at pressures determined according to both the properties of the substance and the construction characteristics of the portable tank. Fusible elements are not allowed in the shell.

4.2.1.13.7 The pressure-relief devices must consist of spring-loaded valves fitted to prevent significant build-up within the portable tank of the decomposition products and vapours released at a temperature of 50 °C. The capacity and start-to-discharge pressure of the relief valves must be based on the results of the tests specified in 4.2.1.13.1. The start-to-discharge pressure must, however, in no case be such that liquid would escape from the valve(s) if the portable tank were overturned.
4.2.1.13.8 The emergency-relief devices may be of the spring-loaded or frangible types, or a combination of the two, designed to vent all the decomposition products and vapours evolved during a period of not less than one hour of complete fire-engulfment as calculated by the following formula:

\[q = 70961 \times F \times A^{0.82} \]

where:
- \(q \) = heat absorption (W)
- \(A \) = wetted area \([m^2] \)
- \(F \) = insulation factor
- \(F = 1 \) for non-insulated shells, or

\[F = \frac{U(923 - T)}{47032} \] for insulated shells

where:
- \(K \) = heat conductivity of insulation layer \([W \ m^{-1} \ K^{-1}] \)
- \(L \) = thickness of insulation layer \([m] \)
- \(U = K/L = \text{heat transfer coefficient of the insulation} \ [W \ m^{-2} \ K^{-1}] \)
- \(T \) = temperature of substance at relieving conditions \([K] \)

The start-to-discharge pressure of the emergency-relief device(s) must be higher than that specified in 4.2.1.13.7 and based on the results of the tests referred to in 4.2.1.13.1. The emergency-relief devices must be dimensioned in such a way that the maximum pressure in the portable tank never exceeds the test pressure of the tank.

NOTE: An example of a method to determine the size of emergency-relief devices is given in Appendix 5 of the Manual of Tests and Criteria.

4.2.1.13.9 For insulated portable tanks the capacity and setting of emergency-relief device(s) must be determined assuming a loss of insulation from 1% of the surface area.

4.2.1.13.10 Vacuum-relief devices and spring-loaded valves must be provided with flame arresters. Due attention must be paid to the reduction of the relief capacity caused by the flame arrester.
4.2.13.11 Service equipment such as valves and external piping must be so arranged that no substance remains in them after filling the portable tank.

4.2.13.12 Portable tanks may be either insulated or protected by a sun-shield. If the SADT of the substance in the portable tank is 55 °C or less, or the portable tank is constructed of aluminium, the portable tank must be completely insulated. The outer surface must be finished in white or bright metal.

4.2.13.13 The degree of filling must not exceed 90% at 15°C.

4.2.13.14 The mark as required in 6.7.2.20.2 must include the UN number and the technical name with the approved concentration of the substance concerned.

4.2.13.15 Organic peroxides and self-reactive substances specifically listed in portable tank instruction T23 in 4.2.5.2.6 may be transported in portable tanks.

4.2.14 Additional provisions applicable to the transport of Division 6.1 substances in portable tanks

4.2.15 Additional provisions applicable to the transport of Division 6.2 substances in portable tanks

4.2.16 Additional provisions applicable to the transport of Class 7 substances in portable tanks

4.2.16.1 Portable tanks used for the transport of radioactive material must not be used for the transport of other goods.

4.2.17 Additional provisions applicable to the transport of Class 8 substances in portable tanks

4.2.17.1 Pressure-relief devices of portable tanks used for the transport of Class 8 substances must be inspected at intervals not exceeding one year.

4.2.18 Additional provisions applicable to the transport of Class 9 substances in portable tanks

4.2.19 Additional provisions applicable to the transport of solid substances transported above their melting point

4.2.19.1 Solid substances transported or offered for transport above their melting point which are not assigned a portable tank instruction in column (10) of the Dangerous Goods List or when the assigned portable tank instruction does not apply to transport at temperatures above their melting point may be transported in portable tanks provided that the solid substances are classified in Divisions 4.1, 4.2, 4.3, 5.1 or 6.1 or Classes 8 or 9 and have...
no subsidiary hazard other than that of Division 6.1 or Class 8 and are in packing group II or III.

4.2.1.19.2 Unless otherwise indicated in the Dangerous Goods List of Chapter 3.2, portable tanks used for the transport of these solid substances above their melting point must conform to the provisions of portable tank instruction T4 for solid substances of packing group III or T7 for solid substances of packing group II. A portable tank that affords an equivalent or greater level of safety may be selected according to 4.2.5.2.5. The maximum degree of filling (in %) must be determined according to 4.2.1.9.5 (TP3).

4.2.2 GENERAL PROVISIONS FOR THE USE OF PORTABLE TANKS FOR THE TRANSPORT OF NON-REFRIGERATED LIQUEFIED GASES AND CHEMICALS UNDER PRESSURE

4.2.2.1 This section provides general requirements applicable to the use of portable tanks for the transport of non-refrigerated liquefied gases and chemicals under pressure.

4.2.2.2 Portable tanks must conform to the design, construction, inspection and testing requirements detailed in 6.7.3. Non-refrigerated liquefied gases and chemicals under pressure must be transported in portable tanks conforming to portable tank instruction T50 as described in 4.2.5.2.6 and any portable tank special provisions assigned to specific non-refrigerated liquefied gases in Column 11 of the Dangerous Goods List and described in 4.2.5.3.

4.2.2.3 During transport, portable tanks must be adequately protected against damage to the shell and service equipment resulting from lateral and longitudinal impact and overturning. If the shell and service equipment are so constructed as to withstand impact or overturning it need not be protected in this way. Examples of such protection are given in 6.7.3.13.5.

4.2.2.4 Certain non-refrigerated liquefied gases are chemically unstable. They are accepted for transport only when the necessary steps have been taken to prevent their dangerous decomposition, transformation or polymerisation during transport. To this end, care must in particular be taken to ensure that portable tanks do not contain any non-refrigerated liquefied gases liable to promote these reactions.

4.2.2.5 <Reserved>

4.2.2.6 Empty portable tanks not cleaned and not gas-free must comply with the same requirements as portable tanks filled with the previous non-refrigerated liquefied gas.

4.2.2.7 Filling

4.2.2.7.1 Prior to filling, steps must be taken to ensure that the portable tank is approved for the non-refrigerated liquefied gas or the propellant of the chemical under pressure to be transported and that the portable tank is not loaded with non-refrigerated liquefied gases, or with chemicals under pressure, which in contact with the materials of the shell, gaskets and service equipment, are likely to react dangerously with them to form dangerous products or appreciably weaken these materials. During filling,
the temperature of the non-refrigerated liquefied gas or propellant of chemicals under pressure must fall within the limits of the design temperature range.

4.2.2.7.2 The maximum mass of non-refrigerated liquefied gas per litre of shell capacity (kg/L) must not exceed the density of the non-refrigerated liquefied gas at 50 °C multiplied by 0.95. Furthermore, the shell must not be liquid-full at 60 °C.

4.2.2.7.3 Portable tanks must not be filled above their maximum permissible gross mass and the maximum permissible load mass specified for each gas to be transported.

4.2.2.8 Portable tanks must not be offered for transport:
 (a) in an ullage condition liable to produce an unacceptable hydraulic force due to surge within the portable tank; or
 (b) when leaking; or
 (c) when damaged to such an extent that the integrity of the tank or its lifting or securing arrangements may be affected; and
 (d) unless the service equipment has been examined and found to be in good working order.

4.2.2.9 Forklift pockets of portable tanks must be closed off when the tank is filled. This provision does not apply to portable tanks which according to 6.7.3.13.4 need not be provided with a means of closing off the forklift pockets.

4.2.3 GENERAL PROVISIONS FOR THE USE OF PORTABLE TANKS FOR THE TRANSPORT OF REFRIGERATED LIQUEFIED GASES

4.2.3.1 This section provides general requirements applicable to the use of portable tanks for the transport of refrigerated liquefied gases.

4.2.3.2 Portable tanks must conform to the design, construction, inspection and testing requirements detailed in 6.7.4. Refrigerated liquefied gases must be transported in portable tanks conforming to portable tank instruction T75 as described in 4.2.5.2.6 and the portable tank special provisions assigned to each substance in Column 11 of the Dangerous Goods List and described in 4.2.5.3.

4.2.3.3 During transport, portable tanks must be adequately protected against damage to the shell and service equipment resulting from lateral and longitudinal impact and overturning. If the shell and service equipment are so constructed as to withstand impact or overturning it need not be protected in this way. Examples of such protection are provided in 6.7.4.12.5.

4.2.3.4 <Reserved>

4.2.3.5 Empty portable tanks not cleaned and not gas-free must comply with the same requirements as portable tanks filled with the previous substance.

4.2.3.6 Filling
4.2.3.6.1 Prior to filling, steps must be taken to ensure that the portable tank is approved for the refrigerated liquefied gas to be transported and that the portable tank is not loaded with refrigerated liquefied gases which in contact with the materials of the shell, gaskets and service equipment, are likely to react dangerously with them to form dangerous products or appreciably weaken these materials. During filling, the temperature of the refrigerated liquefied gas must be within the limits of the design temperature range.

4.2.3.6.2 In estimating the initial degree of filling the necessary holding time for the intended journey including any delays which might be encountered must be taken into consideration. The initial degree of filling of the shell, except as provided for in 4.2.3.6.3 and 4.2.3.6.4, must be such that if the contents, except helium, were to be raised to a temperature at which the vapour pressure is equal to the maximum allowable working pressure (MAWP) the volume occupied by liquid would not exceed 98%.

4.2.3.6.3 Shells intended for the transport of helium can be filled up to but not above the inlet of the pressure-relief device.

4.2.3.6.4 A higher initial degree of filling may be allowed, subject to competent authority exemption, when the intended duration of transport is considerably shorter than the holding time.

4.2.3.7 Actual holding time

4.2.3.7.1 The actual holding time must be calculated for each journey in accordance with a procedure recognised by the competent authority, on the basis of the following:

(a) The reference holding time for the refrigerated liquefied gas to be transported (see 6.7.4.2.8.1) (as indicated on the plate referred to in 6.7.4.15.1);
(b) The actual filling density;
(c) The actual filling pressure;
(d) The lowest set pressure of the pressure limiting device(s).

4.2.3.7.2 The actual holding time must be marked either on the portable tank itself or on a metal plate firmly secured to the portable tank, in accordance with 6.7.4.15.2.

4.2.3.7.3 The date at which the actual holding time ends must be entered in the transport document (see 11.1.1.5.13).

4.2.3.8 Portable tanks must not be offered for transport:

(a) in an ullage condition liable to produce an unacceptable hydraulic force due to surge within the shell; or
(b) when leaking; or
(c) when damaged to such an extent that the integrity of the portable tank or its lifting or securing arrangements may be affected; and
(d) unless the service equipment has been examined and found to be in good working order; and
(e) unless the actual holding time for the refrigerated liquefied gas being transported has been determined in accordance with 4.2.3.7 and the portable tank is marked in accordance with 6.7.4.15.2; and
(f) unless the duration of transport, after taking into consideration any delays which might be encountered, does not exceed the actual holding time.

4.2.3.9 Forklift pockets of portable tanks must be closed off when the tank is filled. This provision does not apply to portable tanks which according to 6.7.4.12.4 need not be provided with a means of closing off the forklift pockets.

4.2.4 GENERAL PROVISIONS FOR THE USE OF MULTIPLE-ELEMENT GAS CONTAINERS (MEGCS)

4.2.4.1 This section provides general requirements applicable to the use of multiple-element gas containers (MEGCs) for the transport of non-refrigerated gases.

4.2.4.2 MEGCs must conform to the design, construction, inspection and testing requirements detailed in 6.7.5. The elements of MEGCs must be periodically inspected according to the provisions set out in P200 and in 6.2.1.6.

4.2.4.3 During transport, MEGCs must be protected against damage to the elements and service equipment resulting from lateral and longitudinal impact and overturning. If the elements and service equipment are so constructed as to withstand impact or overturning, they need not be protected in this way. Examples of such protection are given in 6.7.5.10.4.

4.2.4.4 The periodic testing and inspection requirements for MEGCs are specified in 6.7.5.12. MEGCs or their elements must not be charged or filled after they become due for periodic inspection but may be transported after the expiry of the time limit.

4.2.4.5 Filling

4.2.4.5.1 Prior to filling, the MEGC must be inspected to ensure that it is authorised for the gas to be transported and that the applicable provisions of this Code have been met.

4.2.4.5.2 Elements of MEGCs must be filled according to the working pressures, filling ratios and filling provisions specified in packing instruction P200 for the specific gas being filled into each element. In no case must a MEGC or group of elements be filled as a unit in excess of the lowest working pressure of any given element.

4.2.4.5.3 MEGCs must not be filled above their maximum permissible gross mass.

4.2.4.5.4 Isolation valves must be closed after filling and remain closed during transport. Toxic gases of division 2.3 must only be transported in MEGCs where each element is equipped with an isolation valve.
4.2.4.5.5 The opening(s) for filling must be closed by caps or plugs. The leakproofness of the closures and equipment must be verified by the consignor after filling.

4.2.4.5.6 MEGCs must not be offered for filling:
(a) when damaged to such an extent that the integrity of the pressure receptacles or its structural or service equipment may be affected; and
(b) unless the pressure receptacles and its structural and service equipment has been examined and found to be in good working order; and
(c) unless the required certification, retest, and filling marks are legible.

4.2.4.6 Charged MEGCs must not be offered for transport:
(a) when leaking; or
(b) when damaged to such an extent that the integrity of the pressure receptacles or its structural or service equipment may be affected; and
(c) unless the pressure receptacles and its structural and service equipment have been examined and found to be in good working order; and
unless the required certification, retest, and filling marks are legible.

4.2.4.7 Empty MEGCs that have not been cleaned and purged must comply with the same requirements as MEGCs filled with the previous substance.

4.2.5 PORTABLE TANK INSTRUCTIONS AND SPECIAL PROVISIONS

NOTE: For instructions on the use of road tank vehicles and rail tank wagons for dangerous goods, see Chapter 4.4.

4.2.5.1 General

4.2.5.1.1 This section includes the portable tank instructions and special provisions applicable to dangerous goods authorised to be transported in portable tanks. Each portable tank instruction is identified by an alpha-numeric designation (e.g. T1). Column 10 of the Dangerous Goods List in Chapter 3.2 indicates the portable tank instruction that must be used for each substance permitted for transport in a portable tank. When no portable tank instruction appears in Column 10 for a specific dangerous goods entry then transport of the substance in portable tanks is not permitted unless a competent authority determination is granted as detailed in 6.7.1.3. Portable tank special provisions are assigned to specific dangerous goods in Column 11 of the Dangerous Goods List in Chapter 3.2.

Each portable tank special provision is identified by an alpha-numeric designation (e.g. TP1). A listing of the portable tank special provisions is provided in 4.2.5.3.

NOTE: The gases authorised for transport in MEGCs are indicated in the column "MEGC" in Tables 1 and 2 of packing instruction P200 in 4.1.4.1.
4.2.5.2 Portable tank instructions

4.2.5.2.1 Portable tank instructions apply to dangerous goods of Classes 1 to 9. Portable tank instructions provide specific information relevant to portable tanks provisions applicable to specific substances. These provisions must be met in addition to the general provisions of this Chapter and the general requirements of Chapter 6.7.

4.2.5.2.2 For substances of Class 1 and Classes 3 to 9, the portable tank instructions indicate the applicable minimum test pressure, the minimum shell thickness (in reference steel), bottom opening requirements and pressure relief requirements. In T23, self-reactive substances of Division 4.1 and Division 5.2 organic peroxides permitted to be transported in portable tanks are listed along with the applicable control and emergency temperatures.

4.2.5.2.3 Non-refrigerated liquefied gases are assigned to portable tank instruction T50. T50 provides the maximum allowable working pressures, bottom opening requirements, pressure relief requirements and degree of filling requirements for non-refrigerated liquefied gases permitted for transport in portable tanks.

4.2.5.2.4 Refrigerated liquefied gases are assigned to portable tank instruction T75.
4.2.5.2.5 Determination of the appropriate portable tank instructions

When a specific portable tank instruction is specified in Column 10 for a specific dangerous goods entry additional portable tanks which possess higher test pressures, greater shell thicknesses, more stringent bottom opening and pressure-relief device arrangements may be used. The following guidelines apply to determining the appropriate portable tanks which may be used for transport of particular substances:

Table 4.2.5.2.5: Determination of the appropriate portable tank instructions

<table>
<thead>
<tr>
<th>Portable tank instruction specified</th>
<th>Portable tank instructions also permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T2</td>
<td>T4, T5, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T3</td>
<td>T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T4</td>
<td>T5, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T5</td>
<td>T10, T14, T19, T20, T22</td>
</tr>
<tr>
<td>T6</td>
<td>T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T7</td>
<td>T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T8</td>
<td>T9, T10, T13, T14, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T9</td>
<td>T10, T13, T14, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T10</td>
<td>T14, T19, T20, T22</td>
</tr>
<tr>
<td>T11</td>
<td>T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T12</td>
<td>T14, T16, T18, T19, T20, T22</td>
</tr>
<tr>
<td>T13</td>
<td>T14, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T14</td>
<td>T19, T20, T22</td>
</tr>
<tr>
<td>T15</td>
<td>T16, T17, T18, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T16</td>
<td>T18, T19, T20, T22</td>
</tr>
<tr>
<td>T17</td>
<td>T18, T19, T20, T21, T22</td>
</tr>
<tr>
<td>T18</td>
<td>T19, T20, T22</td>
</tr>
<tr>
<td>T19</td>
<td>T20, T22</td>
</tr>
<tr>
<td>T20</td>
<td>T22</td>
</tr>
<tr>
<td>T21</td>
<td>T22</td>
</tr>
<tr>
<td>T22</td>
<td>None</td>
</tr>
<tr>
<td>T23</td>
<td>None</td>
</tr>
</tbody>
</table>
Portable tank instructions

Portable tank instructions specify the requirements applicable to a portable tank when used for the transport of specific substances. Portable tank instructions T1 to T22 specify the applicable minimum test pressure, the minimum shell thickness (in mm reference steel), and the pressure-relief and bottom-opening requirements.

<table>
<thead>
<tr>
<th>Portable tank instruction</th>
<th>Minimum test pressure (bar)</th>
<th>Minimum shell thickness (in mm-reference steel) (see 6.7.2.4)</th>
<th>Pressure-relief requirements<sup>a</sup> (see 6.7.2.8)</th>
<th>Bottom opening requirements<sup>b</sup> (see 6.7.2.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1.5</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>See 6.7.2.6.2</td>
</tr>
<tr>
<td>T2</td>
<td>1.5</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>See 6.7.2.6.3</td>
</tr>
<tr>
<td>T3</td>
<td>2.65</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>See 6.7.2.6.2</td>
</tr>
<tr>
<td>T4</td>
<td>2.65</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>See 6.7.2.6.3</td>
</tr>
<tr>
<td>T5</td>
<td>2.65</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>Not allowed</td>
</tr>
<tr>
<td>T6</td>
<td>4</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>See 6.7.2.6.2</td>
</tr>
<tr>
<td>T7</td>
<td>4</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>See 6.7.2.6.3</td>
</tr>
<tr>
<td>T8</td>
<td>4</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>Not allowed</td>
</tr>
<tr>
<td>T9</td>
<td>4</td>
<td>6 mm</td>
<td>Normal</td>
<td>Not allowed</td>
</tr>
<tr>
<td>T10</td>
<td>4</td>
<td>6 mm</td>
<td>See 6.7.2.8.3</td>
<td>Not allowed</td>
</tr>
<tr>
<td>T11</td>
<td>6</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>See 6.7.2.6.3</td>
</tr>
<tr>
<td>T12</td>
<td>6</td>
<td>See 6.7.2.4.2</td>
<td>See 6.7.2.8.3</td>
<td>See 6.7.2.6.3</td>
</tr>
<tr>
<td>T13</td>
<td>6</td>
<td>6 mm</td>
<td>Normal</td>
<td>Not allowed</td>
</tr>
<tr>
<td>T14</td>
<td>6</td>
<td>6 mm</td>
<td>See 6.7.2.8.3</td>
<td>Not allowed</td>
</tr>
<tr>
<td>T15</td>
<td>10</td>
<td>See 6.7.2.4.2</td>
<td>Normal</td>
<td>See 6.7.2.6.3</td>
</tr>
<tr>
<td>T16</td>
<td>10</td>
<td>See 6.7.2.4.2</td>
<td>See 6.7.2.8.3</td>
<td>See 6.7.2.6.3</td>
</tr>
<tr>
<td>T17</td>
<td>10</td>
<td>6 mm</td>
<td>Normal</td>
<td>See 6.7.2.6.3</td>
</tr>
<tr>
<td>T18</td>
<td>10</td>
<td>6 mm</td>
<td>See 6.7.2.8.3</td>
<td>See 6.7.2.6.3</td>
</tr>
<tr>
<td>T19</td>
<td>10</td>
<td>6 mm</td>
<td>See 6.7.2.8.3</td>
<td>Not allowed</td>
</tr>
<tr>
<td>T20</td>
<td>10</td>
<td>8 mm</td>
<td>See 6.7.2.8.3</td>
<td>Not allowed</td>
</tr>
<tr>
<td>T21</td>
<td>10</td>
<td>10 mm</td>
<td>Normal</td>
<td>Not allowed</td>
</tr>
<tr>
<td>T22</td>
<td>10</td>
<td>10 mm</td>
<td>See 6.7.2.8.3</td>
<td>Not allowed</td>
</tr>
</tbody>
</table>

Table notes:

- **a** When the word “Normal” is indicated, all the requirements of 6.7.2.8 apply except for 6.7.2.8.3.
- **b** When this column indicates “not allowed”, bottom openings are not permitted when the substance to be transported is a liquid (see 6.7.2.6.1). When the substance to be transported is a solid at all temperatures encountered under normal conditions of transport, bottom openings conforming to the requirements of 6.7.2.6.2 are authorised.

NOTE: *For the selection of suitable road tank vehicles or rail tank wagons where there is a “T” entry in Column 10 of the Dangerous Goods List, see Chapter 4.4.*
PORTABLE TANK INSTRUCTION

This portable tank instruction applies to self-reactive substances of Division 4.1 and organic peroxides of Division 5.2. The general provisions of section 4.2.1 and the requirements of section 6.7.2 must be met. The provisions specific to self-reactive substances of Division 4.1 and organic peroxides of Division 5.2 in 4.2.1.13 must also be met. The formulations listed below may also be transported packed in accordance with packing method OP8 of packing instruction P520 of 4.1.4.1, with the same control and emergency temperatures, if applicable.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Substance</th>
<th>Min. test pressure (bar)</th>
<th>Min. shell thickness (mm-reference steel)</th>
<th>Bottom opening requirements</th>
<th>Pressure-relief requirements</th>
<th>Degree of filling</th>
<th>Control temp.</th>
<th>Emergency temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3109</td>
<td>ORGANIC PEROXIDE, TYPE F, LIQUID</td>
<td>4</td>
<td>See 6.7.2.4.2</td>
<td>See 6.7.2.6.3</td>
<td>See 6.7.2.8.2 4.2.1.13.6 4.2.1.13.7 4.2.1.13.8</td>
<td>4.2.1.13.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tert-Butyl hydrogen peroxide(^a), not more than 72% with water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cumyl hydrogen peroxide, not more than 90% in diluent type A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-tert-butyl peroxide, not more than 32% in diluent type A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isopropyl cumyl hydrogen peroxide, not more than 72% in diluent type A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p-Menthyl hydrogen peroxide, not more than 72% in diluent type A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinanyl hydrogen peroxide, not more than 56% in diluent type A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3110</td>
<td>ORGANIC PEROXIDE TYPE F, SOLID</td>
<td>4</td>
<td>See 6.7.2.4.2</td>
<td>See 6.7.2.6.3</td>
<td>See 6.7.2.8.2 4.2.1.13.6 4.2.1.13.7 4.2.1.13.8</td>
<td>4.2.1.13.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dicumyl peroxide(^b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table notes:

a. Provided that steps have been taken to achieve the safety equivalence of 65% tert-Butyl hydrogen peroxide and 35% water.

b. Maximum quantity per portable tank 2,000 kg.
PORTABLE TANK INSTRUCTION (cont.)

This portable tank instruction applies to self-reactive substances of Division 4.1 and organic peroxides of Division 5.2. The general provisions of section 4.2.1 and the requirements of section 6.7.2 must be met. The provisions specific to self-reactive substances of Division 4.1 and organic peroxides of Division 5.2 in 4.2.1.13 must also be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Substance</th>
<th>Min. test pressure (bar)</th>
<th>Min. shell thickness (mm-reference steel)</th>
<th>Bottom opening requirements</th>
<th>Pressure relief requirements</th>
<th>Degree of filling</th>
<th>Control temp.</th>
<th>Emergency temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3119</td>
<td>ORGANIC PEROXIDE, TYPE F, LIQUID, TEMPERATURE CONTROLLED</td>
<td>4</td>
<td>See 6.7.2.4.2</td>
<td>See 6.7.2.6.3</td>
<td>See 6.7.2.8.2, 4.2.1.13.6, 4.2.1.13.7, 4.2.1.13.8</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tert-Amyl peroxyneodecanoate, not more than 47% in diluent type A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-10 °C</td>
<td>-5 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tert-Butyl peroxyacetate, not more than 32% in diluent type B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+30 °C</td>
<td>+35 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tert-Butyl peroxy-2-ethylhexanoate, not more than 32% in diluent type B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+15 °C</td>
<td>+20 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tert-Butyl peroxypropionate, not more than 27% in diluent type B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+5 °C</td>
<td>+10 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tert-Butyl peroxy-3,5,5-trimethyl-hexanoate, not more than 32% in diluent type B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+35 °C</td>
<td>+40 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-(3,5,5-trimethylhexanoyl) peroxypropionate, not more than 38% in diluent type A or Type B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 °C</td>
<td>+5 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peroxyacetic acid, distilled, type F, stabilised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+30 °C</td>
<td>+35 °C</td>
<td></td>
</tr>
<tr>
<td>3120</td>
<td>ORGANIC PEROXIDE, TYPE F, SOLID, TEMPERATURE CONTROLLED</td>
<td>4</td>
<td>See 6.7.2.4.2</td>
<td>See 6.7.2.6.3</td>
<td>See 6.7.2.8.2, 4.2.1.13.6, 4.2.1.13.7, 4.2.1.13.8</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

Table notes:

- c. As approved by the competent authority.
- d. Formulation derived from distillation of peroxyacetic acid originating from peroxyacetic acid in concentration of not more than 41% with water, total active oxygen (peroxyacetic acid+H₂O₂) ≤ 9.5%, which fulfills the criteria of 2.5.3.3.2 (f) “CORROSIVE” subsidiary hazard placard required (Model No 8, see 5.2.2.2.2).
<table>
<thead>
<tr>
<th>T23</th>
<th>PORTABLE TANK INSTRUCTION (cont.)</th>
<th>T23</th>
</tr>
</thead>
<tbody>
<tr>
<td>3229</td>
<td>SELF-REACTIVE LIQUID TYPE F</td>
<td>4</td>
</tr>
<tr>
<td>3230</td>
<td>SELF-REACTIVE SOLID TYPE F</td>
<td>4</td>
</tr>
<tr>
<td>3239</td>
<td>SELF-REACTIVE LIQUID TYPE F, TEMPERATURE CONTROLLED</td>
<td>4</td>
</tr>
<tr>
<td>3240</td>
<td>SELF-REACTIVE SOLID TYPE F, TEMPERATURE CONTROLLED</td>
<td>4</td>
</tr>
</tbody>
</table>

Table notes:
- c. As approved by the competent authority.
This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirements</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Small; Bare; Sunshield; Insulated; respectively</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1005</td>
<td>Ammonia, anhydrous</td>
<td>29.0</td>
<td>Allowed</td>
<td>See 6.7.3.7.3</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1009</td>
<td>Bromotrifluoromethane (Refrigerant gas R 13B1)</td>
<td>38.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>Butadienes, stabilized</td>
<td>7.5</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>Butadienes and hydrocarbon mixture, stabilized</td>
<td>See MAWP</td>
<td>Allowed</td>
<td>Normal</td>
<td>See 4.2.2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>definition in 6.7.3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>Butane</td>
<td>7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1012</td>
<td>Butylene</td>
<td>8.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1017</td>
<td>Chlorine</td>
<td>19.0</td>
<td>Not allowed</td>
<td>See 6.7.3.7.3</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1018</td>
<td>Chlorodifluoromethane (Refrigerant gas R 22)</td>
<td>26.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a “Small” means tanks having a shell with a diameter of 1.5 metres or less; “Bare” means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); “Sunshield” means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); “Insulated” means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of “Design reference temperature” in 6.7.3.1).

b The word “Normal” in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

T50

PORTABLE TANK INSTRUCTION (cont’d)

This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirementsb (see 6.7.3.7)</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020</td>
<td>Chloropentafluoroethane (Refrigerant gas R 115)</td>
<td>23.0 20.0 18.0 16.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.06</td>
</tr>
<tr>
<td>1021</td>
<td>1-Chloro-1,2,2,2-tetrafluoroethane (Refrigerant gas R 124)</td>
<td>10.3 9.8 7.9 7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.20</td>
</tr>
<tr>
<td>1027</td>
<td>Cyclopropane</td>
<td>18.0 16.0 14.5 13.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.53</td>
</tr>
<tr>
<td>1028</td>
<td>Dichlorodifluormethane (Refrigerant gas R 12)</td>
<td>16.0 15.0 13.0 11.5</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.15</td>
</tr>
<tr>
<td>1029</td>
<td>Dichlorofluoromethane (Refrigerant gas R 21)</td>
<td>7.0 7.0 7.0 7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.23</td>
</tr>
<tr>
<td>1030</td>
<td>1,1-Difluoroethane (Refrigerant gas R 152a)</td>
<td>16.0 14.0 12.4 11.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.79</td>
</tr>
<tr>
<td>1032</td>
<td>Dimethylamine, anhydrous</td>
<td>7.0 7.0 7.0 7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.59</td>
</tr>
<tr>
<td>1033</td>
<td>Dimethyl ether</td>
<td>15.5 13.8 12.0 10.6</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.58</td>
</tr>
</tbody>
</table>

a “Small” means tanks having a shell with a diameter of 1.5 metres or less; “Bare” means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); “Sunshield” means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); “Insulated” means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of “Design reference temperature” in 6.7.3.1).

b The word “Normal” in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.
This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirements</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1036</td>
<td>Ethylamine</td>
<td>7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.61</td>
</tr>
<tr>
<td>1037</td>
<td>Ethyl chloride</td>
<td>7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.80</td>
</tr>
<tr>
<td>1040</td>
<td>Ethylene oxide with nitrogen up to a total pressure of 1MPa (10 bar) at 50 °C</td>
<td>-</td>
<td>Not allowed</td>
<td>See 6.7.3.7.3</td>
<td>0.78</td>
</tr>
<tr>
<td>1041</td>
<td>Ethylene oxide and carbon dioxide mixture with more than 9 % but not more than 87 % ethylene oxide</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>Normal</td>
<td>See 4.2.2.7</td>
</tr>
<tr>
<td>1055</td>
<td>Isobutylene</td>
<td>8.1</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.52</td>
</tr>
<tr>
<td>1060</td>
<td>Methylacetylene and propadiene mixture, stabilized</td>
<td>28.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.43</td>
</tr>
<tr>
<td>1061</td>
<td>Methylamine, anhydrous</td>
<td>10.8</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.58</td>
</tr>
<tr>
<td>1062</td>
<td>Methyl bromide with not more than 2 % chloropicrin</td>
<td>7.0</td>
<td>Not allowed</td>
<td>See 6.7.3.7.3</td>
<td>1.51</td>
</tr>
</tbody>
</table>

“Small” means tanks having a shell with a diameter of 1.5 metres or less; “Bare” means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); “Sunshield” means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); “Insulated” means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of “Design reference temperature” in 6.7.3.1).

The word “Normal” in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.
This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirements (^b) (see 6.7.3.7)</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1063</td>
<td>Methyl chloride (Refrigerant gas R 40)</td>
<td>14.5
 12.7
 11.3
 10.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.81</td>
</tr>
<tr>
<td>1064</td>
<td>Methyl mercaptan</td>
<td>7.0
 7.0
 7.0</td>
<td>Not allowed</td>
<td>See 6.7.3.7.3</td>
<td>0.78</td>
</tr>
<tr>
<td>1067</td>
<td>Dinitrogen tetroxide</td>
<td>7.0
 7.0
 7.0</td>
<td>Not allowed</td>
<td>See 6.7.3.7.3</td>
<td>1.30</td>
</tr>
<tr>
<td>1075</td>
<td>Petroleum gas, liquefied</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>Normal</td>
<td>See 4.2.2.7</td>
</tr>
<tr>
<td>1077</td>
<td>Propylene</td>
<td>28.0
 24.5
 22.0
 20.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.43</td>
</tr>
<tr>
<td>1078</td>
<td>Refrigerant gas, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>Normal</td>
<td>See 4.2.2.7</td>
</tr>
<tr>
<td>1079</td>
<td>Sulphur dioxide</td>
<td>11.6
 10.3
 8.5
 7.6</td>
<td>Not allowed</td>
<td>See 6.7.3.7.3</td>
<td>1.23</td>
</tr>
<tr>
<td>1082</td>
<td>Trifluorochloroethylene, stabilized (Refrigerant gas R 1113)</td>
<td>17.0
 15.0
 13.1
 11.6</td>
<td>Not allowed</td>
<td>See 6.7.3.7.3</td>
<td>1.13</td>
</tr>
<tr>
<td>1083</td>
<td>Trimethylamine, anhydrous</td>
<td>7.0
 7.0
 7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.56</td>
</tr>
</tbody>
</table>

\(^a\) "Small" means tanks having a shell with a diameter of 1.5 metres or less; "Bare" means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); "Sunshield" means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); "Insulated" means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of "Design reference temperature" in 6.7.3.1).

\(^b\) The word "Normal" in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.
This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirements</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1085</td>
<td>Vinyl bromide, stabilized</td>
<td>7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1086</td>
<td>Vinyl chloride, stabilized</td>
<td>10.6</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1087</td>
<td>Vinyl methyl ether, stabilized</td>
<td>7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1581</td>
<td>Chloropicrin and methyl bromide mixture with more than 2 % chloropicrin</td>
<td>7.0</td>
<td>Not allowed</td>
<td>See 6.7.3.7.3</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1582</td>
<td>Chloropicrin and methyl chloride mixture</td>
<td>19.2</td>
<td>Not allowed</td>
<td>See 6.7.3.7.3</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1858</td>
<td>Hexafluoropropylene (Refrigerant gas R 1216)</td>
<td>19.2</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1912</td>
<td>Methyl chloride and methylene chloride mixture</td>
<td>15.2</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (Refrigerant gas R 114)</td>
<td>7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a “Small” means tanks having a shell with a diameter of 1.5 metres or less; “Bare” means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); “Sunshield” means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); “Insulated” means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of “Design reference temperature” in 6.7.3.1).

b The word “Normal” in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.
This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirements<sup>b</sup> (see 6.7.3.7)</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>Hydrocarbon gas, mixture liquefied, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>Normal</td>
<td>See 4.2.2.7</td>
</tr>
<tr>
<td>1969</td>
<td>Isobutane</td>
<td>8.5</td>
<td>7.5</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>1973</td>
<td>Chlorodifluoromethane and chloropentafluoroethane mixture with fixed boiling point, with approximately 49% chlorodifluoromethane (Refrigerant gas R 502)</td>
<td>28.3</td>
<td>25.3</td>
<td>22.8</td>
<td>20.3</td>
</tr>
<tr>
<td>1974</td>
<td>Chlorodifluorobromomethane (Refrigerant gas R 12B1)</td>
<td>7.4</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>1976</td>
<td>Octafluorocyclobutane (Refrigerant gas RC 318)</td>
<td>8.8</td>
<td>7.8</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>1978</td>
<td>Propane</td>
<td>22.5</td>
<td>20.4</td>
<td>18.0</td>
<td>16.5</td>
</tr>
<tr>
<td>1983</td>
<td>1-Chloro-2,2,2-trifluoroethane (Refrigerant gas R 133a)</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>2035</td>
<td>1,1,1-Trifluoroethane (Refrigerant gas R 143a)</td>
<td>31.0</td>
<td>27.5</td>
<td>24.2</td>
<td>21.8</td>
</tr>
</tbody>
</table>

^a “Small” means tanks having a shell with a diameter of 1.5 metres or less; “Bare” means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); “Sunshield” means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); “Insulated” means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of “Design reference temperature” in 6.7.3.1).

^b The word “Normal” in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.
This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirements (see 6.7.3)</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2424</td>
<td>Octafluoropropane (Refrigerant gas R 218)</td>
<td>23.1
20.8
18.6
16.6</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.07</td>
</tr>
<tr>
<td>2517</td>
<td>1-Chloro-1,1-difluoroethane (Refrigerant gas R 142b)</td>
<td>8.9
7.8
7.0
7.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.99</td>
</tr>
<tr>
<td>2602</td>
<td>Dichlorodifluoromethane and difluoroethane azeotropic mixture with approximately 74 % dichlorodifluoromethane (Refrigerant gas R 500)</td>
<td>20.0
18.0
16.0
14.5</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.01</td>
</tr>
<tr>
<td>3057</td>
<td>Trifluoroacetyl chloride</td>
<td>14.6
12.9
11.3
9.9</td>
<td>Not allowed</td>
<td>6.7.3.7.3</td>
<td>1.17</td>
</tr>
<tr>
<td>3070</td>
<td>Ethylene oxide and dichlorodifluoromethane mixture with not more than 12.5 % ethylene oxide</td>
<td>14.0
12.0
11.0
9.0</td>
<td>Allowed</td>
<td>6.7.3.7.3</td>
<td>1.09</td>
</tr>
<tr>
<td>3153</td>
<td>Perfluoro (methyl vinyl ether)</td>
<td>14.3
13.4
11.2
10.2</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.14</td>
</tr>
<tr>
<td>3159</td>
<td>1,1,1,2-Tetrafluoroethane (Refrigerant gas R 134a)</td>
<td>17.7
15.7
13.8
12.1</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.04</td>
</tr>
</tbody>
</table>

a “Small” means tanks having a shell with a diameter of 1.5 metres or less; “Bare” means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); “Sunshield” means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); “Insulated” means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of “Design reference temperature” in 6.7.3.1).

b The word “Normal” in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.
This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirements(^b) (see 6.7.3.7)</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3161</td>
<td>Liquefied gas, flammable, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>Normal</td>
<td>See 4.2.2.7</td>
</tr>
<tr>
<td>3163</td>
<td>Liquefied gas, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>Normal</td>
<td>See 4.2.2.7</td>
</tr>
<tr>
<td>3220</td>
<td>Pentafluoroethane</td>
<td>34.4</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>(Refrigerant gas R 125)</td>
<td>30.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3252</td>
<td>Difluoromethane</td>
<td>43.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>(Refrigerant gas R 32)</td>
<td>39.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3296</td>
<td>Heptafluoropropane</td>
<td>16.0</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>(Refrigerant gas R 227)</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3297</td>
<td>Ethylene oxide and chlorotetrafluoroethane mixture, with not more than 8.8 % ethylene oxide</td>
<td>8.1</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3298</td>
<td>Ethylene oxide and pentafluoroethane mixture, with not more than 7.9 % ethylene oxide</td>
<td>25.9</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3299</td>
<td>Ethylene oxide and tetrafluoroethane mixture, with not more than 5.6 % ethylene oxide</td>
<td>16.7</td>
<td>Allowed</td>
<td>Normal</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(^a\) "Small" means tanks having a shell with a diameter of 1.5 metres or less; "Bare" means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); "Sunshield" means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); "Insulated" means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of "Design reference temperature" in 6.7.3.1).

\(^b\) The word “Normal” in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.
This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirements(^b) (see 6.7.3.7)</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3318</td>
<td>Ammonia solution, relative density less than 0.880 at 15 °C in water, with more than 50 % ammonia</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>See 6.7.3.7.3</td>
<td>See 4.2.2.7</td>
</tr>
<tr>
<td>3337</td>
<td>Refrigerant gas R 404A</td>
<td>31.6 28.3 25.3 22.5</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.82</td>
</tr>
<tr>
<td>3338</td>
<td>Refrigerant gas R 407A</td>
<td>31.3 28.1 25.1 22.4</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.94</td>
</tr>
<tr>
<td>3339</td>
<td>Refrigerant gas R 407B</td>
<td>33.0 29.6 26.5 23.6</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.93</td>
</tr>
<tr>
<td>3340</td>
<td>Refrigerant gas R 407C</td>
<td>29.9 26.8 23.9 21.3</td>
<td>Allowed</td>
<td>Normal</td>
<td>0.95</td>
</tr>
</tbody>
</table>

\(^a\) “Small” means tanks having a shell with a diameter of 1.5 metres or less; “Bare” means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); “Sunshield” means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); “Insulated” means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of “Design reference temperature” in 6.7.3.1).

\(^b\) The word “Normal” in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.
PORTABLE TANK INSTRUCTION (cont'd)

This portable tank instruction applies to non-refrigerated liquefied gases and chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505). The general provisions of section 4.2.2 and the requirements of section 6.7.3 shall be met.

<table>
<thead>
<tr>
<th>UN No</th>
<th>Non-refrigerated liquefied gases</th>
<th>Max. allowable working pressure (bar)</th>
<th>Openings below liquid level</th>
<th>Pressure-relief requirements<sup>b</sup> (see 6.7.3.7)</th>
<th>Maximum filling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3500</td>
<td>Chemical under pressure, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>See 6.7.3.7.3</td>
<td>TP4<sup>c</sup></td>
</tr>
<tr>
<td>3501</td>
<td>Chemical under pressure, flammable, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>See 6.7.3.7.3</td>
<td>TP4<sup>c</sup></td>
</tr>
<tr>
<td>3502</td>
<td>Chemical under pressure, toxic, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>See 6.7.3.7.3</td>
<td>TP4<sup>c</sup></td>
</tr>
<tr>
<td>3503</td>
<td>Chemical under pressure, corrosive, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>See 6.7.3.7.3</td>
<td>TP4<sup>c</sup></td>
</tr>
<tr>
<td>3504</td>
<td>Chemical under pressure, flammable, toxic, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>See 6.7.3.7.3</td>
<td>TP4<sup>c</sup></td>
</tr>
<tr>
<td>3505</td>
<td>Chemical under pressure, flammable, corrosive, n.o.s.</td>
<td>See MAWP definition in 6.7.3.1</td>
<td>Allowed</td>
<td>See 6.7.3.7.3</td>
<td>TP4<sup>c</sup></td>
</tr>
</tbody>
</table>

^a “Small” means tanks having a shell with a diameter of 1.5 metres or less; “Bare” means tanks having a shell with a diameter of more than 1.5 metres without insulation or sun shield (see 6.7.3.2.12); “Sunshield” means tanks having a shell with a diameter of more than 1.5 metres with sun shield (see 6.7.3.2.12); “Insulated” means tanks having a shell with a diameter of more than 1.5 metres with insulation (see 6.7.3.2.12); (see definition of “Design reference temperature” in 6.7.3.1).

^b The word “Normal” in the pressure relief requirements column indicates that a frangible disc as specified in 6.7.3.7.3 is not required.

^c For UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505, the degree of filling shall be considered instead of the maximum filling ratio.

PORTABLE TANK INSTRUCTION

This portable tank instruction applies to refrigerated liquefied gases. The general provisions of section 4.2.3 and the requirements of section 6.7.4 shall be met.
PORTABLE TANK SPECIAL PROVISIONS

4.2.5.3 Portable tank special provisions

Portable tank special provisions are assigned to certain substances to indicate provisions which are in addition to or in lieu of those provided by the portable tank instructions or the requirements in Chapter 6.7. Portable tank special provisions are identified by an alphanumeric designation beginning with the letters "TP" (tank provision) and are assigned to specific substances in Column 11 of the Dangerous Goods List in Chapter 3.2.

The following is a list of the portable tank special provisions:

TP1 The degree of filling prescribed in 4.2.1.9.2 must not be exceeded

\[
\text{Degree of filling} = \frac{97}{1 + \alpha(t_r - t_f)}
\]

TP2 The degree of filling prescribed in 4.2.1.9.3 must not be exceeded

\[
\text{Degree of filling} = \frac{95}{1 + \alpha(t_r - t_f)}
\]

TP3 The maximum degree of filling (in %) for solids transported above their melting points and for elevated temperature liquids must be determined in accordance with 4.2.1.9.5.

\[
\text{Degree of filling} = 95 \frac{d_r}{d_f}
\]

TP4 The degree of filling must not exceed 90% or, alternatively, any other value approved by the competent authority (see 4.2.1.16.2).

TP5 The degree of filling prescribed in 4.2.3.6 must be met.

TP6 To prevent the tank bursting in any event, including fire engulfment, it must be provided with pressure-relief devices which are adequate in relation to the capacity of the tank and to the nature of the substance transported. The device must also be compatible with the substance.

TP7 Air must be eliminated from the vapour space by nitrogen or other means.
The test pressure for the portable tank may be reduced to 1.5 bar when the flash point of the substances transported is greater than 0 °C.

A substance under this description may only be transported in a portable tank under a determination granted by the competent authority.

A lead lining, not less than 5 mm thick, which must be tested annually, or another suitable lining material approved by the competent authority is required. A portable tank may be offered for transport after the date of expiry of the last lining inspection for a period not to exceed three months beyond that date, after emptying but before cleaning, for purposes of performing the next required test or inspection prior to refilling.

Self-contained breathing apparatus must be provided when this substance is transported.

The tank must be fitted with a special device to prevent under-pressure and excess pressure during normal transport conditions. This device must be approved by the competent authority. Pressure-relief requirements are as indicated in 6.7.2.8.3 to prevent crystallisation of the product in the pressure-relief valve.

Only inorganic non-combustible materials must be used for thermal insulation of the tank.

Temperature must be maintained between 18 °C and 40 °C. Portable tanks containing solidified methacrylic acid must not be reheated during transport.

At the time of construction, the minimum shell thickness determined according to 6.7.3.4 shall be increased by 3 mm as a corrosion allowance. Shell thickness must be verified ultrasonically at intervals midway between periodic hydraulic tests and must never be lower than the minimum shell thickness determined according to 6.7.3.4.

This substance may only be transported in insulated tanks under a nitrogen blanket.

The shell thickness must be not less than 8 mm. Tanks must be hydraulically tested and internally inspected at intervals not exceeding 2.5 years.

Lubricant for joints or other devices must be oxygen compatible.

The portable tank may be fitted with a device located under maximum filling conditions in the vapour space of the shell to prevent the build up of excess pressure due to the slow decomposition of the substance transported. This device must also prevent an unacceptable amount of leakage of liquid in the case of overturning or entry of foreign matter into the tank. This device must be approved by the competent authority or its authorised body.
TP25 Sulphur trioxide 99.95% pure and above may be transported in tanks without an inhibitor provided that it is maintained at a temperature equal to or above 32.5 °C.

TP26 When transported under heated conditions, the heating device must be fitted outside the shell. For UN 3176 this requirement only applies when the substance reacts dangerously with water.

TP27 A portable tank having a minimum test pressure of 4 bar may be used if it is shown that a test pressure of 4 bar or less is acceptable according to the test pressure definition in 6.7.2.1.

TP28 A portable tank having a minimum test pressure of 2.65 bar may be used if it is shown that a test pressure of 2.65 bar or less is acceptable according to the test pressure definition in 6.7.2.1.

TP29 A portable tank having a minimum test pressure of 1.5 bar may be used if it is shown that a test pressure of 1.5 bar or less is acceptable according to the test pressure definition in 6.7.2.1.

TP30 This substance must be transported in insulated tanks.

TP31 This substance may only be transported in tanks in the solid state.

TP32 For UN Nos. 0331, 0332 and 3375, portable tanks may be used subject to the following conditions:

(a) To avoid unnecessary confinement, each portable tank constructed of metal must be fitted with a pressure-relief device that may be of the reclosing spring-loaded type, a frangible disc or a fusible element. The set to discharge or burst pressure, as applicable, must not be greater than 2.65 bar for portable tanks with minimum test pressures greater than 4 bar;

(b) For UN 3375 only the suitability for transport in tanks must be demonstrated. One method to evaluate this suitability is test 8 (d) in Test Series 8 (see "Manual of Tests and Criteria", Part 1, sub-section 18.7).

(c) Substances must not be allowed to remain in the portable tank for any period that could result in caking. Appropriate measures must be taken to avoid accumulation and packing of substances in the tank (e.g. cleaning, etc).

TP33 The portable tank instruction assigned for this substance applies for granular and powdered solids and for solids which are filled and discharged at temperatures above their melting point which are cooled and transported as a solid mass. For solids which are transported above their melting point see 4.2.1.19.

TP34 Portable tanks need not be subjected to the impact test in 6.7.4.14.1 if the portable tank is marked "NOT FOR RAIL TRANSPORT" on the plate specified in 6.7.4.15.1 and also in letters of at least 10 cm high on both sides of the outer jacket.

TP35 Fusible elements in the vapour space may be used on portable tanks.
TP37 <DELETED>
TP38 <DELETED>
TP39 <DELETED>
TP40 Portable tanks must not be transported when connected with spray application equipment.
TP41 The 2.5 year internal examination may be waived or substituted by other test methods or inspection procedures specified by the competent authority or its authorized body, provided that the portable tank is dedicated to the transport of the organometallic substances to which this tank special provision is assigned. However this examination is required when the conditions of 6.7.2.19.7 are met.

4.2.6 TRANSITIONAL MEASURES
Portable tanks and MEGCs manufactured before 1 January 2012, that conform to the marking requirements of 6.7.2.20.1, 6.7.3.16.1, 6.7.4.15.1 or 6.7.5.13.1 of this Code, 7th edition, as published in 2007, as relevant, may continue to be used if they comply with all other relevant requirements of the current edition of this Code including, when applicable, the requirement of 6.7.2.20.1 (g) for marking the symbol "S" on the plate when the shell or the compartment is divided by surge plates into sections of not more than 7 500 litres capacity. When the shell, or the compartment, was already divided by surge plates into sections of not more than 7 500 litres capacity before 1 January 2012, the capacity of the shell, or respectively of the compartment, need not be supplemented with the symbol “S” until the next periodic inspection or test according to 6.7.2.19.5 is performed.
Portable tanks manufactured before 1 January 2014 need not be marked with the portable tank instruction as required in 6.7.2.20.2, 6.7.3.16.2 and 6.7.4.15.2 until the next periodic inspection and test.
Portable tanks and MEGCs manufactured before 1 January 2014 need not comply with the requirements of 6.7.2.13.1 (f), 6.7.3.9.1 (e), 6.7.4.8.1 (e) and 6.7.5.6.1 (d) concerning the marking of the pressure relief devices.
CHAPTER 4.3 - USE OF BULK CONTAINERS (FOR SOLIDS)

4.3.1 GENERAL PROVISIONS

4.3.1.1 This section provides general requirements applicable to the use of containers for the transport of solid substances in bulk. Substances must be transported in bulk containers conforming to the applicable bulk container instruction identified by the letters BK in column 10 of the Dangerous Goods List, with the following meaning:

- **BK1:** the transport in sheeted bulk containers is permitted
- **BK2:** the transport in closed bulk containers is permitted
- **BK3:** the transport in flexible bulk containers is permitted

The bulk container used must conform to the requirements of Chapter 6.8.

4.3.1.2 Except as provided in 4.3.1.3, bulk containers may only be used when a substance is assigned to a bulk container code in Column 10 of the Dangerous Goods List in Chapter 3.2.

4.3.1.3 When a substance is not assigned a bulk container code in Column 10 of the Dangerous Goods List in Chapter 3.2, a determination in accordance with Regulation 1.5.1(2) may be issued by the competent authority. The determination must be included in the documentation of the consignment and contain, as a minimum, the information normally provided in the bulk container instruction and the conditions under which the substance must be transported. Appropriate measures should be initiated by the competent authority to include the assignment in the Dangerous Goods List.

4.3.1.4 Substances which may become liquid at temperatures likely to be encountered during transport, are not permitted in bulk containers.

4.3.1.5 Bulk containers must be siftproof and must be so closed that none of the contents can escape under normal conditions of transport including the effect of vibration, or by changes of temperature, humidity or pressure.

4.3.1.6 Bulk solids must be loaded into bulk containers and evenly distributed in a manner that minimises movement that could result in damage to the container or leakage of the dangerous goods.

4.3.1.7 Where venting devices are fitted they must be kept clear and operable.

4.3.1.8 Bulk solids must not react dangerously with the material of the bulk container, gaskets, equipment including lids and tarpaulins and with protective coatings which are in contact with the contents or significantly weaken them. Bulk containers must be so constructed or adapted that the goods can not penetrate between wooden floor coverings or come into contact with those parts of the bulk containers that may be affected by the materials or residues thereof.

4.3.1.9 Before being filled and offered for transport each bulk container must be
4.3.1.7 [UN 7.3.1.7] Inspected and cleaned to ensure that it does not contain any residue on the interior or exterior of the bulk container that could:
- cause a dangerous reaction with the substance intended for transport;
- detrimentally affect the structural integrity of the bulk container; or
- affect the dangerous goods retention capabilities of the bulk container.

4.3.1.10 [UN 7.3.1.8] During transport, no dangerous residues may adhere to the outer surfaces of bulk containers.

4.3.1.11 [UN 7.3.1.9] If several closure systems are fitted in series, the system which is located nearest to the substance to be transported must be closed first before filling.

4.3.1.12 [UN 7.3.1.10] Empty bulk containers that have contained a dangerous substance must be treated in the same manner as is required by this Code for a filled bulk container, unless adequate measures have been taken to nullify any hazard.

4.3.1.13 [UN 7.3.1.11] If bulk containers are used for the carriage of bulk goods liable to cause a dust explosion, or evolve flammable vapours (e.g. for certain wastes) measures must be taken to exclude sources of ignition and prevent dangerous electrostatic discharge during transport filling or discharge of the substance.

4.3.1.14 [UN 7.3.1.12] Substances, for example wastes, which may react dangerously with one another and substances of different classes and goods not subject to this Code, which are liable to react dangerously with one another must not be mixed together in the same bulk container. Dangerous reactions are:
(a) combustion and/or evolution of considerable heat; or
(b) emission of flammable and/or toxic gases; or
(c) formation of corrosive liquids; or
(d) formation of unstable substances.

4.3.1.15 [UN 7.3.1.13] Before a bulk container is filled it must be visually examined to ensure it is structurally serviceable, its interior walls, ceiling and floors are free from protrusions or damage and that any inner liners or substance retaining equipment are free from rips, tears or any damage that would compromise its cargo retention capabilities. Structurally serviceable means the bulk container does not have major defects in its structural components, such as top and bottom side rails, top and bottom end rails, door sill and header, floor cross members, corner posts, and corner fittings in a freight container. Major defects include:
(a) bends, cracks or breaks in the structural or supporting members that affect the integrity of the container; or
(b) more than one splice or an improper splice (such as a lapped splice) in top or bottom end rails or door headers; or
(c) more than two splices in any one top or bottom side rail; or
(d) any splice in a door sill or corner post; or
(e) door hinges and hardware that are seized, twisted, broken, missing, or otherwise inoperative; or
(f) gaskets and seals that do not seal; or
(g) any distortion of the overall configuration great enough to prevent proper alignment of handling equipment, mounting and securing chassis or vehicle, or insertion into ships' cells; or
(h) any damage to lifting attachments or handling equipment interface features; or.
(i) any damage to service or operational equipment.

4.3.1.16 Before a flexible bulk container is filled it must be visually examined to ensure it is structurally serviceable, its textile slings, load-bearing structure straps, body fabric, lock device parts including metal and textile parts are free from protrusions or damage and that inner liners are free from rips, tears or any damage.

4.3.1.16.1 For flexible bulk containers, the period of use permitted for the transport of dangerous goods must be two years from the date of manufacture of the flexible bulk container.

4.3.1.16.2 A venting device must be fitted if a dangerous accumulation of gases may develop within the flexible bulk container. The vent must be so designed that the penetration of foreign substances or the ingress of water is prevented under normal conditions of transport.

4.3.2 ADDITIONAL PROVISIONS APPLICABLE TO BULK GOODS OF DIVISIONS 4.2, 4.3, 5.1, 6.2 AND CLASSES 7 AND 8

4.3.2.1 Bulk goods of Division 4.2

[UN 7.3.2.3] Only closed bulk containers (code BK2) may be used.
The total mass carried in a bulk container must be such that its spontaneous ignition temperature is greater than 55 °C.

4.3.2.2 Bulk Goods of Division 4.3

[UN 7.3.2.4] Only closed bulk containers (code BK2) and flexible bulk containers (code BK3) may be used.
These goods must be transported in bulk containers which are waterproof.

4.3.2.3 Bulk Goods of Division 5.1
Bulk containers must be so constructed or adapted that the goods cannot come into contact with wood or any other incompatible material.

4.3.2.4 Bulk goods of Division 6.2

[UN 7.3.2.6]

4.3.2.4.1 Bulk Transport of Animal Material Of Division 6.2

[UN 7.3.2.6.1]
Animal material containing infectious substances (UN Nos. 2814, 2900 and 3373) is authorised for transport in bulk containers provided the following conditions are met:

(a) Sheeted bulk containers BK1 are permitted provided that they are not filled to maximum capacity to avoid substances coming into contact with the sheeting. Closed bulk containers BK2 are also permitted.

(b) Closed and sheeted bulk containers, and their openings, must be leakproof by design or by the fitting of a suitable liner.

(c) The animal material must be thoroughly treated with an appropriate disinfectant before loading prior to transport.

(d) Waste goods of UN Nos. 2814 and 2900 in a sheeted bulk container must be covered by an additional top liner weighted down by absorbent material treated with an appropriate disinfectant.

(e) Closed or sheeted bulk containers must not be re-used until after they have been thoroughly cleaned and disinfected.

NOTE: Additional provisions may be required by health or environmental authorities.

4.3.2.4.2 Bulk wastes of Division 6.2 (UN 3291)

(a) Only closed bulk containers (BK2) are permitted;

(b) Closed bulk containers, and their openings, must be leakproof by design. These bulk containers must have non-porous interior surfaces and must be free from cracks or other features that could damage packagings inside, impede disinfection or permit inadvertent release;

(c) Wastes of UN No. 3291 must be contained within the closed bulk container in UN type tested and approved sealed leakproof plastics bags tested for solids of packing group II and marked in accordance with 6.1.3.1. Such plastics bags must be capable of passing the tests for tear and impact resistance according to ISO 7765-1:1988 "Plastics film and sheeting. Determination of impact resistance by the free-falling dart method. Part 1: Staircase methods" and ISO 6383-2:1983 "Plastics. Film and sheeting. Determination of tear resistance. Part 2: Elmendorf method". Each bag must have an impact resistance of at least 165 g and a tear resistance of at least 480 g in both parallel and perpendicular planes with respect to the length of the bag. The maximum net mass of each plastics bag must be 30 kg;

(d) Single articles exceeding 30 kg such as soiled mattresses may be transported without the need for a plastics bag when authorised by the competent authority;

(e) Wastes of UN No. 3291 which contain liquids must only be transported in plastics bags containing sufficient absorbent material to absorb the entire amount of liquid without it spilling in the bulk container;

(f) Wastes of UN No. 3291 containing sharp objects must only be transported in UN type tested and approved rigid packagings meeting the provisions of packing instructions P621, IBC620 or LP621.

(g) Rigid packagings specified in packing instructions P621, IBC620 or LP621 may also be used. They must be properly secured to prevent
damage during normal conditions of transport. Wastes transported in rigid packagings and plastics bags together in the same closed bulk container must be adequately segregated from each other, e.g. by suitable rigid barriers or dividers, mesh nets or otherwise securing the packagings, such that they prevent damage to the packagings during normal conditions of transport;

(h) Wastes of UN No. 3291 in plastics bags must not be compressed in a closed bulk container in such a way that bags may be rendered no longer leakproof;

(i) The closed bulk container must be inspected for leakage or spillage after each journey. If any wastes of UN No. 3291 have leaked or been spilled in the closed bulk container, it must not be re-used until after it has been thoroughly cleaned and, if necessary, disinfected or decontaminated with an appropriate agent. No other goods must be transported together with UN No. 3291 other than medical or veterinary wastes. Any such other wastes transported in the same closed bulk container must be inspected for possible contamination.

4.3.2.5 Bulk material of Class 7
<Reserved>

NOTE:

The following information from the Australian Radiation Protection and Nuclear Safety Authority (ARPANSA) now replaces the information found in earlier editions of the ADG Code.

RPS 2 Code of Practice for the Safe Transport of Radioactive Material

RPS No. 2.1 - Safety Guide for the Safe Transport of Radioactive Material

RPS No. 2.2 - Safety Guide for the Approval Processes for the Safe Transport of Radioactive Materials (2012)

See general comments on page xivi.

4.3.2.6 Bulk goods of Class 8

[UN 7.3.2.8] Only closed bulk containers (code BK2) may be used. These goods must be transported in bulk containers which are watertight.
CHAPTER 4.4 - USE OF VEHICLES, TANK VEHICLES, FREIGHT CONTAINERS, EQUIPMENT AND SEGREGATION DEVICES

4.4.1 GENERAL

A vehicle used to transport dangerous goods:

(a) must be suitable for transporting the goods;
(b) must be free of any defect that is likely to create a risk in transporting the goods;
(c) must be clean;
(d) in the case of a tank vehicle must be selected and used in accordance with Section 4.4.2;

(e) in the case of a road vehicle used to transport a freight container, portable tank or bulk container fitted with corner castings - must be fitted with twistlocks or other equipment for securing a container on a vehicle set out in AS/NZS 3711.10;

(f) in the case of a road vehicle used to transport a demountable tank or bulk container without corner castings - must be fitted with devices to secure the container;

(g) in the case of a rail wagon used to transport a freight container, portable tank or bulk container - must be fitted with:

(i) twistlocks or other equipment for securing a container on a vehicle set out in AS/NZS 3711.10; or

(ii) other fittings that will prevent the movement of the container during transport.

4.4.2 USE OF TANK VEHICLES

NOTE 1: Tank vehicles include road tank vehicles and rail tank wagons. In the case of a road tank vehicle, this includes a vehicle to which a tank, other than a portable tank, is attached. Use of portable tanks must comply with Chapter 4.2.

NOTE 2: A tank vehicle does not include a hopper vehicle or any other vehicle into which solid dangerous goods are directly loaded, unless the receptacle is a tank that would also be suitable for use with liquids. Use of hopper vehicles etc. must comply with Chapter 4.3.

4.4.2.1 This Section provides requirements for the use of tank vehicles for the transport of substances of Classes 2, 3, 4, 5, 6, 8 and 9. In addition to these usage requirements, tank vehicles must conform to the design, construction, inspection, testing and approval requirements detailed in Chapter 6.9.

4.4.2.2 Except in accordance with a Competent Authority determination under Regulation 1.5.1(2), dangerous goods must not be transported in a road tank vehicle or rail tank wagon if there is no Portable Tank Instruction
allocated to the substance in Column (10) of the Dangerous Goods List in 3.2.3.

4.4.2.3 Vehicle and tank selection

4.4.2.3.1 Dangerous goods must not be transported in a tank vehicle unless the compliance plate fitted to the vehicle in accordance with 6.9.2.2 indicates that the tank:

(a) is suitable for the properties of the substance to be transported; and
(b) has been maintained and tested in accordance with Chapter 6.9.

4.4.2.3.2 Dangerous goods must not be transported in a road tank vehicle unless that vehicle conforms with AS 2809 Part 1 and such other Part of AS 2809 as is applicable to the particular substance, in accordance with Table 6.1 in Chapter 6.9.

4.4.2.4 Condition of container and equipment

4.4.2.4.1 Dangerous goods must not be transported in a tank vehicle if the tank is:

(a) constructed of material which is incompatible with the goods; or
(b) leaking, defective or damaged so that it is not safe to transport the goods; or
(c) is not free from dangerous goods which are incompatible with the dangerous goods to be transported.

4.4.2.4.2 Every valve, cap, manhole cover or other closure on a tank vehicle transporting dangerous goods as a liquid or a gas, including the receptacle or any associated piping, must be kept closed and secured so as to avoid unsafe loss of containment.

4.4.2.4.3 If a tank vehicle is used to transport dangerous goods that are likely to polymerise or solidify:

(a) any fittings on the tank or vehicle that are likely to come into contact with the goods (whether in a liquid or vapour state) should not be obstructed by the goods so as to create a risk; and
(b) any material removed during cleaning operations should be kept wetted or otherwise kept safe until it has been removed to a safe place.

4.4.3 USE OF FREIGHT CONTAINERS

A freight container used to transport dangerous goods must comply with the relevant Standards specified in Chapter 6.10 and be:

(a) suitable for transporting the goods; and
(b) free of any defect that is likely to cause a hazard in transporting the goods; and
(c) clean and dry on the inside; and
(d) free of dangerous residues; and
(e) secured to the vehicle in accordance with Section 8.2.1.
PART 4: PACKING, TANK, CONTAINER, VEHICLE AND EQUIPMENT PROVISIONS

4.4.4 USE OF EQUIPMENT ON VEHICLES

Any equipment that is on the vehicle and that is to be used in loading dangerous goods onto the vehicle, or unloading dangerous goods from the vehicle must be:

(a) suitable for the purpose; and
(b) free of any defect that is likely to increase risk in loading or unloading the goods.

NOTE: For equipment used for fluid transfer, see Chapter 10.1.

4.4.5 USE OF SEGREGATION DEVICES

4.4.5.1 Application and purpose

4.4.5.1.1 The use of segregation devices, when permitted by Section 9.2.2, applies only to transport by road and rail within Australia.

4.4.5.1.2 The purpose of a Segregation Device is to provide an additional level of all-round protection to its contents in the event of an abnormal situation. It provides an additional barrier against the contact of incompatibles or the contamination of foodstuffs, etc.

4.4.5.1.3 Subject to Section 9.2.2, dangerous goods of packing group II or III may be segregated from incompatible goods by packing either the dangerous goods or the incompatible goods in a segregation device which may be:

(a) an Overpacking Drum Segregation Device as described in 6.11.2; or
(b) a Type I Segregation Device as detailed in 6.11.3; or
(c) a Type II Segregation Device in accordance with 6.11.4; or
(d) a Non-Type I Underslung Segregation Device in accordance with 6.11.7

NOTE: Other methods of segregation may be permitted by Section 9.2.2.

4.4.5.2 Packing and stowage

4.4.5.2.1 Each dangerous goods package or unpackaged dangerous article that is stowed in a segregation device must be:

(a) an approved sole package or combination package, packed in accordance with Chapter 4.1, that is labelled and marked in accordance with Chapter 5.2; or
(b) an unpackaged dangerous article that is labelled and marked in accordance with Chapter 5.2; or
(c) dangerous goods packed and marked as limited quantities in accordance with Chapter 3.4.

4.4.5.2.2 Each package or article must be stowed in the segregation device so that it will remain in position during transport.

4.4.5.2.3 The segregation device must be restrained on the vehicle or in the freight container so that it will remain in position during transport.
4.4.5.2.4 All other goods on the vehicle or in the freight container must be stowed in the vehicle or container such that they will not be adversely affected in the event of leakage of any goods from the segregation device.

4.4.5.2.5 The dangerous goods and the incompatible goods must not be stowed above each other.

4.4.5.3 Marking and Labelling

4.4.5.3.1 An overpacking drum in which dangerous goods are transported must be marked and labelled as required for an Overpack in Section 5.1.2.

4.4.5.3.2 Type I and II segregation devices and Non – Type I underslung segregation devices in which dangerous goods are transported must be labelled in accordance with Section 5.2.2.

4.4.5.4 Non-Type I Underslung Segregation Device

4.4.5.4.1 Equipment such as tools or jacks must not be stored in a Non-Type I underslung segregation device at any time while the device contains dangerous goods.
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING, MARKING AND PLACARDING
CHAPTER 5.1 - GENERAL PROVISIONS

5.1.1 APPLICATION AND GENERAL PROVISIONS

5.1.1.1 This Part sets forth provisions for dangerous goods consignments relative to preparation of consignments, marking, labelling, and placarding.

5.1.1.2 <Reserved>

5.1.2 USE OF OVERPACKS

NOTE: UN20 uses the word “overpack” to describe what was known as a ‘unit load’ in previous editions of this Code. In the UN Model Regulations, the definition of “overpack” restricts its use to a single consignor. This Code omits that restriction for transport within Australia by road or rail, thus permitting packaged dangerous goods to be unitised in accordance with this section by transporters, freight forwarders and load consolidators.

5.1.2.1 Overpack marking

5.1.2.1.1 Unless marks and labels representative of all dangerous goods in the overpack are visible, the overpack must be:

a. marked with the word “OVERPACK”. The lettering of the “OVERPACK” mark shall be at least 12 mm high; and
b. labelled and marked with the proper shipping name, UN number and other marks, as required for packages by Chapter 5.2, for each item of dangerous goods contained in the overpack.

Labelling of overpacks containing radioactive material shall be in accordance with 5.2.2.1.12.

5.1.2.1.2 Despite 5.1.2.1.1, an overpack intended only for transport by road or rail within Australia need not be marked with the word “OVERPACK”.¹

5.1.2.1.3 Despite 5.1.2.1.1, if marks and labels representative of all dangerous goods in the overpack are not visible, and all of the dangerous goods are limited quantity items, the overpack may be marked with the limited quantity mark specified in Chapter 3.4.

5.1.2.2 Package provisions

5.1.2.2.1 Each package of dangerous goods contained in the overpack must comply with all applicable provisions of this Code. The intended function of each package must not be impaired by the overpack.

5.1.2.2.2 Except for limited quantities where 3.4.5 applies, packages containing dangerous goods which are incompatible may not be transported together in an overpack.

¹ However, ‘OVERPACK’ marking will be required on overpacks transported by sea between Australian ports.
5.1.2.2.3 Packages transported in an overpack must be wrapped, strapped or otherwise secured in a manner that minimises the likelihood of damage to the packages during transport.

5.1.2.2.4 Paints, Adhesives, Printing Inks and Resin Solutions to which special packing provision PP1 applies (see Packing Instruction P001 in Section 4.1.4) may be transported in inner packagings in an overpack subject to the conditions of PP1.

5.1.2.3 Package orientation
Each package bearing package orientation marks as prescribed in 5.2.1.7 of this Code and which is overpacked or placed in a large packaging must be oriented in accordance with such marks.

5.1.2.4 Overpack provisions
5.1.2.4.1 The overpack must be strong enough to withstand repeated handling.

5.1.2.4.2 If the overpack is intended to support overstowage it must be of a shape suitable for this purpose and strong enough to support stacking of other loads of similar density to the height to which they are intended to be stacked during transport.

5.1.2.4.3 The materials used to enclose or secure the packages in the overpack must be capable of withstanding exposure to moisture, extremes of temperature, sunlight and minor leakages of substance in the overpack.

5.1.2.4.4 The overpack must be suitable for lifting by fork lift truck or other lifting apparatus. If the lifting points are not apparent, they must be marked on the overpack.

NOTE: Provision is made for the transport of electric storage batteries in overpacks in Packing Instructions P003, P408, P801 and P903, as referenced from the entries for the particular types of batteries in the Dangerous Goods List.

5.1.3 EMPTY PACKAGINGS
5.1.3.1 Other than for Class 7, a packaging which previously contained dangerous goods must be identified, marked and labelled as required for those dangerous goods unless freed from dangerous goods.

5.1.3.2 Freight containers, tanks, IBCs, as well as other packagings and overpacks, used for the transport of radioactive material must not be used for the storage or transport of other goods unless decontaminated below the level of 0.4 Bq/cm² for beta and gamma emitters and low toxicity alpha emitters and 0.04 Bq/cm² for all other alpha emitters.

5.1.3.3 Unused pre-labelled dangerous goods packagings should be clearly identified as such on any transport documentation, any outer packaging or the exterior of the cargo transport unit in order to avoid inappropriate emergency response.
5.1.4 MIXED PACKING
When two or more dangerous goods are packed within the same outer packaging, the package must be labelled and marked as required for each substance. Subsidiary hazard labels need not be applied if the hazard is already represented by a primary hazard label.

5.1.5 <RESERVED>
CHAPTER 5.2 - MARKING AND LABELLING

NOTE: In addition to the marking and labelling required by this chapter, all placardable units (any receptacle, including an IBC, with a capacity of more than 500 kg(L)) must be placarded with emergency information panels in accordance with Chapter 5.3. Where the proper shipping name, UN number or any label required by this chapter is incorporated in the emergency information panel, the requirement of this chapter for that marking or label are met.

5.2.1 MARKING

5.2.1.1 Unless provided otherwise in this Code (as in Chapter 3.4 for dangerous goods packed in limited quantities), the proper shipping name for the dangerous goods as determined in accordance with 3.1.2 and the corresponding UN number preceded by the letters “UN”, must be displayed on each package, IBC, cylinder, pressure drum, tube, MEGC or other unpackaged article. The UN number and the letters “UN” must be at least 12 mm high, except for packages of 30 litres capacity or less or of 30 kg maximum net mass and for cylinders of 60 litres water capacity or less when they must be at least 6 mm in height and except for packages of 5 litres capacity or less or 5 kg maximum net mass when they must be of an appropriate size. In the case of unpackaged articles the mark must be displayed on the article, on its cradle or on its handling, storage or launching device. For goods of Division 1.4, Compatibility Group S, the division and compatibility group letter must also be marked unless the label for 1.4S is displayed. A typical package mark is:

“CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S. (Caprylyl chloride) UN 3265” If a size requirement in this clause is inconsistent with a size requirement in Table 5.2, Table 5.2 prevails.

NOTE 1: Cylinders of 60L water capacity or less marked with a UN number in accordance with the provisions of this Code up to 1 July 2015 need not comply with this provision until the next periodic inspection, or 1 July 2018, whichever occurs first.

NOTE 2: Packages that do not comply with this clause may not comply with marking requirements outside Australia.

5.2.1.1.1 Unless provided otherwise in this Code (as in 5.2.1.1.2 for imported dangerous goods, Chapter 3.4 for dangerous goods packed in limited quantities), the name and address in Australia of the manufacturer or consignor of the dangerous goods, or their agent must be displayed on each package, IBC, cylinder, pressure drum, tube, MEGC or unpackaged article.

5.2.1.1.2 Clause 5.2.1.1.1 does not apply when the dangerous goods are being transported in a closed freight container that has been imported into, or is to be exported from Australia, if:

(a) no goods (dangerous or not) have been removed from or added to the freight container since:

(i) if imported – its arrival in Australia; or
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

(ii) if to be exported — the load was first consigned for transport to the place from which it is to be exported; and
(b) the freight container is placarded in accordance with section 5.3.8.

5.2.1.2 All marks required by 5.2.1.1:
(a) must be readily visible and legible; and
(b) must be able to withstand open weather exposure without a substantial reduction in effectiveness; and
(c) must be displayed on a background of contrasting colour on the external surface of the package; and
(d) must not be located with other package marks that could substantially reduce their effectiveness; and.
(e) should be in letters and numbers of at least the size specified for the package in Table 5.2 (see 5.2.2.2.1.9).

5.2.1.3 Salvage packagings including large salvage packings and salvage pressure receptacles must additionally be marked with the word “SALVAGE”. The lettering of the “SALVAGE” mark must be at least 12 mm high.

NOTE: For marking of overpacks, see 5.1.2.1.

5.2.1.4 Large packagings must be marked on at least two opposing sides.

5.2.1.5 <Reserved>

5.2.1.6 Special marking provisions for environmentally hazardous substances.

NOTE: The application of 5.2.1.6 is conditional on Australian Special Provision AU01 in Chapter 3.3.3

5.2.1.6.1 Unless otherwise specified in this Code, packages containing environmentally hazardous substances meeting the criteria of 2.9.3 (UN Nos. 3077 and 3082) must be durably marked with the environmentally hazardous substance mark.

5.2.1.6.2 The environmentally hazardous substance mark must be located adjacent to the marks required by 5.2.1.1. The requirements of 5.2.1.2 and 5.2.1.4 must be met.

5.2.1.6.3 The environmentally hazardous substance mark must be as shown in Figure 5.2.2.
Environmentally hazardous substance mark
– Symbol (fish and tree): black on white or suitable contrasting background

The mark must be in the form of a square set at an angle of 45 degrees (diamond-shaped). The symbol (fish and tree) must be black on white or suitable contrasting background. The minimum dimensions must be 100 mm x 100 mm and the minimum width of line forming the diamond must be 2 mm. If the size of the package so requires, the dimensions/line thickness may be reduced, provided the marking remains clearly visible. Where dimensions are not specified, all features must be in approximate proportion to those shown.

NOTE 1: The labelling provisions of 5.2.2 apply in addition to any requirement for packages to bear the environmentally hazardous substance mark.

5.2.1.7 Orientation arrows

5.2.1.7.1 Except as provided in 5.2.1.7.2:
- Combination packagings having inner packagings containing liquid dangerous goods;
- Single packagings fitted with vents;
- Cryogenic receptacles intended for the transport of refrigerated liquefied gases; and
- Machinery or apparatus containing liquid dangerous goods when it is required to ensure the liquid dangerous goods remain in their intended orientation (see special provision 301 of chapter 3.3).

must be legibly marked with package orientation arrows which are similar to the illustration shown below or with those meeting the specifications of ISO 780:1997. The orientation arrows must appear on two opposite vertical sides of the package with the arrows pointing in the correct upright direction. They must be rectangular and of a size that is clearly visible commensurate with the size of the package. Depicting a rectangular border around the arrows is optional.
Figures 5.2.3 and 5.2.4: Orientation arrows

Two black or red arrows on white or suitable contrasting background

or

The rectangular border is optional

All features must be in approximate proportions shown.

5.2.1.7.2 Orientation arrows are not required on:

(a) Outer packagings containing pressure receptacles except cryogenic receptacles;
(b) Outer packagings containing dangerous goods in inner packagings each containing not more than 120 ml, with sufficient absorbent material between the inner and outer packagings to completely absorb the liquid contents;
(c) Outer packagings containing Division 6.2 infectious substances in primary receptacles each containing not more than 50 ml;
(d) Type IP-2, type IP-3, type A, type B(U), type B(M) or type C packages containing Class 7 radioactive material;
(e) Outer packagings containing articles which are leak-tight in all orientations (e.g. alcohol or mercury in thermometers, aerosols, etc.); or
(f) Outer packagings containing dangerous goods in hermetically sealed inner packagings each containing not more than 500 ml.

5.2.1.7.3 Arrows for purposes other than indicating proper package orientation must not be displayed on a package marked in accordance with this subsection.

5.2.1.8 Excepted Quantities Mark

Packages containing excepted quantities of dangerous goods must be marked according to 3.5.4

5.2.1.9 Lithium battery mark

5.2.1.9.1 Packages containing lithium cells or batteries prepared in accordance with special provision 188 shall be marked as shown in Figure 5.2.5.

5.2.1.9.2 The mark must indicate the UN number preceded by the letters “UN”, i.e. ‘UN 3090’ for lithium metal cells or batteries or ‘UN 3480’ for lithium ion cells or batteries. Where the lithium cells or batteries are contained in, or packed with, equipment, the UN number, preceded by the letters “UN”, i.e. ‘UN 3091’ or ‘UN 3481’ as appropriate shall be indicated. Where a
package contains lithium cells or batteries assigned to different UN numbers, all applicable UN numbers shall be indicated on one or more marks.

Figure 5.2.5: Lithium battery mark

The mark shall be in the form of a rectangle or a square with hatched edging. The dimensions shall be a minimum of 100 mm wide x 100 mm high and the minimum width of the hatching shall be 5 mm. The symbol (group of batteries, one damaged and emitting flame, above the UN number for lithium ion or lithium metal batteries or cells) shall be black on white or suitable contrasting background. The hatching shall be red. If the size of the package so requires, the dimensions may be reduced to not less than 100 mm wide x 70 mm high. Where dimensions are not specified, all features shall be in approximate proportion to those shown.

5.2.2 LABELLING

5.2.2.1 Labelling provisions

NOTE: These provisions relate essentially to danger labels. However, additional marks or symbols indicating precautions to be taken in handling or storing a package (e.g. a symbol representing an umbrella indicating that a package must be kept dry) may be displayed on a package if appropriate.

5.2.2.1.1 All dangerous goods packages, cylinders, pressure drums, tubes, MEGCs, IBCs, overpacks and unpackaged articles that are subject to this Code must have a label that identifies the primary and subsidiary hazards of the dangerous goods and that conforms to models Nos. 1 to 9 illustrated in 5.2.2.2, except:

(a) those IBCs, pressure drums, tubes, MEGCs and articles which are placardable units that are placarded with emergency information panels in accordance with Chapter 5.3; or

(b) where there is an exemption from labelling in an applicable Special Provision in Chapter 3.3; or
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

(c) for dangerous goods in limited quantities that are packed and marked in accordance with Chapter 3.4; or

For the purposes of this provision, the “EXPLOSIVE” subsidiary hazard label is model No. 1.

NOTE 1: Unlike earlier editions, in this Code a label identifying a subsidiary hazard is now identical to the Class or Division label used for the same hazard, as illustrated in 5.2.2.2.2. The appropriate Class or Division number indicating the subsidiary hazard must be displayed in the bottom corner of the label.

5.2.2.1.2 Where articles or substances are specifically listed in the Dangerous Goods List, a danger class label must be affixed for the hazard shown in Column 3. A subsidiary hazard label must also be affixed for any hazard indicated by a class or division number in Column 4 of the Dangerous Goods List. However, special provisions indicated in Column 6 may also require a subsidiary hazard label where no subsidiary hazard is indicated in Column 4 or may exempt from the requirement for a subsidiary hazard label where such a hazard is indicated in the Dangerous Goods List.

5.2.2.1.3 Except as provided in 5.2.2.1.3.1, if a substance which meets the definition of more than one class is not specifically listed by name in the Dangerous Goods List in Chapter 3.2, the provisions in Chapter 2.0 must be used to determine the primary hazard class of the goods. In addition to the label required for that primary hazard class, subsidiary hazard labels must also be applied as specified in the Dangerous Goods List.

5.2.2.1.3.1 Packages containing substances of Class 8 need not bear subsidiary hazard label model No. 6.1 if the toxicity arises solely from the destructive effect on tissue. Packages containing substances of Division 4.2 need not bear subsidiary hazard label model No. 4.1.
5.2.2.1.4

Labels for Class 2 gases with subsidiary hazard(s)

<table>
<thead>
<tr>
<th>Division</th>
<th>Subsidiary hazard(s) shown in Chapter 2.2</th>
<th>Primary hazard label</th>
<th>Subsidiary hazard label(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>None</td>
<td>2.1</td>
<td>None</td>
</tr>
<tr>
<td>2.2</td>
<td>None</td>
<td>2.2</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>2.2(^a)</td>
<td>5.1(^a)</td>
</tr>
<tr>
<td>2.3</td>
<td>None</td>
<td>2.3</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>2.3</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>2.3</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>5.1, 8</td>
<td>2.3</td>
<td>5.1, 8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.1, 8</td>
<td>2.3</td>
<td>2.1, 8</td>
</tr>
</tbody>
</table>

Table note:
\(a\) See 5.2.2.1.5

5.2.2.1.5

Three separate labels have been provided for Class 2, one for flammable gases of Division 2.1 (red), one for non-flammable, non-toxic gases of Division 2.2 (green) and one for toxic gases of Division 2.3 (white). Where the Dangerous Goods List indicates that a Class 2 gas possesses single or multiple subsidiary hazards, labels must be used in accordance with the table in 5.2.2.1.4.

5.2.2.1.5.1

For the labelling of cylinders containing UN 1070 Nitrous Oxide or UN 1072 Oxygen, and any other gases of Division 2.2 that have a Subsidiary Hazard of 5.1, a yellow "OXIDISING GAS" label (model No. 2.5) may be used in lieu of Division 2.2 plus Subsidiary hazard 5.1 labels.

NOTE:
The use of the oxidising gas label is valid for road or rail transport in Australia. It may not be accepted internationally, or for sea or air transport within Australia.

5.2.2.1.6

Except as provided in 5.2.2.2.1.2, each label must:

(a) be located on the same surface of the package near the proper shipping name, if the package dimensions are adequate; and
(b) be so placed on the packaging that they are not covered or obscured by any part or attachment to the packaging or any other label or mark; and
(c) when primary and subsidiary hazard labels are required, be displayed next to each other.

Where a package is of such an irregular shape or small size that a label cannot be satisfactorily affixed, the label may be attached to the package by a securely affixed tag or other suitable means.

5.2.2.1.7

<Reserved>
Labels must be affixed on a surface of contrasting colour, or must have either a dotted or solid outer boundary line.

Special provisions for the labelling of self-reactive substances

An “EXPLOSIVE” subsidiary hazard label (model No. 1) must be applied for type B self-reactive substances, unless the competent authority has exempted a specific packaging from this label because test data have proved that the self-reactive substance in such a packaging does not exhibit explosive behaviour.

Special provisions for the labelling of organic peroxides

The Division 5.2 label (model 5.2B) must be affixed to packages containing organic peroxides classified as types B, C, D, E or F. This label also implies that the product may be flammable and hence no “FLAMMABLE LIQUID”, subsidiary hazard label (model No. 3) is required. In addition, the following subsidiary hazard labels must be applied:

(a) an “EXPLOSIVE” subsidiary hazard label (model No. 1) for organic peroxides type B, unless the competent authority has exempted a specific packaging from this label because test data have proved that the organic peroxide in such a packaging does not exhibit explosive behaviour;

(b) a “CORROSIVE” subsidiary hazard label (model No. 8) is required when packing group I or II criteria of Class 8 are met.

Special provisions for the labelling of infectious substances packages

In addition to the primary hazard label (model No. 6.2), infectious substances packages must bear any other label required by the nature of the contents.

Note: the requirement to label inner packages has been removed in lieu of GHS requirements.

Lables for articles containing dangerous goods transported as UN Nos. 3537, 3538, 3539, 3540, 3541, 3542, 3543, 3544, 3545, 3546, 3547 and 3548

Packages containing articles or articles transported unpackaged shall bear labels according to 5.2.2.1.2 reflecting the hazards established according to 2.0.5. If the article contains one or more lithium batteries with, for lithium metal batteries, an aggregate lithium content of 2 g or less, and for lithium ion batteries, a Watt-hour rating of 100 Wh or less, the lithium battery mark (Figure 5.2.5) shall be affixed to the package or unpackaged article. If the article contains one or more lithium batteries with, for lithium metal batteries, an aggregate lithium content of more than 2 g and for lithium ion batteries, a Watt-hour rating of more than 100 Wh, the lithium battery label (5.2.2.1.2 No. 9A) shall be affixed to the package or unpackaged article.
5.2.2.13.2 When it is required to ensure articles containing liquid dangerous goods remain in their intended orientation, orientation marks meeting 5.2.1.7.1 shall be affixed and visible on at least two opposite vertical sides of the package or of the unpackaged article where possible, with the arrows pointing in the correct upright direction.

5.2.2.14 Labelling of segregation devices

Type I and II segregation devices and Non-Type I underslung segregation devices in which dangerous goods are transported in accordance with Section 4.4.5 must be labelled on each vertical side that may be exposed during loading or transport with labels in accordance with sub-section 5.2.2.1, except that each label must be at least 250 mm square.

5.2.2 Provisions for labels

5.2.2.1 Labels must satisfy the provisions of this section and conform, in terms of colour, symbols and general format, to the specimen labels shown in 5.2.2.2, except as provided in 5.2.2.2.1.5.

NOTE: Where appropriate, labels in 5.2.2.2 are shown with a dotted outer boundary as provided for in 5.2.2.1.1. This is not required when the label is applied on a background of contrasting colour.
5.2.2.2.1.1 Labels must be configured as shown in Figure 5.2.6.

Figure 5.2.6: Class / Division Label

![Class/ Division Label](image)

Notes to Figure 5.2.6:

* The class or, for divisions 5.1 and 5.2, the Division number **must** be shown in the bottom corner.

** Additional text/numbers/symbol/letters **must** (if mandatory) or may **(if optional)** be shown in this bottom half.

*** The class or division symbol or, for divisions 1.4, 1.5 and 1.6, the division number and for Model No 7E the word “FISSILE” **must** be shown in the top half.

5.2.2.2.1.1.1 Labels must be displayed on a background of contrasting colour, or must have either a dotted or solid outer boundary line.

5.2.2.2.1.1.2 The label must be in the form of a square set at an angle of 45 degrees (diamond-shaped). The minimum dimensions must be 100 mm x 100 mm. There must be a line inside the edge forming the diamond which must be parallel and approximately 5 mm from the outside of that line to the edge of the label."

5.2.2.2.1.1.3 If the size of the package so requires the dimensions may be reduced proportionally, provided the symbols and other elements of the label remain clearly visible. Dimensions for cylinders **must** comply with 5.2.2.2.1.2.

5.2.2.2.1.2 Cylinders for Class 2 may, on account of their shape, orientation and securing mechanisms for transport, bear labels representative of those specified in this section, which have been reduced in size, according to ISO 7225:2005\(^1\) “Gas cylinders – Precautionary labels”, for display on the non-cylindrical part (shoulder) of such cylinders. Labels may overlap to the extent provided for by ISO 7225:2005, however, in all cases, the labels

\(^1\) *The minimum sizes for labels specified by ISO 7225 are included in Table 5.2.*
representing the primary hazard and the numbers appearing on any label must remain fully visible and the symbols recognisable.

NOTE: When the diameter of the cylinder is too small to permit the display of the reduced size labels on the non-cylindrical upper part of the cylinder, the reduced sized labels may be displayed on the cylindrical part.

5.2.2.2.1.3

With the exception of Divisions 1.4, 1.5 and 1.6, the upper half of the label must contain the pictorial symbol and the lower half must contain the class or division number (and for goods of Class 1, the compatibility group letter) as appropriate. However, for label model No. 9A, the upper half of the label shall only contain the seven vertical stripes of the symbol and the lower half shall contain the group of batteries of the symbol and the class number. Except for label model No. 9A, the label may include such text as the UN number, or words describing the hazard class (e.g. “flammable”) in accordance with 5.2.2.2.1.5 provided that the text does not obscure or detract from the other required label elements.

5.2.2.2.1.4

In addition, except for Divisions 1.4, 1.5 and 1.6, labels for Class 1 must show in the lower half, above the class number, the division number and compatibility group letter for the substance or article. Labels for Divisions 1.4, 1.5 and 1.6 must show in the upper half the division number and in the lower half the compatibility group letter. For Division 1.4, Compatibility Group S, no label is generally required. However, in cases where a label is considered necessary for such goods, it should be based on model No. 1.4.

5.2.2.2.1.5

On labels other than those for material of Class 7, the insertion of any text (other than the class or division number) in the space below the symbol must be confined to particulars indicating the nature of the hazard and precautions to be taken in handling. In this Code, text indicating the nature of the risk (e.g. “FLAMMABLE GAS”, or “CORROSIVE”), is depicted on all specimen labels in 5.2.2.2.2. This text must be included on labels for material of Class 7 and on label model No. 2.5, and should be included on the other labels where practicable. For label 9A, no text other than the class mark must be included in the bottom part of the label.

NOTE 1: In UN 21, the IMDG Code, ICAO Rules, IATA Regulations, ADR and RID, text indicating the nature of the risk, while permitted, is not included in the illustrated labels other than those for material of Class 7. Often therefore labels on imported packages and IBCs, or used as placards on imported freight containers or portable tanks, will not incorporate text indicating the nature of the risk, or may incorporate this text in another language. Such labels are acceptable for continued transport within Australia. Text is more frequently omitted where the UN number is incorporated in a label used as a placard as shown in Figure 5.3.3.

NOTE 2: Notwithstanding Note 1, the continuing display on labels of text indicating the nature of the risk is strongly encouraged for use within Australia, particularly when used as placards on vehicles and freight containers, to assist with hazard recognition in an emergency.
5.2.2.2.1.6 The symbols, text and numbers must be shown in black on all labels except for:

(a) the Class 8 label, where the text (if any) and class number must appear in white; and

(b) labels with entirely green, red or blue backgrounds where they may be shown in white; and

(c) the new Division 5.2 label, where the symbol may be shown in white; and

(d) the Division 2.1 label displayed on cylinders and gas cartridges for liquefied petroleum gases, where they may be shown in the background colour of the receptacle if adequate contrast is provided.

5.2.2.2.1.7 All labels must be able to withstand open weather exposure without a substantial reduction in effectiveness.

5.2.2.2.1.8 Where the colour orange, red, green, blue or yellow is specified for use in labels in 5.2.2.2 or in placards in Chapter 5.3, the colour of the label or placard must be the relevant colour as displayed and identified in Figure 5.3.7 (at the end of Chapter 5.3).

5.2.2.2.1.9 Where the size of a package is such that it is impracticable to apply a label of 100 mm x 100 mm as required by 5.2.2.2.1.1, the label must be of at least the dimensions specified for the package in Table 5.2. In each instance, the minimum dimensions apply to each side of the outer border set at 45°.
Table 5.2: Minimum Dimensions of Labels

<table>
<thead>
<tr>
<th>Class or Article</th>
<th>Package, Packaging or Article</th>
<th>Minimum dimensions of labels (mm)</th>
<th>Recommended minimum size of lettering [see 5.2.1.2(d)] (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 2 (other than Aerosols)</td>
<td>Cylinder of outside diameter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 75 mm</td>
<td>10 x 10</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>≥ 75 mm < 180 mm</td>
<td>15 x 15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>≥ 180 mm</td>
<td>25 x 25</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Pressure drum or tube ≤ 500 L</td>
<td>100 x 100</td>
<td>7</td>
</tr>
<tr>
<td>BATTERIES, WET, FILLED WITH ACID, electric storage (UN 2794)</td>
<td>Battery with a gross mass of 65kg or less, but top surface only</td>
<td>20 x 20</td>
<td>3</td>
</tr>
<tr>
<td>All others</td>
<td>Package containing:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 0.5 kg(L)</td>
<td>15 x 15</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>> 0.5 kg(L) ≤ 5 kg(L)</td>
<td>20 x 20</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>> 5 kg(L) ≤ 25 kg(L)</td>
<td>50 x 50</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>> 25 kg(L)</td>
<td>100 x 100</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>IBC ≤ 500 kg(L) [b]</td>
<td>100 x 100</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Large packaging, overpack, segregation device</td>
<td>100 x 100</td>
<td>12</td>
</tr>
</tbody>
</table>

Table notes:

- **a** Where the space available on the package for labelling is limited and the Proper Shipping Name of the dangerous goods must be supplemented by a Technical Name (where special provision 274 is assigned to the particular entry in the Dangerous Goods List – see 3.1.2.8), the minimum height of the letters of the Technical Name or names may be reduced to not less than half the size stated in this table or 1.5 mm, whichever is the greater.

- **b** IBCs, pressure drums and tubes of capacity > 500 kg(L) are placardable units that must be placarded with emergency information panels in accordance with 5.3.3.
Specimen labels

<table>
<thead>
<tr>
<th>Label model No.</th>
<th>Division or Category</th>
<th>Symbol and symbol colour</th>
<th>Background</th>
<th>Figure in bottom corner (and figure colour)</th>
<th>Specimen labels</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Divisions 1.1, 1.2, 1.3</td>
<td>Exploding bomb: black</td>
<td>Orange</td>
<td>1 (black)</td>
<td></td>
<td>** Place for division – to be left blank if EXPLOSIVE is the subsidiary risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td>* Place for compatibility group – to be left blank if EXPLOSIVE is the subsidiary risk</td>
</tr>
<tr>
<td>1.4</td>
<td>Division 1.4</td>
<td>1.4: black</td>
<td>Orange</td>
<td>1 (black)</td>
<td></td>
<td>* Place for compatibility group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numerals shall be about 30 mm in height and be about 5 mm thick (for a label measuring 100 mm x 100 mm)</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Division 1.5</td>
<td>1.5: black</td>
<td>Orange</td>
<td>1 (black)</td>
<td></td>
<td>* Place for compatibility group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numerals shall be about 30 mm in height and be about 5 mm thick (for a label measuring 100 mm x 100 mm)</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Division 1.6</td>
<td>1.6: black</td>
<td>Orange</td>
<td>1 (black)</td>
<td></td>
<td>* Place for compatibility group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numerals shall be about 30 mm in height and be about 5 mm thick (for a label measuring 100 mm x 100 mm)</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>
Part 5: Consignment Procedures – Including Labelling

Class 2: Gases

<table>
<thead>
<tr>
<th>Label model No.</th>
<th>Division or Category</th>
<th>Symbol and symbol colour</th>
<th>Background</th>
<th>Figure in bottom corner (and figure colour)</th>
<th>Specimen labels</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Division 2.1: Flammable gases</td>
<td>Flame: black or white (except as provided for in 5.2.2.2.1.6 (d))</td>
<td>Red</td>
<td>2 (black or white) (except as provided for in 5.2.2.2.1.6 (d))</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2.2</td>
<td>Division 2.2: Non-flammable, non-toxic gases</td>
<td>Gas cylinder: black or white</td>
<td>Green</td>
<td>2 (black or white)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2.3</td>
<td>Division 2.3: Toxic gases</td>
<td>Skull and crossbones: black</td>
<td>White</td>
<td>2 (black)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>2.5</td>
<td>Division 2.2 / Sub-hazard 5.1: Oxidising gases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Label model No. 2.5 is valid only for land transport within Australia. - Hazard description on label may alternatively read ‘OXIDIZING GAS’</td>
</tr>
<tr>
<td>Label model No.</td>
<td>Division or Category</td>
<td>Symbol and symbol colour</td>
<td>Background</td>
<td>Figure in bottom corner (and figure colour)</td>
<td>Specimen labels</td>
<td>Note</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>--</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Class 3: Flammable liquids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>Flame: black or white</td>
<td>Red</td>
<td>3 (black or white)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class 4: Flammable solids; substances liable to spontaneous combustions; substances which, in contact with water, emit flammable gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Division 4.1: Flammable solids, self-reactive substances, polymerizing substances and solid desensitized explosives</td>
</tr>
<tr>
<td>4.2 Division 4.2: Substances liable to spontaneous combustion</td>
</tr>
<tr>
<td>4.3 Division 4.3: Substances which, in contact with water, emit flammable gases</td>
</tr>
</tbody>
</table>
Class 5: Oxidising substances and organic peroxides

<table>
<thead>
<tr>
<th>Label model No.</th>
<th>Division or Category</th>
<th>Symbol and symbol colour</th>
<th>Background</th>
<th>Figure in bottom corner (and figure colour)</th>
<th>Specimen labels</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Division 5.1: Oxidising substances</td>
<td>Flame over circle: black</td>
<td>Yellow</td>
<td>5.1 (black)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>5.2</td>
<td>Division 5.2: Organic peroxides</td>
<td>Flame: black or white</td>
<td>Upper half red, lower half yellow</td>
<td>5.2 (black)</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Class 6: Toxic substances and infectious substances

<table>
<thead>
<tr>
<th>Label model No.</th>
<th>Division 6.1: Toxic substances</th>
<th>Symbol and symbol colour</th>
<th>Background</th>
<th>Figure in bottom corner (and figure colour)</th>
<th>Specimen labels</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Skull and crossbones: black</td>
<td>White</td>
<td>6 (black)</td>
<td></td>
<td>The lower half of the label may bear the inscription: ‘In the case of damage or leakage immediately notify Public Health Authority’ in black colour</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Three crescents superimposed on a circle: black</td>
<td>White</td>
<td>6 (black)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Class 7: Radioactive material

<table>
<thead>
<tr>
<th>Label model No.</th>
<th>Division or Category</th>
<th>Symbol and symbol colour</th>
<th>Background</th>
<th>Figure in bottom corner (and figure colour)</th>
<th>Specimen labels</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>7A</td>
<td>Category I - WHITE</td>
<td>Trefoil: black</td>
<td>White</td>
<td>7 (black)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7B</td>
<td>Category II - YELLOW</td>
<td>Trefoil: black</td>
<td>Upper half yellow with white border, lower half white</td>
<td>7 (black)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7C</td>
<td>Category III - YELLOW</td>
<td>Trefoil: black</td>
<td>Upper half yellow with white border, lower half white</td>
<td>7 (black)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **7A**: Category I - WHITE
 - Trefoil: black
 - Background: White
 - Figure in bottom corner (and figure colour): 7 (black)
 - Specimen labels: [Image]
 - **Note**: Text (mandatory), black in lower half of label:
 - ‘RADIOACTIVE’
 - ‘CONTENTS ….’
 - ‘ACTIVITY ….’
 - One red vertical bar must follow the word ‘RADIOACTIVE’

- **7B**: Category II - YELLOW
 - Trefoil: black
 - Background: Upper half yellow with white border, lower half white
 - Figure in bottom corner (and figure colour): 7 (black)
 - Specimen labels: [Image]
 - **Note**: Text (mandatory), black in lower half of label:
 - ‘RADIOACTIVE’
 - ‘CONTENTS ….’
 - ‘ACTIVITY ….’
 - In a black outlined box:
 - ‘TRANSPORT INDEX’
 - Two red vertical bars must follow the word ‘RADIOACTIVE’

- **7C**: Category III - YELLOW
 - Trefoil: black
 - Background: Upper half yellow with white border, lower half white
 - Figure in bottom corner (and figure colour): 7 (black)
 - Specimen labels: [Image]
 - **Note**: Text (mandatory), black in lower half of label:
 - ‘RADIOACTIVE’
 - ‘CONTENTS ….’
 - ‘ACTIVITY ….’
 - In a black outlined box:
 - ‘TRANSPORT INDEX’
 - Three red vertical bars must follow the word ‘RADIOACTIVE’
Part 5: Consignment Procedures – Including Labelling

Australian Dangerous Goods Code, 2020, Edition 7.7

7E: Fissile Material

<table>
<thead>
<tr>
<th>Label model No.</th>
<th>Division or Category</th>
<th>Symbol and symbol colour</th>
<th>Background</th>
<th>Figure in bottom corner (and figure colour)</th>
<th>Specimen labels</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>-</td>
<td>Liquids, spilling from two glass vessels and attacking a hand and a metal: black</td>
<td>Upper half white, lower half black with white border</td>
<td>8 (white)</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Class 9: Miscellaneous dangerous substances and articles, including environmentally hazardous substances

<table>
<thead>
<tr>
<th>Label model No.</th>
<th>Division or Category</th>
<th>Symbol and symbol colour</th>
<th>Background</th>
<th>Figure in bottom corner (and figure colour)</th>
<th>Specimen labels</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-</td>
<td>7 vertical stripes in upper half: black</td>
<td>White</td>
<td>9 underlined (black)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>9A</td>
<td>-</td>
<td>7 vertical stripes in upper half: black; Battery group, one broken and emitting flame in lower half: black</td>
<td>White</td>
<td>9 underlined (black)</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

5.2.2.2.3 Mixed Class Label

NOTE: The Mixed Class Label is used as a placard on cargo transport units transporting more than one class or division of dangerous goods, or a load that requires placarding based on the combined quantity calculation specified in Note 5 of Table 5.3. It is not a package label.

The Mixed Class Label depicted here is not part of the UN labelling system and is not included in the modal codes. Its use as a transport placard and is therefore valid only for road or rail transport within Australia.

Figure 5.2.7: Mixed load label

Background: orange
4 x horizontal stripes: black
Text: white or orange

(also referred to as a Mixed Class Placard)

(Model No. 10)

5.2.2.2.4 Limited Quantity Label

a) The Limited Quantity Label or Mark’s use is described in 3.4.
b) It is the applicable placard for cargo transport units transporting a placard load of limited quantities and/or domestic consumable dangerous goods that meet the requirements of Chapter 3.4

Figure 5.2.8: Limited Quantity label

Background: white
2 x black triangles on the top and bottom of the diamond

(also referred to as a Limited Quantity Placard)

(Model No. 11)
CHAPTER 5.3 - PLACARDING AND MARKING OF CARGO TRANSPORT UNITS, PLACARDABLE UNITS AND BULK CONTAINERS

Introductory Note

Section 5.3.1 Details the placarding requirements applicable to all cargo transport units, bulk containers and placardable units and provides the specifications for placards.

Section 5.3.2 Specifies additional marking that is required on some cargo transport units, bulk containers or placardable units when they contain particular loads of dangerous goods.

Sections 5.3.3–5.3.9 Specify detailed placarding requirements for different types of cargo transport units, bulk containers, placardable units and loads.

5.3.1 GENERAL PLACARDING REQUIREMENTS

5.3.1.1 Placarding Principles

5.3.1.1.1 Placards must be affixed to the exterior surface of cargo transport units that contain a placard load of dangerous goods as determined from Table 5.3, and to bulk containers and placardable units. A placard warns others that the cargo transport unit contains dangerous goods and it presents risks.

Table 5.3: Placard Load (Minimum Quantities)

(A placard load is defined in 1.2.1.1)

Note: the load must be assessed against both Table 5.3.1 and Table 5.3.2

<table>
<thead>
<tr>
<th>Dangerous Goods in Cargo Transport Unit</th>
<th>Placard Load Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Any dangerous goods in a receptacle (other than an article) with a:</td>
<td>One or more such receptacles (i.e. one or more placardable units)</td>
</tr>
<tr>
<td>• capacity > 500 L; or</td>
<td></td>
</tr>
<tr>
<td>• net mass > 500 kg</td>
<td></td>
</tr>
<tr>
<td>(b) Any quantity of:</td>
<td>Aggregate quantity of all dangerous goods (other than LQ) in the cargo transport unit ≥ 250 kg(L) (see Note 5)</td>
</tr>
<tr>
<td>• Division 2.1 (except Aerosols); or</td>
<td></td>
</tr>
<tr>
<td>• Division 2.3; or</td>
<td></td>
</tr>
<tr>
<td>• Packing group I of any Class or Division</td>
<td></td>
</tr>
<tr>
<td>(c) Division 6.2 Category A</td>
<td>All quantities</td>
</tr>
</tbody>
</table>

1 The terms ‘placardable unit’ and ‘transport unit’ used throughout this Chapter are defined in 1.2.1.1 and 1.2.1.2.10 respectively.
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

<table>
<thead>
<tr>
<th>(d)</th>
<th>Division 6.2 (other than Category A)</th>
<th>≥ 10 kg(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)</td>
<td>Loads where (a) – (d) do not apply</td>
<td>Aggregate quantity of dangerous goods (other than LQ) ≥ 1,000 kg(L) (see Note 5) - unless the load is a Fumigated Unit (UN 3359 –see Note 3).</td>
</tr>
</tbody>
</table>

| **Table 5.3.2 – Dangerous goods transported under Chapter 3.4** |
|-------------------------------|---------------------------------|
| **Dangerous goods packed in limited quantities and/or domestic consumable dangerous goods.** |
| Note: these placarding thresholds are separate to and in addition to the above placarding thresholds. In practice, this may mean a single vehicle is required to be placarded with both a placard for the fully regulated DG in the load and an LQ placard. |
| (f) | Limited quantities dangerous goods and/or domestic consumable dangerous goods (defined in 1.2.1) | The load includes limited quantities dangerous goods and/or domestic consumable dangerous goods that includes an aggregate quantity of any one UN number from a single place of consignment of ≥ 2,000kg(L) |
| (g) | Loads where (f) does not apply Limited quantities dangerous goods and/or domestic consumable dangerous goods (defined in 1.2.1) | The gross mass of the limited quantities dangerous goods and/or domestic consumable dangerous goods is > 8 tonnes (see Note 5) |

<table>
<thead>
<tr>
<th>Table 5.3 - Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE 1: For placarding quantities of Class 1, see the Australian Explosives Code.</td>
</tr>
<tr>
<td>NOTE 2: For placarding quantities of Class 7, see the Codes of Practice for the Safe Transport of Radioactive Substances.</td>
</tr>
<tr>
<td>NOTE 3: A Fumigated Unit (UN 3359) complying with Chapter 5.5 that does not contain any other dangerous goods is not a placard load and should not be included in the aggregate quantity of dangerous goods when determining a placard load.</td>
</tr>
<tr>
<td>NOTE 4: For land transport wholly within Australia, this Code requires placards to be displayed on cargo transport units if they contain a placard load, as determined from Table 5.3. It should be noted that cargo transport units containing lesser quantities may need to be placarded in accordance with the IMDG Code before they are acceptable for transport by sea, even within Australian waters.</td>
</tr>
<tr>
<td>NOTE 5: When transporting a load that contains dangerous goods specified in (b) or (e) of Table 5.3.1 and dangerous goods specified in (g) of Table 5.3.2, each of which are below a placard load, the combined quantity of dangerous goods in the load must be calculated and the result assessed against the relevant threshold in Table 5.3.1.</td>
</tr>
</tbody>
</table>

Calculation of combined quantity

(i) If the relevant threshold for the dangerous goods in Table 5.3.1 is (b) - the combined quantity = the aggregate qty regulated DG + 10% of the Gross weight of the LQ/DC;

or

(ii) If the relevant threshold for the dangerous goods in Table 5.3.1 is (e) - the combined quantity = the aggregate qty regulated DG + 25% of the Gross weight of the LQ/DC

5.3.1.1.2 Placards must correspond to the primary hazard of the goods contained in the cargo transport unit, bulk container or placardable unit except that:

(a) placards are not required on cargo transport units carrying any quantity of explosives of Division 1.4, Compatibility Group S, unless they are also carrying other dangerous goods; and
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

(b) where the load is a placard load under Table 5.3.1 and there is more than one class or division in a cargo transport unit, a placard in the form of a mixed class label (model No. 10 in 5.2.2.2.3) may be used in lieu of multiple placards where permitted in Sections 5.3.3 to 5.3.7 inclusive.

c) where the load is a placard load under Table 5.3.2, the cargo transport unit must be placarded with a limited quantity label (model No. 11 in 5.2.2.2.4)

d) where the cargo transport unit requires placarding under both Table 5.3.1 and Table 5.3.2, it must be placarded with both labels.

e) where the load is a placard load based on the calculation in Table 5.3, Note 5, the cargo transport unit must be placarded with a mixed class label (model No. 10 in 5.2.2.2.3) and the calculation shown on the dangerous goods transport document.

NOTE: The use of the mixed class label as a placard is valid only in Australia, for road or rail transport.

5.3.1.1.3 Placards must also be displayed for those subsidiary hazard for which a subsidiary hazard label is required according to 5.2.2.1.2. However, cargo transport units containing goods of more than one class or division need not bear a subsidiary hazard placard if the hazard represented by that placard is already indicated by a primary hazard placard or where a mixed class placard is displayed where permitted in this chapter.

5.3.1.1.4 Placards must be displayed on:

(a) all placardable units containing dangerous goods or the residue of dangerous goods, in accordance with Section 5.3.3; and

(b) portable tanks and bulk containers containing dangerous goods or the residue of dangerous goods, in accordance with Section 5.3.4; and

(c) freight containers containing a placard load of dangerous goods for transport, in accordance with Section 5.3.5; and

(d) road vehicles transporting a placard load of dangerous goods, in accordance with Section 5.3.6; and

(e) rail wagons transporting a placard load of dangerous goods, in accordance with Section 5.3.7.

5.3.1.1.5 <Reserved>

5.3.1.1.6 If a class or division label is incorporated in an emergency information panel displayed on a face of a cargo transport unit in accordance with this Chapter, the cargo transport unit need not on that face display additional placards for the hazard represented by that label for any other goods in the cargo transport unit.

5.3.1.2 Specifications for placards

5.3.1.2.1 Except as provided in 5.3.1.2.2 for the Class 7 placard, and in 5.3.2.3.2 for the environmentally hazardous substance mark a placard must be configured as shown in figure 5.3.0.
The placard must be in the form of a square set at an angle of 45 degrees (diamond-shaped). The minimum dimensions must be 250 mm x 250 mm (to the edge of the placard). The line inside the edge must be parallel and 12.5 mm from the outside of that line to the edge of the placard. The symbol and line inside the edge must correspond in colour to the label for the class or division of the dangerous goods in question. The class or division symbol/numeral must be positioned and sized in proportion to those prescribed in 5.2.2.2 for the corresponding class or division of the dangerous goods in question. The placard must display the number of the class or division (and for goods in Class 1, the compatibility group letter) of the dangerous goods in question in the manner prescribed in 5.2.2.2 for the corresponding label, in digits not less than 25 mm high. Where dimensions are not specified, all features must be in approximate proportion to those shown.

5.3.1.2.2 Placard for radioactive material of Class 7

For Class 7, the placard must have minimum overall dimensions of 250 mm by 250 mm (except as permitted by 5.3.1.1.5.2 of UN20) with a black line running 5 mm inside the edge and parallel with it, and must be otherwise as shown in Figure 5.3.1 below. When different dimensions are used, the relative proportions must be maintained. The number “7” must not be less than 25 mm high. The background colour of the upper half of

Figure 5.3.0: Specimen for placards

![Specimen for placards](image)
the placard must be yellow and of the lower half white, the colour of the
trefoil and the printing must be black. The use of the word
"RADIOACTIVE" in the bottom half is optional to allow the use of this
placard to display the appropriate United Nations number for the
consignment.

NOTE: 5.3.1.2.2 and Figure 5.3.1 are reproduced from UN20 for information only.

Figure 5.3.1: Placard for radioactive material of Class 7(No. 7D)

Symbol (trefoil): black;
Background: upper half yellow with
white border, lower half white;
The lower half must show the word
RADIOACTIVE; or
alternatively, when required
(see 5.3.2.1),
the appropriate UN number; and
the figure “7” in the bottom corner

5.3.1.3 Emergency Information Panels

The loads that require an Emergency Information Panel are defined in
Sections 5.3.3 to 5.3.8.

5.3.1.3.1 An emergency information panel is a placard that is substantially of the
colour (unless otherwise exempted by the Competent Authority), format
and design specified in Figure 5.3.2 and that, except as provided in
5.3.1.3.2, 5.3.1.3.3 and 5.3.1.3.4, includes the following particulars:

(a) in space (a)
 - the proper shipping name for the dangerous goods being
 transported; except that where the proper shipping name includes
 the expression “N.O.S.”, that expression and the names of
 substances which contribute to the hazard of the goods may be
 omitted;

(b) in space (b)
 - the UN Number for the dangerous goods;

(c) in space (c)
 - any Hazchem Code assigned to the dangerous goods in Appendix
 C;

(d) in space (d)
- the expression: “IN EMERGENCY DIAL 000, POLICE or FIRE BRIGADE”;
 (e) in space (e)
 - the class or division label for the dangerous goods and any subsidiary hazard label or labels applicable to the dangerous goods;
 (f) in space (f)
 - the name of an organisation responsible for providing the telephone advisory service, and a telephone number of the service, including (STD) area code.

NOTE: Figure 5.3.2 is in three parts as follows:
- Figure 5.3.2(a) shows the layout and dimensions of an emergency information panel;
- Figure 5.3.2(b) is an example of a completed emergency information panel;
- Figure 5.3.2(c) provides examples of a completed emergency information panel for substances having one or more subsidiary hazards.

5.3.1.3.2 Multi-load Emergency Information Panel

A multi-load emergency information panel is a placard substantially of the colour (unless otherwise exempted by the Competent Authority), format and design specified in Figure 5.3.2 that includes the following particulars:

(a) in space (a)
- nothing, the space is to be left blank;
(b) in space (b)
- the expression “MULTI-LOAD”;
(c) in space (c)
- the multi-load Hazchem Code ascertained in accordance with Appendix C for the combination of the dangerous goods being transported in the cargo transport unit or placardable unit;
(d) in space (d)
- the expression: “In emergency dial 000, POLICE or FIRE BRIGADE”;
(e) in space (e):
 (i) if the dangerous goods all belong to the same class or division:
 - the label appropriate to that class or division; or
 (ii) if the dangerous goods do not all belong to the same class or division
 - the mixed class label (Model No. 10 in 5.2.2.2.3);
(f) in space (f)
- the name of an organisation responsible for providing the telephone advisory service and a telephone number of the service, including (STD) area Code.
5.3.1.3.3 Mixed Load (Refined Petroleum Product) Emergency Information Panel

A mixed load (refined petroleum product) emergency information panel, the use of which is subject to the conditions of 3.2.5.4, is a placard substantially of the colour (unless otherwise exempted by the Competent Authority), format and design specified in Figure 5.3.2 that includes the following particulars:

(a) in space (a)
 - the expression “PETROLEUM FUEL”; or
 - if ethanol is included on the vehicle the following expressions may also be used: PETROL AND ETHANOL / PETROL MIXTURE or DIESEL AND ETHANOL / PETROL MIXTURE or PETROLEUM FUEL AND ETHANOL / PETROL MIXTURE

(b) in space (b)
 - the expression “1270”
 - for PETROL AND ETHANOL / PETROL MIXTURE “1203 / 3475”
 - for PETROLEUM FUEL AND ETHANOL / PETROL MIXTURE “1270 / 3475”

(c) in space (c)
 - the multi-load Hazchem Code ascertained in accordance with Appendix C for the combination of the dangerous goods being transported in the cargo transport unit or placardable unit;
 - note if ethanol is on the load the ethanol specific Hazchem code must be used

(d) in space (d)
 - the expression: “In emergency dial 000, POLICE or FIRE BRIGADE”;

(e) in space (e)
 - a Class 3 label (model No. 3, see 5.2.2.2.2);

(f) in space (f)
 - the name of an organisation responsible for providing the telephone advisory service and a telephone number of the service, including (STD) area Code.
5.3.1.3.4 **Emergency Information Panel for Unodourised LP Gas, Butane or Propane**

Where an emergency information panel is required by this Code for a portable tank, tank vehicle or placardable unit that contains the following substances, the following particulars must be included:

<table>
<thead>
<tr>
<th>in space (a) in lieu of the proper shipping name, the expression</th>
<th>Unodourised LP gas</th>
<th>Unodourised Butane</th>
<th>Unodourised Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>“UNODOURISED LP GAS” or “LP GAS, UNODOURISED”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“UNODOURISED BUTANE” or “BUTANE, UNODOURISED”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“UNODOURISED PROPANE” or “PROPANE, UNODOURISED”</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: UNODOURISED” may alternatively be spelled ‘UNODOURIZED’

In all other respects, the emergency information panel must comply with 5.3.1.3.1.

NOTE: The transport of unodourised LP Gas, Butane and Propane are subject to Special Provision AU03 in Chapter 3.3.

5.3.1.3.5 **Dimensions of an Emergency Information Panel**

Except where permitted by Section 5.3.3, an emergency information panel must be of the dimensions specified in Figure 5.3.2.

5.3.1.3.6 **Dividing an Emergency Information Panel**

If, because of an obstruction on the vehicle, container or unit, it is not reasonably practicable to mount an emergency information panel as a whole, the panel may be divided vertically into two parts and mounted on either side of the obstruction.

5.3.1.4 **Placarding Methods**

5.3.1.4.1 If a cargo transport unit, bulk container or placardable unit must be placarded, the placard must be displayed in a substantially vertical plane and:

(a) securely fixed to the unit; or
(b) stencilled onto or printed on the unit; or
(c) placed securely in a frame that is securely fixed to the unit.

5.3.1.4.2 The placard must:

(a) be durable and weather resistant; and
(b) have letters and numerals that are legible; and
(c) not be obscured.

5.3.1.4.3 The part of the unit immediately behind the placard must be of a contrasting colour to the colour of the placard unless:
(a) the border of the placard is of a contrasting colour and design; or
(b) the placard is a label having a dotted or solid outer boundary line in accordance with 5.2.2.2.1.1.

Figure 5.3.2(a): Format and Colour of Emergency Information Panel

Background: white
Lines and text: black
All measurements in millimetres
Figure 5.3.2(b): Example of Completed Emergency Information Panel

All measurements in millimetres

Figure 5.3.2(c): Examples of Completed Emergency Information Panels

(i) Single Sub-Hazard
(ii) Two Sub-Hazards

Permissible alternatives

A. trimmed to fit

B. permitted to overlap borders

200 mm square Primary Hazard Label, 150 mm square Sub-Hazard Labels
5.3.2 MARKING

5.3.2.1 Display of UN numbers

The requirements of this sub-section 5.3.2.1 do not apply to consignments of dangerous goods being transported only by road or rail within Australia.

NOTE: 5.3.2.1 is a requirement of UN20, the IMDG Code, ICAO Rules and IATA Regulations and therefore applies to all transport by sea and air. It is included here for the information of exporters or those intending to transport dangerous goods domestically by sea or air, and to assist in interpreting placarding and marking of containers arriving by sea or air.

5.3.2.1.1 For transport by sea or air, the IMDG Code, ICAO Rules and IATA Regulations require that, except for goods of Class 1, the UN number must be displayed as described in this section on consignments of:

(a) solids, liquids or gases transported in tank cargo transport units including on each component of a multi-compartment tank cargo transport unit; and
(b) solids in bulk containers; and
(c) packaged dangerous goods of a single commodity which constitute a full load for the cargo transport unit; and
(d) unpackaged LSA-I material, SCO-I or SCO-III of Class 7 in or on a vehicle, or in a freight container, or in a tank; and
(e) packaged radioactive material with a single UN number in or on a vehicle, or in a freight container, when required to be transported under exclusive use.

5.3.2.1.2 When required for intermodal transport, the UN number for the goods must be displayed in black digits not less than 65 mm high, either:

(a) against a white background in the area below the pictorial symbol and above the class or division number and the compatibility group letter in a manner that does not obscure or detract from the other required label elements; or
(b) on an orange rectangular panel not less than 120 mm high and 300 mm wide, with a 10 mm black border, to be placed immediately adjacent to each placard. For portable tanks with a capacity of not more than 3000 litres and with an available surface area insufficient to affix the prescribed placards the UN number may be displayed on an orange rectangular panel of appropriately reduced size on the external surface of the tank in characters not less than 25 mm high.
5.3.2.1.3 *Examples of display of UN numbers*

Figure 5.3.3: Examples of display of UN numbers

(a) (Division 2.1 or Class 3 example)
(b)

or

* location of class or division number
** location of UN number

Completed example for
UN 1300
Turpentine Substitute

or

5.3.2.2 *Elevated temperature substance mark*

5.3.2.2.1 Cargo transport units containing a substance that is transported or offered for transport in a liquid state at a temperature equal to or exceeding 100 °C, in a solid state at a temperature equal to or exceeding 240 °C must bear on each side and on each end the mark shown in Figure 5.3.4.

5.3.2.2.2 Despite 5.3.2.2.1, where the prescribed mark for carriage at elevated temperature is incorporated as a subsidiary hazard label in an emergency information panel, the sides of the triangle must measure at least 150 mm.

Figure 5.3.4: Mark for carriage at elevated temperature

The mark must be an equilateral triangle. The colour of the mark must be red. The minimum dimension of the sides must be 250 mm. For portable tanks with a capacity of not more than 3 000 litres and with an available
surface area insufficient to affix the prescribed marks, the minimum dimensions of the sides may be reduced to 100 mm. Where dimensions are not specified, all features must be in approximate proportion to those shown.

5.3.2.3 Environmentally hazardous substance mark

5.3.2.3.1 Subject to Special Provision AU01 in Chapter 3.3, a cargo transport unit or bulk container containing environmentally hazardous substances meeting the criteria of 2.9.3 (UN Nos. 3077 and 3082) must be marked with the environmentally hazardous substance mark (Figure 5.2.2). The mark must be placed on each surface of the cargo transport unit or bulk container that is required by this Chapter to be placarded, as near as is practicable to the class or division label.

5.3.2.3.2 The environmentally hazardous substance mark for cargo transport units and bulk containers must be as described in 5.2.1.6.3 and Figure 5.2.2, except that the minimum dimensions must be 250 mm x 250 mm. For portable tanks with a capacity of not more than 3 000 litres and with an available surface area insufficient to affix the prescribed marks, the minimum dimensions may be reduced to 100 mm x 100 mm.

5.3.2.3.3 If the environmentally hazardous substance mark is incorporated in an emergency information panel, the sides of the mark must measure at least 150 mm.

5.3.3 PLACARDING PLACARDABLE UNITS

5.3.3.1 Except as provided in 5.3.3.6, this section applies to placardable units, being all receptacles, other than cargo transport units, that have a capacity > 500 kg(L), including:

(a) IBCs; and
(b) pressure drums; and
(c) tubes; and
(d) MEGCs; and
(e) demountable tanks.

5.3.3.2 A placardable unit that contains dangerous goods, or has contained dangerous goods and is not free from dangerous goods, must be placarded with emergency information panels as specified in 5.3.1.3.

5.3.3.3 Except where 5.3.3.4 applies, two emergency information panels must be displayed in accordance with 5.3.1.4, in a substantially vertical plane. Panels should, where practicable, be displayed on opposite sides, so as to be best seen:

(a) from a forklift when approaching to pick up the unit; and
(b) when loaded onto a vehicle.

5.3.3.4 Despite 5.3.3.3, only one emergency information panel is required on pressure drums, tubes and other placardable units having a diameter or side dimension of less than 1 metre.
5.3.3.5 Despite 5.3.1.3.5, if a placardable unit has a capacity of not more than 3 cubic metres, an emergency information panel fixed to the unit may have dimensions not less than half those shown in Figure 5.3.2¹, in which case the size of each label and the height of lettering and numerals on the panel must be reduced in proportion to the reduced dimensions of the panel.

5.3.3.6 Exception to placarding with EIPs

This section 5.3.3 does not apply to a placardable unit that is being transported in a closed freight container that has been imported into, or is to be exported from Australia, if:

(a) the placardable unit is marked and labelled in accordance with the applicable modal code (IMDG Code, ICAO Rules or IATA Regulations); and

(b) the freight container is placarded in accordance with the applicable modal code (IMDG Code, ICAO Rules or IATA Regulations); and

(c) no goods (dangerous or not) have been removed from or added to the freight container since:

(i) if imported: - its arrival in Australia; or

(ii) if to be exported: - the load was first consigned for transport to the place from which it is to be exported.

5.3.4 PLACARDING PORTABLE TANKS AND BULK CONTAINERS

5.3.4.1 Except as exempted by 5.3.8, a portable tank or bulk container that contains dangerous goods, or has contained dangerous goods and has not been cleaned free from dangerous goods, must be placarded with emergency information panels that are:

(a) selected in accordance with 5.3.4.2; and

(b) displayed in accordance with 5.3.1.4; and

(c) located on two sides of the tank or container so that, when it is placed on a vehicle, the emergency information panels will, as far as practicable, be visible from both sides of the vehicle.

5.3.4.2 EIP Selection

5.3.4.2.1 A portable tank or bulk container that contains only one type of dangerous goods must be placarded with emergency information panels describing those dangerous goods in accordance with 5.3.1.3.1.

5.3.4.2.2 A multi-compartment tank or bulk container that contains different types of dangerous goods in different compartments must:

(a) have, at each outlet point of each compartment of the tank or container, a mark identifying the dangerous goods contained in that compartment; and

1 An Emergency Information Panel printed on an A3 sheet with minimum printing margins all round is deemed to meet this minimum size requirement.
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

(b) be placarded with the following:

(i) if the dangerous goods in the compartments constitute a mixed load of refined petroleum products - mixed load (refined petroleum product) emergency information panels in accordance with 5.3.1.3.3; or

(ii) if the dangerous goods in the compartments have different UN Numbers and are not a mixed load of refined petroleum products - multi-load emergency information panels in accordance with 5.3.1.3.2; or emergency information panels for each compartment containing dangerous goods, together with a rear facing multi-load information panel.

5.3.5 PLACARDING FREIGHT CONTAINERS

NOTE 1: This Section 5.3.5 applies to the placarding of freight containers loaded with dangerous goods in packages, large packages, overpacks, IBCs and other placardable units. Section 5.3.4 applies to freight containers that are used as bulk containers in accordance with Chapter 4.3.

NOTE 2: If the loaded container is intended for transport by sea or air, then:

(a) the placarding threshold of this Code does not apply and placarding may be required for all loads that include dangerous goods (reference should be made to the IMDG Code, ICAO Rules or IATA Regulations as applicable); and

(b) see 5.3.2.1.1 to determine if the UN Number must also be displayed.

5.3.5.1 A freight container that contains a placard load of dangerous goods, as determined from Table 5.3, must be placarded in accordance with 5.3.1.4, on both long sides, with placards indicating what dangerous goods are contained, selected in accordance with 5.3.5.2.

5.3.5.2 Placard selection

5.3.5.2.1 Where all of the dangerous goods are of a single class or division, except where 5.3.8.2 applies, the placards required by 5.3.5.1 must include:

(a) the class or division label; and

(b) any subsidiary hazard label that is applicable to the goods.

5.3.5.2.2 Where there is more than one class or division in the freight container, except where 5.3.8.2 applies, the placards required by 5.3.5.1 must include either or both of the following:

(a) a mixed class label (model No. 10 in 5.2.2.2.3);

(b) all class and division labels for each primary and subsidiary hazard of the dangerous goods in the container, in accordance with 5.3.1.1.2 and 5.3.1.1.3.

5.3.5.2.3 Where any dangerous goods are transported in one or more placardable units, the placards required on the freight container by 5.3.5.1 must, except where 5.3.8 applies, include emergency information panels selected in accordance with 5.3.5.3.
5.3.5.2.4 The requirement of 5.3.5.2.1 or 5.3.5.2.2 for a label is met if it is included in an emergency information panel required by 5.3.5.2.3.

5.3.5.3 EIP Selection

5.3.5.3.1 A freight container in which only one type of dangerous goods is transported in placardable units must be placarded with emergency information panels describing those dangerous goods in accordance with 5.3.1.3.1.

5.3.5.3.2 A freight container in which different types of dangerous goods are transported in placardable units must be placarded with either:

(a) multi-load emergency information panels in accordance with 5.3.1.3.2; or

(b) emergency information panels for each of the dangerous goods in accordance with 5.3.1.3.1.

5.3.5.4 Placard location

When a freight container must be placarded with class, division or mixed class labels, or with emergency information panels, each placard must be placed on the sides of the container so that when the container is placed on the vehicle, each different placard is visible from either side of the vehicle and in accordance with 5.3.1.4.

5.3.6 PLACARDING ROAD VEHICLES

NOTE: Some illustrations of the placement of placards for typical vehicle configurations are set out in Figure 5.3.6 at the end of this Chapter.

5.3.6.1 All placard loads

5.3.6.1.1 All road vehicles transporting a placard load of dangerous goods, as determined from Table 5.3, must be placarded in accordance with 5.3.1.4 on the front and rear with placards indicating what dangerous goods are being carried.

5.3.6.1.2 Where all of the dangerous goods are of a single class or division, the placards required by 5.3.6.1.1 are:

(a) the class or division label; and

(b) any subsidiary hazard labels applicable to the goods

5.3.6.1.3 Where there is more than one class of dangerous goods on the vehicle during the journey, the placards required by 5.3.6.1.1 are either or both of the following:

(a) mixed class labels (model No. 10 in 5.2.2.2.3);

(b) all class and division labels for each primary and subsidiary hazard of the dangerous goods on the vehicle, in accordance with 5.3.1.1.2 and 5.3.1.1.3.

5.3.6.1.4 If the vehicle is a combination road vehicle, additional placards must be fitted when required by 5.3.6.2.
5.3.6.1.5 Where some or all of the dangerous goods are carried in placardable units, bulk containers, portable tanks or tanks which are integral with the vehicle, additional placards must be fitted when required by 5.3.6.3.

5.3.6.2 Combination Road Vehicles

5.3.6.2.1 Sub-section 5.3.6.2 applies to a combination road vehicle where the aggregate quantity of dangerous goods carried on all units of the combination comprises a placard load.

5.3.6.2.2 The placards that must be fitted in accordance with 5.3.6.1 and 5.3.6.3 to the front and rear of a combination vehicle must be determined based on the aggregate load carried on all units of the combination vehicle.

5.3.6.2.3 In addition, placards must be fitted to both sides of each trailer or rigid vehicle that forms part of the combination and is individually carrying a placard load, indicating the dangerous goods that are carried on the individual unit.

5.3.6.2.4 Placards fitted to the sides of a unit in accordance with 5.3.6.2.3 must include:

(a) class, division and/or mixed class labels determined in accordance with 5.3.6.1.2 and 5.3.6.1.3; and

(b) emergency information panels determined in accordance with 5.3.6.3 if any of the dangerous goods on the unit are carried in bulk containers, tanks or placardable units.

5.3.6.3 Dangerous goods in bulk containers, tanks or placardable units

5.3.6.3.1 In addition to placards required by 5.3.6.1, a road vehicle on which any dangerous goods are carried in bulk containers, tanks or placardable units must be placarded with emergency information panels in accordance with this sub-section 5.3.6.3.

5.3.6.3.2 Placement of Emergency Information Panels

5.3.6.3.2.1 Except as provided in 5.3.6.4, emergency information panels, selected in accordance with 5.3.6.3.3, must be fitted:

(a) on the rear of a vehicle or vehicle combination on any part of which dangerous goods are carried in one or more bulk containers, tanks or placardable units; and

(b) on the sides of each trailer or rigid vehicle on which dangerous goods are carried in bulk containers, tanks or placardable units.
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

5.3.6.3.2.2 Emergency information panels required by 5.3.6.3 must be placed on the vehicle:
(a) in a substantially vertical plane; and
(b) with the lower edge at least 450 millimetres\(^1\) above the ground; and
(c) when fitted to the sides of the vehicle, as close as practicable to the front of the loading area of the vehicle\(^2\); and
(d) in accordance with 5.3.1.4.

5.3.6.3.3 EIP Selection

5.3.6.3.3.1 A road vehicle transporting only one type of dangerous goods in bulk containers, tanks or placardable units must be placarded with emergency information panels describing those dangerous goods in accordance with 5.3.1.3.1.

5.3.6.3.3.2 A road vehicle transporting different types of dangerous goods in placardable units, bulk containers or tanks (including multi-compartment tanks, containers or units) must:
(a) be placarded with:
 (i) if the dangerous goods constitute a mixed load of refined petroleum products:
 - mixed load (refined petroleum product) emergency information panels in accordance with 5.3.1.3.3; or
 (ii) if the goods are not a mixed load of refined petroleum products:
 - multi-load emergency information panels in accordance with 5.3.1.3.2; or
 (iii) in lieu of either (i) or (ii):
 - individual emergency information panels describing each of the dangerous goods in accordance with 5.3.1.3.3, displayed in such a way that it is clear which goods are in what units; and
(b) have at each outlet point of each tank or compartment of a multi-compartmented tank, a mark identifying the dangerous goods contained in that tank or compartment.

5.3.6.4 Exceptions to placarding road vehicles

\(^1\) This minimum of 450 mm above ground is intended to accommodate the sides of step-deck trailers transporting portable tanks and other vehicles where location of the emergency information panel in the normal line of vision is not practicable. On road tankers and, where practicable, on other vehicles, it is recommended that panels be at least 1 m above the ground. Information panel in the normal line of vision is not practicable.

\(^2\) Except where this is inconsistent with the placement of a placardable unit on the vehicle, as illustrated in Figure 5.3.6(e).
5.3.6.4.1 Where a class, division or mixed class label is required to be displayed on the rear of a vehicle or side of a trailer or rigid vehicle by 5.3.6.1 or 5.3.6.2, it is sufficient compliance with those clauses if the label is incorporated in:
(a) an emergency information panel displayed on the vehicle in accordance with 5.3.6.3; or
(b) a placard in accordance with 5.3.3 on a placardable unit carried on the vehicle; or
(c) a placard in accordance with 5.3.4 on a portable tank or bulk container carried on the vehicle; or
(d) a placard in accordance with 5.3.5 on a freight container carried on the vehicle; or
that in each case faces, and is clearly visible from, the rear or side, as applicable, of the vehicle where it is required to be displayed.

5.3.6.4.2 Where a road vehicle is transporting dangerous goods in a portable tank, bulk container, freight container or placardable unit, it is sufficient compliance with 5.3.6.3 if the emergency information panel required by that sub-section is placarded on the tank, container or unit such that it faces, and is clearly visible from, the side of the unit or rear of the vehicle where it is required to be displayed.

5.3.6.4.3 Despite 5.3.6.3, emergency information panels are not required on a road vehicle transporting dangerous goods that are all in freight containers, portable tanks or bulk containers to which Section 5.3.8 applies.

5.3.6.4.4 A multi-load or mixed load (refined petroleum product) emergency information panel is not required on a side or rear of a road vehicle transporting different types of dangerous goods in portable tanks, bulk containers or placardable units, if:
(a) all portable tanks, bulk containers and placardable units are placarded in accordance with Section 5.3.5; and
(b) at least one emergency information panel for each of the dangerous goods is facing, and is clearly visible from, that side or rear of the vehicle on which:
 (i) the dangerous goods are being transported; and
 (ii) the multi-load or mixed load (refined petroleum product) emergency information panel would otherwise be required.

5.3.6.4.5 Emergency information panels on a spray vehicle may be removed or covered during spraying operations.

5.3.7 PLACARDING RAIL WAGONS
5.3.7.1 Rail tank wagons
5.3.7.1.1 A rail tank wagon transporting only one type of dangerous goods must be placarded on both sides with an emergency information panel describing those goods in accordance with 5.3.1.3.1.
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

5.3.7.1.2 A rail tank wagon transporting different types of dangerous goods in different compartments must:

(a) be placarded on both sides with either:
 (i) if the goods are a mixed load of refined petroleum products:
 - mixed load (refined petroleum product) emergency information panels in accordance with 5.3.1.3.3; or
 (ii) if the goods are not a mixed load of refined petroleum products:
 - multi-load emergency information panels in accordance with 5.3.1.3.2; and

(b) have at each outlet point of each tank or compartment of a multi-compartmented tank, a mark identifying the dangerous goods contained in that tank or compartment.

5.3.7.2 Other rail wagons

5.3.7.2.1 Where the only dangerous goods transported on a rail wagon are in freight containers, portable tanks, bulk containers or placardable units, no additional wagon placarding is required provided:

(a) each placardable unit that contains dangerous goods is either:
 (i) placarded in accordance with 5.3.3; or
 (ii) transported in a freight container that is placarded in accordance with sub-clause (b); and

(b) each freight container in which there is a placard load of dangerous goods is placarded in accordance with 5.3.5 or 5.3.8; and

(c) each portable tank or bulk container that contains dangerous goods is placarded in accordance with 5.3.4 or 5.3.8; and

(d) the placards on the tanks, containers and units face both sides of the wagon and are not obscured except as permitted by sub-clause (a)(ii).

5.3.7.2.2 A rail wagon transporting a placard load of dangerous goods, which are not all in cargo transport units or placardable units that are placarded in accordance 5.3.7.2.1, must be placarded on both sides with:

(a) if there is only one class or division of dangerous goods on the wagon:
 (i) the class or division label for the goods; and
 (ii) any subsidiary hazard labels applicable to the goods; or

(b) if there is more than one class or division of dangerous goods on the wagon:
 (iii) a mixed class label (model No. 10 in 5.2.2.2.3).

5.3.7.2.3 A closed rail wagon transporting dangerous goods in one or more placardable units must be placarded with:

(a) emergency information panels describing those goods in accordance with 5.3.1.3.1 if there is only one type of dangerous goods; or

(b) multi-load emergency information panels in accordance with 5.3.1.3.2 if there is more than one type of dangerous goods in placardable units.
5.3.7.2.4 Where a placard that is expected on a container, tank or unit in accordance with 5.3.7.2.1 is missing or obscured, the required placard must be replaced or duplicated on the container, tank, unit or wagon in such a way that it is clearly visible, and evident to which container, tank or unit it applies.

5.3.8 PLACARDING INTERMODAL LOADS

5.3.8.1 A freight container, portable tank or bulk container in which dangerous goods are being transported does not need to be placarded with emergency information panels, despite a requirement in this chapter, if:

(a) the tank or container has been:
 (i) placarded outside Australia and imported into Australia; or
 (ii) filled or packed for export from Australia, or for transport between Australian locations by sea or air; or
 (iii) placarded outside Australia and imported into Australia, emptied, and is being returned overseas while containing residues; and

(b) the tank or container is marked and placarded fully in accordance with the applicable modal code (IMDG Code, IATA Regulations or ICAO Rules); and

(c) no goods (dangerous or not) have been removed from or added to the tank or container:
 (i) if imported: since its arrival in Australia; or
 (ii) if to be exported: since the load was first consigned for transport to the place from which it is to be exported; or
 (iii) if loaded for transport between Australian locations by sea or air: the duration of the complete journey including road or rail transport to and from the nominated ports or airports.

5.3.8.2 Despite anything to the contrary in this Chapter, a freight container in which the only dangerous goods being transported are in limited quantities may be placarded with the marking shown in 3.4.6 or 3.4.8, if the conditions specified in paragraphs (a), (b) and (c) of 5.3.8.1 apply.

5.3.9 PLACARD REMOVAL

5.3.9.1 Placards must not be removed from a placardable unit, portable tank, bulk container, road tank vehicle or rail tank wagon that has contained dangerous goods unless all receptacles, tanks and compartments are free from dangerous goods.

5.3.9.2 Placards must be removed from a placardable unit or cargo transport unit that has transported dangerous goods when it has been freed from dangerous goods.

5.3.9.3 Placards indicating a particular hazard must be removed from a placardable unit or cargo transport unit that is free from dangerous goods with that hazard.

NOTE: See 7.1.7.1.2 regarding restrictions on placard removal from contaminated cargo transport units.
Figure 5.3.6: Illustrations of Placarding Typical Road Vehicle Configurations

NOTE: These illustrations are included for guidance only. They do not apply to all combinations of loads. To ascertain the placarding requirements for any particular load, refer to the text.

Key to symbols used in these illustrations

- ◆ = Class, Division or Mixed Class Label
- = Emergency Information Panel (EIP)
- = Rigid Truck
- = Prime Mover / Semi Trailer
- = Trailer, in combination with rigid truck or semi trailer

Figure 5.3.6(a): Road vehicles and combination road vehicles transporting dangerous goods in:

(i) cylinders, packages, large packages, overpacks; or
(ii) pressure drums, tubes or IBCs each ≤ 500 kg(L).
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING
Figure 5.3.6(b): Road tank vehicles and combination road tank vehicles.

Figure 5.3.6(c): Road vehicles and combination road vehicles transporting dangerous goods in freight containers (not containing placardable units).
Figure 5.3.6(d): Road vehicles and combination road vehicles transporting portable tanks, bulk containers or placardable units displaying EIPs, or freight containers loaded with placardable units.

- Gated vehicle
 - Same class goods in packages and placardable units
 - EIPs on placardable units visible from side

- Curtain sided vehicle
 - Same class goods in packages and placardable units
 - EIPs on placardable units obscured

- Rigid truck - fully enclosed, with packages and placardable units of different classes, and Gated trailer - packaged goods have a sub hazard and are different class to placardable unit
 - Multi-load EIP on rear,
 - Mixed Class label on front

- Gated combination vehicle - Placardable units of one class, different materials, Packages all one (different) class,
 - EIPs on trailer sides as placardable unit obscured
 - Multi-load, one class EIP plus Class Label on rear
 - Mixed Class on front, Class Label on all sides

Figure 5.3.6(e): Road vehicles transporting dangerous goods both in packages etc. as in (a), and in placardable units.
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

Figure 5.3.6(f): Combination vehicles transporting placard and non-placard loads.

NOTE: Assume that in each of the illustrations in (f), the goods being transported are dangerous goods of Class 3, packing group II or III.

- **≥ 1000 L**
 - The aggregate quantity of dangerous goods on the entire combination is more than 1000

- **< 1000 L (say 800 L)**
 - < 1000 L

- **< 1000 L (say 400 L)**
 - < 1000 L (say 400 L)

Figure 5.3.6(g): Small vehicle transporting 2 IBCs of same dangerous goods with other non dangerous goods.

- 1 IBC with ½ size EIP fully visible on one side.
- 1 IBC with ½ size EIP fully visible from rear. (No other EIP required on those faces)
- Full size EIP required on side where IBC placards not visible
Figure 5.3.7: Colours for Labels and Placards

<table>
<thead>
<tr>
<th>Sample Colour</th>
<th>Colour Reference</th>
<th>AS 2700 Colour Standards for General Purposes</th>
<th>Pantone Colour Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORANGE</td>
<td>X 15 Orange</td>
<td>X 15 Orange</td>
<td>Pantone 151</td>
</tr>
<tr>
<td>RED</td>
<td>R 13 Signal Red</td>
<td>R 13 Signal Red</td>
<td>Pantone 192</td>
</tr>
<tr>
<td>GREEN</td>
<td>G 24 Fern Green</td>
<td>G 24 Fern Green</td>
<td>Pantone 361</td>
</tr>
<tr>
<td>BLUE</td>
<td>B 21 Ultramarine</td>
<td>B 21 Ultramarine</td>
<td>Pantone 300</td>
</tr>
<tr>
<td>YELLOW</td>
<td>Y 11 Canary</td>
<td>Y 11 Canary</td>
<td>Pantone 109</td>
</tr>
</tbody>
</table>

Notes:
1. The Pantone Colour Reference is the numbered sample colour appearing in the Pantone Matching System published by Pantone Inc. USA.
2. USA legislation specifies Pantone 186U for red, 335U for green and 285U for blue. For import or export labels, these are acceptable alternatives to the colours specified above.
CHAPTER 5.4 - <RESERVED>

NOTE 1: Chapter 5.4 of the UN20 provides details of documentation required for international, intermodal transport.

NOTE 2: Detailed requirements for documentation are provided in Part 11 of this Code.

NOTE 3: Some sample documentation is displayed in Appendix B.
CHAPTER 5.5 - SPECIAL PROVISIONS

5.5.1 DELETED

5.5.2 SPECIAL PROVISIONS APPLICABLE TO FUMIGATED CARGO TRANSPORT UNITS (UN 3359)

5.5.2.1 General

5.5.2.1.1 Fumigated cargo transport units (UN 3359) containing no other dangerous goods are not subject to any provisions of this Code other than those of this section.

5.5.2.1.2 When the fumigated cargo transport unit is loaded with dangerous goods in addition to the fumigant, any provision of this Code relevant to these goods (including placarding, marking and documentation) applies in addition to the provisions of this section.

5.5.2.1.3 Only cargo transport units that can be closed in such a way that the escape of gas is reduced to a minimum must be used for the transport of cargo under fumigation.

5.5.2.2 Training

Persons engaged in the handling of fumigated cargo transport units must be trained commensurate with their responsibilities.

5.5.2.3 Marking and placarding

5.5.2.3.1 A fumigated cargo transport unit must be marked with a warning mark, as specified in 5.5.2.3.2, affixed at each access point in a location where it will be easily seen by persons opening or entering the cargo transport unit. This mark must remain on the cargo transport unit until the following provisions are met:

(a) The fumigated cargo transport unit has been ventilated to remove harmful concentrations of fumigant gas; and

(b) The fumigated goods or materials have been unloaded.
5.5.2.3.2 The fumigation warning mark must be as shown in Figure 5.5.1.

Figure 5.5.1: Fumigation warning mark

This unit is under fumigation with (fumigant name*) applied on (the date*) (the time*)

VENTILATED ON (the date*)

DO NOT ENTER

* Insert details as appropriate

The mark must be a rectangle. The minimum dimensions must be 400 mm wide x 300 mm high and the minimum width of the outer line must be 2 mm. The mark must be in black print on a white background with lettering not less than 25 mm high. Where dimensions are not specified, all features must be in approximate proportion to those shown.

5.5.2.3.3 If the fumigated cargo transport unit has been completely ventilated either by opening the doors of the unit or by mechanical ventilation after fumigation, the date of ventilation must be marked on the fumigation warning mark.

5.5.2.3.4 When the fumigated cargo transport unit has been ventilated and unloaded, the fumigation warning mark must be removed.

5.5.2.3.5 Class 9 placards (Model No. 9, see 5.2.2.2.2) must not be affixed to a fumigated cargo transport unit except as required for other Class 9 substances or articles packed therein.

5.5.2.4 Documentation

5.5.2.4.1 Documents associated with the transport of cargo transport units that have been fumigated and have not been completely ventilated before transport must include the following information:

- UN 3359, fumigated cargo transport unit, 9, or UN 3359, fumigated cargo transport unit, class 9;
- The date and time of fumigation; and
- The type and amount of the fumigant used.
5.5.2.4.2 The transport document may be in any form, provided it contains the information required in 5.5.2.4.1. This information must be easy to identify, legible and durable.

5.5.2.4.3 Instructions for disposal of any residual fumigant including fumigation devices (if used) must be provided.

5.5.2.4.4 A document is not required when the fumigated cargo transport unit has been completely ventilated and the date of ventilation has been marked on the warning mark (see 5.5.2.3.3 and 5.5.2.3.4).

5.5.3 SPECIAL PROVISIONS APPLICABLE TO PACKAGES AND CARGO TRANSPORT UNITS CONTAINING SUBSTANCES PRESENTING A RISK OF ASPHYXIATION WHEN USED FOR COOLING OR CONDITIONING PURPOSES (SUCH AS DRY ICE (UN 1845) OR NITROGEN, REFRIGERATED LIQUID (UN 1977) OR ARGON, REFRIGERATED LIQUID (UN 1951) OR NITROGEN)

NOTE: In the context of this section the term "conditioning" may be used in a broader scope and includes protection.

5.5.3.1 Scope

5.5.3.1.1 This section is not applicable to substances which may be used for cooling or conditioning purposes when transported as a consignment of dangerous goods. When they are transported as a consignment, these substances must be transported under the relevant entry of the Dangerous Goods List in Chapter 3.2 in accordance with the associated conditions of transport.

5.5.3.1.2 This section is not applicable to gases in cooling cycles.

5.5.3.1.3 Dangerous goods used for cooling or conditioning portable tanks or MEGCs during transport are not subject to this section.

5.5.3.1.4 Cargo transport units containing substances used for cooling or conditioning purposes include cargo transport units containing substances used for cooling or conditioning purposes inside packages as well as cargo transport units with unpackaged substances used for cooling or conditioning purposes.

5.5.3.2 General

5.5.3.2.1 Cargo transport units containing substances used for cooling or conditioning purposes (other than fumigation) during transport are not subject to any provisions of this Code other than those of this section.

5.5.3.2.2 When dangerous goods are loaded in cargo transport units containing substances used for cooling or conditioning purposes any provisions of this Code relevant to these dangerous goods apply in addition to the provisions of this section.
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

5.5.3.2.3 For air transport, arrangements between consignor and operator must be made for each consignment, to ensure that ventilation safety procedures are followed.

5.5.3.2.4 Persons engaged in the handling or transport of cargo transport units containing substances used for cooling or conditioning purposes must be trained commensurate with their responsibilities.

5.5.3 Packages containing a coolant or conditioner

5.5.3.1 Packaged dangerous goods requiring cooling or conditioning assigned to packing instructions P203, P620, P650, P800, P901 or P904 of 4.1.4.1 must meet the appropriate requirements of that packing instruction.

5.5.3.2 For packaged dangerous goods requiring cooling or conditioning assigned to other packing instructions, the packages must be capable of withstanding very low temperatures and must not be affected or significantly weakened by the coolant or conditioner. Packages must be designed and constructed to permit the release of gas to prevent a build-up of pressure that could rupture the packaging. The dangerous goods must be packed in such a way to prevent movement after the dissipation of any coolant or conditioner.

5.5.3.3 Packages containing a coolant or conditioner must be transported in well ventilated cargo transport units.

5.5.3.4 Marking of packages containing a coolant or conditioner

5.5.3.4.1 Packages containing dangerous goods used for cooling or conditioning must be marked with the proper shipping name of these dangerous goods followed by the words "AS COOLANT" or "AS CONDITIONER" as appropriate.

5.5.3.4.2 The marks must be durable, legible and placed in such a location and of such a size relative to the package as to be readily visible.

5.5.3.5 Cargo transport units containing unpackaged dry ice

5.5.3.5.1 If dry ice in unpackaged form is used, it must not come into direct contact with the metal structure of a cargo transport unit to avoid embrittlement of the metal. Measures must be taken to provide adequate insulation between the dry ice and the cargo transport unit by providing a minimum of 30 mm separation (e.g. by using suitable low heat conducting materials such as timber planks, pallets etc.).

5.5.3.5.2 Where dry ice is placed around packages, measures must be taken to ensure that packages remain in the original position during transport after the dry ice has dissipated.

5.5.3.6 Marking of cargo transport units

5.5.3.6.1 Cargo transport units containing dangerous goods used for cooling or conditioning purposes must be marked with a warning mark, as specified in 5.5.3.6.2 affixed at each access point in a location where it will be easily
seen by persons opening or entering the cargo transport unit. This mark must remain on the cargo transport unit until the following provisions are met:

(a) The cargo transport unit has been ventilated to remove harmful concentrations of coolant or conditioner; and
(b) The cooled or conditioned goods have been unloaded.

5.5.3.6.2 The warning mark must be as shown in Figure 5.5.2.

Figure 5.5.2: Asphyxiation warning mark for cargo transport units

Legend for symbols in Figure 5.5.2:

* Insert proper shipping name of the coolant/conditioner. The lettering must be in capitals, all be on one line and must be at least 25 mm high. If the length of the proper shipping name is too long to fit in the space provided, the lettering may be reduced to the maximum size possible to fit. For example: CARBON DIOXIDE, SOLID. Additional
PART 5: CONSIGNMENT PROCEDURES – INCLUDING LABELLING

information such as “AS COOLANT” or “AS CONDITIONER” may be added.

The mark must be a rectangle. The minimum dimensions must be 150 mm wide x 250 mm high. The word “WARNING” must be in red or white and be at least 25 mm high.

Where dimensions are not specified, all features must be in approximate proportion to those shown.

5.5.3.7 Documentation

5.5.3.7.1 Documents (such as a bill of lading or cargo manifest) associated with the transport of cargo transport units containing or have contained substances used for cooling or conditioning purposes and have not been completely ventilated before transport must include the following information:

(a) The UN number preceded by the letters "UN"; and
(b) The proper shipping name followed by the words "AS COOLANT" or "AS CONDITIONER" as appropriate.

For example: UN 1845, CARBON DIOXIDE, SOLID, AS COOLANT.

5.5.3.7.2 The transport document may be in any form, provided it contains the information required in 5.5.3.7.1. This information must be easy to identify, legible and durable.

5.5.4 DANGEROUS GOODS IN EQUIPMENT IN USE OR INTENDED FOR USE DURING TRANSPORT

5.5.4.1 Dangerous goods (e.g. lithium batteries, fuel cell cartridges) contained in equipment such as data loggers and cargo tracking devices, attached to or placed in packages, overpacks, containers or load compartments are not subject to any provisions of this Code other than the following:

(a) the equipment must be in use or intended for use during transport;
(b) the contained dangerous goods (e.g. lithium batteries, fuel cell cartridges) must meet the applicable construction and test requirements specified in this Code; and
(c) the equipment must be capable of withstanding the shocks and loadings normally encountered during transport.

5.5.4.2 When such equipment containing dangerous goods is transported as a consignment, the relevant entry of the Dangerous Goods List in Chapter 3.2 must be used and all applicable provisions of this Code shall apply.”
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES
CHAPTER 6.1 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS

6.1.1 GENERAL

6.1.1.1 The requirements of this Chapter do not apply to:

(a) packages containing radioactive material, which must comply with the Regulations of the International Atomic Energy Agency (IAEA), except that:

 (i) radioactive material possessing other dangerous properties (subsidiary hazards) must also comply with special provision 172; and

 (ii) low specific activity (LSA) material and surface contaminated objects (SCO) may be carried in certain packagings defined in the Model Regulations provided that the supplementary provisions set out in the IAEA Regulations are also met;

(b) pressure receptacles;

(c) packages whose net mass exceeds 400 kg;

(d) packagings for liquids, other than combination packagings, with a capacity exceeding 450 litres;

(e) packagings for Division 6.2 infectious substances of Category A except for UN 3549.

6.1.1.2 The requirements for packagings in 6.1.4 are based on packagings currently used. In order to take into account progress in science and technology, there is no objection to the use of packagings having specifications different from those in 6.1.4, provided that they are equally effective, acceptable to the competent authority and able successfully to withstand the tests described in 6.1.1.3 and 6.1.5. Methods of testing other than those described in this Code are acceptable, provided they are equivalent.

6.1.1.3 Every packaging intended to contain liquids must successfully undergo a suitable leakproofness test. This test is part of a quality assurance programme as stipulated in 6.1.1.4 which shows the capability of meeting the appropriate test level indicated in 6.1.5.4.3:

(a) before it is first used for transport;

(b) after remanufacturing or reconditioning, before it is re-used for transport.

For this test, packagings need not have their own closures fitted.

The inner receptacle of composite packagings may be tested without the outer packaging provided the test results are not affected. This test is not necessary for inner packagings of combination packagings.

6.1.1.4 Packagings must be manufactured, reconditioned and tested under a quality assurance programme in order to ensure that each packaging meets the requirements of this Chapter.
NOTE: AS ISO 16106 [ISO 16106:2006] “Packaging - Transport packages for dangerous goods - Dangerous goods packagings, intermediate bulk containers (IBCs) and large packagings - Guidelines for the application of ISO 9001” provides acceptable guidance on procedures which may be followed.

6.1.1.5 Manufacturers and subsequent distributors of packagings must provide information regarding procedures to be followed and a description of the types and dimensions of closures (including required gaskets) and any other components needed to ensure that packages as presented for transport are capable of passing the applicable performance tests of this Chapter.

6.1.2 CODE FOR DESIGNATING TYPES OF PACKAGINGS

6.1.2.1 The code consists of:
(a) an Arabic numeral indicating the kind of packaging, e.g. drum, jerrican, etc., followed by:
(b) a capital letter(s) in Latin characters indicating the nature of the material, e.g. steel, wood, etc., followed where necessary by:
(c) an Arabic numeral indicating the category of packaging within the kind to which the packaging belongs.

6.1.2.2 In the case of composite packagings, two capital letters in Latin characters are used in sequence in the second position of the code. The first indicates the material of the inner receptacle and the second that of the outer packaging.

6.1.2.3 In the case of combination packagings, only the code number for the outer packaging is used.

6.1.2.4 The letters “T” or “V” or “W” may follow the packaging code. The letter “T” signifies a salvage packaging conforming to the requirements of 6.1.5.1.11. The letter “V” signifies a special packaging conforming to the requirements of 6.1.5.1.12. The letter “W” signifies that the packaging, although of the same type indicated by the code, is manufactured to a specification different from that in 6.1.4 and is considered equivalent under the requirements of 6.1.1.2.

6.1.2.5 The following numerals must be used for the kinds of packaging:
1. Drum
2. <Reserved>
3. Jerrican
4. Box
5. Bag
6. Composite packaging

6.1.2.6 The following capital letters must be used for the types of material:
A. Steel (all types and surface treatments)
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

B. Aluminium
C. Natural wood
D. Plywood
F. Reconstituted wood
G. Fibreboard
H. Plastics material
L. Textile
M. Paper, multiwall
N. Metal (other than steel or aluminium)
P. Glass, porcelain or stoneware

NOTE: Plastics materials, is taken to include other polymeric materials such as rubber.

6.1.2.7 The following table indicates the codes to be used for designating types of packagings depending on the kind of packagings, the material used for their construction and their category; it also refers to the paragraphs to be consulted for the appropriate requirements:

Table 6.1.2.7: Codes to be used for designating types of packagings

<table>
<thead>
<tr>
<th>Kind</th>
<th>Material</th>
<th>Category</th>
<th>Code</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Drums</td>
<td>A. Steel</td>
<td>non-removable head</td>
<td>1A1</td>
<td>6.1.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>1A2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Aluminium</td>
<td>non-removable head</td>
<td>1B1</td>
<td>6.1.4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>1B2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Plywood</td>
<td></td>
<td>1D</td>
<td>6.1.4.5</td>
</tr>
<tr>
<td></td>
<td>G. Fibre</td>
<td></td>
<td>1G</td>
<td>6.1.4.7</td>
</tr>
<tr>
<td></td>
<td>H. Plastics</td>
<td>non-removable head</td>
<td>1H1</td>
<td>6.1.4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>1H2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. Metal, other than steel or aluminium</td>
<td>non-removable head</td>
<td>1N1</td>
<td>6.1.4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>1N2</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td><Reserved></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Jerricans</td>
<td>A. Steel</td>
<td>non-removable head</td>
<td>3A1</td>
<td>6.1.4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>3A2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Aluminium</td>
<td>non-removable head</td>
<td>3B1</td>
<td>6.1.4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>3B2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Plastics</td>
<td>non-removable head</td>
<td>3H1</td>
<td>6.1.4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>3H2</td>
<td></td>
</tr>
<tr>
<td>4. Boxes</td>
<td>A. Steel</td>
<td></td>
<td>4A</td>
<td>6.1.4.14</td>
</tr>
<tr>
<td></td>
<td>B. Aluminium</td>
<td></td>
<td>4B</td>
<td>6.1.4.14</td>
</tr>
<tr>
<td></td>
<td>C. Natural wood</td>
<td>ordinary</td>
<td>4C1</td>
<td>6.1.4.9</td>
</tr>
</tbody>
</table>

Australian Dangerous Goods Code, 2020, Edition 7.7 943
Table 6.1.2.7: Codes to be used for designating types of packagings

<table>
<thead>
<tr>
<th>Kind</th>
<th>Material</th>
<th>Category</th>
<th>Code</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with sift-proof walls</td>
<td>4C2</td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td>Plywood</td>
<td></td>
<td>4D</td>
<td>6.1.4.10</td>
</tr>
<tr>
<td>F.</td>
<td>Reconstituted wood</td>
<td></td>
<td>4F</td>
<td>6.1.4.11</td>
</tr>
<tr>
<td>G.</td>
<td>Fibreboard</td>
<td></td>
<td>4G</td>
<td>6.1.4.12</td>
</tr>
<tr>
<td>H.</td>
<td>Plastics</td>
<td>expanded</td>
<td>4H1</td>
<td>6.1.4.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>solid</td>
<td>4H2</td>
<td></td>
</tr>
<tr>
<td>N.</td>
<td>Metal, other than steel or aluminium</td>
<td></td>
<td>4N</td>
<td>6.1.4.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Bags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H.</td>
<td>Woven plastics</td>
<td>without inner liner or coating</td>
<td>5H1</td>
<td>6.1.4.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sift-proof</td>
<td>5H2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>water resistant</td>
<td>5H3</td>
<td></td>
</tr>
<tr>
<td>H.</td>
<td>Plastics film</td>
<td></td>
<td>5H4</td>
<td>6.1.4.17</td>
</tr>
<tr>
<td>L.</td>
<td>Textile</td>
<td>without inner liner or coating</td>
<td>5L1</td>
<td>6.1.4.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sift proof</td>
<td>5L2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>water resistant</td>
<td>5L3</td>
<td></td>
</tr>
<tr>
<td>M.</td>
<td>Paper multwall</td>
<td></td>
<td>5M1</td>
<td>6.1.4.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>multiwall, water resistant</td>
<td>5M2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Composite packagings</td>
<td>H. Plastics receptacle</td>
<td>6HA1</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in steel drum</td>
<td>6HA2</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in steel crate or box</td>
<td>6HB1</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in aluminium drum</td>
<td>6HB2</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in aluminium crate or box</td>
<td>6HC</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in plywood drum</td>
<td>6HD1</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in plywood box</td>
<td>6HD2</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in fibre drum</td>
<td>6HG1</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in fibreboard box</td>
<td>6HG2</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in plastics drum</td>
<td>6HH1</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in solid plastics box</td>
<td>6HH2</td>
<td>6.1.4.19</td>
</tr>
<tr>
<td>P.</td>
<td>Glass, porcelain or stoneware receptacle</td>
<td>in steel drum</td>
<td>6PA1</td>
<td>6.1.4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in steel crate or box</td>
<td>6PA2</td>
<td>6.1.4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in aluminium drum</td>
<td>6PB1</td>
<td>6.1.4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in aluminium crate or box</td>
<td>6PB2</td>
<td>6.1.4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in wooden box</td>
<td>6PC</td>
<td>6.1.4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in plywood drum</td>
<td>6PD1</td>
<td>6.1.4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in wickerwork hamper</td>
<td>6PD2</td>
<td>6.1.4.20</td>
</tr>
</tbody>
</table>
Table 6.1.2.7: Codes to be used for designating types of packagings

<table>
<thead>
<tr>
<th>Kind</th>
<th>Material</th>
<th>Category</th>
<th>Code</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>in fibre drum</td>
<td></td>
<td></td>
<td>6PG1</td>
<td>6.1.4.20</td>
</tr>
<tr>
<td>in fibreboard box</td>
<td></td>
<td></td>
<td>6PG2</td>
<td>6.1.4.20</td>
</tr>
<tr>
<td>in expanded plastics</td>
<td></td>
<td></td>
<td>6PH1</td>
<td>6.1.4.20</td>
</tr>
<tr>
<td>in solid plastics</td>
<td></td>
<td></td>
<td>6PH2</td>
<td>6.1.4.20</td>
</tr>
</tbody>
</table>

6.1.3 MARKING

NOTE 1: The marks indicate that the packaging which bears them corresponds to a successfully tested design type and that it complies with the requirements of this Chapter which are related to the manufacture, but not to the use, of the packaging. In itself, therefore, the marks do not necessarily confirm that the packaging may be used for any substance: generally the type of packaging (e.g. steel drum), its maximum capacity and/or mass, and any special requirements are specified for each substance in Part 3 of this Code.

NOTE 2: The marks are intended to be of assistance to packaging manufacturers, reconditioners, packaging users, regulatory authorities and everyone involved in the transport of dangerous goods. In relation to the use of a new packaging, the original marks area means for its manufacturer(s) to identify the type and to indicate those performance test regulations that have been met.

NOTE 3: The marks do not always provide full details of the test levels, etc., and these may need to be taken further into account, e.g. by reference to a test certificate, to test reports or to a register of successfully tested packagings. For example, a packaging having an X or Y mark may be used for substances to which a packaging having a lesser degree of danger has been assigned with the relevant maximum permissible value of the relative density\(^1\) determined by taking into account the factor 1.5 or 2.25 indicated in the test requirements for packagings in 6.1.5 as appropriate, i.e. packing group I packaging tested for products of relative density 1.2 could be used as a packing group II packaging for products of relative density 1.8 or a packing group III packaging of relative density 2.7, provided of course that all the performance criteria can still be met with the higher relative density product.

6.1.3.1 Each packaging intended for use according to this Code must bear marks which are durable, legible and placed in a location and of such a size relative to the packaging as to be readily visible. For packages with a gross mass of more than 30 kg, the marks or a duplicate thereof must appear on the top or on a side of the packaging. Letters, numerals and

\(^1\) Relative density (d) is considered to be synonymous with Specific Gravity (SG) and is used throughout this text.
symbols must be at least 12 mm high, except for packagings of 30 litres capacity or less or of 30 kg maximum net mass, when they must be at least 6 mm in height and except for packagings of 5 litres capacity or less or of 5 kg maximum net mass when they must be of an appropriate size.

The marks must show:

(a) the United Nations packaging symbol.

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8. For embossed metal packagings the capital letters “UN” may be applied as the symbol;

(b) the code designating the type of packaging according to 6.1.2;

(c) a code in two parts:

(i) a letter designating the packing group(s) for which the design type has been successfully tested:
 X for packing groups I, II and III
 Y for packing groups II and III
 Z for packing group III only;

(ii) the relative density, rounded off to the first decimal, for which the design type has been tested for packagings without inner packagings intended to contain liquids; this may be omitted when the relative density does not exceed 1.2. For packagings intended to contain solids or inner packagings, the maximum gross mass in kilograms;

(d) either the letter “S” denoting that the packaging is intended for the transport of solids or inner packagings or, for packagings (other than combination packagings) intended to contain liquids, the hydraulic test pressure which the packaging was shown to withstand in kPa rounded down to the nearest 10 kPa;

(e) the last two digits of the year during which the packaging was manufactured.

Packagings of types IH and 3H must also be appropriately marked with the month of manufacture; this may be marked on the packaging in a different place from the remainder of the marks;
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

An appropriate method is shown here.

* The last two digits of the year of manufacture may be displayed at that place. In such a case and when the clock is placed adjacent to the UN design type mark, the indication of the year in the mark may be waived. However, when the clock is not placed adjacent to the UN design type mark, the two digits of the year in the mark and in the clock shall be identical.

NOTE: Other methods that provide the minimum required information in a durable, visible and legible form are also acceptable.

(f) the State authorising the allocation of the mark, indicated by the distinguishing sign used on vehicles in international road traffic;

(g) the name of the manufacturer or other identification of the packaging specified by the competent authority.

6.1.3.2 In addition to the durable marks prescribed in 6.1.3.1, every new metal drum of a capacity greater than 100 litres must bear the marks described in 6.1.3.1(a) to (e) on the bottom, with an indication of the nominal thickness of at least the metal used in the body (in mm, to 0.1 mm), in permanent form (e.g. embossed). When the nominal thickness of either head of a metal drum is thinner than that of the body, the nominal thicknesses of the top head, body, and bottom head must be marked on the bottom in permanent form (e.g. embossed), for example “1.0-1.2-1.0” or “0.9-1.0-1.0”. Nominal thicknesses of metal must be determined according to the appropriate ISO or Australian standard, for example ISO 3574:1999 or AS/NZS 1595 for steel. The marks indicated in 6.1.3.1(f) and (g) must not be applied in a permanent form (e.g. embossed) except as provided in 6.1.3.5.

6.1.3.3 Every packaging other than those referred to in 6.1.3.2 liable to undergo a reconditioning process must bear the marks indicated in 6.1.3.1(a) to (e) in a permanent form. Marks are permanent if they are able to withstand the reconditioning process (e.g. embossed). For packagings other than metal drums of a capacity greater than 100 litres, these permanent marks may replace the corresponding durable marks prescribed in 6.1.3.1.

1 Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
6.1.3.4 For remanufactured metal drums, if there is no change to the packaging type and no replacement or removal of integral structural components, the required marks need not be permanent (e.g. embossed). Every other remanufactured metal drum must bear the marks in 6.1.3.1(a) to (e) in a permanent form (e.g. embossed) on the top head or side.

6.1.3.5 Metal drums made from materials (e.g. stainless steel) designed to be reused repeatedly may bear the marks indicated in 6.1.3.1(f) and (g) in a permanent form (e.g. embossed).

6.1.3.6 Packagings manufactured with recycled plastics material as defined in 1.2.1 must be marked “REC”. This marks must be placed near the mark prescribed in 6.1.3.1.

6.1.3.7 Marks must be applied in the sequence shown in 6.1.3.1; each mark required in these sub-paragraphs and when appropriate, (h) to (j) of 6.1.3.8, must be clearly separated, e.g. by a slash or space, so as to be easily identifiable. For examples, see 6.1.3.10.

Any additional marks authorised by a competent authority must still enable the other marks required in 6.1.3.1 to be correctly identified.

6.1.3.8 After reconditioning a packaging, the reconditioner must apply to it, in sequence, a durable marks showing:

(h) the State in which the reconditioning was carried out, indicated by the indicated by the distinguishing sign used on vehicles in international road traffic¹;

(i) the name of the reconditioner or other identification of the packaging specified by the competent authority;

(j) the year of reconditioning; the letter “R”; and, for every packaging successfully passing the leakproofness test in 6.1.1.3, the additional letter “L”.

6.1.3.9 When, after reconditioning, the marks required by 6.1.3.1(a) to (d) no longer appear on the top head or the side of a metal drum, the reconditioner also must apply them in a durable form followed by 6.1.3.8(h), (i) and (j). These marks must not identify a greater performance capability than that for which the original design type had been tested and marked.

6.1.3.10 Examples for marking NEW packagings

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>4G/Y145/S/02/AUS/9014</td>
<td>As in 6.1.3.1(a), (b), (c), (d) and (e) For a new fibreboard box</td>
<td>4G/Y145/S/02/AUS/9014 as in 6.1.3.1(a), (b), (c), (d) and (e) For a new fibreboard box</td>
</tr>
<tr>
<td>IAI/Y1.4/I50/98/NL/VL824</td>
<td>As in 6.1.3.1(a), (b), (c), (d) and (e) For a new steel drum to contain liquids</td>
<td>IAI/Y1.4/I50/98/NL/VL824 as in 6.1.3.1(a), (b), (c), (d) and (e) For a new steel drum to contain liquids</td>
</tr>
</tbody>
</table>

¹Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
6.1.3.11 Examples for marking RECONDITIONED packagings

1A1/Y1.4/150/97/ AUS/co1/06 RL as in 6.1.3.1(a), (b), (c), (d) and (e) as in 6.1.3.8(h), (i) and (j)

1A2/Y150/S/99/ AUS/co2/06 R as in 6.1.3.1(a), (b), (c), (d), and (e) as in 6.1.3.8(h), (i) and (j)

6.1.3.12 Example for marking SALVAGE packagings

1A2T/Y300/S/01/ USA/abc as in 6.1.3.1(a), (b), (c), (d) and (e) as in 6.1.3.1(f) and (g)

NOTE: The marking, for which examples are given in 6.1.3.10, 6.1.3.11 and 6.1.3.12, may be applied in a single line or in multiple lines provided the correct sequence is respected.

6.1.3.13 Where a packaging conforms to one or more than one tested packaging design type, including one or more than one tested IBC or large packaging design type, the packaging may bear more than one mark to indicate the relevant performance test requirements that have been met. Where more than one mark appears on a packaging, the marks must appear in close proximity to one another and each mark must appear in its entirety.

6.1.3.14 Packagings that have not been performance tested

If a packaging is exempt from performance testing, it must be marked in a manner that enables its origins to be traced.

6.1.4 REQUIREMENTS FOR PACKAGINGS

6.1.4.0 General requirements

Any permeation of the substance contained in the packaging must not constitute a danger under normal conditions of transport.

6.1.4.1 Steel drums

1A1 non-removable head
1A2 removable head
6.1.4.1.1 Body and heads must be constructed of steel sheet of a suitable type and of adequate thickness in relation to the capacity of the drum and to its intended use.

NOTE: In the case of carbon steel drums, “suitable” steels are identified in ISO 3573:1999 “Hot rolled carbon steel sheet of commercial and drawing qualities” and ISO 3574:1999 “Cold-reduced carbon steel sheet of commercial and drawing qualities”. For carbon steel drums below 100 litres “suitable” steels in addition to the above standards are also identified in ISO 11949:1995 “Cold-reduced electrolytic tinplate”, ISO 11950:1995 “Cold-reduced electrolytic chromium/chromium oxide-coated steel” and ISO 11951:1995 “Cold-reduced blackplate in coil form for the production of tinplate or electrolytic chromium/chromium-oxide coated steel”.

6.1.4.1.2 Body seams must be welded on drums intended to contain more than 40 litres of liquid. Body seams must be mechanically seamed or welded on drums intended to contain solids or 40 litres or less of liquids.

6.1.4.1.3 Chimes must be mechanically seamed or welded. Separate reinforcing rings may be applied.

6.1.4.1.4 The body of a drum of a capacity greater than 60 litres must, in general, have at least two expanded rolling hoops or, alternatively, at least two separate rolling hoops. If there are separate rolling hoops they must be fitted tightly on the body and so secured that they cannot shift. Rolling hoops must not be spot welded.

6.1.4.1.5 Openings for filling, emptying and venting in the bodies or heads of non-removable head (1A1) drums must not exceed 7 cm in diameter. Drums with larger openings are considered to be of the removable head type (1A2). Closures for openings in the bodies and heads of drums must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Closure flanges may be mechanically seamed or welded in place. Gaskets or other sealing elements must be used with closures, unless the closure is inherently leakproof.

6.1.4.1.6 Closure devices for removable head drums must be so designed and applied that they will remain secure and drums will remain leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with all removable heads.

6.1.4.1.7 If materials used for body, heads, closures and fittings are not in themselves compatible with the contents to be transported, suitable internal protective coatings or treatments must be applied. These coatings or treatments must retain their protective properties under normal conditions of transport.

6.1.4.1.8 Maximum capacity of drum: 450 litres

6.1.4.1.9 Maximum net mass: 400 kg

6.1.4.2 Aluminium drums
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

1B1 non-removable head
1B2 removable head

6.1.4.2.1 Body and heads must be constructed of aluminium at least 99% pure or of an aluminium base alloy. Material must be of a suitable type and of adequate thickness in relation to the capacity of the drum and to its intended use.

6.1.4.2.2 All seams must be welded. Chime seams, if any, must be reinforced by the application of separate reinforcing rings.

6.1.4.2.3 The body of a drum of a capacity greater than 60 litres must, in general, have at least two expanded rolling hoops or, alternatively, at least two separate rolling hoops. If there are separate rolling hoops they must be fitted tightly on the body and so secured that they cannot shift. Rolling hoops must not be spot welded.

6.1.4.2.4 Openings for filling, emptying and venting in the bodies or heads of non-removable head (1B1) drums must not exceed 7 cm in diameter. Drums with larger openings are considered to be of the removable head type (1B2). Closures for openings in the bodies and heads of drums must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Closure flanges must be welded in place so that the weld provides a leakproof seam. Gaskets or other sealing elements must be used with closures, unless the closure is inherently leakproof.

6.1.4.2.5 Closure devices for removable head drums must be so designed and applied that they will remain secure and drums will remain leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with all removable heads.

6.1.4.2.6 If materials used for body, heads, closures and fittings are not in themselves compatible with the contents to be transported, suitable internal protective coatings or treatments must be applied. These coatings or treatments must retain their protective properties under normal conditions of transport.

6.1.4.2.7 Maximum capacity of drum: 450 litres

6.1.4.2.8 Maximum net mass: 400 kg

6.1.4.3 Drums of metal other than steel or aluminium

1N1 non-removable head
1N2 removable head

6.1.4.3.1 The body and heads must be constructed of a metal or of a metal alloy other than steel or aluminium. Material must be of a suitable type and of adequate thickness in relation to the capacity of the drum and to its intended use.
6.1.4.3.2 Chime seams, if any, must be reinforced by the application of separate reinforcing rings. All seams, if any, must be joined (welded, soldered, etc.) in accordance with the technical state of the art for the used metal or metal alloy.

6.1.4.3.3 The body of a drum of a capacity greater than 60 litres must, in general, have at least two expanded rolling hoops or, alternatively, at least two separate rolling hoops. If there are separate rolling hoops they must be fitted tightly on the body and so secured that they cannot shift. Rolling hoops must not be spot welded.

6.1.4.3.4 Openings for filling, emptying and venting in the bodies or heads of non-removable head (1N1) drums must not exceed 7 cm in diameter. Drums with larger openings are considered to be of the removable head type (1N2). Closures for openings in the bodies and heads of drums must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Closure flanges must be joined in place (welded, soldered, etc.) in accordance with the technical state of the art for the used metal or metal alloy so that the seam join is leakproof. Gaskets or other sealing elements must be used with closures, unless the closure is inherently leakproof.

6.1.4.3.5 Closure devices for removable head drums must be so designed and applied that they will remain secure and drums will remain leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with all removable heads.

6.1.4.3.6 If materials used for body, heads, closures and fittings are not in themselves compatible with the contents to be transported, suitable internal protective coatings or treatments must be applied. These coatings or treatments must retain their protective properties under normal conditions of transport.

6.1.4.3.7 Maximum capacity of drum: 450 litres

6.1.4.3.8 Maximum net mass: 400 kg

6.1.4.4 Steel or aluminium jerricans

- 3A1 steel, non-removable head
- 3A2 steel, removable head
- 3B1 aluminium, non-removable head
- 3B2 aluminium, removable head

6.1.4.4.1 Body and heads must be constructed of steel sheet, of aluminium at least 99% pure or of an aluminium base alloy. Material must be of a suitable type and of adequate thickness in relation to the capacity of the jerrican and to its intended use.

6.1.4.4.2 Chimes of steel jerricans must be mechanically seamed or welded. Body seams of steel jerricans intended to contain more than 40 litres of liquid must be welded. Body seams of steel jerricans intended to contain 40
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.1.4.4.3 Openings in jerricans (3A1 and 3B1) must not exceed 7 cm in diameter. Jerricans with larger openings are considered to be of the removable head type (3A2 and 3B2). Closures must be so designed that they will remain secure and leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with closures, unless the closure is inherently leakproof.

6.1.4.4.4 If materials used for body, heads, closures and fittings are not in themselves compatible with the contents to be transported, suitable internal protective coatings or treatments must be applied. These coatings or treatments must retain their protective properties under normal conditions of transport.

6.1.4.4.5 Maximum capacity of jerrican: 60 litres

6.1.4.4.6 Maximum net mass: 120 kg

6.1.4.5 Plywood drums

6.1.4.5.1 The wood used must be well-seasoned, commercially dry and free from any defect likely to lessen the effectiveness of the drum for the purpose intended. If a material other than plywood is used for the manufacture of the heads, it must be of a quality equivalent to the plywood.

6.1.4.5.2 At least two-ply plywood must be used for the body and at least three-ply plywood for the heads; the plies must be firmly glued together by a water resistant adhesive with their grain crosswise.

6.1.4.5.3 The body and heads of the drum and their joins must be of a design appropriate to the capacity of the drum and to its intended use.

6.1.4.5.4 In order to prevent sifting of the contents, lids must be lined with kraft paper or some other equivalent material which must be securely fastened to the lid and extend to the outside along its full circumference.

6.1.4.5.5 Maximum capacity of drum: 250 litres

6.1.4.5.6 Maximum net mass: 400 kg

6.1.4.6 <Reserved> (Deleted by UN)

6.1.4.7 Fibre drums

6.1.4.7.1 The body of the drum must consist of multiple plies of heavy paper or fibreboard (without corrugations) firmly glued or laminated together and may include one or more protective layers of bitumen, waxed kraft paper, metal foil, plastics material, etc.
6.1.4.7.2 Heads must be of natural wood, fibreboard, metal, plywood, plastics or other suitable material and may include one or more protective layers of bitumen, waxed kraft paper, metal foil, plastics material, etc.

6.1.4.7.3 The body and heads of the drum and their joins must be of a design appropriate to the capacity of the drum and to its intended use.

6.1.4.7.4 The assembled packaging must be sufficiently water resistant so as not to delaminate under normal conditions of transport.

6.1.4.7.5 Maximum capacity of drum: 450 litres

6.1.4.7.6 Maximum net mass: 400 kg

6.1.4.8 Plastics drums and jerricans

- 1H1 drums, non-removable head
- 1H2 drums, removable head
- 3H1 jerricans, non-removable head
- 3H2 jerricans, removable head

6.1.4.8.1 The packaging must be manufactured from suitable plastics material and be of adequate strength in relation to its capacity and intended use. Except for recycled plastics material as defined in 1.2.1, no used material other than production residues or regrind from the same manufacturing process may be used. The packaging must be adequately resistant to ageing and to degradation caused either by the substance contained or by ultra-violet radiation.

6.1.4.8.2 If protection against ultra-violet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the packaging. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, retesting may be waived if the carbon black content does not exceed 2% by mass or if the pigment content does not exceed 3% by mass; the content of inhibitors of ultra-violet radiation is not limited.

6.1.4.8.3 Additives serving purposes other than protection against ultra-violet radiation may be included in the composition of the plastics material provided that they do not adversely affect the chemical and physical properties of the material of the packaging. In such circumstances, retesting may be waived.

6.1.4.8.4 The wall thickness at every point of the packaging must be appropriate to its capacity and intended use, taking into account the stresses to which each point is liable to be exposed.

6.1.4.8.5 Openings for filling, emptying and venting in the bodies or heads of non-removable head drums (1H1) and jerricans (3H1) must not exceed 7 cm in diameter. Drums and jerricans with larger openings are considered to be of the removable head type (1H2 and 3H2). Closures for openings in
the bodies or heads of drums and jerricans must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with closures unless the closure is inherently leakproof.

6.1.4.8.6 Closure devices for removable head drums and jerricans must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Gaskets must be used with all removable heads unless the drum or jerrican design is such that, where the removable head is properly secured, the drum or jerrican is inherently leakproof.

6.1.4.8.7 Maximum capacity of drums and jerricans:

- 1H1, 1H2: 450 litres
- 3H1, 3H2: 60 litres

6.1.4.8.8 Maximum net mass:

- 1H1, 1H2: 400 kg
- 3H1, 3H2: 120 kg

6.1.4.9 Boxes of natural wood

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4C1</td>
<td>ordinary</td>
</tr>
<tr>
<td>4C2</td>
<td>with silt-proof walls</td>
</tr>
</tbody>
</table>

6.1.4.9.1 The wood used must be well-seasoned, commercially dry and free from defects that would materially lessen the strength of any part of the box. The strength of the material used and the method of construction must be appropriate to the capacity and intended use of the box. The tops and bottoms may be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type.

6.1.4.9.2 Fastenings must be resistant to vibration experienced under normal conditions of transport. End grain nailing must be avoided whenever practicable. Joins which are likely to be highly stressed must be made using clenched or annular ring nails or equivalent fastenings.

6.1.4.9.3 Box 4C2: each part must consist of one piece or be equivalent thereto. Parts are considered equivalent to one piece when one of the following methods of glued assembly is used: Lindermann joint, tongue and groove joint, ship lap or rabbit joint or butt joint with at least two corrugated metal fasteners at each joint.

6.1.4.9.4 Maximum net mass: 400 kg

6.1.4.10 Plywood boxes

4D

6.1.4.10.1 Plywood used must be at least 3-ply. It must be made from well-seasoned rotary cut, sliced or sawn veneer, commercially dry and free from defects
that would materially lessen the strength of the box. The strength of the material used and the method of construction must be appropriate to the capacity and intended use of the box. All adjacent plies must be glued with water resistant adhesive. Other suitable materials may be used together with plywood in the construction of boxes. Boxes must be firmly nailed or secured to corner posts or ends or be assembled by equally suitable devices.

6.1.4.10.2 Maximum net mass: 400 kg

6.1.4.11 Reconstituted wood boxes

4F

6.1.4.11.1 The walls of boxes must be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type. The strength of the material used and the method of construction must be appropriate to the capacity of the boxes and to their intended use.

6.1.4.11.2 Other parts of the boxes may be made of other suitable material.

6.1.4.11.3 Boxes must be securely assembled by means of suitable devices.

6.1.4.11.4 Maximum net mass: 400 kg

6.1.4.12 Fibreboard boxes

4G

6.1.4.12.1 Strong and good quality solid or double-faced corrugated fibreboard (single or multiwall) must be used, appropriate to the capacity of the box and to its intended use. The water resistance of the outer surface must be such that the increase in mass, as determined in a test carried out over a period of 30 minutes by the Cobb method of determining water absorption, is not greater than 155 g/m² - see ISO 535:1991 or AS/NZS 1301.411s. It must have proper bending qualities. Fibreboard must be cut, creased without scoring, and slotted so as to permit assembly without cracking, surface breaks or undue bending. The fluting of corrugated fibreboard must be firmly glued to the facings.

6.1.4.12.2 The ends of boxes may have a wooden frame or be entirely of wood or other suitable material. Reinforcements of wooden battens or other suitable material may be used.

6.1.4.12.3 Manufacturing joins in the body of boxes must be taped, lapped and glued, or lapped and stitched with metal staples. Lapped joins must have an appropriate overlap.

6.1.4.12.4 Where closing is effected by gluing or taping, a water resistant adhesive must be used.

6.1.4.12.5 Boxes must be designed so as to provide a good fit to the contents.

6.1.4.12.6 Maximum net mass: 400 kg
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.1.4.13 **Plastics boxes**

4H1 expanded plastics boxes
4H2 solid plastics boxes

6.1.4.13.1 The box must be manufactured from suitable plastics material and be of adequate strength in relation to its capacity and intended use. The box must be adequately resistant to ageing and to degradation caused either by the substance contained or by ultra-violet radiation.

6.1.4.13.2 An expanded plastics box must comprise two parts made of a moulded expanded plastics material, a bottom section containing cavities for the inner packagings and a top section covering and interlocking with the bottom section. The top and bottom sections must be designed so that the inner packagings fit snugly. The closure cap for any inner packaging must not be in contact with the inside of the top section of this box.

6.1.4.13.3 For dispatch, an expanded plastics box must be closed with a self-adhesive tape having sufficient tensile strength to prevent the box from opening. The adhesive tape must be weather resistant and its adhesive compatible with the expanded plastics material of the box. Other closing devices at least equally effective may be used.

6.1.4.13.4 For solid plastics boxes, protection against ultra-violet radiation, if required, must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the box. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, retesting may be waived if the carbon black content does not exceed 2% by mass or if the pigment content does not exceed 3% by mass; the content of inhibitors of ultra-violet radiation is not limited.

6.1.4.13.5 Additives serving purposes other than protection against ultra-violet radiation may be included in the composition of the plastics material provided that they do not adversely affect the chemical or physical properties of the material of the box. In such circumstances, retesting may be waived.

6.1.4.13.6 Solid plastics boxes must have closure devices made of a suitable material of adequate strength and so designed as to prevent the box from unintentional opening.

6.1.4.13.7 *Maximum net mass:*

4H1: 60 kg
4H2: 400 kg

6.1.4.14 **Steel, aluminium or other metal boxes**

4A steel
4B aluminium
4N metal, other than steel or aluminium, boxes
6.1.4.14.1 The strength of the metal and the construction of the box must be appropriate to the capacity of the box and to its intended use.

6.1.4.14.2 Boxes must be lined with fibreboard or felt packing pieces or must have an inner liner or coating of suitable material, as required. If a double seamed metal liner is used, steps must be taken to prevent the ingress of substances, particularly explosives, into the recesses of the seams.

6.1.4.14.3 Closures may be of any suitable type; they must remain secured under normal conditions of transport.

6.1.4.14.4 Maximum net mass: 400 kg

6.1.4.15 **Textile bags**

6.1.4.15.1 The textiles used must be of good quality. The strength of the fabric and the construction of the bag must be appropriate to the capacity of the bag and to its intended use.

6.1.4.15.2 Bags, silt-proof, 5L2: the bag must be made silt-proof, for example by the use of:

 (a) paper bonded to the inner surface of the bag by a water resistant adhesive such as bitumen; or

 (b) plastics film bonded to the inner surface of the bag; or

 (c) one or more inner liners made of paper or plastics material.

6.1.4.15.3 Bags, water resistant, 5L3: to prevent the entry of moisture the bag must be made waterproof, for example by the use of:

 (a) separate inner liners of water resistant paper (e.g. waxed kraft paper, tarred paper or plastics-coated kraft paper); or

 (b) plastics film bonded to the inner surface of the bag; or

 (c) one or more inner liners made of plastics material.

6.1.4.15.4 Maximum net mass: 50 kg

6.1.4.16 **Woven plastics bags**

6.1.4.16.1 Bags must be made from stretched tapes or monofilaments of a suitable plastics material. The strength of the material used and the construction of the bag must be appropriate to the capacity of the bag and to its intended use.

6.1.4.16.2 If the fabric is woven flat, the bags must be made by sewing or some other method ensuring closure of the bottom and one side. If the fabric is
tubular, the bag must be closed by sewing, weaving or some other equally strong method of closure.

6.1.4.16.3 Bags, sift-proof, 5H2: the bag must be made sift-proof, for example by means of:
(a) paper or a plastics film bonded to the inner surface of the bag; or
(b) one or more separate inner liners made of paper or plastics material.

6.1.4.16.4 Bags, water resistant, 5H3: to prevent the entry of moisture, the bag must be made waterproof, for example by means of:
(a) separate inner liners of water resistant paper (e.g. waxed kraft paper, double-tarred kraft paper or plastics-coated kraft paper); or
(b) plastics film bonded to the inner or outer surface of the bag; or
(c) one or more inner plastics liners.

6.1.4.16.5 Maximum net mass: 50 kg

6.1.4.17 Plastics film bags
5H4

6.1.4.17.1 Bags must be made of a suitable plastics material. The strength of the material used and the construction of the bag must be appropriate to the capacity of the bag and to its intended use. Joins and closures must withstand pressures and impacts liable to occur under normal conditions of transport.

6.1.4.17.2 Maximum net mass: 50 kg

6.1.4.18 Paper bags
5M1 multiwall
5M2 multiwall, water resistant

6.1.4.18.1 Bags must be made of a suitable kraft paper or of an equivalent paper with at least three plies, the middle ply of which may be net-cloth with adhesive bonding to the outer ply. The strength of the paper and the construction of the bags must be appropriate to the capacity of the bag and to its intended use. Joins and closures must be sift-proof.

6.1.4.18.2 Bags 5M2: to prevent the entry of moisture, a bag of four plies or more must be made waterproof by the use of either a water resistant ply as one of the two outermost plies or a water resistant barrier made of a suitable protective material between the two outermost plies; a bag of three plies must be made waterproof by the use of a water resistant ply as the outermost ply.

Where there is a danger of the substance contained reacting with moisture or where it is packed damp, a waterproof ply or barrier, such as double-tarred kraft paper, plastics-coated kraft paper, plastics film bonded to the inner surface of the bag, or one or more inner plastics liners, must also be placed next to the substance. Joins and closures must be waterproof.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.1.4.18.3 Maximum net mass: 50 kg

6.1.4.19 Composite packagings (plastics material)

- 6HA1 plastics receptacle with outer steel drum
- 6HA2 plastics receptacle with outer steel crate or box
- 6HB1 plastics receptacle with outer aluminium drum
- 6HB2 plastics receptacle with outer aluminium crate or box
- 6HC plastics receptacle with outer wooden box
- 6HD1 plastics receptacle with outer plywood drum
- 6HD2 plastics receptacle with outer plywood box
- 6HG1 plastics receptacle with outer fibre drum
- 6HG2 plastics receptacle with outer fibreboard box
- 6HH1 plastics receptacle with outer plastics drum
- 6HH2 plastics receptacle with outer solid plastics box

6.1.4.19.1 Inner receptacle

6.1.4.19.1.1 The requirements of 6.1.4.8.1 and 6.1.4.8.3 to 6.1.4.8.6 apply to inner plastics receptacles.

6.1.4.19.1.2 The inner plastics receptacle must fit snugly inside the outer packaging, which must be free of any projection that might abrade the plastics material.

6.1.4.19.1.3 Maximum capacity of inner receptacle:

- 6HA1, 6HB1, 6HD1, 6HG1, 6HH1: 250 litres
- 6HA2, 6HB2, 6HC, 6HD2, 6HG2, 6HH2: 60 litres

6.1.4.19.1.4 Maximum net mass:

- 6HA1, 6HB1, 6HD1, 6HG1, 6HH1: 400 kg
- 6HA2, 6HB2, 6HC, 6HD2, 6HG2, 6HH2: 75 kg

6.1.4.19.2 Outer packaging

6.1.4.19.2.1 Plastics receptacle with outer steel or aluminium drum 6HA1 or 6HB1: the relevant requirements of 6.1.4.1 or 6.1.4.2, as appropriate, apply to the construction of the outer packaging.

6.1.4.19.2.2 Plastics receptacle with outer steel or aluminium crate or box 6HA2 or 6HB2: the relevant requirements of 6.1.4.14 apply to the construction of the outer packaging.

6.1.4.19.2.3 Plastics receptacle with outer wooden box 6HC: the relevant requirements of 6.1.4.9 apply to the construction of the outer packaging.

6.1.4.19.2.4 Plastics receptacle with outer plywood drum 6HD1: the relevant requirements of 6.1.4.5 apply to the construction of the outer packaging.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.1.4.19.2.5 Plastics receptacle with outer plywood box 6HD2: the relevant requirements of 6.1.4.10 apply to the construction of the outer packaging.

6.1.4.19.2.6 Plastics receptacle with outer fibre drum 6HG1: the requirements of 6.1.4.7.1 to 6.1.4.7.4 apply to the construction of the outer packaging.

6.1.4.19.2.7 Plastics receptacle with outer fibreboard box 6HG2: the relevant requirements of 6.1.4.12 apply to the construction of the outer packaging.

6.1.4.19.2.8 Plastics receptacle with outer plastics drum 6HH1: the requirements of 6.1.4.8.1 and 6.1.4.8.2 to 6.1.4.8.6 apply to the construction of the outer packaging.

6.1.4.19.2.9 Plastics receptacles with outer solid plastics box (including corrugated plastics material) 6HH2: the requirements of 6.1.4.13.1 and 6.1.4.13.4 to 6.1.4.13.6 apply to the construction of the outer packaging.

6.1.4.20 Composite packagings (glass, porcelain or stoneware)

6PA1 receptacle with outer steel drum
6PA2 receptacle with outer steel crate or box
6PB1 receptacle with outer aluminium drum
6PB2 receptacle with outer aluminium crate or box
6PC receptacle with outer wooden box
6PD1 receptacle with outer plywood drum
6PD2 receptacle with outer wickerwork hamper
6PG1 receptacle with outer fibre drum
6PG2 receptacle with outer fibreboard box
6PH1 receptacle with outer expanded plastics packaging
6PH2 receptacle with outer solid plastics packaging

6.1.4.20.1 Inner receptacle

6.1.4.20.1.1 Receptacles must be of a suitable form (cylindrical or pear-shaped) and be made of good quality material free from any defect that could impair their strength. The walls must be sufficiently thick at every point.

6.1.4.20.1.2 Screw-threaded plastics closures, ground glass stoppers or closures at least equally effective must be used as closures for receptacles. Any part of the closure likely to come into contact with the contents of the receptacle must be resistant to those contents. Care must be taken to ensure that the closures are so fitted as to be leakproof and are suitably secured to prevent any loosening during transport. If vented closures are necessary, they must comply with 4.1.1.8.

6.1.4.20.1.3 The receptacle must be firmly secured in the outer packaging by means of cushioning and/or absorbent materials.

6.1.4.20.1.4 Maximum capacity of receptacle: 60 litres
6.1.4.20.1.5 Maximum net mass: 75 kg

6.1.4.20.2 Outer packaging

6.1.4.20.2.1 Receptacle with outer steel drum 6PA1: the relevant requirements of 6.1.4.1 apply to the construction of the outer packaging. The removable lid required for this type of packaging may nevertheless be in the form of a cap.

6.1.4.20.2.2 Receptacle with outer steel crate or box 6PA2: the relevant requirements of 6.1.4.14 apply to the construction of the outer packaging. For cylindrical receptacles the outer packaging must, when upright, rise above the receptacle and its closure. If the crate surrounds a pear-shaped receptacle and is of matching shape, the outer packaging must be fitted with a protective cover (cap).

6.1.4.20.2.3 Receptacle with outer aluminium drum 6PB1: the relevant requirements of 6.1.4.2 apply to the construction of the outer packaging.

6.1.4.20.2.4 Receptacle with outer aluminium crate or box 6PB2: the relevant requirements of 6.1.4.14 apply to the construction of the outer packaging.

6.1.4.20.2.5 Receptacle with outer wooden box 6PC: the relevant requirements of 6.1.4.9 apply to the construction of the outer packaging.

6.1.4.20.2.6 Receptacle with outer plywood drum 6PD1: the relevant requirements of 6.1.4.5 apply to the construction of the outer packaging.

6.1.4.20.2.7 Receptacle with outer wickerwork hamper 6PD2: the wickerwork hamper must be properly made with material of good quality. It must be fitted with a protective cover (cap) so as to prevent damage to the receptacle.

6.1.4.20.2.8 Receptacle with outer fibre drum 6PG1: the relevant requirements of 6.1.4.7.1 to 6.1.4.7.4 apply to the construction of the outer packaging.

6.1.4.20.2.9 Receptacle with outer fibreboard box 6PG2: the relevant requirements of 6.1.4.12 apply to the construction of the outer packaging.

6.1.4.20.2.10 Receptacle with outer expanded plastics or solid plastics packaging (6PH1 or 6PH2): the materials of both outer packagings must meet the relevant requirements of 6.1.4.13. Solid plastics packaging must be manufactured from high density polyethylene or some other comparable plastics material. The removable lid for this type of packaging may nevertheless be in the form of a cap.

6.1.4.21 <RESERVED> The requirements for inner packagings filled in Australia were removed from the Code in 2020.

6.1.5 TEST REQUIREMENTS FOR PACKAGINGS

6.1.5.1 Performance and frequency of tests

6.1.5.1.1 The design type of each packaging must be tested as provided in 6.1.5 in accordance with procedures established by the competent authority.
6.1.5.1.2 Each packaging design type must successfully pass the tests prescribed in this Chapter before being used. A packaging design type is defined by the design, size, material and thickness, manner of construction and packing, but may include various surface treatments. It also includes packagings which differ from the design type only in their lesser design height.

6.1.5.1.3 Tests must be repeated on production samples at intervals established by the competent authority. For such tests on paper or fibreboard packagings, preparation at ambient conditions is considered equivalent to the requirements of 6.1.5.2.3.

6.1.5.1.4 Tests must also be repeated after each modification which alters the design, material or manner of construction of a packaging.

6.1.5.1.5 The competent authority may permit the selective testing of packagings that differ only in minor respects from a tested type, e.g. smaller sizes of inner packagings or inner packagings of lower net mass; and packagings such as drums, bags and boxes which are produced with small reductions in external dimension(s).

6.1.5.1.6 <Reserved>

NOTE: For the conditions for using different inner packagings in an outer packaging and permissible variations in inner packagings, see 4.1.1.5.1.

6.1.5.1.7 <Reserved>

NOTE: In this Code, requirements for special packagings marked “V” have been relocated to 6.1.5.1.12 to avoid confusion with headings.

6.1.5.1.8 The competent authority may at any time require proof, by tests in accordance with this section, that serially-produced packagings meet the requirements of the design type tests.

6.1.5.1.9 If an inner treatment or coating is required for safety reasons, it must retain its protective properties even after the tests.

6.1.5.1.10 Provided the validity of the test results is not affected several tests may be made on one sample.

6.1.5.1.11 **Salvage packagings**

Salvage packagings (see 1.2.1) must be tested and marked in accordance with the provisions applicable to packing group II packagings intended for the transport of solids or inner packagings, except as follows:

(a) The test substance used in performing the tests must be water, and the packagings must be filled to not less than 98% of their maximum capacity. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass so long as they are placed so that the test results are not affected. Alternatively, in performing the drop test, the drop height may be varied in accordance with 6.1.5.3.5(b); and
(b) Packagings must, in addition, have been successfully subjected to the leakproofness test at 30 kPa, with the results of this test reflected in the test report required by 6.1.5.7; and
(c) Packagings must be marked with the letter “T” as described in 6.1.2.4.

6.1.5.1.12 Special packagings marked with “V” [UN 6.1.5.1.7]

Articles or inner packagings of any type for solids or liquids may be assembled and transported without testing in an outer packaging under the following conditions:

(a) The outer packaging must have been successfully tested in accordance with 6.1.5.3 with fragile (e.g. glass) inner packagings containing liquids using the packing group I drop height;
(b) The total combined gross mass of inner packagings must not exceed one half the gross mass of inner packagings used for the drop test in (a) above;
(c) The thickness of cushioning material between inner packagings and between inner packagings and the outside of the packaging must not be reduced below the corresponding thicknesses in the originally tested packaging; and if a single inner packaging was used in the original test, the thicknesses of cushioning between inner packagings must not be less than the thickness of cushioning between the outside of the packaging and the inner packaging in the original test. If either fewer or smaller inner packagings are used (as compared to the inner packagings used in the drop test), sufficient additional cushioning material must be used to take up void spaces;
(d) The outer packaging must have passed successfully the stacking test in 6.1.5.6 while empty. The total mass of identical packages must be based on the combined mass of inner packagings used for the drop test in (a) above;
(e) Inner packagings containing liquids must be completely surrounded with a sufficient quantity of absorbent material to absorb the entire liquid contents of the inner packagings;
(f) if the outer packaging is intended to contain inner packagings for liquids and is not leakproof, or is intended to contain inner packagings for solids and is not siftproof, a means of containing any liquid or solid contents in the event of leakage must be provided in the form of a leakproof liner, plastics bag or other equally efficient means of containment. For packagings containing liquids, the absorbent material required in (e) above must be placed inside the means of containing the liquid contents;
(g) For air transport, packagings must comply with 4.1.1.4.1;
(h) Packagings must be marked in accordance with 6.1.3 as having been tested to packing group I performance for combination packagings. The marked gross mass in kilograms must be the sum of the mass of the outer packaging plus one half of the mass of the inner
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

packaging(s) as used for the drop test referred to in (a) above. Such a package mark must also contain a letter “V” as described in 6.1.2.4.

6.1.5.2 Preparation of packagings for testing

6.1.5.2.1 Tests must be carried out on packagings prepared as for transport including, with respect to combination packagings, the inner packagings used. Inner or single receptacles or packagings other than bags must be filled to not less than 98% of their maximum capacity for liquids or 95% for solids. Bags must be filled to the maximum mass at which they may be used. For combination packagings where the inner packaging is designed to carry liquids and solids, separate testing is required for both liquid and solid contents. The substances or articles to be transported in the packagings may be replaced by other substances or articles except where this would invalidate the results of the tests. For solids, when another substance is used it must have the same physical characteristics (mass, grain size, etc.) as the substance to be carried. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass, so long as they are placed so that the test results are not affected.

6.1.5.2.2 In the drop tests for liquids, when another substance is used, it must be of similar relative density and viscosity to those of the substance being transported. Water may also be used for the liquid drop test under the conditions in 6.1.5.3.5.

6.1.5.2.3 Paper or fibreboard packagings must be conditioned for at least 24 hours in an atmosphere having a controlled temperature and relative humidity (r.h.). There are three options, one of which must be chosen. The preferred atmosphere is 23 ± 2 °C and 50% ± 2% r.h. The two other options are 20 ± 2 °C and 65% ± 2% r.h. or 27 ± 2 °C and 65% ± 2% r.h.

NOTE: Average values must fall within these limits. Short-term fluctuations and measurement limitations may cause individual measurements to vary by up to ± 5% relative humidity without significant impairment of test reproducibility.

6.1.5.2.4 Additional steps must be taken to ascertain that the plastics material used in the manufacture of plastics drums, plastics jerricans and composite packagings (plastics material) intended to contain liquids complies with the requirements in 6.1.1.2, 6.1.4.8.1 and 6.1.4.8.3. This may be done, for example, by submitting sample receptacles or packagings to a preliminary test extending over a long period, for example six months, during which the samples would remain filled with the substances they are intended to contain, and after which the samples must be submitted to the applicable tests listed in 6.1.5.3, 6.1.5.4, 6.1.5.5 and 6.1.5.6. For substances which may cause stress-cracking or weakening in plastics drums or jerricans, the sample, filled with the substance or another substance that is known to have at least as severe a stress-cracking influence on the plastics material in question, must be subjected to a superimposed load equivalent to the total mass of identical packages which might be stacked on it during
transport. The minimum height of the stack including the test sample must be 3 metres.

6.1.5.3 Drop test

6.1.5.3.1 Number of test samples (per design type and manufacturer) and drop orientation

For other than flat drops the centre of gravity must be vertically over the point of impact.

Where more than one orientation is possible for a given drop test, the orientation most likely to result in failure of the packaging must be used.

<table>
<thead>
<tr>
<th>Packaging</th>
<th>No. of test samples</th>
<th>Drop orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel drums. Aluminium drums. Metal drums, other than steel or aluminium drums. Steel jerricans. Aluminium jerricans. Plywood drums. Fibre drums. Plastics drums and jerricans. Composite packagings which are in the shape of a drum.</td>
<td>Sixa (three for each drop)</td>
<td>First drop (using three samples): the packaging must strike the target diagonally on the chime or, if the packaging has no chime, on a circumferential seam or an edge. Second drop (using the other three samples): the packaging must strike the target on the weakest part not tested by the first drop, for example a closure or, for some cylindrical drums, the welded longitudinal seam of the drum body.</td>
</tr>
<tr>
<td>Bags – single-ply without a side seam, or multi-ply.</td>
<td>Three (two drops per bag)</td>
<td>First drop: flat on a wide face. Second drop: on an end of the bag.</td>
</tr>
</tbody>
</table>

Table note * Examples of orientations acceptable in Australia are depicted in Figure 6.1.
6.1.5.3.2 Special preparation of test samples for the drop test

The temperature of the test sample and its contents must be reduced to -18 °C or lower for the following packagings:

(a) Plastics drums (see 6.1.4.8);
(b) Plastics jerricans (see 6.1.4.8);
(c) Plastics boxes other than expanded plastics boxes (see 6.1.4.13);
(d) Composite packagings (plastics material) (see 6.1.4.19); and
(e) Combination packagings with plastics inner packagings, other than plastics bags intended to contain solids or articles.

Where test samples are prepared in this way, the conditioning in 6.1.5.2.3 may be waived. Test liquids must be kept in the liquid state by the addition of anti-freeze if necessary.

6.1.5.3.3 Removable head packagings for liquids must not be dropped until at least 24 hours after filling and closing to allow for any possible gasket relaxation.

6.1.5.3.4 Target

The target must be a non-resilient and horizontal surface and must be:

- Integral and massive enough to be immovable;
- Flat with a surface kept free from local defects capable of influencing the test results;
- Rigid enough to be non-deformable under test conditions and not liable to become damaged by the tests; and
- Sufficiently large to ensure that the test package falls entirely upon the surface.
6.1.5.3.5 Drop height
For solids and liquids, if the test is performed with the solid or liquid to be carried or with another substance having essentially the same physical characteristics:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

For liquids in single packagings and for inner packagings of combination packagings, if the test is performed with water:

NOTE: The term water includes water/antifreeze solutions with a minimum specific gravity of 0.95 for testing at -18 °C.

(a) Where the substances to be transported have a relative density not exceeding 1.2:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

(b) Where the substances to be transported have a relative density exceeding 1.2, the drop height must be calculated on the basis of the relative density (d) of the substance to be carried, rounded up to the first decimal, as follows:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>d ×1.5 (m)</td>
<td>d × 1.0 (m)</td>
<td>d × 0.67 (m)</td>
</tr>
</tbody>
</table>

6.1.5.3.6 Criteria for passing the test:

6.1.5.3.6.1 Each packaging containing liquid must be leakproof when equilibrium has been reached between the internal and external pressures, except for inner packagings of combination packagings when it is not necessary that the pressures be equalised.

6.1.5.3.6.2 Where a packaging for solids undergoes a drop test and its upper face strikes the target, the test sample passes the test if the entire contents are retained by an inner packaging or inner receptacle (e.g. a plastics bag), even if the closure while retaining its containment function, is no longer silt-proof.

6.1.5.3.6.3 The packaging or outer packaging of a composite or combination packaging must not exhibit any damage liable to affect safety during transport. Inner receptacles, inner packagings, or articles must remain completely within the outer packaging and there must be no leakage of the filling substance from the inner receptacle(s) or inner packaging(s).
6.1.5.3.6.4 Neither the outermost ply of a bag nor an outer packaging may exhibit any damage liable to affect safety during transport.

6.1.5.3.6.5 A slight discharge from the closure(s) upon impact is not considered to be a failure of the packaging provided that no further leakage occurs.

6.1.5.3.6.6 No rupture is permitted in packagings for goods of Class 1 which would permit the spillage of loose explosive substances or articles from the outer packaging.

6.1.5.4 **Leakproofness test**

The leakproofness test must be performed on all design types of packagings intended to contain liquids; however, this test is not required for the inner packagings of combination packagings.

6.1.5.4.1 Number of test samples: three test samples per design type and manufacturer.

6.1.5.4.2 Special preparation of test samples for the test: either vented closures must be replaced by similar non-vented closures or the vent must be sealed.

6.1.5.4.3 Test method and pressure to be applied: the packagings including their closures must be restrained under water for 5 minutes while an internal air pressure is applied, the method of restraint must not affect the results of the test.

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not less than 30 kPa (0.3 bar)</td>
<td>Not less than 20 kPa (0.2 bar)</td>
<td>Not less than 20 kPa (0.2 bar)</td>
</tr>
</tbody>
</table>

Other methods at least equally effective may be used.

6.1.5.4.4 Criterion for passing the test: —there must be no leakage.

6.1.5.5 **Internal pressure (hydraulic) test**

6.1.5.5.1 Packagings to be tested: —the internal pressure (hydraulic) test must be carried out on all design types of metal, plastics and composite packagings intended to contain liquids. This test is not required for inner packagings of combination packagings.

6.1.5.5.2 Number of test samples: —three test samples per design type and manufacturer.

6.1.5.5.3 Special preparation of packagings for testing: — either vented closures must be replaced by similar non-vented closures or the vent must be sealed.

6.1.5.5.4 Test method and pressure to be applied: —metal packagings and composite packagings (glass, porcelain or stoneware) including their closures must be subjected to the test pressure for 5 minutes. Plastics
packagings and composite packagings (plastics material) including their closures must be subjected to the test pressure for 30 minutes. This pressure is the one to be included in the mark required by 6.1.3.1(d). The manner in which the packagings are supported must not invalidate the test. The test pressure must be applied continuously and evenly; it must be kept constant throughout the test period. The hydraulic pressure (gauge) applied, as determined by any one of the following methods, must be:

(a) not less than the total gauge pressure measured in the packaging (i.e. the vapour pressure of the filling liquid and the partial pressure of the air or other inert gases, minus 100 kPa) at 55 °C, multiplied by a safety factor of 1.5; this total gauge pressure must be determined on the basis of a maximum degree of filling in accordance with 4.1.1.4 and a filling temperature of 15 °C;

(b) not less than 1.75 times the vapour pressure at 50 °C of the liquid to be transported, minus 100 kPa but with a minimum test pressure of 100 kPa;

(c) not less than 1.5 times the vapour pressure at 55 °C of the liquid to be transported, minus 100 kPa but with a minimum test pressure of 100 kPa.

6.1.5.5.5 In addition, packagings intended to contain liquids of packing group I must be tested to a minimum test pressure of 250 kPa (gauge) for a test period of 5 or 30 minutes depending upon the material of construction of the packaging.

6.1.5.5.6 The special requirements for air transport, including minimum test pressures, may not be covered in 6.1.5.5.4.

6.1.5.5.7 Criterion for passing the test: - no packaging may leak.

6.1.5.6 Stacking test

All design types of packagings other than bags are subject to a stacking test.

6.1.5.6.1 Number of test samples: three test samples per design type and manufacturer.

6.1.5.6.2 Test method: - the test sample must be subjected to a force applied to the top surface of the test sample equivalent to the total weight of identical packages which might be stacked on it during transport; where the contents of the test sample are liquids with relative density different from that of the liquid to be transported, the force must be calculated in relation to the latter. The minimum height of the stack including the test sample must be 3 meters. The duration of the test must be 24 hours except that plastics drums, jerricans, and composite packagings 6HH1 and 6HH2 intended for liquids must be subjected to the stacking test for a period of 28 days at a temperature of not less than 40°C.

6.1.5.6.3 Criterion for passing the test: no test sample may leak. In composite packagings or combination packagings, there must be no leakage of the
filling substance from the inner receptacle or inner packaging. No test sample may show any deterioration which could adversely affect transport safety or any distortion liable to reduce its strength or cause instability in stacks of packages. Plastics packagings must be cooled to ambient temperature before the assessment.

6.1.5.7 Test Report

6.1.5.7.1 A test report containing at least the following particulars must be drawn up and must be available to the users of the packaging:

1. Name and address of the test facility;
2. Name and address of applicant (where appropriate);
3. A unique test report identification;
4. Date of the test report;
5. Manufacturer of the packaging;
6. Description of the packaging design type (e.g. dimensions, materials, closures, thickness, etc.), including method of manufacture (e.g. blow moulding) and which may include drawing(s) and/or photograph(s);
7. Maximum capacity;
8. Characteristics of test contents, e.g. viscosity and relative density for liquids and particle size for solids. For plastics packagings subject to the internal pressure test in 6.1.5.5, the temperature of the water used;
9. Test descriptions and results;
10. The test report must be signed with the name and status of the signatory.

6.1.5.7.2 The test report must contain statements that the packaging prepared as for transport was tested in accordance with the appropriate requirements of this Chapter and that the use of other packaging methods or components may render it invalid. A copy of the test report must be available to the competent authority.
CHAPTER 6.2 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PRESSURE RECEPACTACLES, AEROSOL DISPENSERS, SMALL RECEPACTACLES CONTAINING GAS (GAS CARTRIDGES) AND FUEL CELL CARTRIDGES CONTAINING LIQUEFIED FLAMMABLE GAS

Introductory Note

In all Australian States and Territories, the filling of cylinders is governed by other legislation relating to the use of pressure vessels. Generally this requires the manufacture, verification, filling, inspection, testing and maintenance of cylinders to be in accordance with AS 2030. Most cylinders complying with AS 2030 are not UN Pressure Receptacles and are therefore not subject to Section 6.2.2. The requirements for Non-UN Pressure Receptacles are in Section 6.2.3. (See also Introductory Note to Section 6.2.2.)

NOTE: Aerosol dispensers, small receptacles containing gas (gas cartridges) and fuel cell cartridges containing liquefied flammable gas are not subject to the requirements of 6.2.1 to 6.2.3.

6.2.1 GENERAL REQUIREMENTS

6.2.1.1 Design and construction

6.2.1.1.1 Pressure receptacles and their closures must be designed, manufactured, tested and equipped in such a way as to withstand all conditions, including fatigue, to which they will be subjected during normal conditions of transport.

6.2.1.1.2 In recognition of scientific and technological advances, and recognising that pressure receptacles other than those that bear UN certification marks may be used on a national or regional basis, pressure receptacles conforming to requirements other than those specified in Section 6.2.2 may be used if approved by the competent authorities in the countries of transport and use. In Australia, the manufacture, verification, filling, inspection, testing and maintenance of gas cylinders must comply with AS 2030.

6.2.1.1.3 In no case must the minimum wall thickness be less than that specified in the design and construction technical standards.

6.2.1.1.4 For welded pressure receptacles, only metals of weldable quality must be used.

6.2.1.1.5 The test pressure of cylinders, tubes, pressure drums and bundles of cylinders must be in accordance with packing instruction P200 or AS 2030, or, for a chemical under pressure, with packing instruction P206. The test pressure for closed cryogenic receptacles must be in
accordance with packing instruction P203. The test pressure of a metal hydride storage system must be in accordance with packing instruction P205. The test pressure of a cylinder for an adsorbed gas must be in accordance with packing instruction P208.

6.2.1.1.6 Pressure receptacles assembled in bundles must be structurally supported and held together as a unit. Pressure receptacles must be secured in a manner that prevents movement in relation to the structural assembly and movement that would result in the concentration of harmful local stresses. Manifold assemblies (e.g. manifold, valves and pressure gauges) must be designed and constructed such that they are protected from impact and forces normally encountered in transport.

Manifests must have at least the same test pressure as the cylinders. For toxic liquefied gases, means must be provided to ensure that each pressure receptacle can be filled separately and that no interchange of pressure receptacle contents can occur during transport.

6.2.1.1.7 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.2.1.1.8 Additional requirements for the construction of closed cryogenic receptacles for refrigerated liquefied gases

6.2.1.1.8.1 The mechanical properties of the metal used must be established for each pressure receptacle, including the impact strength and the bending coefficient

6.2.1.1.8.2 The pressure receptacles must be thermally insulated. The thermal insulation must be protected against impact by means of a jacket. If the space between the pressure receptacle and the jacket is evacuated of air (vacuum-insulation), the jacket must be designed to withstand without permanent deformation an external pressure of at least 100 kPa (1 bar) calculated in accordance with a recognised technical code or a calculated critical collapsing pressure of not less than 200 kPa (2 bar) gauge pressure. If the jacket is so closed as to be gas-tight (e.g. in the case of vacuum-insulation), a device must be provided to prevent any dangerous pressure from developing in the insulating layer in the event of inadequate gas-tightness of the pressure receptacle or its fittings. The device must prevent moisture from penetrating into the insulation.

6.2.1.1.8.3 Closed cryogenic receptacles intended for the transport of refrigerated liquefied gases having a boiling point below -182 °C at atmospheric pressure must not include materials which may react with oxygen or oxygen enriched atmospheres in a dangerous manner, when located in parts of the thermal insulation where there is a risk of contact with oxygen or with oxygen enriched liquid.

6.2.1.1.8.4 Closed cryogenic receptacles must be designed and constructed with suitable lifting and securing arrangements.

6.2.1.1.9 Additional requirements for the construction of pressure receptacles for acetylene
Pressure receptacles for UN 1001 acetylene, dissolved, and UN 3374 acetylene, solvent free, must be filled with a porous material, uniformly distributed, of a type that conforms to the requirements and testing specified in a standard or technical code recognised by the competent authority and which:

(a) is compatible with the pressure receptacle and does not form harmful or dangerous compounds either with the acetylene or with the solvent in the case of UN 1001; and

(b) is capable of preventing the spread of decomposition of the acetylene in the mass.

In the case of UN 1001, the solvent must be compatible with the pressure receptacles.

6.2.1.2 Materials

6.2.1.2.1 Construction materials of pressure receptacles and their closures which are in direct contact with dangerous goods must not be affected or weakened by the dangerous goods intended and must not cause a dangerous effect e.g. catalysing a reaction or reacting with the dangerous goods.

6.2.1.2.2 Pressure receptacles and their closures must be made of the materials specified in the design and construction technical standards and the applicable packing instruction for the substances intended for transport in the pressure receptacle. The materials must be resistant to brittle fracture and to stress corrosion cracking as indicated in the design and construction technical standards.

6.2.1.3 Service equipment

6.2.1.3.1 Valves, piping, other fittings subjected to pressure, excluding pressure relief devices, must be designed and constructed so that the burst pressure is at least 1.5 times the test pressure of the pressure receptacle.

6.2.1.3.2 Service equipment must be configured or designed to prevent damage that could result in the release of the pressure receptacle contents during normal conditions of handling and transport. Manifold piping leading to shut-off valves must be sufficiently flexible to protect the valves and the piping from shearing or releasing the pressure receptacle contents. The filling and discharge valves and any protective caps must be capable of being secured against unintended opening. Valves must be protected as specified in 4.1.6.1.8.

6.2.1.3.3 Pressure receptacles which are not capable of being handled manually or rolled, must be fitted with devices (skids, rings, straps) ensuring that they can be safely handled by mechanical means and so arranged as not to impair the strength of, nor cause undue stresses, in the pressure receptacle.

6.2.1.3.4 Individual pressure receptacles must be equipped with pressure relief devices as specified in AS 2030, P200(1), P205 or 6.2.1.3.6.4 and
6.2.1.3.6.5. Pressure-relief devices must be designed to prevent the entry of foreign matter, the leakage of gas and the development of any dangerous excess pressure. When fitted, pressure relief devices on manifoded horizontal pressure receptacles filled with flammable gas must be arranged to discharge freely to the open air in such a manner as to prevent any impingement of escaping gas upon the pressure receptacle itself under normal conditions of transport.

6.2.1.3.5 Pressure receptacles whose filling is measured by volume must be provided with a level indicator.

6.2.1.3.6 Additional requirements for closed cryogenic receptacles

6.2.1.3.6.1 Each filling and discharge opening in a closed cryogenic receptacle used for the transport of flammable refrigerated liquefied gases must be fitted with at least two mutually independent shut-off devices in series, the first being a stop-valve, the second being a cap or equivalent device.

6.2.1.3.6.2 For sections of piping which can be closed at both ends and where liquid product can be trapped, a method of automatic pressure-relief must be provided to prevent excess pressure build-up within the piping.

6.2.1.3.6.3 Each connection on a closed cryogenic receptacle must be clearly marked to indicate its function (e.g. vapour or liquid phase).

6.2.1.3.6.4 Pressure-relief devices

6.2.1.3.6.4.1 Every closed cryogenic receptacle must be provided with at least one pressure-relief device. The pressure-relief device must be of the type that will resist dynamic forces including surge.

6.2.1.3.6.4.2 Closed cryogenic receptacles may, in addition, have a frangible disc in parallel with the spring loaded device(s) in order to meet the requirements of 6.2.1.3.6.5.

6.2.1.3.6.4.3 Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the pressure-relief device.

6.2.1.3.6.4.4 All pressure-relief device inlets must under maximum filling conditions be situated in the vapour space of the closed cryogenic receptacle and the devices must be so arranged as to ensure that the escaping vapour is discharged unrestrictedly.

6.2.1.3.6.5 Capacity and setting of pressure-relief devices

NOTE: In relation to pressure-relief devices of closed cryogenic receptacles, MAWP means the maximum effective gauge pressure permissible at the top of a loaded closed cryogenic receptacle in its operating position including the highest effective pressure during filling and discharge.

6.2.1.3.6.5.1 The pressure-relief device must open automatically at a pressure not less than the MAWP and be fully open a pressure equal to 110% of the MAWP. It must, after discharge, close at a pressure not lower than 10% below the
pressure at which discharge starts and must remain closed at all lower pressures.

6.2.1.3.6.5.2 Frangible discs must be set to rupture at a nominal pressure which is the lower of either the test pressure or 150% of the MAWP.

6.2.1.3.6.5.3 In the case of the loss of vacuum in a vacuum-insulated closed cryogenic receptacle the combined capacity of all pressure-relief devices installed must be sufficient so that the pressure (including accumulation) inside the closed cryogenic receptacle does not exceed 120% of the MAWP.

6.2.1.3.6.5.4 The required capacity of the pressure-relief devices must be calculated in accordance with an established technical code recognised by the competent authority\(^1\).

6.2.1.4 Approval of pressure receptacles

6.2.1.4.1 The conformity of pressure receptacles must be assessed at time of manufacture as required by the competent authority. Pressure receptacles must be inspected, tested and approved by an inspection body. The technical documentation must include full specifications on design and construction, and full documentation on the manufacturing and testing.

6.2.1.4.2 Quality assurance systems must conform to the requirements of the competent authority.

6.2.1.5 Initial inspection and test

6.2.1.5.1 New pressure receptacles, other than closed cryogenic receptacles and metal hydride storage systems, must be subjected to testing and inspection during and after manufacture in accordance with the applicable design standards including the following:

On an adequate sample of pressure receptacles:

(a) Testing of the mechanical characteristics of the material of construction;
(b) Verification of the minimum wall thickness;
(c) Verification of the homogeneity of the material for each manufacturing batch;
(d) Inspection of the external and internal conditions of the pressure receptacles;
(e) Inspection of the neck threads;
(f) Verification of the conformance with the design standard;

For all pressure receptacles:

\(^1\) See for example CGA Publications S-1.2-2003 “Pressure Relief Device Standards - Part 2 - Cargo and Portable Tanks for Compressed Gases” and S-1.1-2003 “Pressure Relief Device Standards - Part 1 - Cylinders for Compressed Gases”.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEgregation DEVICES

(g) A hydraulic pressure test. Pressure receptacles shall meet the acceptance criteria specified in the design and construction technical standard or technical code;

NOTE: With the agreement of the competent authority, the hydraulic pressure test may be replaced by a test using a gas, where such an operation does not entail any danger.

(h) Inspection and assessment of manufacturing defects and either repairing them or rendering the pressure receptacles unserviceable. In the case of welded pressure receptacles, particular attention must be paid to the quality of the welds;

(i) An inspection of the marks on the pressure receptacles;

(j) In addition, pressure receptacles intended for the transport of UN 1001 acetylene, dissolved, and UN 3374 acetylene, solvent free, must be inspected to ensure proper installation and condition of the porous material and, if applicable, the quantity of solvent.

6.2.1.5.2 On an adequate sample of closed cryogenic receptacles, the inspections and tests specified in 6.2.1.5.1(a), (b), (d), and (f) must be performed. In addition, welds must be inspected by radiographic, ultrasonic or another suitable non-destructive test method on a sample of closed cryogenic receptacles according to the applicable design and construction standard. This weld inspection does not apply to the jacket.

Additionally, all closed cryogenic receptacles must undergo the initial inspections and tests specified in 6.2.1.5.1(g), (h), and (i), as well as a leakproofness test and a test of the satisfactory operation of the service equipment after assembly.

6.2.1.5.3 For metal hydride storage systems, it must be verified that the inspections and tests specified in 6.2.1.5.1 (a), (b), (c), (d), (e) if applicable, (f), (g), (h) and (i) have been performed on an adequate sample of the receptacles used in the metal hydride storage system. In addition, on an adequate sample of metal hydride storage systems, the inspections and tests specified in 6.2.1.5.1 (c) and (f) must be performed, as well as 6.2.1.5.1 (e), if applicable, and inspection of the external conditions of the metal hydride storage system.

Additionally, all metal hydride storage systems must undergo the initial inspections and tests specified in 6.2.1.5.1 (h) and (i), as well as a leakproofness test and a test of the satisfactory operation of the service equipment.

6.2.1.6 Periodic inspection and test

6.2.1.6.1 Refillable pressure receptacles, other than cryogenic receptacles, must be subjected to periodic inspections and tests by a body authorised by the competent authority, in accordance with the following:

(a) Check of the external conditions of the pressure receptacle and verification of the equipment and the external marks;
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(b) Check of the internal conditions of the pressure receptacle (e.g. internal inspection, verification of minimum wall thickness);

(c) Checking of the threads if there is evidence of corrosion or if the fittings are removed;

(d) A hydraulic pressure test and, if necessary, verification of the characteristics of the material by suitable tests;

NOTE 1: With the agreement of the competent authority, the hydraulic pressure test may be replaced by a test using a gas, where such an operation does not entail any danger.

NOTE 2: For seamless steel cylinders and tubes the check of 6.2.1.6.1 (b) and hydraulic pressure test of 6.2.1.6.1 (d) may be replaced by a procedure conforming to ISO 16148:2016 “Gas cylinders – Refillable seamless steel gas cylinders and tubes – Acoustic emission examination (AT) and follow-up ultrasonic examination (UT) for periodic inspection and testing”.

NOTE 3: The check of 6.2.1.6.1 (b) and the hydraulic pressure test of 6.2.1.6.1 (d) by ultrasonic examination carried out in accordance with ISO 10461:2005+A1:2006 for seamless aluminium alloy gas cylinders and in accordance with ISO 6406:2005 for seamless steel gas cylinders.

(e) Check of service equipment, other accessories and pressure-relief devices, if to be reintroduced into service.

NOTE: For the periodic inspection and test frequencies, see packing instruction P200 or, for a chemical under pressure, packing instruction P206 of 4.1.4.1.

6.2.1.6.2 Pressure receptacles intended for the transport of UN 1001 acetylene, dissolved and UN 3374 acetylene, solvent free, must be examined only as specified in 6.2.1.6.1 (a), (c) and (e). In addition the condition of the porous material (e.g. cracks, top clearance, loosening, settlement) shall be examined.

6.2.1.6.3 Pressure relief valves for closed cryogenic receptacles must be subject to periodic inspections and tests

6.2.1.7 **Requirements for manufacturers**

6.2.1.7.1 The manufacturer must be technically able and must possess all resources required for the satisfactory manufacture of pressure receptacles; this relates in particular to qualified personnel:

(a) to supervise the entire manufacturing process; and

(b) to carry out joining of materials; and

(c) to carry out the relevant tests.
6.2.1.7.2 The proficiency test of a manufacturer must in all instances be carried out by an inspection body approved by the competent authority of the jurisdiction of approval.

6.2.1.8 Requirements for inspection bodies

6.2.1.8.1 Inspection bodies must be independent from manufacturing enterprises and competent to perform the tests, inspections and approvals required.

6.2.1.8.2 The application of 6.2.1.8.1 is subject to the relevant Australian Standards under which inspection is required.

6.2.2 REQUIREMENTS FOR UN PRESSURE RECEPTACLES

Introductory note

This Section applies to those cylinders and other pressure receptacles that fully meet the requirements specified in UN (ISO) pressure receptacles Standards. In Australia, most cylinders covered by AS 2030 are not UN (ISO) pressure receptacles. Rather they are Australian Standard [AS], American/Canadian [DOT/CTC] or British Standard [BS] cylinders. For these, the technical detail of Section 6.2.2 does not apply, as their design and operational requirements must follow AS 2030 and its subordinate Standards. The requirements for Non-UN (ISO) pressure receptacles are in Section 6.2.3.

Therefore:

Cylinders meeting UN (ISO) Standards must comply with Section 6.2.2 and be filled and used in accordance with Packing Provision P200;

All other cylinders must comply with Section 6.2.3 and be filled and used in accordance with AS 2030 and its subordinate Standards.

6.2.2.0 In addition to the general requirements of section 6.2.1, UN pressure receptacles must comply with the requirements of this section, including the standards, as applicable.

Manufacture of new pressure receptacles or service equipment according to any particular standard in 6.2.2.1 and 6.2.2.3 is not permitted after the date shown in the right hand column of the tables.

NOTE 1: With the agreement of the competent authority, more recently published versions of the standards, if available, may be used.

NOTE 2: UN pressure receptacles and service equipment constructed according to standards applicable at the date of manufacture may continue in use subject to the periodic inspection provisions of this Code.

6.2.2.1 Design, construction and initial inspection and test
6.2.2.1.1 The following standards apply for the design, construction, and initial inspection and test of UN cylinders, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5:
Tables for sections 6.2.2.1.1 to 6.2.2.1.7: Design, construction and initial inspection and test – pressure receptacles

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
</table>
| ISO 9809-1:1999 | Gas cylinders - Refillable seamless steel gas cylinders - Design, construction and testing - Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa
NOTE: The note concerning the F factor in section 7.3 of this standard must not be applied for UN cylinders. | 31 December 2018 |
| ISO 9801-1:2010 | Gas cylinders -- Refillable seamless steel gas cylinders -- Design, construction and testing -- Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. | Until further notice |
| ISO 9809-2:2000 | Gas cylinders - Refillable seamless steel gas cylinders - Design, construction and testing - Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa | 31 December 2018 |
| ISO 9809-4:2014 | Gas cylinders – Refillable seamless steel gas cylinders – Design, construction and testing – Part 4: Stainless steel cylinders with an Rm value of less than 1 100 MPa | Until further notice |
| ISO 7866:1999 | Gas cylinders - Refillable seamless aluminium alloy gas cylinders - Design, construction and testing
NOTE: The note concerning the F factor in section 7.2 of this standard must not be applied for UN cylinders. Aluminium alloy 6351A – T6 or equivalent must not be authorised. | Until 31 December 2020 |
NOTE: Aluminium alloy 6351A or equivalent shall not be used. | Until further notice |
| ISO 4706:2008 | Gas cylinders - Refillable welded steel cylinders - Test pressure 60 bar and below | Until further notice |
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>Until</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 20703:2006</td>
<td>Gas cylinders - Refillable welded aluminium-alloy cylinders - Design, construction and testing</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 18172-1:2007</td>
<td>Gas cylinders - Refillable welded stainless steel cylinders - Part 1: Test pressure 6 MPa and below</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 11118:2015</td>
<td>Gas cylinders – Non-refillable metallic gas cylinders – Specification and test methods</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

NOTE 1: In the above referenced standards composite cylinders must be designed for a design life of not less than 15 years.

NOTE 2: Composite cylinders with a design life longer than 15 years shall not be filled after 15 years from the date of manufacture, unless the design has successfully passed a service life test programme. The programme shall be part of the initial design type approval and shall specify inspections and tests to demonstrate that cylinders manufactured accordingly remain safe to the end of their design life. The service life test programme and the
results shall be approved by the competent authority of the country of approval that is responsible for the initial approval of the cylinder design. The service life of a composite cylinder shall not be extended beyond its initial approved design life.

6.2.2.1.2 The following standards apply for the design, construction, and initial inspection and test of UN tubes, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 11120:1999</td>
<td>Gas cylinders - Refillable seamless steel tubes for compressed gas transport, of water capacity between 150 L and 3000 L - Design, construction and testing</td>
<td>31 December 2022</td>
</tr>
<tr>
<td></td>
<td>NOTE: The note concerning the F factor in section 7.1 of this standard must not be applied for UN tubes</td>
<td></td>
</tr>
<tr>
<td>ISO 11120:2015</td>
<td>Gas cylinders – Refillable seamless steel tubes of water capacity between 150 L and 3 000 L – Design, construction and testing</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 11119-1:2012</td>
<td>Gas cylinders – Refillable composite gas cylinders and tubes – Design, construction and testing – Part 1: Hoop wrapped fibre reinforced composite gas cylinders and tubes up to 450 L</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 11119-3:2013</td>
<td>Gas cylinders – Refillable composite gas cylinders and tubes – Design, construction and testing – Part 3: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with non-load-sharing metallic or non-metallic liners</td>
<td>Until further notice</td>
</tr>
<tr>
<td></td>
<td>NOTE: This standard shall not be used for linerless tubes manufactured from two parts joined together</td>
<td></td>
</tr>
<tr>
<td>ISO 11515:2013</td>
<td>Gas cylinders – Refillable composite reinforced tubes of water capacity between 450 L and 3 000 L – Design, construction and testing</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

NOTE 1: In the above referenced standards composite tubes shall be designed for a design life of not less than 15 years.

NOTE 2: Composite tubes with a design life longer than 15 years shall not be filled after 15 years from the date of manufacture, unless the design has successfully passed a service life test programme. The programme shall
be part of the initial design type approval and shall specify inspections and tests to demonstrate that tubes manufactured accordingly remain safe to the end of their design life. The service life test programme and the results shall be approved by the competent authority of the country of approval that is responsible for the initial approval of the tube design. The service life of a composite tube shall not be extended beyond its initial approved design life.

6.2.2.1.3 The following standards apply for the design, construction and initial inspection and test of UN acetylene cylinders, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5:

For the cylinder shell:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 9809-1:1999</td>
<td>Gas cylinders - Refillable seamless steel gas cylinders - Design, construction and testing - Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa</td>
<td>31 December 2018</td>
</tr>
<tr>
<td>ISO 9809-1:2010</td>
<td>Gas cylinders – Refillable seamless steel gas cylinders – Design, construction and testing – Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 4706:2008</td>
<td>Gas cylinders – Refillable welded steel cylinders – Test pressure 60 bar and below</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

For acetylene cylinder including the porous material:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 3807-1:2000</td>
<td>Cylinders for acetylene – Basic requirements – Part 1: Cylinders without fusible plugs</td>
<td>Until 31 December 2020</td>
</tr>
</tbody>
</table>
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

ISO 3807:2013 Gas cylinders – Acetylene cylinders – Basic requirements and type testing Until further notice

6.2.2.1.4 The following standard applies for the design, construction and initial inspection and test of UN cryogenic receptacles, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 21029-1:2004</td>
<td>Cryogenic vessels - Transportable vacuum insulated vessels of not more than 1000 L volume - Part 1: Design, fabrication, inspection and tests</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

6.2.2.1.5 The following standards apply for the design, construction, and initial inspection and test of UN metal hydride storage systems, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 16111:2008</td>
<td>Transportable gas storage devices - Hydrogen absorbed in reversible metal hydride</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

6.2.2.1.6 The standard shown below applies for the design, construction and initial inspection and test of UN bundles of cylinders. Each cylinder in a UN bundle of cylinders must be a UN cylinder complying with the requirements of 6.2.2. The inspection requirements related to the conformity assessment system and approval for UN bundles of cylinders must be in accordance with 6.2.2.5.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 10961:2010</td>
<td>Gas cylinders – Cylinder bundles – Design, manufacture, testing and inspection.</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

NOTE: Changing one or more cylinders of the same design type, including the same test pressure, in an existing UN bundle of cylinders does not require re-certification of the existing bundle.

6.2.2.1.7 The following standards apply for the design, construction and initial inspection and test of UN cylinders for adsorbed gases except that the inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 11513:2011</td>
<td>Gas cylinders – Refillable welded steel cylinders containing materials for sub-atmospheric gas</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>
6.2.2.1 The following standards apply for the design, construction and initial inspection and test of UN pressure drums, except that inspection requirements related to the conformity assessment system and approval shall be in accordance with 6.2.2.5:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 21172-1:2015</td>
<td>Gas cylinders – Welded steel pressure drums up to 3 000 litres capacity for the transport of gases – Design and construction – Part 1: Capacities up to 1 000 litres NOTE: Irrespective of section 6.3.3.4 of this standard, welded steel gas pressure drums with dished ends convex to pressure may be used for the transport of corrosive substances provided all applicable requirements of this Code are met.</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 4706: 2008</td>
<td>Gas cylinders – Refillable welded steel cylinders – Test pressure 60 bar and below;</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 18172-1:2007</td>
<td>Gas cylinders – Refillable welded stainless steel cylinders – Part 1: Test pressure 6 MPa and below.</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

6.2.2.2 Materials

In addition to the material requirements specified in the pressure receptacle design and construction standards, and any restrictions specified in the applicable packing instruction for the gas(es) to be transported (e.g. packing instruction P200 or P205), the following standards apply to material compatibility:

Table 6.2.2.2: Materials – pressure receptacles

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
6.2.2.3 Service equipment

The following standards apply to closures and their protection:

Table 6.2.2.3: Service equipment – pressure receptacles

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 11117:2008 + Cor 1: 2009</td>
<td>Gas cylinders – Valve protection caps and valve guards – Design, construction and tests</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 10297:2006</td>
<td>Gas cylinders – Refillable gas cylinder valves - Specification and type testing</td>
<td>Until 30 December 2020</td>
</tr>
<tr>
<td>ISO 10297:2014</td>
<td>Gas cylinders – Cylinder valves – Specification and type testing</td>
<td>Until 31 December 2022</td>
</tr>
<tr>
<td>ISO 10297:2014 + Amd 1:2017</td>
<td>Gas cylinders – Cylinder valves – Specification and type testing;</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 13340:2001</td>
<td>Transportable gas cylinders – Cylinders valves for non-refillable cylinders – Specification and prototype testing</td>
<td>Until 31 December 2020</td>
</tr>
<tr>
<td>ISO 14246:2014</td>
<td>Gas cylinders – Cylinder valves – Manufacturing tests and examination</td>
<td>Until 31 December 2024</td>
</tr>
<tr>
<td>ISO 14246:2014 + Amd 1:2017</td>
<td>Gas cylinders – Cylinder valves – Manufacturing tests and examinations</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 17871:2015</td>
<td>Gas cylinders – Quick-release cylinders valves- Specification and type testing</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 17879:2017</td>
<td>Gas cylinders – Self-closing cylinder valves – Specification and type testing NOTE: This standard shall not be applied to self-closing valves in acetylene cylinders.</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

For UN metal hydride storage systems, the requirements specified in the following standard apply to closures and their protection:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 16111:2008</td>
<td>Transportable gas storage devices – Hydrogen absorbed in reversible metal hydride</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.2.2.4 Periodic inspection and test

The following standards apply to the periodic inspection and testing of UN cylinders and their closures:

Table 6.2.2.4: Periodic inspection and test – pressure receptacle

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 6406:2005</td>
<td>Until further notice</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 10460:2005</td>
<td>Gas cylinders – Welded carbon-steel gas cylinders – Periodic inspection and testing</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 10461:2005/A1:2006</td>
<td>Seamless aluminium – alloy gas cylinders – Periodic inspection and testing</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 10462:2013</td>
<td>Gas cylinder – Acetylene cylinders – Periodic inspection and maintenance</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 11513:2011</td>
<td>Gas cylinders – Refillable welded steel cylinders containing materials for sub-atmospheric gas packaging (excluding acetylene) – Design, construction, testing, use and periodic inspection</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 11623:2002</td>
<td>Transportable gas cylinders – Periodic inspection and testing of composite gas cylinders</td>
<td>Until 31 December 2020</td>
</tr>
<tr>
<td>ISO 11623:2015</td>
<td>Gas cylinders – Composite construction – Periodic inspection and testing</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 22434:2006</td>
<td>Transportable gas cylinders – Inspection and maintenance of cylinder valves</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 20475:2018</td>
<td>Gas cylinders – Cylinder bundles – Periodic inspection and testing</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

The following standard applies to the periodic inspection and testing of UN metal hydride storage systems:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 16111:2008</td>
<td>Transportable gas storage devices – Hydrogen absorbed in reversible metal hydride</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

6.2.2.5 Conformity assessment system and approval for manufacture of pressure receptacles

6.2.2.5.1 Definitions

For the purposes of this section:
Conformity assessment system means a system for competent authority approval of a manufacturer, by pressure receptacle design type approval, approval of manufacturer’s quality system and approval of inspection bodies;

Design type means a pressure receptacle design as specified by a particular pressure receptacle standard;

Verify means confirm by examination or provision of objective evidence that specified requirements have been fulfilled.

6.2.2.5.2 General requirements

Competent authority

6.2.2.5.2.1 The competent authority that approves the pressure receptacle must approve the conformity assessment system for the purpose of ensuring that pressure receptacles conform to the requirements of this Code. In instances where the competent authority that approves a pressure receptacle is not the competent authority in the country of manufacture, the marks of the approval country and the country of manufacture must be indicated in the pressure receptacle marks (see 6.2.2.7 and 6.2.2.8).

The competent authority of the country of approval must supply, upon request, evidence demonstrating compliance to this conformity assessment system to its counterpart in a country of use.

6.2.2.5.2.2 The competent authority may delegate its functions in this conformity assessment system in whole or in part.

6.2.2.5.2.3 The competent authority must ensure that a current list of approved inspection bodies and their identity marks and approved manufacturers and their identity marks is available.

Inspection body

6.2.2.5.2.4 The inspection body must be approved by the competent authority for the inspection of pressure receptacles and must:

(a) have a staff with an organisational structure, capable, trained, competent, and skilled, to satisfactorily perform its technical functions;
(b) have access to suitable and adequate facilities and equipment;
(c) operate in an impartial manner and be free from any influence which could prevent it from doing so;
(d) ensure commercial confidentiality of the commercial and proprietary activities of the manufacturer and other bodies;
(e) maintain clear demarcation between actual inspection body functions and unrelated functions;
(f) operate a documented quality system;
(g) ensure that the tests and inspections specified in the relevant pressure receptacle standard and this Code are performed; and
(h) maintain an effective and appropriate report and record system in accordance with 6.2.2.5.6.

6.2.2.5.2.5 The inspection body must perform design type approval, pressure receptacle production testing and inspection, and certification to verify conformity with the relevant pressure receptacle standard (see 6.2.2.5.4 and 6.2.2.5.5).

Manufacturer

6.2.2.5.2.6 The manufacturer must:
(a) operate a documented quality system in accordance with 6.2.2.5.3;
(b) apply for design type approvals in accordance with 6.2.2.5.4;
(c) select an inspection body from the list of approved inspection bodies maintained by the competent authority in the country of approval; and
(d) maintain records in accordance with 6.2.2.5.6.

Testing laboratory

6.2.2.5.2.7 The testing laboratory must have:
(a) staff with an organisational structure, sufficient in number, competence, and skill; and
(b) suitable and adequate facilities and equipment to perform the tests required by the manufacturing standard to the satisfaction of the inspection body.

6.2.2.5.3 **Manufacturer's quality system**

6.2.2.5.3.1 The quality system must contain all the elements, requirements, and provisions adopted by the manufacturer. It must be documented in a systematic and orderly manner in the form of written policies, procedures and instructions.

The contents must in particular include adequate descriptions of:
(a) the organisational structure and responsibilities of personnel with regard to design and product quality;
(b) the design control and design verification techniques, processes, and procedures that will be used when designing the pressure receptacles;
(c) the relevant pressure receptacle manufacturing, quality control, quality assurance and process operation instructions that will be used;
(d) quality records, such as inspection reports, test data and calibration data;
(e) management reviews to ensure the effective operation of the quality system arising from the audits in accordance with 6.2.2.5.3.2;
(f) the process describing how customer requirements are met;
(g) the process for control of documents and their revision;
(h) the means for control of non-conforming pressure receptacles, purchased components, in-process and final materials; and
(i) training programmes and qualification procedures for relevant personnel.

6.2.2.5.3.2 Audit of the quality system

The quality system must be initially assessed to determine whether it meets the requirements in 6.2.2.5.3.1 to the satisfaction of the competent authority.

The manufacturer must be notified of the results of the audit. The notification must contain the conclusions of the audit and any corrective actions required.

Periodic audits must be carried out, to the satisfaction of the competent authority, to ensure that the manufacturer maintains and applies the quality system. Reports of the periodic audits must be provided to the manufacturer.

6.2.2.5.3.3 Maintenance of the quality system

The manufacturer must maintain the quality system as approved in order that it remains adequate and efficient. The manufacturer must notify the competent authority that approved the quality system, of any intended changes. The proposed changes must be evaluated in order to determine whether the amended quality system will still satisfy the requirements in 6.2.2.5.3.1.

6.2.2.5.4 Approval process

Initial design type approval

6.2.2.5.4.1 The initial design type approval must consist of approval of the manufacturer's quality system and approval of the pressure receptacle design to be produced. An application for an initial design type approval must meet the requirements of 6.2.2.5.4.2 to 6.2.2.5.4.6 and 6.2.2.5.4.9.

6.2.2.5.4.2 A manufacturer desiring to produce pressure receptacles in accordance with a pressure receptacle standard and this Code must apply for, obtain, and retain a design type approval certificate issued by the competent authority in the country of approval for at least one pressure receptacle design type in accordance with the procedure given in 6.2.2.5.4.9. This certificate must, on request, be submitted to the competent authority of the country of use.

6.2.2.5.4.3 An application must be made for each manufacturing facility and must include:

(a) the name and registered address of the manufacturer and in addition, if the application is submitted by an authorised representative, its name and address;
(b) the address of the manufacturing facility (if different from the above);
(c) the name and title of the person(s) responsible for the quality system;
(d) the designation of the pressure receptacle and the relevant pressure receptacle standard;
(e) details of any refusal of approval of a similar application by any other
competent authority;
(f) the identity of the inspection body for design type approval;
(g) documentation on the manufacturing facility as specified under
6.2.2.5.3.1; and
(h) the technical documentation required for design type approval, which
must enable verification of the conformity of the pressure receptacles
with the requirements of the relevant pressure receptacle design
standard. The technical documentation must cover the design and
method of manufacture and must contain, as far as is relevant for
assessment, at least the following:
(i) pressure receptacle design standard, design and
manufacturing drawings, showing components and
subassemblies, if any;
(ii) descriptions and explanations necessary for the
understanding of the drawings and intended use of the
pressure receptacles;
(iii) a list of the standards necessary to fully define the
manufacturing process;
(iv) design calculations and material specifications; and
(v) design type approval test reports, describing the results of
examinations and tests carried out in accordance with
6.2.2.5.4.9.

6.2.2.5.4.4 An initial audit in accordance with 6.2.2.5.3.2 must be performed to the
satisfaction of the competent authority.

6.2.2.5.4.5 If the manufacturer is denied approval, the competent authority must
provide written detailed reasons for such denial.

6.2.2.5.4.6 Following approval, changes to the information submitted under
6.2.2.5.4.3 relating to the initial approval must be provided to the
competent authority.

Subsequent design type approvals

6.2.2.5.4.7 An application for a subsequent design type approval must encompass
the requirements of 6.2.2.5.4.8 and 6.2.2.5.4.9, provided a manufacturer
is in the possession of an initial design type approval. In such a case, the
manufacturer's quality system according to 6.2.2.5.3 must have been
approved during the initial design type approval and must be applicable
for the new design.

6.2.2.5.4.8 The application must include:
(a) the name and address of the manufacturer and in addition, if the
application is submitted by an authorised representative, its name and
address;
(b) details of any refusal of approval of a similar application by any other
competent authority;
(c) evidence that initial design type approval has been granted; and
(d) the technical documentation, as described in 6.2.2.5.4.3(h).

Procedure for design type approval

6.2.2.5.4.9 The inspection body must:

(a) examine the technical documentation to verify that:
 (i) the design is in accordance with the relevant provisions of the standard, and
 (ii) the prototype lot has been manufactured in conformity with the technical documentation and is representative of the design;

(b) verify that the production inspections have been carried out as required in accordance with 6.2.2.5.5;

(c) select pressure receptacles from a prototype production lot and supervise the tests of these pressure receptacles as required for design type approval;

(d) perform or have performed the examinations and tests specified in the pressure receptacle standard to determine that:
 (i) the standard has been applied and fulfilled, and
 (ii) the procedures adopted by the manufacturer meet the requirements of the standard; and

(e) ensure that the various type approval examinations and tests are correctly and competently carried out.

After prototype testing has been carried out with satisfactory results and all applicable requirements of 6.2.2.5.4 have been satisfied, a design type approval certificate must be issued, which must include the name and address of the manufacturer, results and conclusions of the examination, and the necessary data for identification of the design type.

If the manufacturer is denied a design type approval, the competent authority must provide written detailed reasons for such denial.

6.2.2.5.4.10 **Modifications to approved design types**

The manufacturer must either:

(a) inform the issuing competent authority of modifications to the approved design type where such modifications do not constitute a new design, as specified in the pressure receptacle standard; or

(b) request a subsequent design type approval where such modifications constitute a new design according to the relevant pressure receptacle standard. This additional approval must be given in the form of an amendment to the original design type approval certificate.

6.2.2.5.4.11 Upon request, the competent authority must communicate to any other competent authority, information concerning design type approval, modifications of approvals and withdrawn approvals.
6.2.2.5.5 Production inspection and certification

An inspection body, or its delegate, must carry out the inspection and certification of each pressure receptacle. The inspection body selected by the manufacturer for inspection and testing during production may be different from the inspection body used for the design type approval testing.

Where it can be demonstrated to the satisfaction of the inspection body that the manufacturer has trained competent inspectors, independent of the manufacturing operations, inspection may be performed by those inspectors. In such a case, the manufacturer must maintain training records of the inspectors.

The inspection body must verify that the inspections by the manufacturer, and tests performed on those pressure receptacles, fully conform to the standard and the requirements of this Code. Should non-conformance in conjunction with this inspection and testing be determined, the permission to have inspection performed by the manufacturer's inspectors may be withdrawn.

The manufacturer must, after approval by the inspection body, make a declaration of conformity with the certified design type. The application of the pressure receptacle certification marks must be considered a declaration that the pressure receptacle complies with the applicable pressure receptacle standards and the requirements of this conformity assessment system and this Code. The inspection body must affix or delegate the manufacturer to affix the pressure receptacle certification marks and the registered mark of the inspection body to each approved pressure receptacle.

A certificate of compliance, signed by the inspection body and the manufacturer, must be issued before the pressure receptacles are filled.

6.2.2.5.6 Records

Design type approval and certificate of compliance records must be retained by the manufacturer and the inspection body for not less than 20 years.

6.2.2.6 Approval system for periodic inspection and test of pressure receptacles

6.2.2.6.1 Definition

For the purposes of this section:

Approval system means a system for competent authority approval of a body performing periodic inspection and test of pressure receptacles (hereinafter referred to as "periodic inspection and test body"), including approval of that body's quality system.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEgregation Devices

6.2.2.6.2 General requirements

Competent authority

6.2.2.6.2.1 The competent authority must establish an approval system for the purpose of ensuring that the periodic inspection and test of pressure receptacles conform to the requirements of this Code. In instances where the competent authority that approves a body performing periodic inspection and test of a pressure receptacle is not the competent authority of the country approving the manufacture of the pressure receptacle, the marks of the approval country of periodic inspection and test must be indicated in the pressure receptacle marks (see 6.2.2.7).

The competent authority of the country of approval for the periodic inspection and test must supply, upon request, evidence demonstrating compliance to this approval system including the records of the periodic inspection and test to its counterpart in a country of use.

The competent authority of the country of approval may terminate the approval certificate referred to in 6.2.2.6.4.1, upon evidence demonstrating non-compliance with the approval system.

6.2.2.6.2.2 The competent authority may delegate its functions in this approval system, in whole or in part.

6.2.2.6.2.3 The competent authority must ensure that a current list of approved periodic inspection and test bodies and their identity marks is available.

Periodic inspection and test body

6.2.2.6.2.4 The periodic inspection and test body must be approved by the competent authority and must:

(a) have a staff with an organisational structure, capable, trained, competent, and skilled, to satisfactorily perform its technical functions;
(b) have access to suitable and adequate facilities and equipment;
(c) operate in an impartial manner and be free from any influence which could prevent it from doing so;
(d) ensure commercial confidentiality;
(e) maintain clear demarcation between actual periodic inspection and test body functions and unrelated functions;
(f) operate a documented quality system accordance with 6.2.2.6.3;
(g) apply for approval in accordance with 6.2.2.6.4;
(h) ensure that the periodic inspections and tests are performed in accordance with 6.2.2.6.5; and
(i) maintain an effective and appropriate report and record system in accordance with 6.2.2.6.6.

6.2.2.6.3 Quality system and audit of the periodic inspection and test body

6.2.2.6.3.1 Quality system
The quality system must contain all the elements, requirements, and provisions adopted by the periodic inspection and test body. It must be documented in a systematic and orderly manner in the form of written policies, procedures, and instructions.

The quality system must include:

(a) a description of the organisational structure and responsibilities;
(b) the relevant inspection and test, quality control, quality assurance, and process operation instructions that will be used;
(c) quality records, such as inspection reports, test data, calibration data and certificates;
(d) management reviews to ensure the effective operation of the quality system arising from the audits performed in accordance with 6.2.2.6.3.2;
(e) a process for control of documents and their revision;
(f) a means for control of non-conforming pressure receptacles; and
(g) training programmes and qualification procedures for relevant personnel.

6.2.2.6.3.2 Audit

The periodic inspection and test body and its quality system must be audited in order to determine whether it meets the requirements of this Code to the satisfaction of the competent authority.

An audit must be conducted as part of the initial approval process (see 6.2.2.6.4.3). An audit may be required as part of the process to modify an approval (see 6.2.2.6.4.6).

Periodic audits must be conducted, to the satisfaction of the competent authority, to ensure that the periodic inspection and test body continues to meet the requirements of this Code.

The periodic inspection and test body must be notified of the results of any audit. The notification must contain the conclusions of the audit and any corrective actions required.

6.2.2.6.3.3 Maintenance of the quality system

The periodic inspection and test body must maintain the quality system as approved in order that it remains adequate and efficient.

The periodic inspection and test body must notify the competent authority that approved the quality system, of any intended changes, in accordance with the process for modification of an approval in 6.2.2.6.4.6.

6.2.2.6.4 Approval process for periodic inspection and test bodies

Initial approval

6.2.2.6.4.1 A body desiring to perform periodic inspection and test of pressure receptacles in accordance with a pressure receptacle standard and this
Code must apply for, obtain, and retain an approval certificate issued by the competent authority.

This written approval must, on request, be submitted to the competent authority of a country of use.

6.2.2.6.4.2 An application must be made for each periodic inspection and test body and must include:

(a) the name and address of the periodic inspection and test body and, if the application is submitted by an authorised representative, its name and address;

(b) the address of each facility performing periodic inspection and test;

(c) the name and title of the person(s) responsible for the quality system;

(d) the designation of the pressure receptacles, the periodic inspection and test methods, and the relevant pressure receptacle standards met by the quality system;

(e) documentation on each facility, the equipment, and the quality system as specified under 6.2.2.6.3.1;

(f) the qualifications and training records of the periodic inspection and test personnel; and

(g) details of any refusal of approval of a similar application by any other competent authority.

6.2.2.6.4.3 The competent authority must:

(a) examine the documentation to verify that the procedures are in accordance with the requirements of the relevant pressure receptacle standards and this Code; and

(b) conduct an audit in accordance with 6.2.2.6.3.2 to verify that the inspections and tests are carried out as required by the relevant pressure receptacle standards and this Code, to the satisfaction of the competent authority.

6.2.2.6.4.4 After the audit has been carried out with satisfactory results and all applicable requirements of 6.2.2.6.4 have been satisfied, an approval certificate must be issued. It must include the name of the periodic inspection and test body, the registered mark, the address of each facility, and the necessary data for identification of its approved activities (e.g. designation of pressure receptacles, periodic inspection and test method and pressure receptacle standards).

6.2.2.6.4.5 If the periodic inspection and test body is denied approval, the competent authority must provide written detailed reasons for such denial.

Modifications to periodic inspection and test body approvals

6.2.2.6.4.6 Following approval, the periodic inspection and test body must notify the issuing competent authority of any modifications to the information submitted under 6.2.2.6.4.2 relating to the initial approval.
The modifications must be evaluated in order to determine whether the requirements of the relevant pressure receptacle standards and this Code will be satisfied. An audit in accordance with 6.2.2.6.3.2 may be required. The competent authority must accept or reject these modifications in writing, and an amended approval certificate must be issued as necessary.

6.2.2.6.4.7 Upon request, the competent authority must communicate to any other competent authority, information concerning initial approvals, modifications of approvals, and withdrawn approvals.

6.2.2.6.5 Periodic inspection and test and certification

The application of the periodic inspection and test marks to a pressure receptacle must be considered a declaration that the pressure receptacle complies with the applicable pressure receptacle standards and the requirements of this Code. The periodic inspection and test body must affix the periodic inspection and test marks, including its registered mark, to each approved pressure receptacle (see 6.2.2.7.6).

A record certifying that a pressure receptacle has passed the periodic inspection and test must be issued by the periodic inspection and test body, before the pressure receptacle is filled.

6.2.2.6.6 Records

The periodic inspection and test body must retain records of pressure receptacle periodic inspection and tests (both passed and failed) including the location of the test facility, for not less than 15 years.

The owner of the pressure receptacle must retain an identical record until the next periodic inspection and test unless the pressure receptacle is permanently removed from service.

6.2.2.7 Marking of refillable UN pressure receptacles

NOTE: Marking requirements for UN metal hydride storage systems are given in 6.2.2.9. and marking requirements for UN bundles of cylinders are given in 6.2.2.10.

6.2.2.7.1 Refillable UN pressure receptacles must be marked clearly and legibly with certification, operational and manufacturing marks. These marks must be permanently affixed (e.g. stamped, engraved, or etched) on the pressure receptacle. The marks must be on the shoulder, top end or neck of the pressure receptacle on a permanently affixed component of the pressure receptacle (e.g. welded collar or corrosion resistant plate welded on the outer jacket of a closed cryogenic receptacle). Except for the UN packaging symbol, the minimum size of the marks must be 5 mm for pressure receptacles with a diameter greater than or equal to 140 mm and 2.5 mm for pressure receptacles with a diameter less than 140 mm. The minimum size of the UN packaging symbol must be 10 mm for pressure receptacles with a diameter greater than or equal to 140 mm and 5 mm for pressure receptacles with a diameter less than 140 mm.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.2.2.7.2 The following certification marks must be applied:

(a) The UN packaging symbol.

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8;

(b) The technical standard (e.g. ISO 9809-1) used for design, manufacture and testing;

(c) The character(s) identifying the country of approval as indicated by the distinguishing sign used on vehicles in international road traffic\(^1\);

NOTE: For the purpose of this mark the country of approval means the country of the competent authority that authorized the initial inspection and test of the individual receptacle at the time of manufacture.

(d) The identity mark or stamp of the inspection body that is registered with the competent authority of the country authorising the marking;

(e) The date of the initial inspection, the year (four digits) followed by the month (two digits) separated by a slash (i.e. “/”).

6.2.2.7.3 The following operational marks must be applied:

(f) The test pressure in bar, preceded by the letters “PH” and followed by the letters “BAR”;

(g) The mass of the empty pressure receptacle including all permanently attached integral parts (e.g. neck ring, foot ring, etc.) in kilograms, followed by the letters “KG”. This mass must not include the mass of valve, valve cap or valve guard, any coating, or porous material for acetylene. The mass must be expressed to three significant figures rounded up to the last digit. For cylinders of less than 1 kg, the mass must be expressed to two significant figures rounded up to the last digit. In the case of pressure receptacles for UN 1001 acetylene, dissolved and UN 3374 acetylene, solvent free, at least one decimal must be shown after the decimal point and two digits for pressure receptacles of less than 1 kg;

(h) The minimum guaranteed wall thickness of the pressure receptacle in millimetres followed by the letters “MM”. This mark is not required for pressure receptacles with a water capacity less than or equal to 1 litre or for composite cylinders or for closed cryogenic receptacles;

(i) In the case of pressure receptacles for compressed gases, UN 1001 acetylene, dissolved, and UN 3374 acetylene, solvent free, the working pressure in bar, preceded by the letters “PW”. In the case of

\(^1\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
closed cryogenic receptacles, the maximum allowable working pressure preceded by the letters “MAWP”;

(j) In the case of pressure receptacles for liquefied gases and refrigerated liquefied gases, the water capacity in litres expressed to three significant digits rounded down to the last digit, followed by the letter “L”. If the value of the minimum or nominal water capacity is an integer, the figures after the decimal point may be neglected;

(k) In the case of pressure receptacles for UN 1001 acetylene, dissolved, the total of the mass of the empty receptacle, the fittings and accessories not removed during filling, any coating, the porous material, the solvent and the saturation gas expressed to three significant figures rounded down to the last digit followed by the letters “KG”. At least one decimal must be shown after the decimal point. For pressure receptacles of less than 1 kg, the mass must be expressed to two significant figures rounded down to the last digit;

(l) In the case of pressure receptacles for UN 3374 acetylene, solvent free, the total of the mass of the empty receptacle, the fittings and accessories not removed during filling, any coating and the porous material expressed to three significant figures rounded down to the last digit followed by the letters “KG”. At least one decimal must be shown after the decimal point. For pressure receptacles of less than 1 kg, the mass must be expressed to two significant figures rounded down to the last digit;

6.2.2.7.4 The following manufacturing marks must be applied:

(m) Identification of the cylinder thread (e.g. 25E). This mark is not required for closed cryogenic receptacles;

NOTE: Information on marks that may be used for identifying threads for cylinders is given in ISO/TR 11364, Gas cylinders – Compilation of national and international valve stem/gas cylinder neck threads and their identification and marking system.

(n) The manufacturer's mark registered by the competent authority. When the country of manufacture is not the same as the country of approval, then the manufacturer's mark must be preceded by the character(s) identifying the country of manufacture indicated by the distinguishing sign used on vehicles in international road traffic\(^1\). The country mark and the manufacturer’s mark must be separated by a space or slash;

(o) The serial number assigned by the manufacturer.

(p) In the case of steel pressure receptacles and composite pressure receptacles with steel liner intended for the transport of gases with a risk of hydrogen embrittlement, the letter “H” showing compatibility of the steel (see ISO 11114-1: 2012);

\(^1\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
(q) For composite cylinders and tubes having a limited design life, the letters “FINAL” followed by the design life shown as the year (four digits) followed by the month (two digits) separated by a slash (i.e. “/”).

(r) For composite cylinders and tubes having a limited design life greater than 15 years and for composite cylinders and tubes having non-limited design life, the letters “SERVICE” followed by the date 15 years from the date of manufacture (initial inspection) shown as the year (four digits) followed by the month (two digits) separated by a slash (i.e. “/”).

NOTE: Once the initial design type has passed the service life test programme requirements in accordance with 6.2.2.1.1 NOTE 2 or 6.2.2.1.2 NOTE 2, future production no longer requires this initial service life mark. The initial service life mark shall be made unreadable on cylinders and tubes of a design type that has met the service life test programme requirements.

6.2.2.7.5 The above marks must be placed in three groups:

- Manufacturing marks must be the top grouping and must appear consecutively in the sequence given in 6.2.2.7.4 except for the marks described in 6.2.2.7.4 (q) and (r) which shall be adjacent to the periodic inspection and test marks of 6.2.2.7.7.

- The operational marks in 6.2.2.7.3 must be the middle grouping and the test pressure (f) must be immediately preceded by the working pressure (i) when the latter is required.

- Certification marks must be the bottom grouping and must appear in the sequence given in 6.2.2.7.2.

Figure 6.2: Marking refillable UN pressure receptacles

The following is an example of a marking a on a cylinder.

6.2.2.7.6 Other marks are allowed in areas other than the side wall, provided they are made in low stress areas and are not of a size and depth that will create harmful stress concentrations. In the case of closed cryogenic
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

receptacles, such marks may be on a separate plate attached to the outer jacket. Such marks must not conflict with required marks.

6.2.2.7.7 In addition to the preceding marks, each refillable pressure receptacle that meets the periodic inspection and test requirements of 6.2.2.4 must be marked indicating:

(a) The character(s) identifying the country authorising the body performing the periodic inspection and test as indicated by the distinguishing sign used on vehicles in international road traffic\(^1\). This marks is not required if this body is approved by the competent authority of the country approving manufacture;

(b) The registered mark of the body authorised by the competent authority for performing periodic inspection and test;

(c) The date of the periodic inspection and test, the year (two digits) followed by the month (two digits) separated by a slash (i.e. “/”). Four digits may be used to indicate the year.

The above marks must appear consecutively in the sequence given.

6.2.2.7.8 For acetylene cylinders, with the agreement of the competent authority, the date of the most recent periodic inspection and the stamp of the body performing the periodic inspection and test may be engraved on a ring held on the cylinder by the valve. The ring must be configured so that it can only be removed by disconnecting the valve from the cylinder.

6.2.2.7.9 <UN Deleted >

6.2.2.8 Marking of non-refillable UN pressure receptacles

6.2.2.8.1 Non-refillable UN pressure receptacles must be marked clearly and legibly with certification and gas or pressure receptacle specific marks. These marks must be permanently affixed (e.g. stencilled, stamped, engraved, or etched) on the pressure receptacle. Except when stencilled, the marks must be on the shoulder, top end or neck of the pressure receptacle or on a permanently affixed component of the pressure receptacle (e.g. welded collar). Except for the “UN” mark and the “DO NOT REFILL” mark, the minimum size of the marks must be 5 mm for pressure receptacles with a diameter greater than or equal to 140 mm and 2.5 mm for pressure receptacles with a diameter less than 140 mm.

The minimum size of the “UN” mark must be 10 mm for pressure receptacles with a diameter greater than or equal to 140 mm and 5 mm for pressure receptacles with a diameter less than 140 mm. The minimum size of the “DO NOT REFILL” mark must be 5 mm.

6.2.2.8.2 The marks listed in 6.2.2.7.1 to 6.2.2.7.3 must be applied with the exception of (g), (h), and (m). The serial number (o) may be replaced by

\(^1\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
the batch number. In addition, the words “DO NOT REFILL” in letters of at least 5 mm in height are required.

6.2.2.8.3 The requirements of 6.2.2.7.4 must apply.

NOTE: Non-refillable pressure receptacles may, on account of their size, substitute a label for these permanent marks.

6.2.2.8.4 Other marks are allowed provided they are made in low stress areas other than the side wall and are not of a size and depth that will create harmful stress concentrations. Such marks must not conflict with required marks.

6.2.2.9 Marking of UN metal hydride storage systems

6.2.2.9.1 UN metal hydride storage systems must be marked clearly and legibly with the marks listed below. These marks must be permanently affixed (e.g. stamped, engraved, or etched) on the metal hydride storage system. The marks must be on the shoulder, top end or neck of the metal hydride storage system or on a permanently affixed component of the metal hydride storage system. Except for the United Nations packaging symbol, the minimum size of the marks must be 5 mm for metal hydride storage systems with a smallest overall dimension greater than or equal to 140 mm and 2.5 mm for metal hydride storage systems with a smallest overall dimension less than 140 mm. The minimum size of the United Nations packaging symbol must be 10 mm for metal hydride storage systems with a smallest overall dimension greater than or equal to 140 mm and 5 mm for metal hydride storage systems with a smallest overall dimension less than 140 mm.

6.2.2.9.2 The following marks must be applied:

(a) The United Nations packaging symbol

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;

(b) "ISO 16111" (the technical standard used for design, manufacture and testing);

(c) The character(s) identifying the country of approval as indicated by the distinguishing sign used on vehicles in international road traffic¹;

NOTE: For the purpose of this mark the country of approval means the country of the competent authority that authorized the initial inspection and test of the individual system at the time of manufacture.

(d) The identity mark or stamp of the inspection body that is registered with the competent authority of the country authorising the marking;

¹ Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(e) The date of the initial inspection, the year (four digits) followed by the month (two digits) separated by a slash (i.e. "/");

(f) The test pressure of the receptacle in bar, preceded by the letters "PH" and followed by the letters "BAR";

(g) The rated charging pressure of the metal hydride storage system in bar, preceded by the letters "RCP" and followed by the letters "BAR";

(h) The manufacturer's mark registered by the competent authority. When the country of manufacture is not the same as the country of approval, then the manufacturer's mark must be preceded by the character(s) identifying the country of manufacture as indicated by the distinguishing sign used on vehicles in international road traffic\(^1\). The country mark and the manufacturer's mark must be separated by a space or slash;

(i) The serial number assigned by the manufacturer;

(j) In the case of steel receptacles and composite receptacles with steel liner, the letter "H" showing compatibility of the steel (see ISO 11114-1: 2012); and,

(k) In the case of metal hydride storage systems having limited life, the date of expiry, denoted by the letters "FINAL" followed by the year (four digits) followed by the month (two digits) separated by a slash (i.e. "/").

The certification marks specified in (a) to (e) above must appear consecutively in the sequence given. The test pressure (f) must be immediately preceded by the rated charging pressure (g). The manufacturing marks specified in (h) to (k) above must appear consecutively in the sequence given.

6.2.2.9.3 Other marks are allowed in areas other than the side wall, provided they are made in low stress areas and are not of a size and depth that will create harmful stress concentrations. Such marks must not conflict with required marks.

6.2.2.9.4 In addition to the preceding marks, each metal hydride storage system that meets the periodic inspection and test requirements of 6.2.2.4 must be marked indicating:

(a) The character(s) identifying the country authorising the body performing the periodic inspection and test, as indicated by the distinguishing sign used on vehicles in international road traffic\(^1\). This mark is not required if this body is approved by the competent authority of the country approving manufacture;

(b) The registered mark of the body authorised by the competent authority for performing periodic inspection and test;

\(^1\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
(c) The date of the periodic inspection and test, the year (two digits) followed by the month (two digits) separated by a slash (i.e. "/"). Four digits may be used to indicate the year.

The above marks must appear consecutively in the sequence given.

6.2.2.10 **Marking of bundles of cylinders**

6.2.2.10.1 Individual cylinders in a bundle of cylinders must be marked in accordance with 6.2.2.7.

6.2.2.10.2 Refillable UN bundles of cylinders must be marked clearly and legibly with certification, operational, and manufacturing marks. These marks must be permanently affixed (e.g. stamped, engraved, or etched) on a plate permanently attached to the frame of the bundle of cylinders. Except for the UN packaging symbol, the minimum size of the marks must be 5 mm. The minimum size of the UN packaging symbol must be 10 mm.

6.2.2.10.3 The following marks must be applied:

(a) The certification marks specified in 6.2.2.7.2 (a), (b), (c), (d) and (e);
(b) The operational marks specified in 6.2.2.7.3 (f), (i), (j) and the total of the mass of the frame of the bundle and all permanently attached parts (cylinders, manifold, fittings and valves). Bundles intended for the carriage of UN 1001 acetylene, dissolved and UN 3374 acetylene, solvent free must bear the tare mass as specified in clause B.4.2 of ISO 10961:2010; and
(c) The manufacturing marks specified in 6.2.2.7.4 (n), (o) and, where applicable, (p).

6.2.2.10.4 The marks must be placed in three groups:

(a) The manufacturing marks must be the top grouping and must appear consecutively in the sequence given in 6.2.2.10.3 (c);
(b) The operational marks in 6.2.2.10.3 (b) must be the middle grouping and the operational mark specified in 6.2.2.7.3 (f) must be immediately preceded by the operational mark specified in 6.2.2.7.3 (i) when the latter is required;
(c) Certification marks must be the bottom grouping and must appear in the sequence given in 6.2.2.10.3 (a).

6.2.3 **REQUIREMENTS FOR NON-UN PRESSURE RECEPTACLES**

6.2.3.1 Pressure receptacles not designed, constructed, inspected, tested and approved according to the requirements of Section 6.2.2, that are cylinders to be filled and used in Australia, must comply with AS 2030 and its relevant subordinate standards, and with the general requirements of Section 6.2.1.

6.2.3.2 Pressure receptacles that do not comply with Section 6.2.2 must not be marked with the UN packaging symbol.

6.2.3.3 Except for cylinders that comply with AS 2030 and its subordinate standards, for metallic cylinders, tubes, pressure drums, bundles of
cylinders and salvage pressure receptacles, the construction must be such that the minimum burst ratio (burst pressure divided by test pressure) is:

- 1.50 for refillable pressure receptacles,
- 2.00 for non-refillable pressure receptacles.

6.2.3.4 Cylinders that comply with AS 2030 and its subordinate standards must be marked in accordance with AS 2030.

6.2.3.5 Salvage pressure receptacles

To permit the safe handling and disposal of the pressure receptacles transported within the salvage pressure receptacle, the design may include equipment not otherwise used for cylinders or pressure drums such as flat heads, quick opening devices and openings in the cylindrical part.

Instructions on the safe handling and use of the salvage pressure receptacle must be clearly shown in the documentation for the application to the competent authority and must form part of the approval certificate. In the approval certificate, the pressure receptacles authorised to be transported in a salvage pressure receptacle must be indicated. A list of the materials of construction of all parts likely to be in contact with the dangerous goods must also be included.

A copy of the approval certificate must be delivered by the manufacturer to the owner of a salvage pressure receptacle.

The marking of salvage pressure receptacles according to 6.2.3 must be determined by the competent authority taking into account suitable marking provisions of 6.2.2.7 as appropriate. The marking must include the water capacity and test pressure of the salvage pressure receptacle.

NOTE: These provisions for salvage pressure receptacles may be applied for new salvage pressure receptacles as from 1 January 2013, unless otherwise authorized, and shall be applied for all new salvage pressure receptacles as from 1 January 2014. Salvage pressure receptacles approved in accordance with national regulations may be used with the approval of the competent authorities of the countries of use.

6.2.4 REQUIREMENTS FOR AEROSOL DISPENSERS, SMALL RECEPTACLES CONTAINING GAS (GAS CARTRIDGES) AND FUEL CELL CARTRIDGES CONTAINING LIQUEFIED FLAMMABLE GAS

Each filled aerosol dispenser or gas cartridge or fuel cell cartridge must be subjected to a test in a hot water bath in accordance with 6.2.4.1 or an approved water bath alternative in accordance with 6.2.4.2.
6.2.4.0 Aerosol Dispensers

6.2.4.0.1 Metal aerosol dispensers must comply with AS 2278 or an equivalent international or foreign standard (see 1.2.3.2.4).

6.2.4.0.2 Plastic aerosol dispensers can be used for aerosol formulations classified as Division 2.2 not exceeding 1000 ml capacity. The plastic aerosol dispensers must comply with British Standard BS 5597:1991 – “Specification for non-refillable plastics aerosol dispensers up to 1000 ml capacity”.

6.2.4.1 Hot water bath test

6.2.4.1.1 The temperature of the water bath and the duration of the test must be such that the internal pressure reaches that which would be reached at 55 °C (50 °C if the liquid phase does not exceed 95% of the capacity of the aerosol dispenser, gas cartridge or fuel cell cartridge at 50 °C). If the contents are sensitive to heat or if the aerosol dispensers, gas cartridge or fuel cell cartridge are made of plastics material which softens at this test temperature, the temperature of the bath must be set at between 20 °C and 30 °C but, in addition, one aerosol dispenser, gas cartridge or fuel cell cartridge in 2000 must be tested at the higher temperature.

6.2.4.1.2 No leakage or permanent deformation of an aerosol dispenser, receptacle or fuel cell cartridge may occur, except that a plastic aerosol dispenser, gas cartridge or fuel cell cartridge may be deformed through softening provided that it does not leak.

6.2.4.2 Alternative methods

Alternative methods which provide an equivalent level of leak detection may be used provided that the requirements of 6.2.4.2.1 and, as appropriate, 6.2.4.2.2 or 6.2.4.2.3 are met.

6.2.4.2.1 Quality system

Aerosol dispenser, gas cartridge or fuel cell cartridge fillers and component manufacturers must have a quality system. The quality system must implement procedures to ensure that all aerosol dispensers, gas cartridge or fuel cell cartridges that leak or that are deformed are rejected and not offered for transport.

The quality system must include:

(a) a description of the organisational structure and responsibilities;
(b) the relevant inspection and test, quality control, quality assurance, and process operation instructions that will be used;
(c) quality records, such as inspection reports, test data, calibration data and certificates;
(d) management reviews to ensure the effective operation of the quality system;
(e) a process for control of documents and their revision;
(f) a means for control of non-conforming aerosol dispensers, gas cartridge or fuel cell cartridges;
6.2.4.2.2 Aerosol Dispensers

6.2.4.2.2.1 Pressure and leak testing of aerosol dispensers before filling

Each empty aerosol dispenser must be subjected to a pressure equal to or in excess of the maximum expected in the filled aerosol dispensers at 55 °C (50 °C if the liquid phase does not exceed 95% of the capacity of the receptacle at 50 °C). This must be at least two-thirds of the design pressure of the aerosol dispenser. If any aerosol dispenser shows evidence of leakage at a rate equal to or greater than $3.3 \times 10^{-2} \text{ mbar.L.s}^{-1}$ at the test pressure, distortion or other defect, it must be rejected.

6.2.4.2.2.2 Testing of the aerosol dispensers after filling

Prior to filling the filler must ensure that the crimping equipment is set appropriately and the specified propellant is used.

Each filled aerosol dispenser must be weighed and leak tested. The leak detection equipment must be sufficiently sensitive to detect at least a leak rate of $2.0 \times 10^{-3} \text{ mbar.L.s}^{-1}$ at 20 °C.

Any filled aerosol dispenser which shows evidence of leakage, deformation or excessive weight must be rejected.

6.2.4.2.3 Gas cartridges and fuel cell cartridges

6.2.4.2.3.1 Pressure testing of gas cartridges and fuel cell cartridges

Each gas cartridge or fuel cell cartridge must be subjected to a test pressure equal to or in excess of the maximum expected in the filled receptacle at 55°C (50°C if the liquid phase does not exceed 95% of the capacity of the receptacle at 50°C). This test pressure must be that specified for the gas cartridge or fuel cell cartridge and must not be less than two thirds the design pressure of the gas cartridge or fuel cell cartridge. If any gas cartridge or fuel cell cartridge shows evidence of leakage at a rate equal to or greater than $3.3 \times 10^{-2} \text{ mbar.L.s}^{-1}$ at the test pressure or distortion or any other defect, it must be rejected.

6.2.4.2.3.2 Leak testing gas cartridges and fuel cell cartridges

Prior to filling and sealing, the filler must ensure that the closures (if any), and the associated sealing equipment are closed appropriately and the specified gas is used.
Each filled gas cartridge or fuel cell cartridge must be checked for the correct mass of gas and must be leak tested. The leak detection equipment must be sufficiently sensitive to detect at least a leak rate of $2.0 \times 10^{-3} \text{ mbar.l.s}^{-1}$ at $20^\circ C$.

Any gas cartridge or fuel cell cartridge that has gas masses not in conformity with the declared mass limits or shows evidence of leakage or deformation, must be rejected.

6.2.4.3

With the approval of the competent authority, aerosols and receptacles, small, are not subject to 6.2.4.1 and 6.2.4.2, if they are required to be sterile but may be adversely affected by water bath testing, provided:

(a) They contain a non-flammable gas and either
 (i) contain other substances that are constituent parts of pharmaceutical products for medical, veterinary or similar purposes;
 (ii) contain other substances used in the production process for pharmaceutical products; or
 (iii) are used in medical, veterinary or similar applications;

(b) An equivalent level of safety is achieved by the manufacturer's use of alternative methods for leak detection and pressure resistance, such as helium detection and water bathing a statistical sample of at least 1 in 2000 from each production batch; and

(c) For pharmaceutical products according to (a) (i) and (iii) above, they are manufactured under the authority of a national health administration. If required by the competent authority, the principles of Good Manufacturing Practice (GMP) established by the World Health Organisation (WHO)1 must be followed.

Australian Dangerous Goods Code, 2020, Edition 7.7 1009
CHAPTER 6.3 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS FOR DIVISION 6.2 INFECTIOUS SUBSTANCES OF CATEGORY A (UN 2814 AND UN 2900)

NOTE: For land transport in Australia only, this Chapter does not apply to packagings for medical or clinical waste that is correctly assigned to UN 3291 in accordance with 2.6.3.5 and is packed in accordance with Packing Instruction P62A.

6.3.1 GENERAL

6.3.1.1 The requirements of this Chapter apply to packagings intended for the transport of infectious substances of Category A, UN 2814 and UN 2900.

6.3.2 REQUIREMENTS FOR PACKAGINGS

6.3.2.1 The requirements for packagings in this section are based on packagings, as specified in 6.1.4, currently used. In order to take into account progress in science and technology, there is no objection to the use of packagings having specifications different from those in this Chapter provided that they are equally effective, and able successfully to withstand the tests described in 6.3.5. Methods of testing other than those described in this Code are acceptable provided they are equivalent.

6.3.2.2 Packagings must be manufactured and tested under a quality assurance programme in order to ensure that each packaging meets the requirements of this Chapter.

NOTE: AS ISO 16106 [ISO 16106:2006] “Packaging – Transport packages for dangerous goods – Dangerous goods packagings, intermediate bulk containers (IBCs) and large packagings – Guidelines for the application of ISO 9001” provides acceptable guidance on procedures which may be followed.

6.3.2.3 Manufacturers and subsequent distributors of packagings must provide information regarding procedures to be followed and a description of the types and dimensions of closures (including required gaskets) and any other components needed to ensure that packages as presented for transport are capable of passing the applicable performance tests of this Chapter.

6.3.3 CODE FOR DESIGNATING TYPES OF PACKAGINGS

6.3.3.1 The codes for designating types of packagings are set out in 6.1.2.7.

6.3.3.2 The letters “U” or “W” may follow the packaging code. The letter “U” signifies a special packaging conforming to the requirements of 6.3.5.1.6. The letter “W” signifies that the packaging, although, of the same type indicated by the code is manufactured to a specification different from that in 6.1.4 and is considered equivalent under the requirements of 6.3.2.1.
6.3.4 MARKING

NOTE 1: The marks indicate that the packaging which bears them corresponds to a successfully tested design type and that it complies with the requirements of this Chapter which are related to the manufacture, but not to the use, of the packaging.

NOTE 2: The marks are intended to be of assistance to packaging manufacturers, reconditioners, packaging users, carriers and regulatory authorities.

NOTE 3: The marks do not always provide full details of the test levels, etc., and these may need to be taken further into account, e.g. by reference to a test certificate, to test reports or to a register of successfully tested packagings.

6.3.4.1 Each packaging intended for use according to this Code must bear marks which are durable, legible and placed in a location and of such a size relative to the packaging as to be readily visible. For packages with a gross mass of more than 30 kg, the marks or a duplicate thereof must appear on the top or on a side of the packaging. Letters, numerals and symbols must be at least 12 mm high, except for packagings of 30 litres capacity or less or of 30 kg maximum net mass, when they must be at least 6 mm in height and except for packagings of 5 litres capacity or less or of 5 kg maximum net mass when they must be of an appropriate size.

6.3.4.2 A packaging that meets the requirements of this section and of 6.3.5 must be marked with:

(a) The United Nations packaging symbol

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8;

(b) The code designating the type of packaging according to the requirements of 6.1.2;

(c) The text “CLASS 6.2”;

(d) The last two digits of the year of manufacture of the packaging;

(e) The state authorising the allocation of the mark, indicated by the distinguishing sign used on vehicles in international road traffic1;

(f) The name of the manufacturer or other identification of the packaging specified by the competent authority;

1 Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
(g) For packagings meeting the requirements of 6.3.5.1.6, the letter "U", inserted immediately following the mark required in (b) above.

6.3.4.3 Marks must be applied in the sequence shown in 6.3.4.2 (a) to (g); each mark required in these sub-paragraphs must be clearly separated, e.g. by a slash or space, so as to be easily identifiable. For examples, see 6.3.4.4. Any additional marks authorised by a competent authority must still enable the marks required in 6.3.4.1 to be correctly identified.

6.3.4.4 Example of Marking:

4G/CLASS 6.2/06/ as in 6.3.4.2(a), (b), (c) and (d)
S/SP-9989-ERIKSSON as in 6.3.4.2(e) and (f)

6.3.5 TEST REQUIREMENTS FOR PACKAGINGS

6.3.5.1 Performance and frequency of tests

6.3.5.1.1 The design type of each packaging must be tested as provided in this section in accordance with procedures established by the competent authority.

6.3.5.1.2 Each packaging design type must successfully pass the tests prescribed in this Chapter before being used. A packaging design type is defined by the design, size, material and thickness, manner of construction and packing, but may include various surface treatments. It also includes packagings which differ from the design type only in their lesser design height.

6.3.5.1.3 Tests must be repeated on production samples at intervals established by the competent authority.

6.3.5.1.4 Tests must also be repeated after each modification which alters the design, material or manner of construction of a packaging.

6.3.5.1.5 The competent authority may permit the selective testing of packagings that differ only in minor respects from a tested type, e.g. smaller sizes or lower net mass of primary receptacles; and packagings such as drums and boxes which are produced with small reductions in external dimension(s).

6.3.5.1.6 Primary receptacles of any type may be assembled within a secondary packaging and transported without testing in the rigid outer packaging under the following conditions:

(a) The rigid outer packaging must have been successfully tested in accordance with 6.3.5.2.2 with fragile (e.g., glass) inner receptacles;
(b) The total combined gross mass of primary receptacles must not exceed one half the gross mass of primary receptacles used for the drop test in (a) above;
(c) The thickness of cushioning between primary receptacles and between primary receptacles and the outside of the secondary
packaging must not be reduced below the corresponding thicknesses in the originally tested packaging; and if a single primary receptacle was used in the original test, the thickness of cushioning between primary receptacles must not be less than the thickness of cushioning between the outside of the secondary packaging and the primary receptacle in the original test. When either fewer or smaller primary receptacles are used (as compared to the primary receptacles used in the drop test), sufficient additional cushioning material must be used to take up the void spaces;

(d) The rigid outer packaging must have successfully passed the stacking test in 6.1.5.6 while empty. The total mass of identical packages must be based on the combined mass of packagings used in the drop test in (a) above;

(e) For primary receptacles containing liquids, an adequate quantity of absorbent material to absorb the entire liquid content of the primary receptacles must be present;

(f) If the rigid outer packaging is intended to contain primary receptacles for liquids and is not leakproof, or is intended to contain primary receptacles for solids and is not siftproof, a means of containing any liquid or solid contents in the event of leakage must be provided in the form of a leakproof liner, plastics bag or other equally effective means of containment;

(g) In addition to the marks prescribed in 6.3.4.2(a) to (f), packagings must be marked in accordance with 6.3.4.2(g).

6.3.5.1.7 The competent authority may at any time require proof, by tests in accordance with this section, that serially-produced packagings meet the requirements of the design type tests.

6.3.5.1.8 Provided the validity of the test results is not affected, several tests may be made on one sample.

6.3.5.2 Preparation of packagings for testing

6.3.5.2.1 Samples of each packaging must be prepared as for transport except that a liquid or solid infectious substance must be replaced by water or, where conditioning at -18 °C is specified, by water/antifreeze. Each primary receptacle must be filled to 98% of its capacity.

NOTE: The term water includes water/antifreeze solution with a minimum specific gravity of 0.95 for testing at -18 °C.
Table 6.3.5.2.2: Tests and samples required for packaging types

<table>
<thead>
<tr>
<th>Type of packaging</th>
<th>Tests required</th>
<th>Numbers of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary receptacle</td>
<td>Water spray 6.3.5.3.5.1</td>
</tr>
<tr>
<td>Rigid outer packaging</td>
<td>Plastics</td>
<td>Other</td>
</tr>
<tr>
<td>Fibreboard box</td>
<td>x</td>
<td>5</td>
</tr>
<tr>
<td>Fibreboard drum</td>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>Plastics box</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>Plastics drum/jerrican</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>Boxes of other material</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>Drums/jerricans of other material</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

Table note:

a "Type of packaging" categorises packagings for test purposes according to the kind of packaging and its material characteristics.

NOTE 1: In instances where a primary receptacle is made of two or more materials, the material most liable to damage determines the appropriate test.

NOTE 2: The material of the secondary packagings are not taken into consideration when selecting the test or conditioning for the test.

Explanation for use of the table:

If the packaging to be tested consists of a fibreboard outer box with a plastics primary receptacle, five samples must undergo the water spray test (see 6.3.5.3.5.1) prior to dropping and another five must be conditioned to –18 °C (see 6.3.5.3.5.2) prior to dropping. If the packaging is to contain dry ice then one further single sample must be dropped in accordance with 6.3.5.3.5.3.

Packagings prepared as for transport must be subjected to the tests in 6.3.5.3 and 6.3.5.4. For outer packagings, the headings in the table relate to fibreboard or similar materials whose performance may be rapidly affected by moisture; plastics which may embrittle at low temperature; and other materials such as metal whose performance is not affected by moisture or temperature.
6.3.5.3 Drop Test

6.3.5.3.1 Drop height and target

Samples must be subjected to free-fall drops from a height of 9 m on to a non-resilient, horizontal, flat, massive and rigid surface in conformity with 6.1.5.3.4.

6.3.5.3.2 Number of test samples and drop orientation

6.3.5.3.2.1 Where the samples are in the shape of a box, five must be dropped, one in each of the following orientations:
(a) flat on to the base;
(b) flat on to the top;
(c) flat on to the longest side;
(d) flat on to the shortest side;
(e) on to a corner.

6.3.5.3.2.2 Where the samples are in the shape of a drum, three must be dropped, one in each of the following orientations:
(a) diagonally on to the top chime, with the centre of gravity directly above the point of impact;
(b) diagonally on to the base chime;
(c) flat on to the side.

6.3.5.3.3 While the sample must be released in the required orientation, it is accepted that for aerodynamic reasons the impact may not take place in that orientation.

6.3.5.3.4 Following the appropriate drop sequence, there must be no leakage from the primary receptacle(s) which must remain protected by cushioning/absorbent material in the secondary packaging.

6.3.5.3.5 Special preparation of test sample for the drop test

6.3.5.3.5.1 Fibreboard - Water spray test

Fibreboard outer packagings: The sample must be subjected to a water spray that simulates exposure to rainfall of approximately 5 cm per hour for at least one hour. It must then be subjected to the test described in 6.3.5.3.1.

6.3.5.3.5.2 Plastics material – Cold conditioning

Plastics primary receptacles or outer packagings: The temperature of the test sample and its contents must be reduced to -18 °C or lower for a period of at least 24 hours and, within 15 minutes of removal from that atmosphere, the test sample must be subjected to the test described in 6.3.5.3.1. Where the sample contains dry ice, the conditioning period may be reduced to 4 hours.

6.3.5.3.5.3 Packagings intended to contain dry ice - Additional drop test
Where the packaging is intended to contain dry ice, a test additional to that specified in 6.3.5.3.1 and, when appropriate, in 6.3.5.3.5.1 or 6.3.5.3.5.2 must be carried out. One sample must be stored so that all the dry ice dissipates and then that sample must be dropped in one of the orientations described in 6.3.5.3.2.1 or in 6.3.5.3.2.2 as appropriate; which must be that most likely to result in failure of the packaging.

6.3.5.4 Puncture Test

6.3.5.4.1 Packagings with a gross mass of 7 kg or less

Samples must be placed on a level hard surface. A cylindrical steel rod with a mass of at least 7 kg, a diameter of 38 mm and the impact end edges a radius not exceeding 6 mm (see Figure 6.3.1), must be dropped in a vertical free fall from a height of 1 m, measured from the impact end to the impact surface of the sample. One sample must be placed on its base. A second sample must be placed in an orientation perpendicular to that used for the first. In each instance the steel rod must be aimed to impact the primary receptacle. Following each impact, penetration of the secondary packaging is acceptable, provided that there is no leakage from the primary receptacle(s).

6.3.5.4.2 Packagings with a gross mass exceeding 7 kg

Samples must be dropped on to the end of a cylindrical steel rod. The rod must be set vertically in a level hard surface. It must have a diameter of 38 mm and the edges of the upper end a radius not exceeding 6 mm (see Figure 6.3.1). The rod must protrude from the surface a distance at least equal to that between the centre of the primary receptacle(s) and the outer surface of the outer packaging with a minimum of 200 mm. One sample must be dropped with its top face lowermost in a vertical free fall from a height of 1 m, measured from the top of the steel rod. A second sample must be dropped from the same height in an orientation perpendicular to that used for the first. In each instance the packaging must be so orientated that the steel rod would be capable of penetrating the primary receptacle(s). Following each impact, penetration of the secondary packaging is acceptable provided that there is no leakage from the primary receptacle(s).
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.3.5.5 Test report

6.3.5.5.1 A written test report containing at least the following particulars must be drawn up and must be available to the users of the packaging:

1. Name and address of the test facility;
2. Name and address of applicant (where appropriate);
3. A unique test report identification;
4. Date of the test and of the report;
5. Manufacturer of the packaging;
6. Description of the packaging design type (e.g. dimensions, materials, closures, thickness, etc.), including method of manufacture (e.g. blow moulding) and which may include drawing(s) and/or photograph(s);
7. Maximum capacity;
8. Test contents;
9. Test descriptions and results;
10. The test report must be signed with the name and status of the signatory.

6.3.5.5.2 The test report must contain statements that the packaging prepared as for transport was tested in accordance with the appropriate requirements of this Chapter and that the use of other packaging methods or components may render it invalid. A copy of the test report must be available to the competent authority.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

CHAPTER 6.4 <RESERVED> (CLASS 7)

NOTE: Refer ARPANSA website.
CHAPTER 6.5 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF INTERMEDIATE BULK CONTAINERS

6.5.1 GENERAL REQUIREMENTS

6.5.1.1 Scope

6.5.1.1.1 The requirements of this Chapter apply to IBCs intended for the transport of certain dangerous goods. The provisions set out general requirements for multimodal transport and do not establish special requirements that may be required for a particular mode.

6.5.1.1.2 Exceptionally, IBCs and their service equipment not conforming strictly to the requirements herein, but having acceptable alternatives, may be considered by the competent authority for approval. In addition, in order to take into account progress in science and technology, the use of alternative arrangements which offer at least equivalent safety in use in respect of compatibility with the properties of the substances carried and equivalent or superior resistance to impact, loading and fire, may be considered by the competent authority.

6.5.1.1.3 The construction, equipment, testing, marking and operation of IBCs must be subject to acceptance by the competent authority of the country in which the IBCs are approved.

6.5.1.1.4 Manufacturers and subsequent distributors of IBCs must provide information regarding procedures to be followed and a description of the types and dimensions of closures (including required gaskets) and any other components needed to ensure that IBCs as presented for transport are capable of passing the applicable performance tests of this Chapter.

6.5.1.2 Definitions

Body (for all categories of IBCs other than composite IBCs) means the receptacle proper, including openings and their closures, but does not include service equipment;

Handling device (for flexible IBCs) means any sling, loop, eye or frame attached to the body of the IBC or formed from a continuation of the IBC body material;

Maximum permissible gross mass means the mass of the IBC and any service or structural equipment together with the maximum net mass;

Plastics material, when used in connection with inner receptacles for composite IBCs, is taken to include other polymeric materials such as rubber;

Protected (for metal IBCs) means being provided with additional protection against impact, the protection taking the form of, for example, a multi-layer (sandwich) or double wall construction or a frame with a metal lattice-work casing;

Australian Dangerous Goods Code, 2020, Edition 7.7 1019
Service equipment means filling and discharge devices and, according to the category of IBC, pressure-relief or venting, safety, heating and heat-insulating devices and measuring instruments;

Structural equipment (for all categories of IBCs other than flexible IBCs) means the reinforcing, fastening, handling, protective or stabilising members of the body, including the base pallet for composite IBCs with plastics inner receptacle, fibreboard and wooden IBCs;

Woven plastics (for flexible IBCs) means a material made from stretched tapes or monofilaments of a suitable plastics material.

6.5.1.3 Categories of IBCs

6.5.1.3.1 Metal IBCs consist of a metal body together with appropriate service and structural equipment.

6.5.1.3.2 Flexible IBCs consist of a body constituted of film, woven fabric or any other flexible material or combinations thereof, and if necessary an inner coating or liner, together with any appropriate service equipment and handling devices.

6.5.1.3.3 Rigid plastics IBCs consist of a rigid plastics body, which may have structural equipment together with appropriate service equipment.

6.5.1.3.4 Composite IBCs consist of structural equipment in the form of a rigid outer casing enclosing a plastics inner receptacle together with any service or other structural equipment. They are so constructed that the inner receptacle and outer casing once assembled, form and are used as, an integrated single unit to be filled, stored, transported or emptied as such.

6.5.1.3.5 Fibreboard IBCs consist of a fibreboard body with or without separate top and bottom caps, if necessary an inner liner (but no inner packagings), appropriate service and structural equipment.

6.5.1.3.6 Wooden IBCs consist of a rigid or collapsible wooden body together with an inner liner (but no inner packagings) and appropriate service and structural equipment.
6.5.1.4 Designatory code system for IBCs

6.5.1.4.1 The code must consist of two Arabic numerals as specified in (a); followed by a capital letter(s) specified in (b); followed, when specified in an individual section, by an Arabic numeral indicating the category of IBC.

(a) Type	For solids filled or discharged	For liquids
by gravity	under pressure of more than 10 kPa (0.1 bar)	
Rigid | 11 | 21 | 31
Flexible | 13 | – | –

(b) A Steel (all types and surface treatments)
B Aluminium
C Natural wood
D Plywood
F Reconstituted wood
G Fibreboard
H Plastics material
L Textile
M Paper, multiwall
N Metal (other than steel or aluminium)

6.5.1.4.2 For composite IBCs, two capital letters in Latin characters must be used in sequence in the second position of the code. The first must indicate the material of the inner receptacle of the IBC and the second that of the outer packaging of the IBC.

6.5.1.4.3 The following types and codes of IBC are assigned:

<table>
<thead>
<tr>
<th>Material</th>
<th>Category</th>
<th>Code</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>for solids, filled or discharged by gravity</td>
<td>11A</td>
<td>6.5.5.1</td>
</tr>
<tr>
<td>A. Steel</td>
<td>for solids, filled or discharged under pressure</td>
<td>21A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for liquids</td>
<td>31A</td>
<td></td>
</tr>
<tr>
<td>B. Aluminium</td>
<td>for solids, filled or discharged by gravity</td>
<td>11B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged under pressure</td>
<td>21B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for liquids</td>
<td>31B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged by gravity</td>
<td>11N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged under pressure</td>
<td>21N</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.5.1.4.3: Assigned IBC codes

<table>
<thead>
<tr>
<th>Material</th>
<th>Category</th>
<th>Code</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Other than steel or aluminium</td>
<td>for liquids</td>
<td>31N</td>
<td>6.5.5.2</td>
</tr>
<tr>
<td>Flexible</td>
<td>woven plastics without coating or liner</td>
<td>13H1</td>
<td></td>
</tr>
<tr>
<td>Flexible</td>
<td>woven plastics, coated</td>
<td>13H2</td>
<td></td>
</tr>
<tr>
<td>Flexible</td>
<td>woven plastics with liner</td>
<td>13H3</td>
<td></td>
</tr>
<tr>
<td>Flexible</td>
<td>woven plastics, coated and with liner</td>
<td>13H4</td>
<td></td>
</tr>
<tr>
<td>Flexible</td>
<td>plastics film</td>
<td>13H5</td>
<td></td>
</tr>
<tr>
<td>L. Textile</td>
<td>without coating or liner</td>
<td>13L1</td>
<td></td>
</tr>
<tr>
<td>L. Textile</td>
<td>Coated</td>
<td>13L2</td>
<td></td>
</tr>
<tr>
<td>L. Textile</td>
<td>with liner</td>
<td>13L3</td>
<td></td>
</tr>
<tr>
<td>L. Textile</td>
<td>coated and with liner</td>
<td>13L4</td>
<td></td>
</tr>
<tr>
<td>M. Paper</td>
<td>Multiwall</td>
<td>13M1</td>
<td></td>
</tr>
<tr>
<td>M. Paper</td>
<td>multiwall, water resistant</td>
<td>13M2</td>
<td></td>
</tr>
<tr>
<td>H. Rigid Plastics</td>
<td>for solids, filled or discharged by gravity, fitted with structural equipment</td>
<td>11H1</td>
<td>6.5.5.3</td>
</tr>
<tr>
<td>H. Rigid Plastics</td>
<td>for solids, filled or discharged by gravity, freestanding</td>
<td>11H2</td>
<td></td>
</tr>
<tr>
<td>H. Rigid Plastics</td>
<td>for solids, filled or discharged under pressure, fitted with structural equipment</td>
<td>21H1</td>
<td></td>
</tr>
<tr>
<td>H. Rigid Plastics</td>
<td>for solids, filled or discharged under pressure, freestanding</td>
<td>21H2</td>
<td></td>
</tr>
<tr>
<td>HZ. Composite with plastic inner receptacle(^a)</td>
<td>for solids, filled or discharged by gravity, with rigid plastics receptacle</td>
<td>31HZ1</td>
<td>6.5.5.4</td>
</tr>
<tr>
<td>HZ. Composite with plastic inner receptacle(^a)</td>
<td>for solids, filled or discharged by gravity, with flexible plastics receptacle</td>
<td>31HZ2</td>
<td></td>
</tr>
<tr>
<td>HZ. Composite with plastic inner receptacle(^a)</td>
<td>for solids, filled or discharged under pressure, with rigid plastics receptacle</td>
<td>21HZ1</td>
<td></td>
</tr>
<tr>
<td>HZ. Composite with plastic inner receptacle(^a)</td>
<td>for solids, filled or discharged under pressure, with flexible plastics receptacle</td>
<td>21HZ2</td>
<td></td>
</tr>
<tr>
<td>HZ. Composite with plastic inner receptacle(^a)</td>
<td>for liquids, with rigid plastics receptacle</td>
<td>31HZ1</td>
<td></td>
</tr>
<tr>
<td>HZ. Composite with plastic inner receptacle(^a)</td>
<td>for liquids, with flexible plastics receptacle</td>
<td>31HZ2</td>
<td></td>
</tr>
<tr>
<td>G. Fibreboard</td>
<td>for solids, filled or discharged by gravity</td>
<td>11G</td>
<td>6.5.5.5</td>
</tr>
<tr>
<td>Wooden</td>
<td>6.5.5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Natural wood</td>
<td>for solids, filled or discharged by gravity with inner liner</td>
<td>11C</td>
<td></td>
</tr>
<tr>
<td>D. Plywood</td>
<td>for solids, filled or discharged by gravity, with inner liner</td>
<td>11D</td>
<td></td>
</tr>
<tr>
<td>F. Reconstituted wood</td>
<td>for solids, filled or discharged by gravity, with inner liner</td>
<td>11F</td>
<td></td>
</tr>
</tbody>
</table>
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

<table>
<thead>
<tr>
<th>Material Category</th>
<th>Code</th>
<th>Paragraph</th>
</tr>
</thead>
</table>

Table note:

a The code must be completed by replacing the letter Z with a capital letter in accordance with 6.5.1.4.1(b) to indicate the nature of the material used for the outer casing.

6.5.1.4.4 The letter “W” may follow the IBC code. The letter “W” signifies that the IBC, although of the same type indicated by the code, is manufactured to a specification different from those in section 6.5.5 and is considered equivalent in accordance with the requirements in 6.5.1.1.2.

6.5.2 MARKING

6.5.2.1 Primary marking

6.5.2.1.1 Each IBC manufactured and intended for use according to this Code must bear marks which are durable, legible and placed in a location so as to be readily visible. Letters, numerals and symbols must be at least 12 mm high and must show:

(a) The United Nations packaging symbol

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8.;

For metal IBCs on which the marks are stamped or embossed, the capital letters “UN” may be applied instead of the symbol;

(b) The code designating the type of IBC according to 6.5.1.4;

(c) A capital letter designating the packing group(s) for which the design type has been approved:

(i) X for packing groups I, II and III (IBCs for solids only);

(ii) Y for packing groups II and III;

(iii) Z for packing group III only;

(d) The month and year (last two digits) of manufacture;

(e) The State authorising the allocation of the mark; indicated by the distinguishing sign used on vehicles in international road traffic\(^1\);

(f) The name or symbol of the manufacturer and other identification of the IBC as specified by the competent authority;

(g) The stacking test load in kg. For IBCs not designed for stacking, the figure “0” must be shown;

\(^{1}\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(h) The maximum permissible gross mass in kg.

The primary marks required above shall be applied in the sequence of the subparagraphs above. The marks required by 6.5.2.2. and any further marks authorized by a competent authority shall still enable the primary marks to be correctly identified.

Each mark applied in accordance with (a) to (h) and with 6.5.2.2 shall be clearly separated e.g. by a slash or space, so as to be easily identifiable.

6.5.2.1.2 Examples of markings for various types of IBC in accordance with (a) to (h) above:

<table>
<thead>
<tr>
<th>UN</th>
<th>Marking</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11A/Y/02 99/NL/ Mulder 007/5500/1500</td>
<td>For a metal IBC for solids discharged for instance by gravity and made from steel/for packing groups II and III/ manufactured in February 1999/authorised by the Netherlands/manifested by Mulder and of a design type to which the competent authority has allocated serial number 007/the stacking test load in kg/the maximum permissible gross mass in kg.</td>
</tr>
<tr>
<td></td>
<td>13H3/Z/03 01/F/ Meunier 1713/0/1500</td>
<td>For a flexible IBC for solids discharged for instance by gravity and made from woven plastics with a liner/not designed to be stacked.</td>
</tr>
<tr>
<td></td>
<td>31H1/Y/04 99/ GB/9099 10800/1200</td>
<td>For a rigid plastics IBC for liquids made from plastics with structural equipment withstanding the stack load.</td>
</tr>
<tr>
<td></td>
<td>31HA1/Y/05 01/D/ Muller 1683/10800/1200</td>
<td>For a composite IBC for liquids with a rigid plastics inner receptacle and a steel outer casing.</td>
</tr>
<tr>
<td></td>
<td>11C/X/01 02/S/ Aurigny 9876/ 3000/910</td>
<td>For a wooden IBC for solids with an inner liner and authorised for packing group I solids.</td>
</tr>
</tbody>
</table>

6.5.2.1.3 Where an IBC conforms to one or more than one tested IBC design type, including one or more than one tested packaging or large packaging design type, the IBC may bear more than one mark to indicate the relevant performance test requirements that have been met. Where more than one mark appears on a packaging, the marks must appear in close proximity to one another and each mark shall appear in its entirety.

6.5.2.2 Additional marking

6.5.2.2.1 Each IBC must bear the marks required in 6.5.2.1 and, in addition, the following information which may appear on a corrosion-resistant plate permanently attached in a place readily accessible for inspection:
Table 6.5.2.2.1: Additional IBC markings

<table>
<thead>
<tr>
<th>Additional marks</th>
<th>Category of IBC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metal</td>
</tr>
<tr>
<td>Capacity in litres^a at 20 °C</td>
<td>X</td>
</tr>
<tr>
<td>Tare mass in kg^a</td>
<td>X</td>
</tr>
<tr>
<td>Test (gauge) pressure, in kPa or bar^a, if applicable</td>
<td>X</td>
</tr>
<tr>
<td>Maximum filling/discharge pressure in kPa or bar^a, if applicable</td>
<td>X</td>
</tr>
<tr>
<td>Body material and its minimum thickness in mm</td>
<td>X</td>
</tr>
<tr>
<td>Date of last leakproofness test, if applicable (month and year)</td>
<td>X</td>
</tr>
<tr>
<td>Date of last inspection (month and year)</td>
<td>X</td>
</tr>
<tr>
<td>Serial number of the manufacturer</td>
<td>X</td>
</tr>
</tbody>
</table>

a The unit used must be indicated.

6.5.2.2.2 The maximum permitted stacking load applicable must be displayed on a symbol as shown in Figure 6.5.1 or Figure 6.5.2. The symbol must be durable and clearly visible.

Figure 6.5.1 and 6.5.2: Marking IBCs

IBCs capable of being stacked IBCs NOT capable of being stacked

The minimum dimensions must be 100 mm x 100 mm. The letters and numbers indicating the mass must be at least 12 mm high. The area within the printer’s marks indicated by the dimensional arrows must be square. Where dimensions are not specified, all features must be in approximate proportion to those shown. The mass marked above the symbol must not exceed the load imposed during the design type test (see 6.5.6.6.4) divided by 1.8.
6.5.2.2.3 In addition to the marks required in 6.5.2.1, flexible IBCs may bear a pictogram indicating recommended lifting methods.

6.5.2.2.4 Inner receptacles that are of composite design type shall be identified by the application of the marks indicated in 6.5.2.1.1 (b), (c), (d) where this date is that of the manufacture of the plastics inner receptacle, (e) and (f). The UN packaging symbol must not be applied. The marks must be applied in the sequence shown in 6.5.2.1.1. They must be durable, legible and placed in a location so as to be readily accessible for inspection after assembling the inner receptacle in the outer casing. When the mark on the inner receptacle is not readily accessible for inspection due to the design of the outer casing, a duplicate of the required mark on the inner receptacle shall be placed on the outer casing preceded by the wording “Inner receptacle”. This duplicate shall be durable, legible and placed in a location so as to be readily accessible for inspection.

The date of the manufacture of the plastics inner receptacle may alternatively be marked on the inner receptacle adjacent to the remainder of the marks. In such a case, the date may be waived from the remainder of the marks. An example of an appropriate marking method is:

Figure 6.5.3: Date of manufacturing mark

NOTE 1: Other methods that provide the minimum required information in a durable, visible and legible form are also acceptable.

NOTE 2: The date of manufacture of the inner receptacle may be different from the marked date of manufacture (see 6.5.2.1), repair (see 6.5.4.5.3) or remanufacture (see 6.5.2.4) if the composite IBC.

6.5.2.2.5 Where a composite IBC is designed in such a manner that the outer casing is intended to be dismantled for transport when empty (such as for return of the IBC for reuse to the original consignor), each of the parts intended to be detached when so dismantled must be marked with the month and year of manufacture and the name or symbol of the manufacturer and other identification of the IBC as specified by the competent authority (6.5.2.1.1(f)).
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.5.2.3 Conformity to design type. The marks indicate that IBCs correspond to a successfully tested design type and that the requirements referred to in the certificate have been met.

6.5.2.4 Marking of remanufactured composite IBCs (31HZ1)
The marks specified in 6.5.2.1.1 and 6.5.2.2 must be removed from the original IBC or made permanently illegible and new marks must be applied to an IBC remanufactured in accordance with this Code.

6.5.3 CONSTRUCTION REQUIREMENTS

6.5.3.1 General requirements
6.5.3.1.1 IBCs must be resistant to or adequately protected from deterioration due to the external environment.
6.5.3.1.2 IBCs must be so constructed and closed that none of the contents can escape under normal conditions of transport including the effect of vibration, or by changes in temperature, humidity or pressure.
6.5.3.1.3 IBCs and their closures must be constructed of materials compatible with their contents, or be protected internally, so that they are not liable:
 (a) To be attacked by the contents so as to make their use dangerous;
 (b) To cause the contents to react or decompose, or form harmful or dangerous compounds with the IBCs.
6.5.3.1.4 Gaskets, where used, must be made of materials not subject to attack by the contents of the IBCs.
6.5.3.1.5 All service equipment must be so positioned or protected as to minimise the risk of escape of the contents owing to damage during handling and transport.
6.5.3.1.6 IBCs, their attachments and their service and structural equipment must be designed to withstand, without loss of contents, the internal pressure of the contents and the stresses of normal handling and transport. IBCs intended for stacking must be designed for stacking. Any lifting or securing features of IBCs must be of sufficient strength to withstand the normal conditions of handling and transport without gross distortion or failure and must be so positioned that no undue stress is caused in any part of the IBC.
6.5.3.1.7 Where an IBC consists of a body within a framework it must be so constructed that:
 (a) The body does not chafe or rub against the framework so as to cause material damage to the body;
 (b) The body is retained within the framework at all times;
 (c) The items of equipment are fixed in such a way that they cannot be damaged if the connections between body and frame allow relative expansion or movement.
6.5.3.1.8 Where a bottom discharge valve is fitted, it must be capable of being made secure in the closed position and the whole discharge system must be suitably protected from damage. Valves having lever closures must be able to be secured against accidental opening and the open or closed position must be readily apparent. For IBCs containing liquids, a secondary means of sealing the discharge aperture must also be provided, e.g. by a blank flange or equivalent device.

6.5.4 TESTING, CERTIFICATION AND INSPECTION

6.5.4.1 Quality assurance: - the IBCs must be manufactured, remanufactured, repaired and tested under a quality assurance programme in order to ensure that each manufactured, remanufactured or repaired IBC meets the requirements of this Chapter.

NOTE: AS ISO 16106 [ISO 16106:2006] “Packaging - Transport packages for dangerous goods - Dangerous goods packagings, intermediate bulk containers (IBCs) and large packagings - Guidelines for the application of ISO 9001” provides acceptable guidance on procedures which may be followed.

6.5.4.2 Test requirements: - IBCs must be subject to design type tests and, if applicable, to initial and periodic inspections and tests in accordance with 6.5.4.4.

6.5.4.3 Certification: - in respect of each design type of IBC a certificate and mark (as in 6.5.2) must be issued attesting that the design type including its equipment meets the test requirements.

6.5.4.4 Inspection and testing

NOTE: See also 6.5.4.5 for tests and inspections on repaired IBCs.

6.5.4.4.1 Every metal, rigid plastics and composite IBCs must be inspected to the satisfaction of the competent authority:

(a) Before it is put into service (including after remanufactured), and thereafter at intervals not exceeding five years, with regard to:
 (i) conformity to design type including marks;
 (ii) internal and external condition;
 (iii) proper functioning of service equipment;

Thermal insulation, if any, need be removed only to the extent necessary for a proper examination of the body of the IBC;

(b) At intervals of not more than two and a half years, with regard to:
 (i) external condition;
 (ii) proper functioning of service equipment;

Thermal insulation, if any, need be removed only to the extent necessary for a proper examination of the body of the IBC.

Each IBC must correspond in all respects to its design type.
6.5.4.4.2 Every metal, rigid plastics and composite IBC for liquids, or for solids which are filled or discharged under pressure, must undergo a suitable leakproofness test. This test is part of a quality assurance programme as stipulated in 6.5.4.1 which shows the capability of meeting the appropriate test level indicated in 6.5.6.7.

(a) before it is first used for transport; and
(b) at intervals of not more than two and a half years.

For this test the IBC must be fitted with the primary bottom closure. The inner receptacle of a composite IBC may be tested without the outer casing, provided the test results are not affected.

6.5.4.4.3 A report of each inspection and test must be kept by the owner of the IBC at least until the next inspection or test. The report must include the results of the inspection and test and must identify the party performing the inspection and test (see also the marking requirements in 6.5.2.2.1).

6.5.4.5 Repaired IBCs

6.5.4.5.1 When an IBC is impaired as a result of impact (e.g. accident) or any other cause, it must be repaired or otherwise maintained (see definition of “Routine maintenance of IBCs” in 1.2.1.1), so as to conform to the design type. The bodies of rigid plastics IBCs and the inner receptacles of composite IBCs that are impaired must be replaced.

6.5.4.5.2 In addition to any other testing and inspection requirements in this Code, an IBC must be subjected to the full testing and inspection requirements set out in 6.5.4.4, and the required reports must be prepared, whenever it is repaired.

6.5.4.5.3 The Party performing the tests and inspections after the repair must durably marks the IBC near the manufacturer's UN design type marking to show:

(a) the State in which the repair was carried out;
(b) the name or authorised symbol of the party performing the repair; and
(c) the date (month and year) of the tests and inspections.

6.5.4.5.4 Test and inspections performed in accordance with 6.5.4.5.2 may be considered to satisfy the requirements for the two and a half and five-year periodic tests and inspections.

6.5.4.5.5 The competent authority may at any time require proof, by tests in accordance with this Chapter, that IBCs meet the requirements of the design type tests.
6.5.5 SPECIFIC REQUIREMENTS FOR IBCS

6.5.5.1 Specific requirements for metal IBCs

6.5.5.1.1 These requirements apply to metal IBCs intended for the transport of solids and liquids. There are three categories of metal IBCs:

(a) Those for solids which are filled or discharged by gravity (11A, 11B, 11N);
(b) Those for solids which are filled or discharged at a gauge pressure greater than 10 kPa (0.1 bar) (21A, 21B, 21N); and
(c) Those for liquids (31A, 31B, 31N).

6.5.5.1.2 Bodies must be made of suitable ductile metal in which the weldability has been fully demonstrated. Welds must be skilfully made and afford complete safety. Low-temperature performance must be taken into account when appropriate.

6.5.5.1.3 Care must be taken to avoid damage by galvanic action due to the juxtaposition of dissimilar metals.

6.5.5.1.4 Aluminium IBCs intended for the carriage of flammable liquids must have no movable parts, such as covers, closures, etc., made of unprotected steel liable to rust, which might cause a dangerous reaction by coming into frictional or percussive contact with the aluminium.

6.5.5.1.5 Metal IBCs must be made of metals which meet the following requirements:

(a) For steel the elongation at fracture, in %, must not be less than

\[
\frac{10000}{R_m}
\]

with an absolute minimum of 20%;

where \(R_m \) = guaranteed minimum tensile strength of the steel to be used, in N/mm\(^2\);

(b) For aluminium the elongation at fracture, in %, must not be less than

\[
\frac{10000}{6R_m}
\]

with an absolute minimum of 8%.
Specimens used to determine the elongation at fracture must be taken transversely to the direction of rolling and be so secured that:

\[L_0 = 5d \quad \text{or} \quad L_0 = 5.65 \sqrt{A} \]

where: \(L_0 \) = gauge length of the specimen before the test
\(d \) = diameter
\(A \) = cross-sectional area of test specimen.

6.5.5.1.6 Minimum wall thickness:

Metal IBCs with a capacity of more than 1500 l shall comply with the following minimum wall thickness requirement:

(a) For a reference steel having a product of \(R_m \times A_o = 10000 \), the wall thickness must not be less than:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprotected</td>
<td>Protected</td>
</tr>
<tr>
<td>T = C/2000 + 1.5</td>
<td>T = C/2000 + 1.0</td>
</tr>
<tr>
<td>Unprotected</td>
<td>Protected</td>
</tr>
<tr>
<td>T = C/1000 + 1.0</td>
<td>T = C/2000 + 1.5</td>
</tr>
</tbody>
</table>

where: \(A_o \) = minimum elongation (as a percentage) of the reference steel to be used on fracture under tensile stress (see 6.5.5.1.5);

(b) For metals other than the reference steel described in (a), the minimum wall thickness is given by the following equivalence formula:

\[e_1 = \frac{21.4e_0}{\sqrt{Rm_1 \times A_1}} \]

where: \(e_1 \) = required equivalent wall thickness of the metal to be used (in mm);
\(e_0 \) = required minimum wall thickness for the reference steel (in mm);
\(Rm_1 \) = guaranteed minimum tensile strength of the metal to be used (in N/mm\(^2\)) (see (c));
A_1 = minimum elongation (as a percentage) of the metal to be used on fracture under tensile stress (see 6.5.5.1.5);

However, in no case must the wall thickness be less than 1.5 mm.

(c) For purposes of the calculation described in (b), the guaranteed minimum tensile strength of the metal to be used (R_m) must be the minimum value according to national or international material standards. However, for austenitic steels, the specified minimum value for R_m according to the material standards may be increased by up to 15% when a greater value is attested in the material inspection certificate. When no material standard exists for the material in question, the value of R_m must be the minimum value attested in the material inspection certificate.

6.5.5.1.7 Pressure relief requirements: - IBCs for liquids must be capable of releasing a sufficient amount of vapour in the event of fire engulfment to ensure that no rupture of the body will occur. This can be achieved by conventional pressure-relief devices or by other constructional means. The start-to-discharge pressure must not be higher than 65 kPa (0.65 bar) and no lower than the total gauge pressure experienced in the IBC (i.e. the vapour pressure of the filling substance plus the partial pressure of the air or other inert gases, minus 100 kPa (1 bar)) at 55 °C, determined on the basis of a maximum degree of filling as defined in 4.1.1.4. The required relief devices must be fitted in the vapour space.

6.5.5.2 Specific requirements for flexible IBCs

6.5.5.2.1 These requirements apply to flexible IBCs of the following types:

13H1 woven plastics without coating or liner
13H2 woven plastics, coated
13H3 woven plastics with liner
13H4 woven plastics, coated and with liner
13H5 plastics film
13L1 textile without coating or liner
13L2 textile, coated
13L3 textile with liner
13L4 textile, coated and with liner
13M1 paper, multiwall
13M2 paper, multiwall, water resistant

Flexible IBCs are intended for the transport of solids only.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.5.5.2.2 Bodies must be manufactured from suitable materials. The strength of the material and the construction of the flexible IBC must be appropriate to its capacity and its intended use.

6.5.5.2.3 All materials used in the construction of flexible IBCs of types 13M1 and 13M2 must, after complete immersion in water for not less than 24 hours, retain at least 85% of the tensile strength as measured originally on the material conditioned to equilibrium at 67% relative humidity or less.

6.5.5.2.4 Seams must be formed by stitching, heat sealing, gluing or any equivalent method. All stitched seam-ends must be secured.

6.5.5.2.5 Flexible IBCs must provide adequate resistance to ageing and to degradation caused by ultraviolet radiation or the climatic conditions, or by the substance contained, thereby rendering them appropriate to their intended use.

6.5.5.2.6 For flexible plastics IBCs where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the body. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.5.5.2.7 Additives may be incorporated into the material of the body to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.5.5.2.8 No material recovered from used receptacles must be used in the manufacture of IBC bodies. Production residues or scrap from the same manufacturing process may, however, be used. Component parts such as fittings and pallet bases may also be used provided such components have not in any way been damaged in previous use.

6.5.5.2.9 When filled, the ratio of height to width must be not more than 2:1.

6.5.5.2.10 The liner must be made of a suitable material. The strength of the material used and the construction of the liner must be appropriate to the capacity of the IBC and the intended use. Joins and closures must be silt proof and capable of withstanding pressures and impacts liable to occur under normal conditions of handling and transport.

6.5.5.3 Specific requirements for rigid plastics IBCs

6.5.5.3.1 These requirements apply to rigid plastics IBCs for the transport of solids or liquids. Rigid plastics IBCs are of the following types:

11H1 fitted with structural equipment designed to withstand the whole load when IBCs are stacked, for solids which are filled or discharged by gravity
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

11H2 freestanding, for solids which are filled or discharged by gravity

21H1 fitted with structural equipment designed to withstand the whole load when IBCs are stacked, for solids which are filled or discharged under pressure

21H2 freestanding, for solids which are filled or discharged under pressure

31H1 fitted with structural equipment designed to withstand the whole load when IBCs are stacked, for liquids

31H2 freestanding, for liquids

6.5.5.3.2 The body must be manufactured from suitable plastics material of known specifications and be of adequate strength in relation to its capacity and its intended use. The material must be adequately resistant to ageing and to degradation caused by the substance contained or, where relevant, by ultraviolet radiation. Low temperature performance must be taken into account when appropriate. Any permeation of the substance contained must not constitute a danger under normal conditions of transport.

6.5.5.3.3 Where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the body. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.5.5.3.4 Additives may be incorporated in the material of the body to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.5.5.3.5 No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of rigid plastics IBCs.

6.5.5.4 Specific requirements for composite IBCs with plastics inner receptacles

6.5.5.4.1 These requirements apply to composite IBCs for the transport of solids and liquids of the following types:

11HZ1 composite IBCs with a rigid plastics inner receptacle, for solids filled or discharged by gravity

11HZ2 composite IBCs with a flexible plastics inner receptacle, for solids filled or discharged by gravity

21HZ1 composite IBCs with a rigid plastics inner receptacle, for solids filled or discharged under pressure
21HZ2 composite IBCs with a flexible plastics inner receptacle, for solids filled or discharged under pressure

31HZ1 composite IBCs with a rigid plastics inner receptacle, for liquids

31HZ2 composite IBCs with a flexible plastics inner receptacle, for liquids

This code must be completed by replacing the letter Z by a capital letter in accordance with 6.5.1.4.1 (b) to indicate the nature of the material used for the outer casing.

6.5.5.4.2 The inner receptacle is not intended to perform a containment function without its outer casing. A “rigid” inner receptacle is a receptacle which retains its general shape when empty without closures in place and without benefit of the outer casing. Any inner receptacle that is not “rigid” is considered to be “flexible”.

6.5.5.4.3 The outer casing normally consists of rigid material formed so as to protect the inner receptacle from physical damage during handling and transport but is not intended to perform the containment function. It includes the base pallet where appropriate.

6.5.5.4.4 A composite IBC with a fully enclosing outer casing must be so designed that the integrity of the inner container may be readily assessed following the leakproofness and hydraulic tests.

6.5.5.4.5 IBCs of type 31HZ2 must be limited to a capacity of not more than 1250 litres.

6.5.5.4.6 The inner receptacle must be manufactured from suitable plastics material of known specifications and be of adequate strength in relation to its capacity and its intended use. The material must be adequately resistant to ageing and to degradation caused by the substance contained or, where relevant, by ultraviolet radiation. Low temperature performance must be taken into account when appropriate. Any permeation of the substance contained must not constitute a danger under normal conditions of transport.

6.5.5.4.7 Where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the inner receptacle. Where use is made of carbon black, pigments or inhibitors, other than those used in the manufacture of the tested design type, retesting may be waived if changes in carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.5.5.4.8 Additives may be incorporated in the material of the inner receptacle to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.
6.5.5.4.9 No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of inner receptacles.

6.5.5.4.10 The inner receptacle of IBCs type 31HZ2 must consist of at least three plies of film.

6.5.5.4.11 The strength of the material and the construction of the outer casing must be appropriate to the capacity of the composite IBC and its intended use.

6.5.5.4.12 The outer casing must be free of any projection that might damage the inner receptacle.

6.5.5.4.13 Outer casings of steel or aluminium must be constructed of a suitable metal of adequate thickness.

6.5.5.4.14 Outer casings of natural wood must be of well-seasoned wood, commercially dry and free from defects that would materially lessen the strength of any part of the casing. The tops and bottoms may be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type.

6.5.5.4.15 Outer casings of plywood must be made of well-seasoned rotary cut, sliced or sawn veneer, commercially dry and free from defects that would materially lessen the strength of the casing. All adjacent plies must be glued with water resistant adhesive. Other suitable materials may be used with plywood for the construction of casings. Casings must be firmly nailed or secured to corner posts or ends or be assembled by equally suitable devices.

6.5.5.4.16 The walls of outer casings of reconstituted wood must be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type. Other parts of the casings may be made of other suitable material.

6.5.5.4.17 For fibreboard outer casings, strong and good quality solid or double-faced corrugated fibreboard (single or multiwall) must be used appropriate to the capacity of the casing and to its intended use. The water resistance of the outer surface must be such that the increase in mass, as determined in a test carried out over 30 minutes by the Cobb method of determining water absorption, is not greater than 155 g/m² - see ISO 535:1991. It must have proper bending qualities. Fibreboard must be cut, creased without scoring, and slotted so as to permit assembly without cracking, surface breaks or undue bending. The fluting of corrugated fibreboard must be firmly glued to the facings.

6.5.5.4.18 The ends of fibreboard outer casings may have a wooden frame or be entirely of wood. Reinforcements of wooden battens may be used.

6.5.5.4.19 Manufacturing joins in the fibreboard outer casing must be taped, lapped and glued, or lapped and stitched with metal staples. Lapped joins must
have an appropriate overlap. Where closing is effected by gluing or taping, a water resistant adhesive must be used.

6.5.5.4.20 Where the outer casing is of plastics material, the relevant requirements of 6.5.5.4.6 to 6.5.5.4.9 apply.

6.5.5.4.21 The outer casing of a 31HZ2 must enclose the inner receptacle on all sides.

6.5.5.4.22 Any integral pallet base forming part of an IBC or any detachable pallet must be suitable for mechanical handling with the IBC filled to its maximum permissible gross mass.

6.5.5.4.23 The pallet or integral base must be designed so as to avoid any protrusion of the base of the IBC that might be liable to damage in handling.

6.5.5.4.24 The outer casing must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the IBC.

6.5.5.4.25 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the inner receptacle.

6.5.5.4.26 Where IBCs are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner. Such IBCs must be designed so that the load is not supported by the inner receptacle.

6.5.5.5 Specific requirements for fibreboard IBCs

6.5.5.5.1 These requirements apply to fibreboard IBCs for the transport of solids which are filled or discharged by gravity. Fibreboard IBCs are of the following type: 11G.

6.5.5.5.2 Fibreboard IBCs must not incorporate top lifting devices.

6.5.5.5.3 The body must be made of strong and good quality solid or double-faced corrugated fibreboard (single or multiwall), appropriate to the capacity of the IBC and to its intended use. The water resistance of the outer surface must be such that the increase in mass, as determined in a test carried out over a period of 30 minutes by the Cobb method of determining water absorption, is not greater than 155 g/m² - see ISO 535:1991. It must have proper bending qualities. Fibreboard must be cut, creased without scoring, and slotted so as to permit assembly without cracking, surface breaks or undue bending. The fluting or corrugated fibreboard must be firmly glued to the facings.

6.5.5.5.4 The walls, including top and bottom, must have a minimum puncture resistance of 15 J measured according to ISO 3036:1975.

6.5.5.5.5 Manufacturing joins in the body of IBCs must be made with an appropriate overlap and must be taped, glued, stitched with metal staples or fastened by other means at least equally effective. Where joins are effected by
gluing or taping, a water resistant adhesive must be used. Metal staples must pass completely through all pieces to be fastened and be formed or protected so that any inner liner cannot be abraded or punctured by them.

6.5.5.5.6 The liner must be made of a suitable material. The strength of the material used and the construction of the liner must be appropriate to the capacity of the IBC and the intended use. Joins and closures must be silt-proof and capable of withstanding pressures and impacts liable to occur under normal conditions of handling and transport.

6.5.5.5.7 Any integral pallet base forming part of an IBC or any detachable pallet must be suitable for mechanical handling with the IBC filled to its maximum permissible gross mass.

6.5.5.5.8 The pallet or integral base must be designed so as to avoid any protrusion of the base of the IBC that might be liable to damage in handling.

6.5.5.5.9 The body must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the IBC.

6.5.5.5.10 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the liner.

6.5.5.5.11 Where IBCs are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner.

6.5.5.6 Specific requirements for wooden IBCs

6.5.5.6.1 These requirements apply to wooden IBCs for the transport of solids which are filled or discharged by gravity. Wooden IBCs are of the following types:

- 11C natural wood with inner liner
- 11D plywood with inner liner
- 11F reconstituted wood with inner liner.

6.5.5.6.2 Wooden IBCs must not incorporate top lifting devices.

6.5.5.6.3 The strength of the materials used and the method of construction of the body must be appropriate to the capacity and intended use of the IBC.

6.5.5.6.4 Natural wood must be well-seasoned, commercially dry and free from defects that would materially lessen the strength of any part of the IBC. Each part of the IBC must consist of one piece or be equivalent thereto. Parts are considered equivalent to one piece when a suitable method of glued assembly is used as for instance Lindermann joint, tongue and groove joint, ship lap or rabbet joint; or butt joint with at least two corrugated metal fasteners at each joint, or when other methods at least equally effective are used.

6.5.5.6.5 Bodies of plywood must be at least 3-ply. It must be made of well-seasoned rotary cut, sliced or sawn veneer, commercially dry and free...
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

from defects that would materially lessen the strength of the body. All adjacent plies must be glued with water resistant adhesive. Other suitable materials may be used with plywood for the construction of the body.

6.5.5.6.6 Bodies of reconstituted wood must be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type.

6.5.5.6.7 IBCs must be firmly nailed or secured to corner posts or ends or be assembled by equally suitable devices.

6.5.5.6.8 The liner must be made of a suitable material. The strength of the material used and the construction of the liner must be appropriate to the capacity of the IBC and the intended use. Joins and closures must be tight-proof and capable of withstanding pressures and impacts liable to occur under normal conditions of handling and transport.

6.5.5.6.9 Any integral pallet base forming part of an IBC or any detachable pallet must be suitable for mechanical handling with the IBC filled to its maximum permissible gross mass.

6.5.5.6.10 The pallet or integral base must be designed so as to avoid any protrusion of the base of the IBC that might be liable to damage in handling.

6.5.5.6.11 The body must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the IBC.

6.5.5.6.12 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the liner.

6.5.5.6.13 Where IBCs are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner.

6.5.6 TEST REQUIREMENTS FOR IBCS

6.5.6.1 Performance and frequency of tests

6.5.6.1.1 Each IBC design type must successfully pass the tests prescribed in this Chapter before being used. An IBC design type is defined by the design, size, material and thickness, manner of construction and means of filling and discharging but may include various surface treatments. It also includes IBCs which differ from the design type only in their lesser external dimensions.

6.5.6.1.2 Tests must be carried out on IBCs prepared for transport. IBCs must be filled as indicated in the relevant sections. The substances to be transported in the IBCs may be replaced by other substances except where this would invalidate the results of the tests. For solids, when another substance is used it must have the same physical characteristics (mass, grain size, etc.) as the substance to be carried. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

package mass, so long as they are placed so that the test results are not affected.

6.5.6.2 Design type tests

6.5.6.2.1 One IBC of each design type, size, wall thickness and manner of construction must be submitted to the tests listed in the order shown in 6.5.6.3.5 and as set out in 6.5.6.4 to 6.5.6.13. These design type tests must be carried out as required by the competent authority.

6.5.6.2.2 The competent authority may permit the selective testing of IBCs which differ only in minor respects from a tested type, e.g. with small reductions in external dimensions.

6.5.6.2.3 If detachable pallets are used in the tests, the test report issued in accordance with 6.5.6.14 must include a technical description of the pallets used.

6.5.6.3 Preparation of IBCs for testing

6.5.6.3.1 Paper and fibreboard IBCs and composite IBCs with fibreboard outer casings must be conditioned for at least 24 hours in an atmosphere having a controlled temperature and relative humidity (r.h.). There are three options, one of which must be chosen.

The preferred atmosphere is 23 ± 2 °C and 50% ± 2% r.h.

The two other options are 20 ± 2 °C and 65% ± 2% r.h.; or 27 ± 2 °C and 65% ± 2% r.h.

NOTE: Average values must fall within these limits. Short-term fluctuations and measurement limitations may cause individual measurements to vary by up to ±5% relative humidity without significant impairment of test reproducibility.

6.5.6.3.2 Additional steps must be taken to ascertain that the plastics material used in the manufacture of rigid plastics IBCs (types 31H1 and 31H2) and composite IBCs (types 31HZ1 and 31HZ2) complies respectively with the requirements in 6.5.5.3.2 to 6.5.5.3.4 and 6.5.5.4.6 to 6.5.5.4.9.

6.5.6.3.3 This may be done, for example, by submitting sample IBCs to a preliminary test extending over a long period, for example six months, during which the samples would remain filled with the substances they are intended to contain or with substances which are known to have at least as severe a stress-cracking, weakening or molecular degradation influence on the plastics materials in question, and after which the samples must be submitted to the applicable tests listed on the table in 6.5.6.3.5.

6.5.6.3.4 Where the behaviour of the plastics material has been established by other means, the above compatibility test may be dispensed with.
Table 6.5.6.3.5: Design type tests required and sequential order

<table>
<thead>
<tr>
<th>Type of IBC</th>
<th>Vibration</th>
<th>Bottom lift</th>
<th>Top lift</th>
<th>Stacking</th>
<th>Leak-proofness</th>
<th>Hydraulic pressure</th>
<th>Drop</th>
<th>Tear</th>
<th>Topple</th>
<th>Righting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal:</td>
<td></td>
</tr>
<tr>
<td>11A, 11B, 11N</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21A, 21B, 21N</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td></td>
<td>6th</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31A, 31B, 31N</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Rigid plastics:</td>
<td></td>
</tr>
<tr>
<td>11H1, 11H2</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21H1, 21H2</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td></td>
<td>6th</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31H1, 31H2</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite:</td>
<td></td>
</tr>
<tr>
<td>11HZ1, 11HZ2</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21HZ1, 21HZ2</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td></td>
<td>6th</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31HZ1, 31HZ2</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibreboard</td>
<td>1st</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wooden</td>
<td>1st</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table notes:
- a When IBCs are designed for this method of handling.
- b When IBCs are designed to be stacked.
- c When IBCs are designated to be lifted from the top or the side.
- d Required test indicated by x; an IBC which has passed one test may be used for other tests, in any order.
- e Another IBC of the same design may be used for the drop test.
- f Another IBC of the same design may be used for the vibration test.

6.5.6.4 Bottom lift test

6.5.6.4.1 Applicability

For all fibreboard and wooden IBCs, and for all types of IBC which are fitted with means of lifting from the base, as a design type test.

6.5.6.4.2 Preparation of the IBC for test

The IBC must be filled. A load must be added and evenly distributed. The mass of the filled IBC and the load must be 1.25 times the maximum permissible gross mass.

6.5.6.4.3 Method of testing
The IBC must be raised and lowered twice by a lift truck with the forks centrally positioned and spaced at three quarters of the dimension of the side of entry (unless the points of entry are fixed). The forks must penetrate to three quarters of the direction of entry. The test must be repeated from each possible direction of entry.

6.5.6.4.4 Criteria for passing the test

No permanent deformation which renders the IBC, including the base pallet, if any, unsafe for transport and no loss of contents.

6.5.6.5 Top lift test

6.5.6.5.1 Applicability

For all types of IBC which are designed to be lifted from the top and for flexible IBCs designed to be lifted from the top or the side, as a design type test.

6.5.6.5.2 Preparation of the IBC for test

Metal, rigid plastics and composite IBCs must be filled. A load must be added and evenly distributed. The mass of the filled IBC and the load must be twice the maximum permissible gross mass.

Flexible IBCs must be filled with a representative material and then must be loaded to six times their maximum design gross mass, the load being evenly distributed.

6.5.6.5.3 Methods of testing

Metal and flexible IBCs must be lifted in the manner for which they are designed until clear of the floor and maintained in that position for a period of five minutes.

Rigid plastics and composite IBCs must be lifted:

(a) By each pair of diagonally opposite lifting devices, so that the hoisting forces are applied vertically, for a period of five minutes; and

(b) By each pair of diagonally opposite lifting devices, so that the hoisting forces are applied toward the centre at 45° to the vertical, for a period of five minutes.

6.5.6.5.4 Other methods of top lift testing and preparation at least equally effective may be used for flexible IBCs.

6.5.6.5.5 Criteria for passing the test

(a) Metal, rigid plastics and composite IBCs: –the IBC remains safe for normal conditions of transport, there is no observable permanent deformation of the IBC, including the base pallet, if any, and no loss of contents;

(b) Flexible IBCs: —no damage to the IBC or its lifting devices which renders the IBC unsafe for transport or handling and no loss of contents.
6.5.6.6 Stacking test

6.5.6.6.1 Applicability
For all types of IBC which are designed to be stacked on each other, as a design type test.

6.5.6.6.2 Preparation of the IBC for test
The IBC must be filled to its maximum permissible gross mass. If the specific gravity of the product being used for testing makes this impracticable, the IBC must be additionally loaded so that it is tested at its maximum permissible gross mass, the load being evenly distributed.

6.5.6.6.3 Methods of testing
(a) The IBC must be placed on its base on level hard ground and subjected to a uniformly distributed superimposed test load (see 6.5.6.6.4). IBCs must be subjected to the test load for a period of at least:
 (i) 5 minutes, for metal IBCs;
 (ii) 28 days at 40 °C, for rigid plastics IBCs of types 11H2, 21H2 and 31H2 and for composite IBCs with outer casings of plastics material which bear the stacking load (i.e., types 11HH1, 11HH2, 21HH1, 21HH2, 31HH1 and 31HH2);
 (iii) 24 hours, for all other types of IBCs;
(b) The load must be applied by one of the following methods:
 (i) one or more IBCs of the same type filled to the maximum permissible gross mass stacked on the test IBC;
 (ii) appropriate weights loaded onto either a flat plate or a reproduction of the base of the IBC, which is stacked on the test IBC.

6.5.6.6.4 Calculation of superimposed test load
The load to be placed on the IBC must be 1.8 times the combined maximum permissible gross mass of the number of similar IBCs that may be stacked on top of the IBC during transport.

6.5.6.6.5 Criteria for passing the test
(a) All types of IBCs other than flexible IBCs: --no permanent deformation which renders the IBC including the base pallet, if any, unsafe for transport and no loss of contents;
(b) Flexible IBCs: --no deterioration of the body which renders the IBC unsafe for transport and no loss of contents.

6.5.6.7 Leakproofness test

6.5.6.7.1 Applicability
For those types of IBCs used for liquids or for solids filled or discharged under pressure, as a design type test and periodic test.
6.5.6.7.2 Preparation of the IBC for test
The test must be carried out before the fitting of any thermal insulation equipment. Vented closures must either be replaced by similar non-vented closures or the vent must be sealed.

6.5.6.7.3 Method of testing and pressure to be applied
The test must be carried out for a period of at least 10 minutes using air at a gauge pressure of not less than 20 kPa (0.2 bar). The air tightness of the IBC must be determined by a suitable method such as by air-pressure differential test or by immersing the IBC in water or, for metal IBCs, by coating the seams and joints with a soap solution. In the latter case a correction factor must be applied for the hydrostatic pressure.

6.5.6.7.4 Criterion for passing the test
No leakage of air.

6.5.6.8 Hydraulic pressure test

6.5.6.8.1 Applicability
For those types of IBCs used for liquids or for solids filled or discharged under pressure, as a design type test.

6.5.6.8.2 Preparation of the IBC for test
The test must be carried out before the fitting of any thermal insulation equipment. Pressure-relief devices must be removed and their apertures plugged, or must be rendered inoperative.

6.5.6.8.3 Method of testing
The test must be carried out for a period of at least 10 minutes applying a hydraulic pressure not less than that indicated in 6.5.6.8.4. The IBCs must not be mechanically restrained during the test.

6.5.6.8.4 Pressures to be applied

6.5.6.8.4.1 Metal IBCs:
(a) For IBCs of types 21A, 21B and 21N, for packing group I solids, a 250 kPa (2.5 bar) gauge pressure;
(b) For IBCs of types 21A, 21B, 21N, 31A, 31B and 31N, for packing groups II or III substances, a 200 kPa (2 bar) gauge pressure;
(c) In addition, for IBCs of types 31A, 31B and 31N, a 65 kPa (0.65 bar) gauge pressure. This test must be performed before the 200 kPa test.

6.5.6.8.4.2 Rigid plastics and composite IBCs:
(a) For IBCs of types 21H1, 21H2, 21HZ1 and 21HZ2: –75 kPa (0.75 bar) (gauge);
(b) For IBCs of types 31H1, 31H2, 31HZ1 and 31HZ2: –whichever is the greater of two values, the first as determined by one of the following methods:
(i) the total gauge pressure measured in the IBC (i.e. the vapour pressure of the filling substance and the partial pressure of the air or other inert gases, minus 100 kPa) at 55 °C multiplied by a safety factor of 1.5; this total gauge pressure must be determined on the basis of a maximum degree of filling in accordance with 4.1.1.4 and a filling temperature of 15 °C;

(ii) 1.75 times the vapour pressure at 50 °C of the substance to be transported minus 100 kPa, but with a minimum test pressure of 100 kPa;

(iii) 1.5 times the vapour pressure at 55 °C of the substance to be transported minus 100 kPa, but with a minimum test pressure of 100 kPa;

and the second as determined by the following method:

(iv) twice the static pressure of the substance to be transported, with a minimum of twice the static pressure of water.

6.5.6.8.5 Criteria for passing the test(s):

(a) For IBCs of types 21A, 21B, 21N, 31A, 31B and 31N, when subjected to the test pressure specified in 6.5.6.8.4.1 (a) or (b): - no leakage;

(b) For IBCs of types 31A, 31B and 31N, when subjected to the test pressure specified in 6.5.6.8.4.1(c): - neither permanent deformation which would render the IBC unsafe for transport, nor leakage;

(c) For rigid plastics and composite IBCs: - no permanent deformation which would render the IBC unsafe for transport and no leakage.

6.5.6.9 Drop test

6.5.6.9.1 Applicability

For all types of IBCs, as a design type test.

6.5.6.9.2 Preparation of the IBC for test

(a) Metal IBCs: - the IBC must be filled to not less than 95% of its maximum capacity for solids or 98% of its capacity for liquids. Pressure-relief devices must be removed and their apertures plugged, or must be rendered inoperative;

(b) Flexible IBCs: - the IBC must be filled to the maximum permissible gross mass, the contents being evenly distributed;

(c) Rigid plastics and composite IBCs: - the IBC must be filled to not less than 95% of its maximum capacity for solids or 98% of its maximum capacity for liquids. Arrangements provided for pressure-relief may be removed and plugged or rendered inoperative. Testing of IBCs must be carried out when the temperature of the test sample and its contents has been reduced to minus 18 °C or lower. Where test samples of composite IBCs are prepared in this way the conditioning specified in 6.5.6.3.1 may be waived. Test liquids must be kept in the liquid state, if necessary by the addition of anti-freeze. This conditioning may be disregarded if the materials in question are of sufficient ductility and tensile strength at low temperatures;
(d) Fibreboard and wooden IBCs: - the IBC must be filled to not less than 95% of its maximum capacity.

6.5.6.9.3 Method of testing

The IBC must be dropped on its base onto a non-resilient, horizontal, flat, massive and rigid surface in conformity with the requirements of 6.1.5.3.4, in such a manner as to ensure that the point of impact is that part of the base of the IBC considered to be the most vulnerable. IBCs of 0.45 m3 or less capacity must also be dropped:

(a) Metal IBCs: – on the most vulnerable part other than the part of the base tested in the first drop;
(b) Flexible IBCs: – on the most vulnerable side;
(c) Rigid plastics, composite, fibreboard and wooden IBCs: – flat on a side, flat on the top and on a corner.

The same IBC or a different IBC of the same design may be used for each drop.

6.5.6.9.4 Drop height

For solids and liquids, if the test is performed with the solid or liquid to be transported or with another substance having essentially the same physical characteristics:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

For liquids if the test is performed with water:

(a) Where the substances to be transported have a relative density not exceeding 1.2:

<table>
<thead>
<tr>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

(b) Where the substances to be transported have a relative density exceeding 1.2, the drop heights must be calculated on the basis of the relative density (d) of the substance to be transported rounded up to the first decimal as follows:

<table>
<thead>
<tr>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>d × 1.0 m</td>
<td>d × 0.67 m</td>
</tr>
</tbody>
</table>

6.5.6.9.5 Criteria for passing the test(s)

(a) Metal IBCs: – no loss of contents;
(b) Flexible IBCs: - no loss of contents. A slight discharge, e.g. from closures or stitch holes, upon impact must not be considered to be a
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

failure of the IBC provided that no further leakage occurs after the IBC has been raised clear of the ground;

(c) Rigid plastics, composite, fibreboard and wooden IBCs: - no loss of contents. A slight discharge from a closure upon impact must not be considered to be a failure of the IBC provided that no further leakage occurs.

(d) All IBCs: - no damage which renders the IBC unsafe to be transported for salvage or for disposal, and no loss of contents. In addition, the IBC must be capable of being lifted by an appropriate means until clear of the floor for five minutes.

NOTE: The criteria in (d) apply to design types for IBCs manufactured as from 1 January 2011.

6.5.6.10 Tear test

6.5.6.10.1 Applicability
For all types of flexible IBCs, as a design type test.

6.5.6.10.2 Preparation of the IBC for test
The IBC must be filled to not less than 95% of its capacity and to its maximum permissible gross mass, the contents being evenly distributed.

6.5.6.10.3 Method of testing
Once the IBC is placed on the ground, a 100 mm knife score, completely penetrating the wall of a wide face, is made at a 45° angle to the principal axis of the IBC, halfway between the bottom surface and the top level of the contents. The IBC must then be subjected to a uniformly distributed superimposed load equivalent to twice the maximum permissible gross mass. The load must be applied for at least five minutes. An IBC which is designed to be lifted from the top or the side must then, after removal of the superimposed load, be lifted clear of the floor and maintained in that position for a period of five minutes.

6.5.6.10.4 Criterion for passing the test
The cut must not propagate more than 25% of its original length.

6.5.6.11 Topple test

6.5.6.11.1 Applicability
For all types of flexible IBCs, as a design type test.

6.5.6.11.2 Preparation of the IBC for test
The IBC must be filled to not less than 95% of its capacity and to its maximum permissible gross mass, the contents being evenly distributed.

6.5.6.11.3 Method of testing
6.5.6.11.4 **Topple height**

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

6.5.6.11.5 **Criterion for passing the test**

No loss of contents. A slight discharge, e.g. from closures or stitch holes, upon impact must not be considered to be a failure of the IBC provided that no further leakage occurs.

6.5.6.12 **Righting test**

6.5.6.12.1 **Applicability**

For all flexible IBCs designed to be lifted from the top or side, as a design type test.

6.5.6.12.2 **Preparation of the IBC for test**

The IBC must be filled to not less than 95% of its capacity and to its maximum permissible gross mass, the contents being evenly distributed.

6.5.6.12.3 **Method of testing**

The IBC, lying on its side, must be lifted at a speed of at least 0.1 m/s to upright position, clear of the floor, by one lifting device or by two lifting devices when four are provided.

6.5.6.12.4 **Criterion for passing the test**

No damage to the IBC or its lifting devices which renders the IBC unsafe for transport or handling.

6.5.6.13 **Vibration test**

6.5.6.13.1 **Applicability**

For all IBCs used for liquids, as a design type test.

6.5.6.13.2 **Preparation of the IBC for test**

A sample IBC must be selected at random and must be fitted and closed as for transport. The IBC must be filled with water to not less than 98% of its maximum capacity.

6.5.6.13.3 **Test method and duration**

6.5.6.13.3.1 The IBC must be placed in the centre of the test machine platform with a vertical sinusoidal, double amplitude (peak-to peak displacement) of 25 mm ± 5%. If necessary, restraining devices must be attached to the platform to prevent the specimen from moving horizontally off the platform without restricting vertical movement.
6.5.6.13.3.2 The test must be conducted for one hour at a frequency that causes part of the base of the IBC to be momentarily raised from the vibrating platform for part of each cycle to such a degree that a metal shim can be completely inserted intermittently at, at least, one point between the base of the IBC and the test platform. The frequency may need to be adjusted after the initial set point to prevent the packaging from going into resonance. Nevertheless, the test frequency must continue to allow placement of the metal shim under the IBC as described in this paragraph. The continuing ability to insert the metal shim is essential to passing the test. The metal shim used for this test must be at least 1.6 mm thick, 50 mm wide, and be of sufficient length to be inserted between the IBC and the test platform a minimum of 100 mm to perform the test.

6.5.6.13.4 Criteria for passing the test

No leakage or rupture must be observed. In addition, no breakage or failure of structural components, such as broken welds or failed fastenings, must be observed.

6.5.6.14 Test report

6.5.6.14.1 A test report containing at least the following particulars must be drawn up and must be available to the users of the IBC:

1. Name and address of the test facility.
2. Name and address of applicant (where appropriate).
3. A unique test report identification.
4. Date of the test report.
5. Manufacturer of the IBC.
6. Description of the IBC design type (e.g. dimensions, materials, closures, thickness, etc.) including method of manufacture (e.g. blow moulding) and which may include drawing(s) and/or photograph(s).
7. Maximum capacity.
8. Characteristics of test contents, e.g. viscosity and relative density for liquids and particle size for solids. For rigid plastics and composite IBCs subject to the hydraulic pressure test in 6.5.6.8, the temperature of the water used.
9. Test descriptions and results.
10. The test report must be signed with the name and status of the signatory.

6.5.6.14.2 The test report must contain statements that the IBC prepared as for transport was tested in accordance with the appropriate requirements of this Chapter and that the use of other packaging methods or components may render it invalid. A copy of the test report must be available to the competent authority.
CHAPTER 6.6 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF LARGE PACKAGINGS

6.6.1 GENERAL

6.6.1.1 The requirements of this Chapter do not apply to:

- Class 2, except articles including aerosols;
- Division 6.2, except clinical waste of UN 3291;
- Class 7 packages containing radioactive material.

6.6.1.2 Large packagings must be manufactured, tested and remanufactured under a quality assurance programme in order to ensure that each manufactured or remanufactured large packaging meets the requirements of this Chapter.

 NOTE: AS ISO 16106 [ISO 16106:2006] “Packaging – Transport packages for dangerous goods – Dangerous goods packagings, intermediate bulk containers (IBCs) and large packagings – Guidelines for the application of ISO 9001” provides acceptable guidance on procedures which may be followed.

6.6.1.3 The specific requirements for large packagings in 6.6.4 are based on large packagings currently used. In order to take into account progress in science and technology, there is no objection to the use of large packagings having specifications different from those in 6.6.4 provided they are equally effective, acceptable to the competent authority and able successfully to withstand the tests described in 6.6.5. Methods of testing other than those described in this Code are acceptable provided they are equivalent.

6.6.1.4 Manufacturers and subsequent distributors of packagings must provide information regarding procedures to be followed and a description of the types and dimensions of closures (including required gaskets) and any other components needed to ensure that packages as presented for transport are capable of passing the applicable performance tests of this Chapter.

6.6.2 CODE FOR DESIGNATING TYPES OF LARGE PACKAGINGS

6.6.2.1 The code used for large packagings consists of:

(a) Two Arabic numerals:
 - 50 for rigid large packagings; or
 - 51 for flexible large packagings; and

(b) Capital letters in Latin characters indicating the nature of the material, e.g. wood, steel etc. The capital letters used must be those shown in 6.1.2.6.

6.6.2.2 The letters “T” or “W” may follow the large packaging code. The letter “T” signifies a large salvage packaging conforming to the requirements of 6.6.5.1.9 The letter “W” signifies that the large packaging, although of the same type indicated by the code, is manufactured to a specification
different from those in 6.6.4 and is considered equivalent in accordance with the requirements in 6.6.1.3.

6.6.3 MARKING

6.6.3.1 Primary marking

Each large packaging manufactured and intended for the use according to this Code must bear marks which are durable, legible and placed in a location so as to be readily visible. Letters, numerals and symbols must be at least 12 mm high and must show:

(a) The United Nations packaging symbol

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8;

For metal large packagings on which the marks are stamped or embossed, the capital letters “UN” may be applied instead of the symbol;

(b) The code “50” designating a large rigid packaging or “51” for flexible large packagings, followed by the material type in accordance with 6.5.1.4.1(b);

(c) A capital letter designating the packing group(s) for which the design type has been approved:
 X for packing groups I, II and III
 Y for packing groups II and III
 Z for packing group III only;

(d) The month and year (last two digits) of manufacture;

(e) The State authorising the allocation of the mark; indicated by the distinguishing sign used on vehicles in international road traffic\(^1\) (AUS for Australia);

(f) The name or symbol of the manufacturer and other identification of the large packagings as specified by the competent authority;

(g) The stacking test load in kg. For large packagings not designed for stacking the figure “0” must be shown;

(h) The maximum permissible gross mass in kilograms.

The primary marks required above must be applied in the sequence of the sub-paragraphs.

Each mark applied in accordance with (a) to (h) must be clearly separated, e.g. by a slash or space, so as to be easily identifiable.

\(^1\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.6.3.2 Examples of the marking:

<table>
<thead>
<tr>
<th>Marking</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 A/X/05/01/N/PQRS/2500/1000</td>
<td>For a large steel packaging suitable for stacking; stacking load: 2500 kg; maximum gross mass: 1000 kg.</td>
</tr>
<tr>
<td>50AT/Y/05/01/B/PQRS/2500/1000</td>
<td>For a large steel salvage packaging suitable for stacking; stacking load: 2500 kg; maximum gross mass: 1000 kg.</td>
</tr>
<tr>
<td>50 H/Y04/02/D/ABCD 987/0/800</td>
<td>For a large plastics packaging not suitable for stacking; maximum gross mass: 800 kg.</td>
</tr>
<tr>
<td>51H/Z/06/01/S/1999/0/500</td>
<td>For a large flexible packaging not suitable for stacking; maximum gross mass: 500 kg.</td>
</tr>
</tbody>
</table>

6.6.3.3 The maximum permitted stacking load applicable must be displayed on a symbol as shown in Figure 6.6.1 or Figure 6.6.2. The symbol must be durable and clearly visible.

Figure 6.6.1 and 6.6.2: Large packaging marking

The minimum dimensions must be 100 mm x 100 mm. The letters and numbers indicating the mass must be at least 12 mm high. The area within the printer’s marks indicated by the dimensional arrows must be square. Where dimensions are not specified, all features must be in approximate proportion to those shown. The mass marked above the symbol must not exceed the load imposed during the design type test (see 6.6.5.3.3.4) divided by 1.8.
NOTE: The provisions of 6.6.3.3 must apply to all large packagings manufactured, repaired or remanufactured as from 1 January 2015. The provisions of 6.6.3.3 from version 7.4 of the ADG Code may continue to be applied to all large packagings manufactured, repaired or remanufactured between 1 January 2015 and 31 December 2016.

6.6.3.4 Where a large packaging conforms to one or more than one tested large packaging design type, including one or more than one tested packaging or IBC design type, the large packaging may bear more than one mark to indicate the relevant performance test requirements that have been met. Where more than one mark appears on a packaging, the marks must appear in close proximity to one another and each mark must appear in its entirety.

6.6.4 SPECIFIC REQUIREMENTS FOR LARGE PACKAGINGS

6.6.4.1 Specific requirements for metal large packagings

50A steel
50B aluminium
50N metal (other than steel or aluminium)

6.6.4.1.1 The large packaging must be made of suitable ductile metal in which the weldability has been fully demonstrated. Welds must be skilfully made and afford complete safety. Low-temperature performance must be taken into account when appropriate.

6.6.4.1.2 Care must be taken to avoid damage by galvanic action due to the juxtaposition of dissimilar metals.

6.6.4.2 Specific requirements for flexible material large packagings

51H flexible plastics
51M flexible paper

6.6.4.2.1 The large packaging must be manufactured from suitable materials. The strength of the material and the construction of the flexible large packagings must be appropriate to its capacity and its intended use.

6.6.4.2.2 All materials used in the construction of flexible large packagings of types 51M must, after complete immersion in water for not less than 24 hours, retain at least 85% of the tensile strength as measured originally on the material conditioned to equilibrium at 67% relative humidity or less.

6.6.4.2.3 Seams must be formed by stitching, heat sealing, gluing or any equivalent method. All stitched seam-ends must be secured.

6.6.4.2.4 Flexible large packagings must provide adequate resistance to ageing and to degradation caused by ultraviolet radiation or the climatic conditions, or by the substance contained, thereby rendering them appropriate to their intended use.
6.6.4.2.5 For plastics flexible large packagings where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the large packaging. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.6.4.2.6 Additives may be incorporated into the material of the large packaging to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.6.4.2.7 When filled, the ratio of height to width must be not more than 2:1.

6.6.4.3 Specific requirements for plastics large packagings

50H rigid plastics

6.6.4.3.1 The large packaging must be manufactured from suitable plastics material of known specifications and be of adequate strength in relation to its capacity and its intended use. The material must be adequately resistant to ageing and to degradation caused by the substance contained or, where relevant, by ultraviolet radiation. Low temperature performance must be taken into account when appropriate. Any permeation of the substance contained must not constitute a danger under normal conditions of transport.

6.6.4.3.2 Where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the outer packaging. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.6.4.3.3 Additives may be incorporated in the material of the large packaging to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.6.4.4 Specific requirements for fibreboard large packagings

50G rigid fibreboard

6.6.4.4.1 Strong and good quality solid or double-faced corrugated fibreboard (single or multiwall) must be used, appropriate to the capacity of the large packagings and to their intended use. The water resistance of the outer surface must be such that the increase in mass, as determined in a test
carried out over a period of 30 minutes by the Cobb method of determining water absorption, is not greater than 155 g/m2 – see ISO 535:1991. It must have proper bending qualities. Fibreboard must be cut, creased without scoring, and slotted so as to permit assembly without cracking, surface breaks or undue bending. The fluting or corrugated fibreboard must be firmly glued to the facings.

6.6.4.4.2 The walls, including top and bottom, must have a minimum puncture resistance of 15 J measured according to ISO 3036:1975.

6.6.4.4.3 Manufacturing joins in the outer packaging of large packagings must be made with an appropriate overlap and must be taped, glued, stitched with metal staples or fastened by other means at least equally effective. Where joins are effected by gluing or taping, a water resistant adhesive must be used. Metal staples must pass completely through all pieces to be fastened and be formed or protected so that any inner liner cannot be abraded or punctured by them.

6.6.4.4.4 Any integral pallet base forming part of a large packaging or any detachable pallet must be suitable for mechanical handling with the large packaging filled to its maximum permissible gross mass.

6.6.4.4.5 The pallet or integral base must be designed so as to avoid any protrusion of the base of the large packaging that might be liable to damage in handling.

6.6.4.4.6 The body must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the large packaging.

6.6.4.4.7 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the liner.

6.6.4.4.8 Where large packagings are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner.

6.6.4.5 **Specific requirements for wooden large packagings**

- 50C natural wood
- 50D plywood
- 50F reconstituted wood

6.6.4.5.1 The strength of the materials used and the method of construction must be appropriate to the capacity and intended use of the large packagings.

6.6.4.5.2 Natural wood must be well-seasoned, commercially dry and free from defects that would materially lessen the strength of any part of the large packagings. Each part of the large packagings must consist of one piece or be equivalent thereto. Parts are considered equivalent to one piece when a suitable method of glued assembly is used as for instance Lindemann joint, tongue and groove joint, ship lap or rabbet joint; or butt
joint with at least two corrugated metal fasteners at each joint, or when other methods at least equally effective are used.

6.6.4.5.3 Large packagings of plywood must be at least 3-ply. They must be made of well-seasoned rotary cut, sliced or sawn veneer, commercially dry and free from defects that would materially lessen the strength of the large packaging. All adjacent plies must be glued with water resistant adhesive. Other suitable materials may be used with plywood for the construction of the large packaging.

6.6.4.5.4 Large packagings of reconstituted wood must be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type.

6.6.4.5.5 Large packagings must be firmly nailed or secured to corner posts or ends or be assembled by equally suitable devices.

6.6.4.5.6 Any integral pallet base forming part of a large packaging or any detachable pallet must be suitable for mechanical handling with the large packaging filled to its maximum permissible gross mass.

6.6.4.5.7 The pallet or integral base must be designed so as to avoid any protrusion of the base of the large packaging that might be liable to damage in handling.

6.6.4.5.8 The body must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the large packaging.

6.6.4.5.9 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the liner.

6.6.4.5.10 Where large packagings are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner.

6.6.5 TEST REQUIREMENTS FOR LARGE PACKAGINGS

6.6.5.1 Performance and frequency of test

6.6.5.1.1 The design type of each large packaging must be tested as provided in 6.6.5.3 in accordance with procedures established by the competent authority.

6.6.5.1.2 Each large packaging design type must successfully pass the tests prescribed in this Chapter before being used. A large packaging design type is defined by the design, size, material and thickness, manner of construction and packing, but may include various surface treatments. It also includes large packagings which differ from the design type only in their lesser design height.

6.6.5.1.3 Tests must be repeated on production samples at intervals established by the competent authority. For such tests on fibreboard large packagings,
preparation at ambient conditions is considered equivalent to the provisions of 6.6.5.2.4.

6.6.5.1.4 Tests must also be repeated after each modification which alters the design, material or manner of construction of large packagings.

6.6.5.1.5 The competent authority may permit the selective testing of large packagings that differ only in minor respects from a tested type, e.g. smaller sizes of inner packagings or inner packagings of lower net mass; and large packagings which are produced with small reductions in external dimension(s).

6.6.5.1.6 <Reserved> (by UN)

NOTE: For the conditions for assembling different inner packagings in a large packaging and permissible variations in inner packagings, see 4.1.1.5.1.

6.6.5.1.7 The competent authority may at any time require proof, by tests in accordance with this section, that serially-produced large packagings meet the requirements of the design type tests.

6.6.5.1.8 Provided the validity of the test results is not affected and with the approval of the competent authority, several tests may be made on one sample.

6.6.5.1.9 Large Salvage Packagings

Large salvage packagings must be tested and marked in accordance with the provisions applicable to packing group II large packagings intended for the transport of solids or inner packagings, except as follows:

(a) The test substance used in performing the tests must be water, and the large salvage packagings must be filled to not less than 98% of their maximum capacity. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass so long as they are placed so that the test results are not affected. Alternatively, in performing the drop test, the drop height may be varied in accordance with 6.6.5.3.4.4.2 (b);

(b) Large salvage packagings must, in addition, have been successfully subjected to the leakproofness test at 30 kPa, with the results of this test reflected in the test report required by 6.6.5.4; and

(c) Large salvage packagings must be marked with the letter “T” as described in 6.6.2.2.

6.6.5.2 Preparation for testing

6.6.5.2.1 Tests must be carried out on large packagings prepared as for transport including the inner packagings or articles used. Inner packagings must be filled to not less than 98% of their maximum capacity for liquids or 95% for solids. For large packagings where the inner packagings are designed to carry liquids and solids, separate testing is required for both liquid and solid contents. The substances in the inner packagings or the articles to
be transported in the large packagings may be replaced by other material or articles except where this would invalidate the results of the tests. When other inner packagings or articles are used they must have the same physical characteristics (mass, etc.) as the inner packagings or articles to be carried. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass, so long as they are placed so that the test results are not affected.

6.6.5.2.2 In the drop tests for liquids, when another substance is used, its relative density and viscosity must be similar to those of the substance being transported. Water may also be used for the liquid drop test under the conditions in 6.6.5.3.4.4.

6.6.5.2.3 Large packagings made of plastics materials and large packagings containing inner packagings of plastic materials - other than bags intended to contain solids or articles - must be drop tested when the temperature of the test sample and its contents has been reduced to -18°C or lower. This conditioning may be disregarded if the materials in question are of sufficient ductility and tensile strength at low temperatures. Where test sample are prepared in this way, the conditioning in 6.6.5.2.4 may be waived. Test liquids must be kept in the liquid state by the addition of anti-freeze if necessary.

6.6.5.2.4 Large packagings of fibreboard must be conditioned for at least 24 hours in an atmosphere having a controlled temperature and relative humidity (r.h). There are three options, one of which must be chosen.

The preferred atmosphere is 23 ± 2°C and 50% ± 2% r.h.

The two other options are: 20 ± 2°C and 65% ± 2% r.h.; or 27 ± 2°C and 65% ± 2% r.h.

NOTE: Average values must fall within these limits. Short-term fluctuations and measurement limitations may cause individual measurements to vary by up to ± 5% relative humidity without significant impairment of test reproducibility.

6.6.5.3 Test requirements

6.6.5.3.1 Bottom lift test

6.6.5.3.1.1 Applicability

For all types of large packagings which are fitted with means of lifting from the base, as a design type test.

6.6.5.3.1.2 Preparation of large packaging for test

The large packaging must be loaded to 1.25 times its maximum permissible gross mass, the load being evenly distributed.

6.6.5.3.1.3 Method of testing

The large packaging must be raised and lowered twice by a lift truck with the forks centrally positioned and spaced at three quarters of the
dimension of the side of entry (unless the points of entry are fixed). The forks must penetrate to three quarters of the direction of entry. The test must be repeated from each possible direction of entry.

6.6.5.3.1.4 Criteria for passing the test
No permanent deformation which renders the large packaging unsafe for transport and no loss of contents.

6.6.5.3.2 Top lift test

6.6.5.3.2.1 Applicability
For types of large packagings which are intended to be lifted from the top and fitted with means of lifting, as a design type test.

6.6.5.3.2.2 Preparation of large packaging for test
The large packaging must be loaded to twice its maximum permissible gross mass. A flexible large packaging must be loaded to six times its maximum permissible gross mass, the load being evenly distributed.

6.6.5.3.2.3 Method of testing
The large packaging must be lifted in the manner for which it is designed until clear of the floor and maintained in that position for a period of five minutes.

6.6.5.3.2.4 Criteria for passing the test
(a) Metal, rigid plastics and composite large packagings: no permanent deformation which renders the large packaging, including the base pallet, if any, unsafe for transport and no loss of contents;
(b) Flexible large packagings: no damage to the large packaging or its lifting devices which renders the large packaging unsafe for transport or handling and no loss of contents.

6.6.5.3.3 Stacking test

6.6.5.3.3.1 Applicability
For all types of large packagings which are designed to be stacked on each other, as a design type test.

6.6.5.3.3.2 Preparation of large packaging for test
The large packaging must be filled to its maximum permissible gross mass.

6.6.5.3.3.3 Method of testing
The large packaging must be placed on its base on level hard ground and subjected to a uniformly distributed superimposed test load (see 6.6.5.3.3.4) for a period of at least five minutes. For large packagings of wood, fibreboard and plastics materials the period must be 24 h.

6.6.5.3.3.4 Calculation of superimposed test load
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

The load to be placed on the large packaging must be 1.8 times the combined maximum permissible gross mass of the number of similar large packaging that may be stacked on top of the large packaging during transport.

6.6.5.3.5 Criteria for passing the test

(a) All types of large packagings other than flexible large packagings: no permanent deformation which renders the large packaging including the base pallet, if any, unsafe for transport and no loss of contents;

(b) Flexible large packagings: no deterioration of the body which renders the large packaging unsafe for transport and no loss of contents.

6.6.5.3.4 Drop test

6.6.5.3.4.1 Applicability

For all types of large packagings as a design type test.

6.6.5.3.4.2 Preparation of large packaging for testing

The large packaging must be filled in accordance with 6.6.5.2.1.

6.6.5.3.4.3 Method of testing

The large packaging must be dropped onto a non-resilient, horizontal, flat massive and rigid surface in conformity with 6.1.5.3.4, in such a manner as to ensure that the point of impact is that part of the base of the large packaging considered to be the most vulnerable.

6.6.5.3.4.4 Drop height

NOTE: Large packagings for substances and articles of Class 1 are to be tested at the packing group II performance level.

6.6.5.3.4.4.1 For inner packagings containing solid or liquid substances or articles, if the test is performed with the solid, liquid or articles to be transported, or with another substance or article having essentially the same characteristics:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

6.6.5.3.4.4.2 For inner packagings containing liquids if the test is performed with water:

(a) Where the substances to be transported have a relative density not exceeding 1.2:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

(b) Where the substances to be transported have a relative density exceeding 1.2, the drop height must be calculated on the basis of the relative density (d) of the substance to be carried, rounded up to the first decimal, as follows:
6.6.5.3.4.5 Criteria for passing the test

6.6.5.3.4.5.1 The large packaging must not exhibit any damage liable to affect safety during transport. There must be no leakage of the filling substance from inner packaging(s) or article(s).

6.6.5.3.4.5.2 No rupture is permitted in large packagings for articles of Class 1 which would permit the spillage of loose explosive substances or articles from the large packaging.

6.6.5.3.4.5.3 Where a large packaging undergoes a drop test, the sample passes the test if the entire contents are retained even if the closure is no longer sifter-proof.

6.6.5.4 Certification and test report

6.6.5.4.1 In respect of each design type of large packaging a certificate and mark (as in 6.6.3) must be issued attesting that the design type including its equipment meets the test requirements.

6.6.5.4.2 A test report containing at least the following particulars must be drawn up and must be available to the users of the large packaging:

1. Name and address of the test facility;
2. Name and address of applicant (where appropriate);
3. A unique test report identification;
4. Date of the test report;
5. Manufacturer of the large packaging;
6. Description of the large packaging design type (e.g. dimensions, materials, closures, thickness, etc.) and/or photograph(s);
7. Maximum capacity/maximum permissible gross mass;
8. Characteristics of test contents, e.g. types and descriptions of inner packagings or articles used;
9. Test descriptions and results;
10. The test report must be signed with the name and status of the signatory.

6.6.5.4.3 The test report must contain statements that the large packaging prepared as for transport was tested in accordance with the appropriate provisions of this Chapter and that the use of other packaging methods or components may render it invalid. A copy of the test report must be available to the competent authority.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

CHAPTER 6.7 - REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS AND MULTIPLE-ELEMENT GAS CONTAINERS (MEGCS)

6.7.1 APPLICATION AND GENERAL REQUIREMENTS

6.7.1.1 The requirements of this Chapter apply to portable tanks intended for the transport of dangerous goods of Classes 2, 3, 4, 5, 6, 7, 8 and 9, and to MEGCs intended for the transport of non-refrigerated gases of Class 2, by all modes of transport. In addition to the requirements of this Chapter, unless otherwise specified, the applicable requirements of the International Convention for Safe Containers (CSC) 1972, as amended, must be fulfilled by any multimodal portable tank or MEGC which meets the definition of a “container” within the terms of that Convention. Additional requirements may apply to offshore portable tanks or MEGCs that are handled in open seas.

6.7.1.2 In recognition of scientific and technological advances, the technical requirements of this Chapter may be varied by alternative arrangements. These alternative arrangements must offer a level of safety not less than that given by the requirements of this Chapter with respect to the compatibility with substances transported and the ability of the portable tank or MEGC to withstand impact, loading and fire conditions. For international transport, alternative arrangement portable tanks or MEGCs must be approved by the applicable competent authorities.

6.7.1.3 When a substance is not assigned a portable tank instruction (T1 to T23, T50 or T75) in Column 10 of the Dangerous Goods List in Chapter 3.2, a determination in accordance with Regulation 1.5.1(2) may be issued by the competent authority of the jurisdiction of origin. The determination must be included in the documentation of the consignment and contain as a minimum the information normally provided in the portable tank instructions and the conditions under which the substance must be transported. Appropriate measures should be initiated by the competent authority to include the assignment in the Dangerous Goods List.

6.7.2 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS INTENDED FOR THE TRANSPORT OF SUBSTANCES OF CLASS 1 AND CLASSES 3 TO 9

6.7.2.1 Definitions

For the purposes of this section:

Design pressure means the pressure to be used in calculations required by a recognised pressure vessel code. The design pressure must be not less than the highest of the following pressures:

(a) The maximum effective gauge pressure allowed in the shell during filling or discharge; or

(b) The sum of:
(i) the absolute vapour pressure (in bar) of the substance at 65 °C (at highest temperature during filling, discharge or transport for substances transported above 65 °C), minus 1 bar; and

(ii) the partial pressure (in bar) of air or other gases in the ullage space being determined by a maximum ullage temperature of 65 °C and a liquid expansion due to an increase in mean bulk temperature of \(t_r - t_f \) (\(t_f \) = filling temperature usually 15 °C; \(t_r \) = 50 °C maximum mean bulk temperature); and

(iii) a head pressure determined on the basis of the static forces specified in 6.7.2.2.12, but not less than 0.35 bar; or

(c) Two thirds of the minimum test pressure specified in the applicable portable tank instruction in 4.2.5.2.6;

Design temperature range for the shell must be -40 °C to 50 °C for substances transported under ambient conditions. For the other substances handled under elevated temperature conditions the design temperature must be not less than the maximum temperature of the substance during filling, discharge or transport. More severe design temperatures must be considered for portable tanks subjected to severe climatic conditions;

Fine grain steel means steel which has a ferritic grain size of 6 or finer when determined in accordance with ASTM E 112-96 or as defined in EN 10028-3, Part 3;

Fusible element means a non-reclosable pressure relief device that is thermally actuated;

Leakproofness test means a test using gas subjecting the shell and its service equipment to an effective internal pressure of not less than 25% of the MAWP;

Maximum allowable working pressure (MAWP) means a pressure that must be not less than the highest of the following pressures measured at the top of the shell while in operating position:

(a) The maximum effective gauge pressure allowed in the shell during filling or discharge; or

(b) The maximum effective gauge pressure to which the shell is designed which must be not less than the sum of:

(i) the absolute vapour pressure (in bar) of the substance at 65 °C (at the highest temperature during filling, discharge or transport for substances transported above 65 °C), minus 1 bar; and

(ii) the partial pressure (in bar) of air or other gases in the ullage space being determined by a maximum ullage temperature of 65 °C and a liquid expansion due to an increase in mean bulk temperature of \(t_r - t_f \) (\(t_f \) = filling temperature, usually 15 °C; \(t_r \) = 50 °C, maximum mean bulk temperature);
Maximum permissible gross mass (MPGM) means the sum of the tare mass of the portable tank and the heaviest load authorised for transport;

Mild steel means a steel with a guaranteed minimum tensile strength of 360 N/mm² to 440 N/mm² and a guaranteed minimum elongation at fracture conforming to 6.7.2.3.3.3;

Offshore portable tank means a portable tank specially designed for repeated use for transport of dangerous goods to, from and between offshore facilities. An offshore portable tank is designed and constructed in accordance with the Guidelines for the Approval of Containers Handled in Open Seas specified by the International Maritime Organisation in document MSC/Circ.860;

Portable tank means a multimodal tank used for the transport of substances of Class 1 and Classes 3 to 9. The portable tank includes a shell fitted with service equipment and structural equipment necessary for the transport of dangerous substances. The portable tank must be capable of being filled and discharged without the removal of its structural equipment. It must possess stabilising members external to the shell, and must be capable of being lifted when full. It must be designed primarily to be loaded onto a transport vehicle or ship and must be equipped with skids, mountings or accessories to facilitate mechanical handling. Road tank-vehicles, rail tank-wagons, non-metallic tanks and intermediate bulk containers (IBCs) are not considered to fall within the definition for portable tanks;

Reference steel means a steel with a tensile strength of 370N/mm² and an elongation at fracture of 27%;

Service equipment means measuring instruments and filling, discharge, venting, safety, heating, cooling and insulating devices;

Shell means the part of the portable tank which retains the substance intended for transport (tank proper), including openings and their closures, but does not include service equipment or external structural equipment;

Structural equipment means the reinforcing, fastening, protective and stabilising members external to the shell;

Test pressure means the maximum gauge pressure at the top of the shell during the hydraulic pressure test equal to not less than 1.5 times the design pressure. The minimum test pressure for portable tanks intended for specific substances is specified in the applicable portable tank instruction in 4.2.5.2.6.

6.7.2.2 General design and construction requirements

6.7.2.2.1 Shells must be designed and constructed in accordance with the requirements of a pressure vessel code recognised by the competent authority. Shells must be made of metallic materials suitable for forming. The materials must in principle conform to national or international material standards. For welded shells only a material whose weldability
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

Welds must be skilfully made and afford complete safety. When the manufacturing process or the materials make it necessary, the shells must be suitably heat-treated to guarantee adequate toughness in the weld and in the heat affected zones. In choosing the material, the design temperature range must be taken into account with respect to risk of brittle fracture, to stress corrosion cracking and to resistance to impact. When fine grain steel is used, the guaranteed value of the yield strength must be not more than 460 N/mm2 and the guaranteed value of the upper limit of the tensile strength must be not more than 725 N/mm2 according to the material specification. Aluminium may only be used as a construction material when indicated in a portable tank special provision assigned to a specific substance in Column 11 of the Dangerous Goods List or when determined by the competent authority. When aluminium is authorised, it must be insulated to prevent significant loss of physical properties when subjected to a heat load of 110 kW/m2 for a period of not less than 30 minutes. The insulation must remain effective at all temperatures less than 649 °C and must be jacketed with a material with a melting point of not less than 700 °C. Portable tank materials must be suitable for the external environment in which they may be transported.

6.7.2.2.2 Portable tank shells, fittings, and pipework must be constructed from materials which are:
(a) Substantially immune to attack by the substance(s) intended to be transported; or
(b) Properly passivated or neutralised by chemical reaction; or
(c) Lined with corrosion-resistant material directly bonded to the shell or attached by equivalent means.

6.7.2.2.3 Gaskets must be made of materials not subject to attack by the substance(s) intended to be transported.

6.7.2.2.4 When shells are lined, the lining must be substantially immune to attack by the substance(s) intended to be transported, homogeneous, non porous, free from perforations, sufficiently elastic and compatible with the thermal expansion characteristics of the shell. The lining of every shell, shell fittings and piping must be continuous, and must extend around the face of any flange. Where external fittings are welded to the tank, the lining must be continuous through the fitting and around the face of external flanges.

6.7.2.2.5 Joints and seams in the lining must be made by fusing the material together or by other equally effective means.

6.7.2.2.6 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.7.2.2.7 The materials of the portable tank, including any devices, gaskets, linings and accessories, must not adversely affect the substance(s) intended to be transported in the portable tank.
6.7.2.2.8 Portable tanks must be designed and constructed with supports to provide a secure base during transport and with suitable lifting and tie-down attachments.

6.7.2.2.9 Portable tanks must be designed to withstand, without loss of contents, at least the internal pressure due to the contents, and the static, dynamic and thermal loads during normal conditions of handling and transport. The design must demonstrate that the effects of fatigue, caused by repeated application of these loads through the expected life of the portable tank, have been taken into account.

6.7.2.2.9.1 For portable tanks that are intended for use offshore, the dynamic stresses imposed by handling in open seas must be taken into account.

6.7.2.2.10 A shell which is to be equipped with a vacuum-relief device must be designed to withstand, without permanent deformation, an external pressure of not less than 0.21 bar above the internal pressure. The vacuum-relief device must be set to relieve at a vacuum setting not greater than minus 0.21 bar unless the shell is designed for a higher external over pressure, in which case the vacuum-relief pressure of the device to be fitted must be not greater than the tank design vacuum pressure. A shell used for the transport of solid substances of packing groups II or III only, which do not liquefy during transport, may be designed for a lower external pressure, subject to competent authority approval. In this case, the vacuum-relief device must be set to relieve at this lower pressure. A shell that is not to be fitted with a vacuum-relief device must be designed to withstand, without permanent deformation, an external pressure of not less than 0.4 bar above the internal pressure.

6.7.2.2.11 Vacuum-relief devices used on portable tanks intended for the transport of substances meeting the flash point criteria of Class 3, including elevated temperature substances transported at or above their flash point, must prevent the immediate passage of flame into the shell, or the portable tank must have a shell capable of withstanding, without leakage an internal explosion resulting from the passage of flame into the shell.

6.7.2.2.12 Portable tanks and their fastenings must, under the maximum permissible load, be capable of absorbing the following separately applied static forces:

(a) In the direction of travel: -twice the MPGM multiplied by the acceleration due to gravity (g)\(^1\);

(b) Horizontally at right angles to the direction of travel: - the MPGM (when the direction of travel is not clearly determined, the forces must be equal to twice the MPGM) multiplied by the acceleration due to gravity (g)

(c) Vertically upwards: - the MPGM multiplied by the acceleration due to gravity (g); and

\(^1\) For calculation purposes for (a) – (d) \(g = 9.81 \text{ m/s}^2 \).
6.7.2.2.13 Under each of the forces in 6.7.2.2.12, the safety factor to be observed must be as follows:

(a) For metals having a clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed yield strength; or

(b) For metals with no clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed 0.2% proof strength and, for austenitic steels, the 1% proof strength.

6.7.2.14 The values of yield strength or proof strength must be the values according to national or international material standards. When austenitic steels are used, the specified minimum values of yield strength or proof strength according to the material standards may be increased by up to 15% when these greater values are attested in the material inspection certificate. When no material standard exists for the metal in question, the value of yield strength or proof strength used must be approved by the competent authority.

6.7.2.15 Portable tanks must be capable of being electrically earthed when intended for the transport of substances meeting the flash point criteria of Class 3 including elevated temperature substances transported at or above their flash point. Measures must be taken to prevent dangerous electrostatic discharge.

6.7.2.16 When required for certain substances by the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6, or by a portable tank special provision indicated in Column 11 of the Dangerous Goods List and described in 4.2.5.3, portable tanks must be provided with additional protection, which may take the form of additional shell thickness or a higher test pressure, the additional shell thickness or higher test pressure being determined in the light of the inherent risks associated with the transport of the substances concerned.

6.7.2.17 Thermal insulation directly in contact with the shell intended for substances transported at elevated temperature must have an ignition temperature at least 50 °C higher than the maximum design temperature of the tank.

6.7.3 Design criteria

6.7.3.1 Shells must be of a design capable of being stress-analysed mathematically or experimentally by resistance strain gauges, or by other methods approved by the competent authority.

6.7.3.2 Shells must be designed and constructed to withstand a hydraulic test pressure not less than 1.5 times the design pressure. Specific requirements are laid down for certain substances in the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6 or by a portable tank special provision indicated in Column 11 of the Dangerous Goods List and described in
4.2.5.3. Attention is drawn to the minimum shell thickness requirements for these tanks specified in 6.7.2.4.1 to 6.7.2.4.10.

6.7.2.3.3 For metals exhibiting a clearly defined yield point or characterised by a guaranteed proof strength (0.2% proof strength, generally, or 1% proof strength for austenitic steels) the primary membrane stress σ (sigma) in the shell must not exceed 0.75 Re or 0.50 Rm, whichever is lower, at the test pressure, where:

$$Re = \text{yield strength in N/mm}^2, \text{or 0.2% proof strength or,}$$

$$Rm = \text{minimum tensile strength in N/mm}^2.$$

6.7.2.3.3.1 The values of Re and Rm to be used must be the specified minimum values according to national or international material standards. When austenitic steels are used, the specified minimum values for Re and Rm according to the material standards may be increased by up to 15% when greater values are attested in the material inspection certificate. When no material standard exists for the metal in question, the values of Re and Rm used must be approved by the competent authority or its authorised body.

6.7.2.3.3.2 Steels which have a Re/Rm ratio of more than 0.85 are not allowed for the construction of welded shells. The values of Re and Rm to be used in determining this ratio must be the values specified in the material inspection certificate.

6.7.2.3.3.3 Steels used in the construction of shells must have an elongation at fracture, in %, of not less than 10,000/Rm with an absolute minimum of 16% for fine grain steels and 20% for other steels. Aluminium and aluminium alloys used in the construction of shells must have an elongation at fracture, in %, of not less than 10,000/6Rm with an absolute minimum of 12%.

6.7.2.3.3.4 For the purpose of determining actual values for materials, it must be noted that for sheet metal, the axis of the tensile test specimen must be at right angles (transversely) to the direction of rolling. The permanent elongation at fracture must be measured on test specimens of rectangular cross sections in accordance with ISO 6892:1998 using a 50 mm gauge length.

6.7.2.4 Minimum shell thickness

6.7.2.4.1 The minimum shell thickness must be the greater thickness based on:

(a) The minimum thickness determined in accordance with the requirements of 6.7.2.4.2 to 6.7.2.4.10;

(b) The minimum thickness determined in accordance with the recognised pressure vessel code including the requirements in 6.7.2.3; and

(c) The minimum thickness specified in the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.7.2.4.2 The cylindrical portions, ends (heads) and manhole covers of shells not more than 1.80 m in diameter must be not less than 5 mm thick in the reference steel or of equivalent thickness in the metal to be used. Shells more than 1.80 m in diameter must be not less than 6 mm thick in the reference steel or of equivalent thickness in the metal to be used, except that for powdered or granular solid substances of packing group II or III the minimum thickness requirement may be reduced to not less than 5 mm thick in the reference steel or of equivalent thickness in the metal to be used.

6.7.2.4.3 When additional protection against shell damage is provided, portable tanks with test pressures less than 2.65 bar, may have the minimum shell thickness reduced, in proportion to the protection provided, as approved by the competent authority. However, shells not more than 1.80 m in diameter must be not less than 3 mm thick in the reference steel or of equivalent thickness in the metal to be used. Shells more than 1.80 m in diameter must be not less than 4 mm thick in the reference steel or of equivalent thickness in the metal to be used.

6.7.2.4.4 The cylindrical portions, ends (heads) and manhole covers of all shells must be not less than 3 mm thick regardless of the material of construction.

6.7.2.4.5 The additional protection referred to in 6.7.2.4.3 may be provided by overall external structural protection, such as suitable “sandwich” construction with the outer sheathing (jacket) secured to the shell, double wall construction or by enclosing the shell in a complete framework with longitudinal and transverse structural members.

6.7.2.4.6 The equivalent thickness of a metal other than the thickness prescribed for the reference steel in 6.7.2.4.3 must be determined using the following formula:

\[e_1 = \frac{21.4e_0}{3\sqrt{Rm_1 \times A_1}} \]

where:

- \(e_1 \) = required equivalent thickness (in mm) of the metal to be used;
- \(e_0 \) = minimum thickness (in mm) of the reference steel specified in the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6 or by a portable tank special provision indicated in Column 11 of the Dangerous Goods List and described in 4.2.5.3;
Rm_1 = guaranteed minimum tensile strength (in N/mm^2) of the metal to be used (see 6.7.2.3.3);

A_1 = guaranteed minimum elongation at fracture (in %) of the metal to be used according to national or international standards.

6.7.2.4.7 When in the applicable portable tank instruction in 4.2.5.2.6, a minimum thickness of 8 mm or 10 mm is specified, it must be noted that these thicknesses are based on the properties of the reference steel and a shell diameter of 1.80 m. When a metal other than mild steel (see 6.7.2.1) is used or the shell has a diameter of more than 1.80 m, the thickness must be determined using the following formula:

\[e_1 = \frac{21.4 e_0 d_1}{1.80 \sqrt{Rm_1 \times A_1}} \]

where:

- \(e_1 \) = required equivalent thickness (in mm) of the metal to be used;
- \(e_0 \) = minimum thickness (in mm) of the reference steel specified in the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6 or by a portable tank special provision indicated in Column 11 of the Dangerous Goods List and described in 4.2.5.3;
- \(d_1 \) = diameter of the shell (in m), but not less than 1.80 m;
- \(Rm_1 \) = guaranteed minimum tensile strength (in N/mm^2) of the metal to be used (see 6.7.2.3.3);
- \(A_1 \) = guaranteed minimum elongation at fracture (in %) of the metal to be used according to national or international standards.

6.7.2.4.8 In no case must the wall thickness be less than that prescribed in 6.7.2.4.2, 6.7.2.4.3 and 6.7.2.4.4. All parts of the shell must have a minimum thickness as determined by 6.7.2.4.2 to 6.7.2.4.4. This thickness must be exclusive of any corrosion allowance.

6.7.2.4.9 When mild steel is used (see 6.7.2.1), calculation using the formula in 6.7.2.4.6 is not required.

6.7.2.4.10 There must be no sudden change of plate thickness at the attachment of the ends (heads) to the cylindrical portion of the shell.
6.7.2.5 Service equipment

6.7.2.5.1 Service equipment must be so arranged as to be protected against the risk of being wrenched off or damaged during handling and transport. When the connection between the frame and the shell allows relative movement between the sub-assemblies, the equipment must be so fastened as to permit such movement without risk of damage to working parts. The external discharge fittings (pipe sockets, shut-off devices), the internal stop-valve and its seating must be protected against the danger of being wrenched off by external forces (for example using shear sections). The filling and discharge devices (including flanges or threaded plugs) and any protective caps must be capable of being secured against unintended opening.

6.7.2.5.2 All openings in the shell, intended for filling or discharging the portable tank must be fitted with a manually operated stop-valve located as close to the shell as reasonably practicable. Other openings, except for openings leading to venting or pressure-relief devices, must be equipped with either a stop-valve or another suitable means of closure located as close to the shell as reasonably practicable.

6.7.2.5.3 All portable tanks must be fitted with a manhole or other inspection openings of a suitable size to allow for internal inspection and adequate access for maintenance and repair of the interior. Compartmented portable tanks must have a manhole or other inspection openings for each compartment.

6.7.2.5.4 As far as reasonably practicable, external fittings must be grouped together. For insulated portable tanks, top fittings must be surrounded by a spill collection reservoir with suitable drains.

6.7.2.5.5 Each connection to a portable tank must be clearly marked to indicate its function.

6.7.2.5.6 Each stop-valve or other means of closure must be designed and constructed to a rated pressure not less than the MAWP of the shell taking into account the temperatures expected during transport. All stop-valves with screwed spindles must close by a clockwise motion of the handwheel. For other stop-valves the position (open and closed) and direction of closure must be clearly indicated. All stop-valves must be designed to prevent unintentional opening.

6.7.2.5.7 No moving parts, such as covers, components of closures, etc., must be made of unprotected corrodible steel when they are liable to come into frictional or percussive contact with aluminium portable tanks intended for the transport of substances meeting the flash point criteria of Class 3 including elevated temperature substances transported at or above their flash point.

6.7.2.5.8 Piping must be designed, constructed and installed so as to avoid the risk of damage due to thermal expansion and contraction, mechanical shock.
and vibration. All piping must be of a suitable metallic material. Welded pipe joints must be used wherever possible.

6.7.2.5.9 Joints in copper tubing must be brazed or have an equally strong metal union. The melting point of brazing materials must be no lower than 525 °C. The joints must not decrease the strength of the tubing as may happen when cutting threads.

6.7.2.5.10 The burst pressure of all piping and pipe fittings must be not less than the highest of four times the MAWP of the shell or four times the pressure to which it may be subjected in service by the action of a pump or other device (except pressure-relief devices).

6.7.2.5.11 Ductile metals must be used in the construction of valves and accessories.

6.7.2.5.12 The heating system must be designed or controlled so that a substance cannot reach a temperature at which the pressure in the tank exceeds its MAWP or causes other hazards (e.g. dangerous thermal decomposition).

6.7.2.5.13 The heating system must be designed or controlled so that power for internal heating elements must not be available unless the heating elements are completely submerged. The temperature at the surface of the heating elements for internal heating equipment, or the temperature at the shell for external heating equipment must, in no case, exceed 80% of the autoignition temperature (in °C) of the substance transported.

6.7.2.5.14 If an electrical heating system is installed inside the tank, it must be equipped with an earth leakage circuit breaker with a releasing current of less than 100 mA.

6.7.2.5.15 Electrical switch cabinets mounted to tanks must not have a direct connection to the tank interior and must provide protection of at least the equivalent of type IP56 according to IEC 144 or IEC 529.

6.7.2.6 Bottom openings

6.7.2.6.1 Certain substances must not be transported in portable tanks with bottom openings. When the applicable portable tank instruction identified in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6 indicates that bottom openings are prohibited there must be no openings below the liquid level of the shell when it is filled to its maximum permissible filling limit. When an existing opening is closed it must be accomplished by internally and externally welding one plate to the shell.

6.7.2.6.2 Bottom discharge outlets for portable tanks carrying certain solid, crystallisable or highly viscous substances must be equipped with not less than two serially fitted and mutually independent shut-off devices. The design of the equipment must be to the satisfaction of the competent authority or its authorised body and must include:

(a) An external stop-valve, fitted as close to the shell as reasonably practicable, and so designed as to prevent any unintended opening through impact or other inadvertent act; and
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(b) A liquid tight closure at the end of the discharge pipe, which may be a bolted blank flange or a screw cap.

6.7.2.6.3 Every bottom discharge outlet, except as provided in 6.7.2.6.2, must be equipped with three serially fitted and mutually independent shut-off devices. The design of the equipment must be to the satisfaction of the competent authority or its authorised body and include:

(a) A self-closing internal stop-valve, that is a stop-valve within the shell or within a welded flange or its companion flange, such that:

(i) The control devices for the operation of the valve are designed so as to prevent any unintended opening through impact or other inadvertent act;

(ii) The valve may be operable from above or below;

(iii) If possible, the setting of the valve (open or closed) must be capable of being verified from the ground;

(iv) Except for portable tanks having a capacity of not more than 1,000 litres, it must be possible to close the valve from an accessible position of the portable tank that is remote from the valve itself; and

(v) The valve must continue to be effective in the event of damage to the external device for controlling the operation of the valve;

(b) An external stop-valve fitted as close to the shell as reasonably practicable; and

(c) A liquid tight closure at the end of the discharge pipe, which may be a bolted blank flange or a screw cap.

6.7.2.6.4 For a lined shell, the internal stop-valve required by 6.7.2.6.3(a) may be replaced by an additional external stop-valve. The manufacturer must satisfy the requirements of the competent authority or its authorised body.

6.7.2.7 Safety relief devices

6.7.2.7.1 All portable tanks must be fitted with at least one pressure-relief device. All relief devices must be designed, constructed and marked to the satisfaction of the competent authority or its authorised body.

6.7.2.8 Pressure-relief devices

6.7.2.8.1 Every portable tank with a capacity not less than 1,900 litres and every independent compartment of a portable tank with a similar capacity, must be provided with one or more pressure-relief devices of the spring-loaded type and may in addition have a frangible disc or fusible element in parallel with the spring-loaded devices except when prohibited by reference to 6.7.2.8.3 in the applicable portable tank instruction in 4.2.5.2.6. The pressure-relief devices must have sufficient capacity to prevent rupture of the shell due to over pressurisation or vacuum resulting from filling, discharging, or from heating of the contents.
6.7.2.8.2 Pressure-relief devices must be designed to prevent the entry of foreign matter, the leakage of liquid and the development of any dangerous excess pressure.

6.7.2.8.3 When required for certain substances by the applicable portable tank instruction identified in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6, portable tanks must have a pressure-relief device approved by the competent authority. Unless a portable tank in dedicated service is fitted with an approved relief device constructed of materials compatible with the load, the relief device must comprise a frangible disc preceding a spring-loaded pressure-relief device. When a frangible disc is inserted in series with the required pressure-relief device, the space between the frangible disc and the pressure-relief device must be provided with a pressure gauge or suitable tell-tale indicator for the detection of disc rupture, pinholing, or leakage which could cause a malfunction of the pressure-relief system. The frangible disc must rupture at a nominal pressure 10% above the start to discharge pressure of the relief device.

6.7.2.8.4 Every portable tank with a capacity less than 1,900 litres must be fitted with a pressure-relief device which may be a frangible disc when this disc complies with the requirements of 6.7.2.11.1. When no spring-loaded pressure-relief device is used, the frangible disc must be set to rupture at a nominal pressure equal to the test pressure. In addition, fusible elements conforming to 6.7.2.10.1 may also be used.

6.7.2.8.5 When the shell is fitted for pressure discharge, the inlet line must be provided with a suitable pressure-relief device set to operate at a pressure not higher than the MAWP of the shell, and a stop-valve must be fitted as close to the shell as reasonably practicable.

6.7.2.9 Setting of pressure-relief devices

6.7.2.9.1 It must be noted that the pressure-relief devices must operate only in conditions of excessive rise in temperature, since the shell must not be subject to undue fluctuations of pressure during normal conditions of transport (see 6.7.2.12.2).

6.7.2.9.2 Except where 6.7.2.9.3 applies, the required pressure-relief device must be set to start-to-discharge at a nominal pressure of five-sixths of the test pressure for shells having a test pressure of not more than 4.5 bar and 110% of two-thirds of the test pressure for shells having a test pressure of more than 4.5 bar. After discharge the device must close at a pressure not more than 10% below the pressure at which the discharge starts. The device must remain closed at all lower pressures. This requirement does not prevent the use of vacuum-relief or combination pressure-relief and vacuum-relief devices.

6.7.2.9.3 Where required by legislation governing the design and use of pressure vessels in the jurisdiction, the settings for pressure relief devices must comply with those specified in AS 1210 rather than 6.7.2.9.2.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.7.2.10 Fusible elements

6.7.2.10.1 Fusible elements must operate at a temperature between 100 °C and 149 °C on condition that the pressure in the shell at the fusing temperature will be not more than the test pressure. They must be placed at the top of the shell with their inlets in the vapour space and when used for transport safety purposes, they must not be shielded from external heat. Fusible elements must not be used on portable tanks with a test pressure which exceeds 2.65 bar unless specified by special provision TP36 in Column 11 of the Dangerous Goods List of Chapter 3.2. Fusible elements used on portable tanks intended for the transport of elevated temperature substances must be designed to operate at a temperature higher than the maximum temperature that will be experienced during transport and must be to the satisfaction of the competent authority or its authorised body.

6.7.2.11 Frangible discs

6.7.2.11.1 Except as specified in 6.7.2.8.3, frangible discs must be set to rupture at a nominal pressure equal to the test pressure throughout the design temperature range. Particular attention must be given to the requirements of 6.7.2.5.1 and 6.7.2.8.3 if frangible discs are used.

6.7.2.11.2 Frangible discs must be appropriate for the vacuum pressures which may be produced in the portable tank.

6.7.2.12 Capacity of pressure-relief devices

6.7.2.12.1 The spring-loaded pressure-relief device required by 6.7.2.8.1 must have a minimum cross sectional flow area equivalent to an orifice of 31.75 mm diameter. Vacuum-relief devices, when used, must have a cross sectional flow area not less than 284 mm².

6.7.2.12.2 The combined delivery capacity of the pressure relief system (taking into account the reduction of the flow when the portable tank is fitted with frangible-discs preceding spring-loaded pressure-relief devices or when the spring-loaded pressure-relief devices are provided with a device to prevent the passage of the flame), in condition of complete fire engulfment of the portable tank must be sufficient to limit the pressure in the shell to 20% above the start-to-discharge pressure of the pressure limiting device. Emergency pressure-relief devices may be used to achieve the full relief capacity prescribed. These devices may be fusible, spring loaded or frangible disc components, or a combination of spring-loaded and frangible disc devices. The total required capacity of the relief devices may be determined using the formula in 6.7.2.12.2.1 or the table in 6.7.2.12.2.3.

6.7.2.12.2.1 To determine the total required capacity of the relief devices, which must be regarded as being the sum of the individual capacities of all the contributing devices, the following formula must be used:
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MECS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

\[Q = 12.4 \frac{FA^{0.82}}{LC} \sqrt{\frac{ZT}{M}} \]

where:

\(Q \) = minimum required rate of discharge in cubic metres of air per second (\(\text{m}^3/\text{s} \)) at standard conditions: 1 bar and 0 °C (273 K);

\(F \) = is a coefficient with the following value:

for uninsulated shells \(F = 1 \);

for insulated shells \(F = \frac{U(649 - t)}{13.6} \)

but in no case is less than 0.25 where:

\(U \) = thermal conductance of the insulation, in \(\text{kW} \text{ m}^{-2} \text{ K}^{-1} \), at 38 °C

\(t \) = actual temperature of the substance during filling (in °C); when this temperature is unknown, let \(t = 15 \) °C:

The value of \(F \) given above for insulated shells may be taken provided that the insulation is in conformance with 6.7.2.12.2.4;

\(A \) = total external surface area of shell in square metres;

\(Z \) = the gas compressibility factor in the accumulating condition (when this factor is unknown, let \(Z \) equal 1.0);

\(T \) = absolute temperature in Kelvin (°C + 273) above the pressure-relief devices in the accumulating condition;

\(L \) = the latent heat of vaporisation of the liquid, in \(\text{kJ/kg} \), in the accumulating condition;

\(M \) = molecular mass of the discharged gas;

\(C \) = a constant which is derived from one of the following formulae as a function of the ratio \(k \) of specific heats:

\[k = \frac{c_p}{c_v} \]

where:

\(c_p \) is the specific heat at constant pressure; and
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

c_v is the specific heat at constant volume.

When $k > 1$:

$$C = \sqrt[k]{\frac{2}{k+1}}$$

When $k = 1$, or k is unknown:

$$C = \frac{1}{\sqrt{e}} = 0.607$$

where e is the mathematical constant 2.7183

C may also be taken from the following table:

<table>
<thead>
<tr>
<th>k</th>
<th>C</th>
<th>k</th>
<th>C</th>
<th>k</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.607</td>
<td>1.26</td>
<td>0.660</td>
<td>1.52</td>
<td>0.704</td>
</tr>
<tr>
<td>1.02</td>
<td>0.611</td>
<td>1.28</td>
<td>0.664</td>
<td>1.54</td>
<td>0.707</td>
</tr>
<tr>
<td>1.04</td>
<td>0.615</td>
<td>1.30</td>
<td>0.667</td>
<td>1.56</td>
<td>0.710</td>
</tr>
<tr>
<td>1.06</td>
<td>0.620</td>
<td>1.32</td>
<td>0.671</td>
<td>1.58</td>
<td>0.713</td>
</tr>
<tr>
<td>1.08</td>
<td>0.624</td>
<td>1.34</td>
<td>0.674</td>
<td>1.60</td>
<td>0.716</td>
</tr>
<tr>
<td>1.10</td>
<td>0.628</td>
<td>1.36</td>
<td>0.678</td>
<td>1.62</td>
<td>0.719</td>
</tr>
<tr>
<td>1.12</td>
<td>0.633</td>
<td>1.38</td>
<td>0.681</td>
<td>1.64</td>
<td>0.722</td>
</tr>
<tr>
<td>1.14</td>
<td>0.637</td>
<td>1.40</td>
<td>0.685</td>
<td>1.66</td>
<td>0.725</td>
</tr>
<tr>
<td>1.16</td>
<td>0.641</td>
<td>1.42</td>
<td>0.688</td>
<td>1.68</td>
<td>0.728</td>
</tr>
<tr>
<td>1.18</td>
<td>0.645</td>
<td>1.44</td>
<td>0.691</td>
<td>1.70</td>
<td>0.731</td>
</tr>
<tr>
<td>1.20</td>
<td>0.649</td>
<td>1.46</td>
<td>0.695</td>
<td>2.00</td>
<td>0.770</td>
</tr>
<tr>
<td>1.22</td>
<td>0.652</td>
<td>1.48</td>
<td>0.698</td>
<td>2.20</td>
<td>0.793</td>
</tr>
<tr>
<td>1.24</td>
<td>0.656</td>
<td>1.50</td>
<td>0.701</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.7.2.12.2.2 As an alternative to the formula above, shells designed for the transport of liquids may have their relief devices sized in accordance with the table in 6.7.2.12.2.3. This table assumes an insulation value of $F = 1$ and must be adjusted accordingly when the shell is insulated. Other values used in determining this table are:

$M = 86.7$

$T = 394 K$

$L = 334.94 \text{ kJ/kg}$

$C = 0.607$

$Z = 1$

6.7.2.12.2.3 Minimum required rate of discharge, Q, in cubic metres of air per second at 1 bar and 0 °C (273 K).
6.7.2.12.2.4 Insulation systems

Insulation systems, used for the purpose of reducing venting capacity, must be approved by the competent authority or its authorised body. In all cases, insulation systems approved for this purpose must:

(a) Remain effective at all temperatures up to 649 °C; and

(b) Be jacketed with a material having a melting point of 700 °C or greater.

<table>
<thead>
<tr>
<th>Exposed area (square metres)</th>
<th>Q (Cubic metres of air per second)</th>
<th>Exposed area (square metres)</th>
<th>Q (Cubic metres of air per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.230</td>
<td>37.5</td>
<td>2.539</td>
</tr>
<tr>
<td>3</td>
<td>0.320</td>
<td>40</td>
<td>2.677</td>
</tr>
<tr>
<td>4</td>
<td>0.405</td>
<td>42.5</td>
<td>2.814</td>
</tr>
<tr>
<td>5</td>
<td>0.487</td>
<td>45</td>
<td>2.949</td>
</tr>
<tr>
<td>6</td>
<td>0.565</td>
<td>47.5</td>
<td>3.082</td>
</tr>
<tr>
<td>7</td>
<td>0.641</td>
<td>50</td>
<td>3.215</td>
</tr>
<tr>
<td>8</td>
<td>0.715</td>
<td>52.5</td>
<td>3.346</td>
</tr>
<tr>
<td>9</td>
<td>0.788</td>
<td>55</td>
<td>3.476</td>
</tr>
<tr>
<td>10</td>
<td>0.859</td>
<td>57.5</td>
<td>3.605</td>
</tr>
<tr>
<td>12</td>
<td>0.998</td>
<td>60</td>
<td>3.733</td>
</tr>
<tr>
<td>14</td>
<td>1.132</td>
<td>62.5</td>
<td>3.860</td>
</tr>
<tr>
<td>16</td>
<td>1.263</td>
<td>65</td>
<td>3.987</td>
</tr>
<tr>
<td>18</td>
<td>1.391</td>
<td>67.5</td>
<td>4.112</td>
</tr>
<tr>
<td>20</td>
<td>1.517</td>
<td>70</td>
<td>4.236</td>
</tr>
<tr>
<td>22.5</td>
<td>1.670</td>
<td>75</td>
<td>4.483</td>
</tr>
<tr>
<td>25</td>
<td>1.821</td>
<td>80</td>
<td>4.726</td>
</tr>
<tr>
<td>27.5</td>
<td>1.969</td>
<td>85</td>
<td>4.967</td>
</tr>
<tr>
<td>30</td>
<td>2.115</td>
<td>90</td>
<td>5.206</td>
</tr>
<tr>
<td>32.5</td>
<td>2.258</td>
<td>95</td>
<td>5.442</td>
</tr>
<tr>
<td>35</td>
<td>2.400</td>
<td>100</td>
<td>5.676</td>
</tr>
</tbody>
</table>
6.7.2.13 Marking of pressure-relief devices

6.7.2.13.1 Every pressure-relief device must be clearly and permanently marked with the following:

(a) The pressure (in bar or kPa) or temperature (in °C) at which it is set to discharge;

(b) The allowable tolerance at the discharge pressure for spring-loaded devices;

(c) The reference temperature corresponding to the rated pressure for frangible discs;

(d) The allowable temperature tolerance for fusible elements;

(e) The rated flow capacity of the spring-loaded pressure relief devices, frangible discs or fusible elements in standard cubic meters of air per second (m³/s); and

(f) The cross sectional flow areas of the spring loaded pressure-relief devices, frangible discs and fusible elements in mm².

When practicable, the following information must also be shown:

(g) The manufacturer's name and relevant catalogue number.

6.7.2.13.2 The rated flow capacity marked on the spring-loaded pressure-relief devices must be determined according to ISO 4126 1:2004 and ISO 4126-7:2004.

6.7.2.14 Connections to pressure-relief devices

6.7.2.14.1 Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the safety device. No stop-valve must be installed between the shell and the pressure-relief devices except where duplicate devices are provided for maintenance or other reasons and the stop-valves serving the devices actually in use are locked open or the stop-valves are interlocked so that at least one of the duplicate devices is always in use. There must be no obstruction in an opening leading to a vent or pressure-relief device which might restrict or cut-off the flow from the shell to that device. Vents or pipes from the pressure-relief device outlets, when used, must deliver the relieved vapour or liquid to the atmosphere in conditions of minimum back-pressure on the relieving devices.

6.7.2.15 Siting of pressure-relief devices

6.7.2.15.1 Each pressure-relief device inlet must be situated on top of the shell in a position as near the longitudinal and transverse centre of the shell as reasonably practicable. All pressure-relief device inlets must under maximum filling conditions be situated in the vapour space of the shell and the devices must be so arranged as to ensure the escaping vapour is discharged unrestrictedly. For flammable substances, the escaping vapour must be directed away from the shell in such a manner that it cannot impinge upon the shell. Protective devices which deflect the flow
of vapour are permissible provided the required relief-device capacity is not reduced.

6.7.2.15.2 Arrangements must be made to prevent access to the pressure-relief devices by unauthorised persons and to protect the devices from damage caused by the portable tank overturning.

6.7.2.16 **Gauging devices**

6.7.2.16.1 Glass level-gauges and gauges made of other fragile material, which are in direct communication with the contents of the tank must not be used.

6.7.2.17 **Portable tank supports, frameworks, lifting and tie-down attachments**

6.7.2.17.1 Portable tanks must be designed and constructed with a support structure to provide a secure base during transport. The forces specified in 6.7.2.2.12 and the safety factor specified in 6.7.2.2.13. must be considered in this aspect of the design. Skids, frameworks, cradles or other similar structures are acceptable.

6.7.2.17.2 The combined stresses caused by portable tank mountings (e.g. cradles, framework, etc.) and portable tank lifting and tie-down attachments must not cause excessive stress in any portion of the shell. Permanent lifting and tie-down attachments must be fitted to all portable tanks. Preferably they must be fitted to the portable tank supports but may be secured to reinforcing plates located on the shell at the points of support.

6.7.2.17.3 In the design of supports and frameworks the effects of environmental corrosion must be taken into account.

6.7.2.17.4 Forklift pockets must be capable of being closed off. The means of closing forklift pockets must be a permanent part of the framework or permanently attached to the framework. Single compartment portable tanks with a length less than 3.65 m need not have closed off forklift pockets provided that:

(a) The shell including all the fittings are well protected from being hit by the forklift blades; and

(b) The distance between the centres of the forklift pockets is at least half of the maximum length of the portable tank.

6.7.2.17.5 When portable tanks are not protected during transport, according to 4.2.1.2, the shells and service equipment must be protected against damage to the shell and service equipment resulting from lateral or longitudinal impact or overturning. External fittings must be protected so as to preclude the release of the shell contents upon impact or overturning of the portable tank on its fittings. Examples of protection include:

(a) Protection against lateral impact which may consist of longitudinal bars protecting the shell on both sides at the level of the median line;

(b) Protection of the portable tank against overturning which may consist of reinforcement rings or bars fixed across the frame;
(c) Protection against rear impact which may consist of a bumper or frame;
(d) Protection of the shell against damage from impact or overturning by use of an ISO frame in accordance with ISO 1496-3:1995.

6.7.2.18 Design approval

6.7.2.18.1 The competent authority or its authorised body may issue a design approval certificate for any new design of a portable tank. This certificate must attest that a portable tank has been surveyed by that authority, is suitable for its intended purpose and meets the requirements of this Chapter and where appropriate, the provisions for substances provided in Chapter 4.2 and in the Dangerous Goods List in Chapter 3.2. When a series of portable tanks are manufactured without change in the design, the certificate must be valid for the entire series. The certificate must refer to the prototype test report, the substances or group of substances allowed to be transported, the materials of construction of the shell and lining (when applicable) and an approval number. The approval number must consist of the distinguishing sign or mark of the State in whose territory the approval was granted, indicated by the distinguishing sign used on vehicles in international road traffic\(^1\) (for Australia, the letters ‘AUS’), and a registration number. Any alternative arrangements according to 6.7.1.2 must be indicated on the certificate. A design approval may serve for the approval of smaller portable tanks made of materials of the same kind and thickness, by the same fabrication techniques and with identical supports, equivalent closures and other appurtenances.

6.7.2.18.2 The prototype test report for the design approval must include at least the following:
(a) The results of the applicable framework test specified in ISO 1496-3:1995;
(b) The results of the initial inspection and test in 6.7.2.19.3; and
(c) The results of the impact test in 6.7.2.19.1, when applicable.

6.7.2.19 Inspection and testing

6.7.2.19.1 Portable tanks meeting the definition of container in the International Convention for Safe Containers (CSC), 1972, as amended, must not be used unless they are successfully qualified by subjecting a representative prototype of each design to the Dynamic, Longitudinal Impact Test prescribed in the Manual for Tests and Criteria, Part IV, Section 40.

6.7.2.19.2 The shell and items of equipment of each portable tank must be inspected and tested before being put into service for the first time (initial inspection and test) and thereafter at not more than five-year intervals (5 year periodic inspection and test) with an intermediate periodic inspection and

\(^1\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
test (2.5 year periodic inspection and test) midway between the 5 year periodic inspections and tests. The 2.5 year inspection and test may be performed within 3 months of the specified date. An exceptional inspection and test must be performed regardless of the date of the last periodic inspection and test when necessary according to 6.7.2.19.7.

6.7.2.19.3 The initial inspection and test of a portable tank must include a check of the design characteristics, an internal and external examination of the portable tank and its fittings with due regard to the substances to be transported, and a pressure test. Before the portable tank is placed into service, a leakproofness test and a test of the satisfactory operation of all service equipment must also be performed. When the shell and its fittings have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test.

6.7.2.19.4 The 5-year periodic inspection and test must include an internal and external examination and, as a general rule, a hydraulic pressure test. For tanks only used for the transport of solid substances, other than toxic or corrosive substances that do not liquefy during transport, the hydraulic pressure test may be replaced by a suitable pressure test at 1.5 times the MAWP, subject to competent authority exemption. Sheathing, thermal insulation and the like must be removed only to the extent required for reliable appraisal of the condition of the portable tank. When the shell and equipment have been pressure-tested separately, they must also be subjected to a leakproofness test together after assembly.

6.7.2.19.5 The intermediate 2.5 year periodic inspection and test must at least include an internal and external examination of the portable tank and its fittings with due regard to the substances intended to be transported, a leakproofness test and a test of the satisfactory operation of all service equipment. Sheathing, thermal insulation and the like must be removed only to the extent required for reliable appraisal of the condition of the portable tank. For portable tanks dedicated to the transport of a single substance, the 2.5 year internal examination may be waived or substituted by other test methods or inspection procedures specified by the competent authority or its authorised body.

6.7.2.19.6 A portable tank may not be filled and offered for transport after the date of expiry of the last 5 year or 2.5 year periodic inspection and test as required by 6.7.2.19.2. However a portable tank filled prior to the date of expiry of the last periodic inspection and test may be transported for a period not to exceed three months beyond the date of expiry of the last periodic test or inspection. In addition, a portable tank may be transported after the date of expiry of the last periodic test and inspection:

(a) After emptying but before cleaning, for purposes of performing the next required test or inspection prior to refilling; and
(b) Unless otherwise exempted by the competent authority, for a period not to exceed six months beyond the date of expiry of the last periodic test or inspection, in order to allow the return of dangerous goods for
6.7.2.19.6.1 Except as provided for in 6.7.2.19.6, portable tanks which have missed the timeframe for their scheduled 5 year or 2.5 year periodic inspection and test may only be filled and offered for transport if a new 5 year periodic inspection and test is performed according to 6.7.2.19.4.

6.7.2.19.7 The exceptional inspection and test is necessary when the portable tank shows evidence of damaged or corroded areas, or leakage, or other conditions that indicate a deficiency that could affect the integrity of the portable tank. The extent of the exceptional inspection and test must depend on the amount of damage or deterioration of the portable tank. It must include at least the 2.5 year inspection and test according to 6.7.2.19.5.

6.7.2.19.8 The internal and external examinations must ensure that:

(a) The shell is inspected for pitting, corrosion, or abrasions, dents, distortions, defects in welds or any other conditions, including leakage, that might render the portable tank unsafe for transport. The wall thickness shall be verified by appropriate measurement if this inspection indicates a reduction of wall thickness;

(b) The piping, valves, heating/cooling system, and gaskets are inspected for corroded areas, defects, or any other conditions, including leakage, that might render the portable tank unsafe for filling, discharge or transport;

(c) Devices for tightening manhole covers are operative and there is no leakage at manhole covers or gaskets;

(d) Missing or loose bolts or nuts on any flanged connection or blank flange are replaced or tightened;

(e) All emergency devices and valves are free from corrosion, distortion and any damage or defect that could prevent their normal operation. Remote closure devices and self-closing stop-valves must be operated to demonstrate proper operation;

(f) Linings, if any, are inspected in accordance with criteria outlined by the lining manufacturer;

(g) Required marks on the portable tank are legible and in accordance with the applicable requirements; and

(h) The framework, supports and arrangements for lifting the portable tank are in a satisfactory condition.

6.7.2.19.9 The inspections and tests in 6.7.2.19.1, 6.7.2.19.3, 6.7.2.19.4, 6.7.2.19.5 and 6.7.2.19.7 must be performed or witnessed by an expert recognised by the competent authority or its authorised body. When the pressure test is a part of the inspection and test, the test pressure must be the one indicated on the data plate of the portable tank. While under pressure, the portable tank must be inspected for any leaks in the shell, piping or equipment.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.7.2.19.10 In all cases when cutting, burning or welding operations on the shell have been effected, that work must be to the approval of the competent authority or its authorised body taking into account the pressure vessel code used for the construction of the shell. A pressure test to the original test pressure must be performed after the work is completed.

6.7.2.19.11 When evidence of any unsafe condition is discovered, the portable tank must not be returned to service until it has been corrected and the test is repeated and passed.

6.7.2.20 Marking

6.7.2.20.1 Every portable tank must be fitted with a corrosion resistant metal plate permanently attached to the portable tank in a conspicuous place readily accessible for inspection. When for reasons of portable tank arrangements the plate cannot be permanently attached to the shell, the shell must be marked with at least the information required by the pressure vessel code. As a minimum, at least the following information must be marked on the plate by stamping or by any other similar method:

(a) Owner information
 (i) Owner’s registration number;

(b) Manufacturing information
 (i) Country of manufacture;
 (ii) Year of manufacture;
 (iii) Manufacturer’s name or mark;
 (iv) Manufacturer’s serial number;

(c) Approval information
 (i) The United Nations packaging symbol

 This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;
 (ii) Approval country;
 (iii) Authorised body for the design approval;
 (iv) Design approval number;
 (v) Letters ‘AA’, if the design was approved under alternative arrangements (see 6.7.1.2);
 (vi) Pressure vessel code to which the shell is designed;

(d) Pressures
 (i) MAWP (in bar gauge or kPa gauge)*;
 (ii) Test pressure (in bar gauge or kPa gauge)*;
 (iii) Initial pressure test date (month and year);
 (iv) Identification mark of the initial pressure test witness;
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(v) External design pressure\(^1\) (in bar gauge or kPa gauge); \(\ast\)

(vi) MAWP for heating/cooling system (in bar gauge or kPa gauge) \(\ast\) (when applicable);

(e) Temperatures

(i) Design temperature range (in °C); \(\ast\)

(f) Materials

(i) Shell material(s) and material standard reference(s);

(ii) Equivalent thickness in reference steel (in mm) \(\ast\);

(iii) Lining material (when applicable);

(g) Capacity

(i) Tank water capacity at 20 °C (in litres) \(\ast\);

This indication is to be followed by the symbol "S" when the shell is divided by surge plates into sections of not more than 7 500 litres capacity;

(ii) Water capacity of each compartment at 20 °C (in litres) \(\ast\) (when applicable, for multi-compartment tanks).

This indication is to be followed by the symbol "S" when the compartment is divided by surge plates into sections of not more than 7 500 litres capacity;

(j) Periodic inspections and tests

(i) Type of the most recent periodic test (2.5-year, 5-year or exceptional);

(ii) Date of the most recent periodic test (month and year);

(iii) Test pressure (in bar gauge or kPa gauge) \(\ast\) of the most recent periodic test (if applicable);

(iv) Identification mark of the authorised body who performed or witnessed the most recent test.

\(\ast\) the unit must be indicated

\(^1\) See 6.7.2.2.10
Figure 6.7.2.20.1: Example of identification plate marking

Owner’s registration number					
MANUFACTURING INFORMATION					
Country of manufacture					
Year of manufacture					
Manufacturer					
Manufacturer’s serial number					
APPROVAL INFORMATION					
Approval country	Authorised body for design approval	‘AA’ (if applicable)			
Design approval number					
Shell design code (pressure vessel code)					
PRESSURES					
MAWP	bar or kPa				
Test pressure	bar or kPa				
Initial pressure test date: (mm/yyyy)	Witness stamp:				
External design pressure	bar or kPa				
MAWP for heating/cooling system (when applicable)	bar or kPa				
TEMPERATURES					
Design temperature range	°C to °C				
MATERIALS					
Shell material(s) and material standard reference(s)					
Equivalent thickness in reference steel	mm				
Lining material (when applicable)					
CAPACITY					
Tank water capacity at 20 °C	litres	‘S’ (if applicable)			
Water capacity of compartment ___ at 20 °C (when applicable, for multi-compartment tanks)	litres	‘S’ (if applicable)			
PERIODIC INSPECTIONS / TESTS					
Test type	Test date	Witness stamp and test pressure a	Test type	Test date	Witness stamp and test pressure a
	(mm/yyyy)	bar or kPa		(mm/yyyy)	bar or kPa

Table note:
a Test pressure if applicable.

6.7.2.20.2 The following information must be durably marked either on the portable tank itself or on a metal plate firmly secured to the portable tank:

Name of the operator
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

Maximum permissible gross mass (MPGM) ___________ kg
Unladen (tare) mass ___________ kg
Portable tank instruction in accordance with 4.2.5.2.6

NOTE: For the identification of the substances being transported, see also Part 5.

6.7.2.20.3 If a portable tank is designed and approved for handling in open seas, the words “OFFSHORE PORTABLE TANK” must be marked on the identification plate.

6.7.3 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS INTENDED FOR THE TRANSPORT OF NON-REFRIGERATED LIQUEFIED GASES

NOTE: These requirements also apply to portable tanks intended for the transport of chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505).

6.7.3.1 Application and Definitions

6.7.3.1.1 Application
This Section must be applied in conjunction with the legislation applicable in the particular State or Territory to pressure vessels. Where there is conflict, the requirements of that legislation and any Codes and Standards mandated by that legislation take precedence over this Section.

6.7.3.1.2 Definitions
For the purposes of this section:

Design pressure means the pressure to be used in calculations required by a recognised pressure vessel code. The design pressure must be not less than the highest of the following pressures:

(a) The maximum effective gauge pressure allowed in the shell during filling or discharge; or
(b) The sum of:

(i) the maximum effective gauge pressure to which the shell is designed as defined in (b) of the MAWP definition (see above); and
(ii) a head pressure determined on the basis of the static forces specified in 6.7.3.2.9, but not less than 0.35 bar;

Design reference temperature means the temperature at which the vapour pressure of the contents is determined for the purpose of calculating the MAWP. The design reference temperature must be less than the critical temperature of the non-refrigerated liquefied gas or liquefied gas propellants of chemicals under pressure intended to be transported to ensure that the gas at all times is liquefied. This value for each portable tank type is as follows:
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(a) Shell with a diameter of 1.5 metres or less: 65 °C;
(b) Shell with a diameter of more than 1.5 metres:
 (i) without insulation or sun shield: 60 °C;
 (ii) with sun shield (see 6.7.3.2.12): 55 °C; and
 (iii) with insulation (see 6.7.3.2.12): 50 °C;

Design temperature range for the shell must be -40 °C to 50 °C for non-refrigerated liquefied gases transported under ambient conditions. More severe design temperatures must be considered for portable tanks subjected to severe climatic conditions;

Filling density means the average mass of non-refrigerated liquefied gas per litre of shell capacity (kg/L). The filling density is given in portable tank instruction T50 in 4.2.5.2.6;

Leakproofness test means a test using gas subjecting the shell and its service equipment to an effective internal pressure of not less than 25% of the MAWP;

Maximum allowable working pressure (MAWP) means a pressure that must be not less than the highest of the following pressures measured at the top of the shell while in operating position, but in no case less than 7 bar:

(a) The maximum effective gauge pressure allowed in the shell during filling or discharge; or
(b) The maximum effective gauge pressure to which the shell is designed, which must be:
 (i) for a non-refrigerated liquefied gas listed in the portable tank instruction T50 in 4.2.5.2.6, the MAWP (in bar) given in T50 portable tank instruction for that gas;
 (ii) for other non-refrigerated liquefied gases, not less than the sum of:
 - the absolute vapour pressure (in bar) of the non-refrigerated liquefied gas at the design reference temperature minus 1 bar; and
 - the partial pressure (in bar) of air or other gases in the ullage space being determined by the design reference temperature and the liquid phase expansion due to an increase of the mean bulk temperature of \(t_f - t_r \) (\(t_f = \) filling temperature, usually 15 °C, \(t_r = 50 °C \) maximum mean bulk temperature);
 (iii) for chemicals under pressure, the MAWP (in bar) given in T50 portable tank instruction for the liquefied gas portion of the propellants listed in T50 in 4.2.5.2.6;

Maximum permissible gross mass (MPGM) means the sum of the tare mass of the portable tank and the heaviest load authorised for transport;
Mild steel means a steel with a guaranteed minimum tensile strength of 360 N/mm² to 440 N/mm² and a guaranteed minimum elongation at fracture conforming to 6.7.3.3.3.3;

Portable tank means a multimodal tank having a capacity of more than 450 litres used for the transport of non-refrigerated liquefied gases of Class 2. The portable tank includes a shell fitted with service equipment and structural equipment necessary for the transport of gases. The portable tank must be capable of being filled and discharged without the removal of its structural equipment. It must possess stabilising members external to the shell, and must be capable of being lifted when full. It must be designed primarily to be loaded onto a transport vehicle or ship and must be equipped with skids, mountings or accessories to facilitate mechanical handling. Road tank-vehicles, rail tank-wagons, non-metallic tanks, intermediate bulk containers (IBCs), gas cylinders and large receptacles are not considered to fall within the definition for portable tanks;

Reference steel means a steel with a tensile strength of 370 N/mm² and an elongation at fracture of 27%;

Service equipment means measuring instruments and filling, discharge, venting, safety and insulating devices;

Shell means the part of the portable tank which retains the non-refrigerated liquefied gas intended for transport (tank proper), including openings and their closures, but does not include service equipment or external structural equipment;

Structural equipment means the reinforcing, fastening, protective and stabilising members external to the shell;

Test pressure means the maximum gauge pressure at the top of the shell during the pressure test.

6.7.3.2 General design and construction requirements

6.7.3.2.1 Shells must be designed and constructed in accordance with the requirements of a pressure vessel code recognised by the competent authority. Shells must be made of steel suitable for forming. The materials must in principle conform to national or international material standards. For welded shells, only a material whose weldability has been fully demonstrated must be used. Welds must be skillfully made and afford complete safety. When the manufacturing process or the materials make it necessary, the shells must be suitability heat-treated to guarantee adequate toughness in the weld and in the heat affected zones. In choosing the material the design temperature range must be taken into account with respect to risk of brittle fracture, to stress corrosion cracking and to resistance to impact. When fine grain steel is used, the guaranteed value of the yield strength must be not more than 460 N/mm² and the guaranteed value of the upper limit of the tensile strength must be not more than 725 N/mm² according to the material specification. Portable
tank materials must be suitable for the external environment in which they may be transported.

6.7.3.2.2 Portable tank shells, fittings and pipework must be constructed of materials which are:
(a) Substantially immune to attack by the non-refrigerated liquefied gas(es) intended to be transported; or
(b) Properly passivated or neutralised by chemical reaction.

6.7.3.2.3 Gaskets must be made of materials compatible with the non-refrigerated liquefied gas(es) intended to be transported.

6.7.3.2.4 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.7.3.2.5 The materials of the portable tank, including any devices, gaskets, and accessories, must not adversely affect the non-refrigerated liquefied gas(es) intended for transport in the portable tank.

6.7.3.2.6 Portable tanks must be designed and constructed with supports to provide a secure base during transport and with suitable lifting and tie-down attachments.

6.7.3.2.7 Portable tanks must be designed to withstand, without loss of contents, at least the internal pressure due to the contents, and the static, dynamic and thermal loads during normal conditions of handling and transport. The design must demonstrate that the effects of fatigue, caused by repeated application of these loads through the expected life of the portable tank, have been taken into account.

6.7.3.2.8 Shells must be designed to withstand an external pressure of at least 0.4 bar gauge above the internal pressure without permanent deformation. When the shell is to be subjected to a significant vacuum before filling or during discharge it must be designed to withstand an external pressure of at least 0.9 bar gauge above the internal pressure and must be proven at that pressure.

6.7.3.2.9 Portable tanks and their fastenings must, under the maximum permissible load, be capable of absorbing the following separately applied static forces:
(a) In the direction of travel: —twice the MPGM multiplied by the acceleration due to gravity \((g)^5\); and
(b) Horizontally at right angles to the direction of travel: —the MPGM (when the direction of travel is not clearly determined, the forces must be equal to twice the MPGM) multiplied by the acceleration due to gravity \((g)^5\); and
(c) Vertically upwards: —the MPGM multiplied by the acceleration due to gravity \((g)^5\); and
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(d) Vertically downwards: –twice the MPGM (total loading including the effect of gravity) multiplied by the acceleration due to gravity \((g)\)^5.

Note: 5. For calculation purposes \(g = 9.81\) metres per second

6.7.3.2.10 Under each of the forces in 6.7.3.2.9, the safety factor to be observed must be as follows:

(a) For steels having a clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed yield strength; or

(b) For steels with no clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed 0.2% proof strength and, for austenitic steels, the 1% proof strength.

6.7.3.2.11 The values of yield strength or proof strength must be the values according to national or international material standards. When austenitic steels are used, the specified minimum values of yield strength and proof strength according to the material standards may be increased by up to 15% when these greater values are attested in the material inspection certificate. When no material standard exists for the steel in question, the value of yield strength or proof strength used must be approved by the competent authority.

6.7.3.2.12 When the shells intended for the transport of non-refrigerated liquefied gases are equipped with thermal insulation, the thermal insulation systems must satisfy the following requirements:

(a) It must consist of a shield covering not less than the upper third but not more than the upper half of the surface of the shell and separated from the shell by an air space about 40 mm across; or

(b) It must consist of a complete cladding of adequate thickness of insulating materials protected so as to prevent the ingress of moisture and damage under normal conditions of transport and so as to provide a thermal conductance of not more than 0.67 \((W \text{ m}^2 \text{ K}^{-1})\);

(c) When the protective covering is so closed as to be gas-tight, a device must be provided to prevent any dangerous pressure from developing in the insulating layer in the event of inadequate gas tightness of the shell or of its items of equipment;

(d) The thermal insulation must not inhibit access to the fittings and discharge devices.

6.7.3.2.13 Portable tanks intended for the transport of flammable non-refrigerated liquefied gases must be capable of being electrically earthed.

6.7.3.3 Design criteria

6.7.3.3.1 Shells must be of a circular cross-section.

6.7.3.3.2 Shells must be designed and constructed to withstand a test pressure not less than 1.3 times the design pressure. The shell design must take into account the minimum MAWP values provided in portable tank instruction T50 in 4.2.5.2.6 for each non-refrigerated liquefied gas intended for
transport. Attention is drawn to the minimum shell thickness requirements for these shells specified in 6.7.3.4.

6.7.3.3.3 For steels exhibiting a clearly defined yield point or characterised by a guaranteed proof strength (0.2% proof strength, generally, or 1% proof strength for austenitic steels) the primary membrane stress in the shell must not exceed 0.75 Re or 0.50 Rm, whichever is lower, at the test pressure, where:

\[
Re = \text{yield strength in N/mm}^2, \text{ or } 0.2\% \text{ proof strength;}
\]

\[
Rm = \text{minimum tensile strength in N/mm}^2.
\]

6.7.3.3.3.1 The values of Re and Rm to be used must be the specified minimum values according to national or international material standards. When austenitic steels are used, the specified minimum values for Re and Rm according to the material standards may be increased by up to 15% when these greater values are attested in the material inspection certificate. When no material standard exists for the steel in question, the values of Re and Rm used must be approved by the competent authority or its authorised body.

6.7.3.3.3.2 Steels which have an Re/Rm ratio of more than 0.85 are not allowed for the construction of welded shells. The values of Re and Rm to be used in determining this ratio must be the values specified in the material inspection certificate.

6.7.3.3.3.3 Steels used in the construction of shells must have an elongation at fracture, in %, of not less than 10 000/Rm with an absolute minimum of 16% for fine grain steels and 20% for other steels.

6.7.3.3.3.4 For the purpose of determining actual values for materials, it must be noted that for sheet metal, the axis of the tensile test specimen must be at right angles (transversely) to the direction of rolling. The permanent elongation at fracture must be measured on test specimens of rectangular cross sections in accordance with ISO 6892:1998 using a 50 mm gauge length.

6.7.3.4 Minimum shell thickness

6.7.3.4.1 The minimum shell thickness must be the greater thickness based on:

(a) The minimum thickness determined in accordance with the requirements in 6.7.3.4; and

(b) The minimum thickness determined in accordance with the recognised pressure vessel code including the requirements in 6.7.3.3.

In addition, any relevant portable tank special provision indicated in Column 11 of the Dangerous Goods List and described in 4.2.5.3 shall be taken into account.
6.7.3.4.2 The cylindrical portions, ends (heads) and manhole covers of shells of not more than 1.80 m in diameter must be not less than 5 mm thick in the reference steel or of equivalent thickness in the steel to be used. Shells of more than 1.80 m in diameter must be not less than 6 mm thick in the reference steel or of equivalent thickness in the steel to be used.

6.7.3.4.3 The cylindrical portions, ends (heads) and manhole covers of all shells must be not less than 4 mm thick regardless of the material of construction.

6.7.3.4.4 The equivalent thickness of a steel other than the thickness prescribed for the reference steel in 6.7.3.4.2 must be determined using the following formula:

\[e_1 = \frac{21.4e_0}{\sqrt[3]{Rm_1 \times A_1}} \]

where:

- \(e_1 \) = required equivalent thickness (in mm) of the steel to be used;
- \(e_0 \) = minimum thickness (in mm) for the reference steel specified in 6.7.3.4.2;
- \(Rm_1 \) = guaranteed minimum tensile strength (in N/mm\(^2\)) of the steel to be used (see 6.7.3.3.3);
- \(A_1 \) = guaranteed minimum elongation at fracture (in %) of the steel to be used according to national or international standards.

6.7.3.4.5 In no case must the wall thickness be less than that prescribed in 6.7.3.4.1 to 6.7.3.4.3. All parts of the shell must have a minimum thickness as determined by 6.7.3.4.1 to 6.7.3.4.3. This thickness must be exclusive of any corrosion allowance.

6.7.3.4.6 When mild steel is used (see 6.7.3.1), calculation using the formula in 6.7.3.4.4 is not required.

6.7.3.4.7 There must be no sudden change of plate thickness at the attachment of the ends (heads) to the cylindrical portion of the shell.

6.7.3.5 Service equipment

6.7.3.5.1 Service equipment must be so arranged as to be protected against the risk of being wrenched off or damaged during handling and transport. When the connection between the frame and the shell allows relative movement between the sub-assemblies, the equipment must be so
fastened as to permit such movement without risk of damage to working parts. The external discharge fittings (pipe sockets, shut-off devices), the internal stop-valve and its seating must be protected against the danger of being wrenched off by external forces (for example using shear sections). The filling and discharge devices (including flanges or threaded plugs) and any protective caps must be capable of being secured against unintended opening.

6.7.3.5.2 All openings with a diameter of more than 1.5 mm in shells of portable tanks, except openings for pressure-relief devices, inspection openings and closed bleed holes, must be fitted with at least three mutually independent shut-off devices in series, the first being an internal stop-valve, excess flow valve or equivalent device, the second being an external stop-valve and the third being a blank flange or equivalent device.

6.7.3.5.2.1 When a portable tank is fitted with an excess flow valve the excess flow valve must be so fitted that its seating is inside the shell or inside a welded flange or, when fitted externally, its mountings must be designed so that in the event of impact its effectiveness must be maintained. The excess flow valves must be selected and fitted so as to close automatically when the rated flow specified by the manufacturer is reached. Connections and accessories leading to or from such a valve must have a capacity for a flow more than the rated flow of the excess flow valve.

6.7.3.5.3 For filling and discharge openings the first shut-off device must be an internal stop-valve and the second must be a stop-valve placed in an accessible position on each discharge and filling pipe.

6.7.3.5.4 For filling and discharge bottom openings of portable tanks intended for the transport of flammable and/or toxic non-refrigerated liquefied gases or chemicals under pressure the internal stop-valve must be a quick closing safety device which closes automatically in the event of unintended movement of the portable tank during filling or discharge or fire engulfment. Except for portable tanks having a capacity of not more than 1 000 litres, it must be possible to operate this device by remote control.

6.7.3.5.5 In addition to filling, discharge and gas pressure equalising orifices, shells may have openings in which gauges, thermometers and manometers can be fitted. Connections for such instruments must be made by suitable welded nozzles or pockets and not be screwed connections through the shell.

6.7.3.5.6 All portable tanks must be fitted with manholes or other inspection openings of suitable size to allow for internal inspection and adequate access for maintenance and repair of the interior.

6.7.3.5.7 External fittings must be grouped together as far as reasonably practicable.

6.7.3.5.8 Each connection on a portable tank must be clearly marked to indicate its function.
Each stop-valve or other means of closure must be designed and constructed to a rated pressure not less than the MAWP of the shell taking into account the temperatures expected during transport. All stop-valves with a screwed spindle must close by a clockwise motion of the handwheel. For other stop-valves the position (open and closed) and direction of closure must be clearly indicated. All stop-valves must be designed to prevent unintentional opening.

Piping must be designed, constructed and installed so as to avoid the risk of damage due to thermal expansion and contraction, mechanical shock and vibration. All piping must be of suitable metallic material. Welded pipe joints must be used wherever possible.

Joints in copper tubing must be brazed or have an equally strong metal union. The melting point of brazing materials must be no lower than 525 °C. The joints must not decrease the strength of tubing as may happen when cutting threads.

The burst pressure of all piping and pipe fittings must be not less than the highest of four times the MAWP of the shell or four times the pressure to which it may be subjected in service by the action of a pump or other device (except pressure-relief devices).

Ductile metals must be used in the construction of valves and accessories.

Certain non-refrigerated liquefied gases must not be transported in portable tanks with bottom openings. When portable tank instruction T50 in 4.2.5.2.6 indicates that bottom openings are not allowed, there must be no openings below the liquid level of the shell when it is filled to its maximum permissible filling limit.

Portable tanks must be provided with one or more spring-loaded pressure-relief devices. The pressure-relief devices must open automatically at a pressure not less than the MAWP and be fully open at a pressure equal to 110% of the MAWP. These devices must, after discharge, close at a pressure not lower than 10% below the pressure at which discharge starts and must remain closed at all lower pressures. The pressure-relief devices must be of a type that will resist dynamic forces including liquid surge. Frangible discs not in series with a spring-loaded pressure-relief device are not permitted.

Pressure-relief devices must be designed to prevent the entry of foreign matter, the leakage of gas and the development of any dangerous excess pressure.

Portable tanks intended for the transport of certain non-refrigerated liquefied gases identified in portable tank instruction T50 in 4.2.5.2.6 must have a pressure-relief device approved by the competent authority. Unless a portable tank in dedicated service is fitted with an approved relief
device constructed of materials compatible with the load, such device must comprise a frangible disc preceding a spring-loaded device. The space between the frangible disc and the device must be provided with a pressure gauge or a suitable tell-tale indicator. This arrangement permits the detection of disc rupture, pinholing or leakage which could cause a malfunction of the pressure-relief device. The frangible discs must rupture at a nominal pressure 10% above the start-to-discharge pressure of the relief device.

6.7.3.7.4 In the case of multi-purpose portable tanks, the pressure-relief devices must open at a pressure indicated in 6.7.3.7.1 for the gas having the highest maximum allowable pressure of the gases allowed to be transported in the portable tank.

6.7.3.8 Capacity of relief devices

6.7.3.8.1 The combined delivery capacity of the relief devices must be sufficient that, in the event of total fire engulfment, the pressure (including accumulation) inside the shell does not exceed 120% of the MAWP. Spring-loaded relief devices must be used to achieve the full relief capacity prescribed. In the case of multi-purpose tanks, the combined delivery capacity of the pressure-relief devices must be taken for the gas which requires the highest delivery capacity of the gases allowed to be transported in portable tanks.

6.7.3.8.1.1 To determine the total required capacity of the relief devices, which must be regarded as being the sum of the individual capacities of the several devices, the following formula\(^1\) must be used:

\[
Q = 12.4 \frac{F A^{0.82}}{LC} \sqrt{\frac{ZT}{M}}
\]

where:

- \(Q\) = minimum required rate of discharge in cubic metres of air per second (m\(^3\)/s) at standard conditions: 1 bar and 0°C (273 K);
- \(F\) = is a coefficient with the following value:
 - for uninsulated shells \(F = 1\);

\(^1\) This formula applies only to non-refrigerated liquefied gases which have critical temperatures well above the temperature at the accumulating condition. For gases which have critical temperatures near or below the temperature at the accumulating condition, the calculation of the pressure-relief device delivery capacity must consider further thermodynamic properties of the gas (see for example CGA S-1.2-2003 “Pressure Relief Device Standards-Part 2-Cargo and Portable Tanks for Compressed Gases”).
for insulated shells \(F = \frac{U(649-t)}{13.6}; \)

but in no case is less than 0.25 where.

\[
U = \text{thermal conductance of the insulation, in kW m}^{-2} \text{K}^{-1}, \text{at } 38 \, ^\circ\text{C};
\]

\(t = \) actual temperature of the non-refrigerated liquefied gas during filling\(^{\circ}\text{C}\); when this temperature is unknown, let \(t=15 \, ^\circ\text{C}. \)

The value of \(F \) given above for insulated shells may be taken provided that the insulation is in conformance with 6.7.3.8.1.2;

\[A = \text{total external surface area of shell in square metres}; \]

\(Z = \) the gas compressibility factor in the accumulating condition (when this factor is unknown, let \(Z \) equal 1.0);

\(T = \) absolute temperature in Kelvin \((^\circ\text{C} + 273)\) above the pressure-relief devices in the accumulating condition;

\(L = \) the latent heat of vaporisation of the liquid, in kJ/kg, in the accumulating condition;

\(M = \) molecular mass of the discharged gas;

\(C = \) a constant which is derived from one of the following formulae as a function of the ratio \(k \) of specific heats.

\[
k = \frac{c_p}{c_v}
\]

where:

\(c_p \) is the specific heat at constant pressure; and

\(c_v \) is the specific heat at constant volume.

When \(k > 1 \):

\[
C = \sqrt{k \left(\frac{2}{k+1}\right)^{k+1}}
\]

When \(k = 1 \), or \(k \) is unknown:

\[
C = \frac{1}{\sqrt{e}} = 0.607
\]

where \(e \) is the mathematical constant 2.7183

\(C \) may also be taken from the following table:

<table>
<thead>
<tr>
<th>(k)</th>
<th>(C)</th>
<th>(k)</th>
<th>(C)</th>
<th>(k)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.607</td>
<td>1.26</td>
<td>0.660</td>
<td>1.52</td>
<td>0.704</td>
</tr>
<tr>
<td>1.02</td>
<td>0.611</td>
<td>1.28</td>
<td>0.664</td>
<td>1.54</td>
<td>0.707</td>
</tr>
<tr>
<td>1.04</td>
<td>0.615</td>
<td>1.30</td>
<td>0.667</td>
<td>1.56</td>
<td>0.710</td>
</tr>
</tbody>
</table>
6.7.3.8.1.2 Insulation systems, used for the purpose of reducing the venting capacity, must be approved by the competent authority or its authorised body. In all cases, insulation systems approved for this purpose must:

(a) Remain effective at all temperatures up to 649 °C; and
(b) Be jacketed with a material having a melting point of 700 °C or greater.

6.7.3.9 Marking of pressure-relief devices

6.7.3.9.1 Every pressure-relief device must be plainly and permanently marked with the following:

(a) The pressure (in bar or kPa) at which it is set to discharge;
(b) The allowable tolerance at the discharge pressure for spring-loaded devices;
(c) The reference temperature corresponding to the rated pressure for frangible discs;
(d) The rated flow capacity of the device in standard cubic metres of air per second (m³/s); and
(e) The cross sectional flow areas of the spring loaded pressure-relief devices and frangible discs in mm².

When practicable, the following information must also be shown:

(f) The manufacturer’s name and relevant catalogue number.

6.7.3.9.2 The rated flow capacity marked on the pressure-relief devices must be determined according to ISO 4126 1:2004 and ISO 4126-7:2004.

6.7.3.10 Connections to pressure-relief devices

6.7.3.10.1 Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the safety device. No stop-valve must be installed between the shell and the pressure-relief devices except when duplicate devices are provided for maintenance or other reasons and the stop-valves serving the devices actually in use are locked open or the stop-valves are interlocked so that at least one of the duplicate devices is always operable and capable of meeting the requirements of 6.7.3.8. There must be no obstruction in an opening leading to a vent or pressure-relief device which might restrict or cut-off the flow from the shell to that device. Vents from the pressure-relief devices, when used, must

1.06	0.620	1.32	0.671	1.58	0.713
1.08	0.624	1.34	0.674	1.60	0.716
1.10	0.628	1.36	0.678	1.62	0.719
1.12	0.633	1.38	0.681	1.64	0.722
1.14	0.637	1.40	0.685	1.66	0.725
1.16	0.641	1.42	0.688	1.68	0.728
1.18	0.645	1.44	0.691	1.70	0.731
1.20	0.649	1.46	0.695	2.00	0.770
1.22	0.652	1.48	0.698	2.20	0.793
1.24	0.656	1.50	0.701		
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

deliver the relieved vapour or liquid to the atmosphere in conditions of minimum back-pressure on the relieving device.

6.7.3.11 Siting of pressure-relief devices

6.7.3.11.1 Each pressure-relief device inlet must be situated on top of the shell in a position as near the longitudinal and transverse centre of the shell as reasonably practicable. All pressure relief device inlets must under maximum filling conditions be situated in the vapour space of the shell and the devices must be so arranged as to ensure that the escaping vapour is discharged unrestrictedly. For flammable non-refrigerated liquefied gases, the escaping vapour must be directed away from the shell in such a manner that it cannot impinge upon the shell. Protective devices which deflect the flow of vapour are permissible provided the required relief-device capacity is not reduced.

6.7.3.11.2 Arrangements must be made to prevent access to the pressure-relief devices by unauthorised persons and to protect the devices from damage caused by the portable tank overturning.

6.7.3.12 Gauging devices

6.7.3.12.1 Unless a portable tank is intended to be filled by weight it must be equipped with one or more gauging devices. Glass level-gauges and gauges made of other fragile material, which are in direct communication with the contents of the shell must not be used.

6.7.3.13 Portable tank supports, frameworks, lifting and tie-down attachments

6.7.3.13.1 Portable tanks must be designed and constructed with a support structure to provide a secure base during transport. The forces specified in 6.7.3.2.9 and the safety factor specified in 6.7.3.2.10 must be considered in this aspect of the design. Skids, frameworks, cradles or other similar structures are acceptable.

6.7.3.13.2 The combined stresses caused by portable tank mountings (e.g. cradles, frameworks, etc.) and portable tank lifting and tie-down attachments must not cause excessive stress in any portion of the shell. Permanent lifting and tie-down attachments must be fitted to all portable tanks. Preferably they must be fitted to the portable tank supports but may be secured to reinforcing plates located on the shell at the points of support.

6.7.3.13.3 In the design of supports and frameworks the effects of environmental corrosion must be taken into account.

6.7.3.13.4 Forklift pockets must be capable of being closed off. The means of closing forklift pockets must be a permanent part of the framework or permanently attached to the framework. Single compartment portable tanks with a length less than 3.65 m need not have closed off forklift pockets provided that:
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(a) The shell and all the fittings are well protected from being hit by the forklift blades; and
(b) The distance between the centres of the forklift pockets is at least half of the maximum length of the portable tank.

6.7.3.13.5 When portable tanks are not protected during transport, according to 4.2.2.3, the shells and service equipment must be protected against damage to the shell and service equipment resulting from lateral or longitudinal impact or overturning. External fittings must be protected so as to preclude the release of the shell contents upon impact or overturning of the portable tank on its fittings. Examples of protection include:

(a) Protection against lateral impact which may consist of longitudinal bars protecting the shell on both sides at the level of the median line;
(b) Protection of the portable tank against overturning which may consist of reinforcement rings or bars fixed across the frame;
(c) Protection against rear impact which may consist of a bumper or frame;
(d) Protection of the shell against damage from impact or overturning by use of an ISO frame in accordance with ISO 1496-3:1995.

6.7.3.14 Design approval

6.7.3.14.1 The competent authority or its authorised body must issue a design approval certificate for any new design of a portable tank. This certificate must attest that a portable tank has been surveyed by that authority, is suitable for its intended purpose and meets the requirements of this Chapter and where appropriate the provisions for gases provided in portable tank instruction T50 in 4.2.5.2.6. When a series of portable tanks are manufactured without change in the design, the certificate must be valid for the entire series.

The certificate must refer to the prototype test report, the gases allowed to be transported, the materials of construction of the shell and an approval number. The approval number shall consist of the distinguishing sign or mark of the State in whose territory the approval was granted, indicated by the distinguishing sign used on vehicles in international road traffic\(^\dagger\) (for Australia, the letters ‘AUS’), and a registration number. Any alternative arrangements according to 6.7.1.2 must be indicated on the certificate.

A design approval may serve for the approval of smaller portable tanks made of materials of the same kind and thickness, by the same fabrication techniques and with identical supports, equivalent closures and other appurtenances.

\(^\dagger\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
6.7.3.14.2 The prototype test report for the design approval must include at least the following:

(a) The results of the applicable framework test specified in ISO 1496-3:1995;

(b) The results of the initial inspection and test in 6.7.3.15.3; and

(c) The results of the impact test in 6.7.3.15.1, when applicable.

6.7.3.15 Inspection and testing

6.7.3.15.1 Portable tanks meeting the definition of container in the International Convention for Safe Containers (CSC), 1972, as amended, must not be used unless they are successfully qualified by subjecting a representative prototype of each design to the Dynamic, Longitudinal Impact Test prescribed in the Manual for Tests and Criteria, Part IV, Section 41.

6.7.3.15.2 The shell and items of equipment of each portable tank must be inspected and tested before being put into service for the first time (initial inspection and test) and thereafter at not more than five-year intervals (5 year periodic inspection and test) with an intermediate periodic inspection and test (2.5 year periodic inspection and test) midway between the 5 year periodic inspections and tests. The 2.5 year inspection and test may be performed within 3 months of the specified date. An exceptional inspection and test must be performed regardless of the last periodic inspection and test when necessary according to 6.7.3.15.7.

6.7.3.15.3 The initial inspection and test of a portable tank must include a check of the design characteristics, an internal and external examination of the portable tank and its fittings with due regard to the non-refrigerated liquefied gases to be transported, and a pressure test referring to the test pressures according to 6.7.3.3.2. The pressure test may be performed as a hydraulic test or by using another liquid or gas with the agreement of the competent authority or its authorised body. Before the portable tank is placed into service, a leakproofness test and a test of the satisfactory operation of all service equipment must also be performed. When the shell and its fittings have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test. All welds subject to full stress level in the shell must be inspected during the initial test by radiographic, ultrasonic, or another suitable non-destructive test method. This does not apply to the jacket.

6.7.3.15.4 The 5 year periodic inspection and test must include an internal and external examination and, as a general rule, a hydraulic pressure test. Sheathing, thermal insulation and the like must be removed only to the extent required for reliable appraisal of the condition of the portable tank. When the shell and equipment have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test.

6.7.3.15.5 The intermediate 2.5 year periodic inspection and test must at least include an internal and external examination of the portable tank and its fittings with due regard to the non-refrigerated liquefied gases intended to be transported, a leakproofness test and a test of the satisfactory
operation of all service equipment. Sheathing thermal insulation and the like must be removed only to the extent required for reliable appraisal of the condition of the portable tank. For portable tanks intended for the transport of a single non-refrigerated liquefied gas, the 2.5 year internal examination may be waived or substituted by other test methods or inspection procedures specified by the competent authority or its authorised body.

6.7.3.15.6 A portable tank may not be filled and offered for transport after the date of expiry of the last 5 year or 2.5 year periodic inspection and test as required by 6.7.3.15.2. However a portable tank filled prior to the date of expiry of the last periodic inspection and test may be transported for a period not to exceed three months beyond the date of expiry of the last periodic test or inspection. In addition, a portable tank may be transported after the date of expiry of the last periodic test and inspection:

(a) After emptying but before cleaning, for purposes of performing the next required test or inspection prior to refilling; and
(b) Unless otherwise exempted by the competent authority, for a period not to exceed six months beyond the date of expiry of the last periodic test or inspection, in order to allow the return of dangerous goods for proper disposal or recycling. Reference to this exemption must be mentioned in the transport document.

6.7.3.15.6.1 Except as provided for in 6.7.3.15.6, portable tanks which have missed the timeframe for their scheduled 5 year or 2.5 year periodic inspection and test may only be filled and offered for transport if a new 5 year periodic inspection and test is performed according to 6.7.3.15.4

6.7.3.15.7 The exceptional inspection and test is necessary when the portable tank shows evidence of damaged or corroded areas, or leakage, or other conditions that indicate a deficiency that could affect the integrity of the portable tank. The extent of the exceptional inspection and test must depend on the amount of damage or deterioration of the portable tank. It must include at least the 2.5 year inspection and test according to 6.7.3.15.5.

6.7.3.15.8 The internal and external examinations must ensure that:

(a) The shell is inspected for pitting, corrosion, or abrasions, dents, distortions, defects in welds or any other conditions, including leakage, that might render the portable tank unsafe for transport. The wall thickness shall be verified by appropriate measurement if this inspection indicates a reduction in wall thickness;
(b) The piping, valves, and gaskets are inspected for corroded areas, defects, or any other conditions, including leakage, that might render the portable tank unsafe for filling, discharge or transport;
(c) Devices for tightening manhole covers are operative and there is no leakage at manhole covers or gaskets;
(d) Missing or loose bolts or nuts on any flanged connection or blank flange are replaced or tightened;
(e) All emergency devices and valves are free from corrosion, distortion and any damage or defect that could prevent their normal operation. Remote closure devices and self-closing stop-valves must be operated to demonstrate proper operation;

(f) Required marks on the portable tank are legible and in accordance with the applicable requirements; and

(g) The framework, the supports and the arrangements for lifting the portable tank are in satisfactory condition.

6.7.3.15.9 The inspections and tests in 6.7.3.15.1, 6.7.3.15.3, 6.7.3.15.4, 6.7.3.15.5 and 6.7.3.15.7 must be performed or witnessed by an expert recognised by the competent authority or its authorised body. When the pressure test is a part of the inspection and test, the test pressure must be the one indicated on the data plate of the portable tank. While under pressure, the portable tank must be inspected for any leaks in the shell, piping or equipment.

6.7.3.15.10 In all cases when cutting, burning or welding operations on the shell have been effected, that work must be to the approval of the competent authority or its authorised body taking into account the pressure vessel code used for the construction of the shell. A pressure test to the original test pressure must be performed after the work is completed.

6.7.3.15.11 When evidence of any unsafe condition is discovered, the portable tank must not be returned to service until it has been corrected and the pressure test is repeated and passed.

6.7.3.16 Marking

6.7.3.16.1 Every portable tank must be fitted with a corrosion resistant metal plate permanently attached to the portable tank in a conspicuous place readily accessible for inspection. When for reasons of portable tank arrangements the plate cannot be permanently attached to the shell, the shell must be marked with at least the information required by the pressure vessel code. As a minimum, at least the following information must be marked on the plate by stamping or by any other similar method:

(a) Owner information
 (i) Owner’s registration number;

(b) Manufacturing information
 (i) Country of manufacture;
 (ii) Year of manufacture;
 (iii) Manufacturer’s name or mark;
 (iv) Manufacturer’s serial number;

(c) Approval information
 i) The United Nations packaging symbol

 This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a
portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;

(ii) Approval country;

(iii) Authorised body for the design approval;

(iv) Design approval number;

(v) Letters ‘AA’, if the design was approved under alternative arrangements (see 6.7.1.2);

(vi) Pressure vessel code to which the shell is designed;

(d) Pressures

(i) MAWP (in bar gauge or kPa gauge);
(ii) Test pressure (in bar gauge or kPa gauge);
(iii) Initial pressure test date (month and year);
(iv) Identification mark of the initial pressure test witness;

(v) External design pressure (in bar gauge or kPa gauge);

(e) Temperatures

(i) Design temperature range (in °C);
(ii) Design reference temperature (in °C);

(f) Materials

(i) Shell material(s) and material standard reference(s);

(ii) Equivalent thickness in reference steel (in mm);

(g) Capacity

(i) Tank water capacity at 20 °C (in litres);

(h) Periodic inspections and tests

(i) Type of the most recent periodic test (2.5-year, 5-year or exceptional);

(ii) Date of the most recent periodic test (month and year);

(iii) Test pressure (in bar gauge or kPa gauge) of the most recent periodic test (if applicable);

(iv) Identification mark of the authorised body who performed or witnessed the most recent test.

Note: 6. Means the unit used should be indicated.
Figure 6.7.3.16.1: Example of identification plate marking

<table>
<thead>
<tr>
<th>Owner’s registration number</th>
</tr>
</thead>
</table>

MANUFACTURING INFORMATION

<table>
<thead>
<tr>
<th>Country of manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of manufacture</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Manufacturer’s serial number</td>
</tr>
</tbody>
</table>

APPROVAL INFORMATION

<table>
<thead>
<tr>
<th>Approval country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorised body for design approval</td>
</tr>
<tr>
<td>Design approval number</td>
</tr>
<tr>
<td>‘AA’ (if applicable)</td>
</tr>
</tbody>
</table>

PRESSURES

<table>
<thead>
<tr>
<th>MAWP</th>
<th>bar or kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test pressure</td>
<td>bar or kPa</td>
</tr>
<tr>
<td>Initial pressure test date: (mm/yyyy)</td>
<td>Witness stamp:</td>
</tr>
<tr>
<td>External design pressure</td>
<td>bar or kPa</td>
</tr>
</tbody>
</table>

TEMPERATURES

| Design temperature range | ºC to ºC |
| Design reference temperature | ºC |

MATERIALS

| Shell material(s) and material standard reference(s) |
| Equivalent thickness in reference steel | mm |

CAPACITY

| Tank water capacity at 20 ºC | litres |

PERIODIC INSPECTIONS / TESTS

<table>
<thead>
<tr>
<th>Test type</th>
<th>Test date</th>
<th>Witness stamp and test pressure<sup>a</sup></th>
<th>Test type</th>
<th>Test date</th>
<th>Witness stamp and test pressure<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mm/yyyy)</td>
<td>bar or kPa</td>
<td></td>
<td>(mm/yyyy)</td>
<td>bar or kPa</td>
</tr>
</tbody>
</table>

Table note:
^a Test pressure if applicable.

6.7.3.16.2 The following information must be durably marked either on the portable tank itself or on a metal plate firmly secured to the portable tank:

- Name of the operator
- Name of non-refrigerated liquefied gas(es) permitted for transport
- Maximum permissible load mass for each non-refrigerated liquefied gas permitted ______ kg
- Maximum permissible gross mass (MPGM) ________ kg
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

Unladen (tare) mass __________ kg

Portable tank instruction in accordance with 4.2.5.2.6

NOTE: For the identification of the non-refrigerated liquefied gases being transported, see also Part 5.

6.7.3.16.3 If a portable tank is designed and approved for handling in open seas, the words "OFFSHORE PORTABLE TANK" must be marked on the identification plate.

6.7.4 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS INTENDED FOR THE TRANSPORT OF REFRIGERATED LIQUEFIED GASES

6.7.4.1 Application and Definitions

6.7.4.1.1 Application

This Section must be applied in conjunction with the legislation applicable in the particular State or Territory to pressure vessels. Where there is conflict, the requirements of that legislation and any Codes and Standards mandated by that legislation take precedence over this Section.

6.7.4.1.2 Definitions

For the purposes of this section:

Holding time means the time that will elapse from the establishment of the initial filling condition until the pressure has risen due to heat influx to the lowest set pressure of the pressure limiting device(s);

Jacket means the outer insulation cover or cladding which may be part of the insulation system;

Leakproofness test means a test using gas subjecting the shell and its service equipment, to an effective internal pressure not less than 90% of the MAWP;

Maximum allowable working pressure (MAWP) means the maximum effective gauge pressure permissible at the top of the shell of a loaded portable tank in its operating position including the highest effective pressure during filling and discharge;

Maximum permissible gross mass (MPGM) means the sum of the tare mass of the portable tank and the heaviest load authorised for transport;

Minimum design temperature means the temperature which is used for the design and construction of the shell not higher than the lowest (coldest) temperature (service temperature) of the contents during normal conditions of filling, discharge and transport;

Portable tank means a thermally insulated multimodal tank having a capacity of more than 450 litres fitted with service equipment and structural equipment necessary for the transport of refrigerated liquefied
gases. The portable tank must be capable of being filled and discharged without the removal of its structural equipment. It must possess stabilising members external to the tank, and must be capable of being lifted when full. It must be designed primarily to be loaded onto a transport vehicle or ship and must be equipped with skids, mountings or accessories to facilitate mechanical handling. Road tank-vehicles, rail tank-wagons, non-metallic tanks, intermediate bulk containers (IBCs), gas cylinders and large receptacles are not considered to fall within the definition for portable tanks;

Reference steel means a steel with a tensile strength of 370 N/mm² and an elongation at fracture of 27%;

Shell means the part of the portable tank which retains the refrigerated liquefied gas intended for transport, including openings and their closures, but does not include service equipment or external structural equipment;

Service equipment means measuring instruments and filling, discharge, venting, safety, pressurising, cooling and thermal insulation devices;

Structural equipment means the reinforcing, fastening, protective and stabilising members external to the shell;

Tank means a construction which normally consists of either:

(a) A jacket and one or more inner shells where the space between the shell(s) and the jacket is exhausted of air (vacuum insulation) and may incorporate a thermal insulation system; or

(b) A jacket and an inner shell with an intermediate layer of solid thermally insulating material (e.g. solid foam);

Test pressure means the maximum gauge pressure at the top of the shell during the pressure test.

6.7.4.2 General design and construction requirements

6.7.4.2.1 Shells must be designed and constructed in accordance with the requirements of a pressure vessel code recognised by the competent authority. Shells and jackets must be made of metallic materials suitable for forming. Jackets must be made of steel. Non-metallic materials may be used for the attachments and supports between the shell and jacket, provided their material properties at the minimum design temperature are proven to be sufficient. The materials must in principle conform to national or international material standards. For welded shells and jackets only materials whose weldability has been fully demonstrated must be used. Welds must be skilfully made and afford complete safety. When the manufacturing process or the materials make it necessary, the shell must be suitably heat treated to guarantee adequate toughness in the weld and in the heat affected zones. In choosing the material, the minimum design temperature must be taken into account with respect to risk of brittle fracture, to hydrogen embrittlement, to stress corrosion cracking and to resistance to impact. When fine grain steel is used, the guaranteed value of the yield strength must be not more than 460 N/mm² and the
guaranteed value of the upper limit of the tensile strength must be not more than 725 N/mm\(^2\) in accordance with the material specifications. Portable tank materials must be suitable for the external environment in which they may be transported.

6.7.4.2.2 Any part of a portable tank, including fittings, gaskets and pipe-work, which can be expected normally to come into contact with the refrigerated liquefied gas transported must be compatible with that refrigerated liquefied gas.

6.7.4.2.3 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.7.4.2.4 The thermal insulation system must include a complete covering of the shell(s) with effective insulating materials. External insulation must be protected by a jacket so as to prevent the ingress of moisture and other damage under normal transport conditions.

6.7.4.2.5 When a jacket is so closed as to be gas-tight, a device must be provided to prevent any dangerous pressure from developing in the insulation space.

6.7.4.2.6 Portable tanks intended for the transport of refrigerated liquefied gases having a boiling point below minus 182 °C at atmospheric pressure must not include materials which may react with oxygen or oxygen enriched atmospheres in a dangerous manner, when located in parts of the thermal insulation when there is a risk of contact with oxygen or with oxygen enriched fluid.

6.7.4.2.7 Insulating materials must not deteriorate unduly in service.

6.7.4.2.8 A reference holding time must be determined for each refrigerated liquefied gas intended for transport in a portable tank.

6.7.4.2.8.1 The reference holding time must be determined by a method recognised by the competent authority on the basis of the following:

(a) The effectiveness of the insulation system, determined in accordance with 6.7.4.2.8.2;
(b) The lowest set pressure of the pressure limiting device(s);
(c) The initial filling conditions;
(d) An assumed ambient temperature of 30 °C;
(e) The physical properties of the individual refrigerated liquefied gas intended to be transported.

6.7.4.2.8.2 The effectiveness of the insulation system (heat influx in watts) must be determined by type testing the portable tank in accordance with a procedure recognised by the competent authority. This test must consist of either:
(a) A constant pressure test (for example at atmospheric pressure) when the loss of refrigerated liquefied gas is measured over a period of time; or

(b) A closed system test when the rise in pressure in the shell is measured over a period of time.

When performing the constant pressure test, variations in atmospheric pressure must be taken into account. When performing either tests corrections must be made for any variation of the ambient temperature from the assumed ambient temperature reference value of 30 °C.

NOTE: For the determination of the actual holding time before each journey, refer to 4.2.3.7.

6.7.4.2.9 The jacket of a vacuum-insulated double-wall tank must have either an external design pressure not less than 100 kPa (1 bar) gauge pressure calculated in accordance with a recognised technical code or a calculated critical collapsing pressure of not less than 200 kPa (2 bar) gauge pressure. Internal and external reinforcements may be included in calculating the ability of the jacket to resist the external pressure.

6.7.4.2.10 Portable tanks must be designed and constructed with supports to provide a secure base during transport and with suitable lifting and tie-down attachments.

6.7.4.2.11 Portable tanks must be designed to withstand, without loss of contents, at least the internal pressure due to the contents, and the static, dynamic and thermal loads during normal conditions of handling and transport. The design must demonstrate that the effects of fatigue, caused by repeated application of these loads through the expected life of the portable tank, have been taken into account.

6.7.4.2.12 Portable tanks and their fastenings under the maximum permissible load must be capable of absorbing the following separately applied static forces:

(a) In the direction of travel: twice the MPGM multiplied by the acceleration due to gravity \((g)^5\);

(b) Horizontally at right angles to the direction of travel: the MPGM (when the direction of travel is not clearly determined, the forces must be equal to twice the MPGM) multiplied by the acceleration due to gravity \((g)^5\);

(c) Vertically upwards: the MPGM multiplied by the acceleration due to gravity \((g)^5\); and

(d) Vertically downwards: twice the MPGM (total loading including the effect of gravity) multiplied by the acceleration due to gravity \((g)^5\).

Note: 5. Means \(g = 9.81\) metres per second

6.7.4.2.13 Under each of the forces in 6.7.4.2.12, the safety factor to be observed must be as follows:
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(a) For materials having a clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed yield strength; or
(b) For materials with no clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed 0.2% proof strength or, for austenitic steels, the 1% proof strength.

6.7.4.2.14 The values of yield strength or proof strength must be the values according to national or international material standards. When austenitic steels are used, the specified minimum values according to the material standards may be increased by up to 15% when these greater values are attested in the material inspection certificate. When no material standard exists for the metal in question, or when non-metallic materials are used the values of yield strength or proof strength must be approved by the competent authority.

6.7.4.2.15 Portable tanks intended for the transport of flammable refrigerated liquefied gases must be capable of being electrically earthed.

6.7.4.3 Design criteria

6.7.4.3.1 Shells must be of a circular cross section.

6.7.4.3.2 Shells must be designed and constructed to withstand a test pressure not less than 1.3 times the MAWP. For shells with vacuum insulation the test pressure must not be less than 1.3 times the sum of the MAWP and 100 kPa (1 bar). In no case must the test pressure be less than 300 kPa (3 bar) gauge pressure. Attention is drawn to the minimum shell thickness requirements, specified in 6.7.4.4.2 to 6.7.4.4.7.

6.7.4.3.3 For metals exhibiting a clearly defined yield point or characterised by a guaranteed proof strength (0.2% proof strength, generally, or 1% proof strength for austenitic steels) the primary membrane stress \(\sigma \) in the shell must not exceed 0.75 \(R_e \) or 0.50 \(R_m \), whichever is lower, at the test pressure, where:

\[
R_e = \text{yield strength in N/mm}^2, \text{ or } 0.2\% \text{ proof strength or, for austenitic steels, 1% proof strength;}
\]

\[
R_m = \text{minimum tensile strength in N/mm}^2.
\]

6.7.4.3.3.1 The values of \(R_e \) and \(R_m \) to be used must be the specified minimum values according to national or international material standards. When austenitic steels are used, the specified minimum values for \(R_e \) and \(R_m \) according to the material standards may be increased by up to 15% when greater values are attested in the material inspection certificate. When no material standard exists for the metal in question, the values of \(R_e \) and \(R_m \) used must be approved by the competent authority or its authorised body.

6.7.4.3.3.2 Steels which have a \(R_e/R_m \) ratio of more than 0.85 are not allowed for the construction of welded shells. The values of \(R_e \) and \(R_m \) to be used in determining this ratio must be the values specified in the material inspection certificate.
6.7.4.3.3.3 Steels used in the construction of shells must have an elongation at fracture, in %, of not less than 10 000/Rm with an absolute minimum of 16% for fine grain steels and 20% for other steels. Aluminium and aluminium alloys used in the construction of shells must have an elongation at fracture, in %, of not less than 10 000/6Rm with an absolute minimum of 12%.

6.7.4.3.3.4 For the purpose of determining actual values for materials, it must be noted that for sheet metal, the axis of the tensile test specimen must be at right angles (transversely) to the direction of rolling. The permanent elongation at fracture must be measured on test specimens of rectangular cross sections in accordance with ISO 6892:1998 using a 50 mm gauge length.

6.7.4.4 Minimum shell thickness

6.7.4.4.1 The minimum shell thickness must be the greater thickness based on:

(a) The minimum thickness determined in accordance with the requirements in 6.7.4.4.2 to 6.7.4.4.7; and

(b) The minimum thickness determined in accordance with the recognised pressure vessel code including the requirements in 6.7.4.3.

6.7.4.4.2 Shells of not more than 1.80 m in diameter must be not less than 5 mm thick in the reference steel or of equivalent thickness in the metal to be used. Shells of more than 1.80 m in diameter must be not less than 6 mm thick in the reference steel or of equivalent thickness in the metal to be used.

6.7.4.4.3 Shells of vacuum-insulated tanks of not more than 1.80 m in diameter must be not less than 3 mm thick in the reference steel or of equivalent thickness in the metal to be used. Such shells of more than 1.80 m in diameter must be not less than 4 mm thick in the reference steel or of equivalent thickness in the metal to be used.

6.7.4.4.4 For vacuum-insulated tanks, the aggregate thickness of the jacket and the shell must correspond to the minimum thickness prescribed in 6.7.4.4.2, the thickness of the shell itself being not less than the minimum thickness prescribed in 6.7.4.4.3.

6.7.4.4.5 Shells must be not less than 3 mm thick regardless of the material of construction.

6.7.4.4.6 The equivalent thickness of a metal other than the thickness prescribed for the reference steel in 6.7.4.4.2 and 6.7.4.4.3 must be determined using the following formula:

\[e_1 = \frac{21.4 \times e_0}{\sqrt[3]{Rm_1 \times A_1}} \]
where:

\[e_1 = \text{required equivalent thickness (in mm) of the metal to be used}; \]

\[e_0 = \text{minimum thickness (in mm) of the reference steel specified in 6.7.4.4.2 and 6.7.4.4.3}; \]

\[R_m = \text{guaranteed minimum tensile strength (in N/mm}^2\text{) of the metal to be used (see 6.7.4.3.3)}; \]

\[A_1 = \text{guaranteed minimum elongation at fracture (in %) of the metal to be used according to national or international standards.} \]

6.7.4.4.7 In no case must the wall thickness be less than that prescribed in 6.7.4.4.1 to 6.7.4.4.5. All parts of the shell must have a minimum thickness as determined by 6.7.4.4.1 to 6.7.4.4.6. This thickness must be exclusive of any corrosion allowance.

6.7.4.4.8 There must be no sudden change of plate thickness at the attachment of the ends (heads) to the cylindrical portion of the shell.

6.7.4.5 Service equipment

6.7.4.5.1 Service equipment must be so arranged as to be protected against the risk of being wrenched off or damaged during handling and transport. When the connection between the frame and the tank or the jacket and the shell allows relative movement, the equipment must be so fastened as to permit such movement without risk of damage to working parts. The external discharge fittings (pipe sockets, shut-off devices), the stop-valve and its seating must be protected against the danger of being wrenched off by external forces (for example using shear sections). The filling and discharge devices (including flanges or threaded plugs) and any protective caps must be capable of being secured against unintended opening.

6.7.4.5.2 Each filling and discharge opening in portable tanks used for the transport of flammable refrigerated liquefied gases must be fitted with at least three mutually independent shut-off devices in series, the first being a stop-valve situated as close as reasonably practicable to the jacket, the second being a stop-valve and the third being a blank flange or equivalent device.

The shut-off device closest to the jacket must be a quick closing device, which closes automatically in the event of unintended movement of the portable tank during filling or discharge or fire engulfment. This device must also be possible to operate by remote control.

6.7.4.5.3 Each filling and discharge opening in portable tanks used for the transport of non-flammable refrigerated liquefied gases must be fitted with at least two mutually independent shut-off devices in series, the first being a stop-
valve situated as close as reasonably practicable to the jacket, the second a blank flange or equivalent device.

6.7.4.5.4 For sections of piping which can be closed at both ends and where liquid product can be trapped, a method of automatic pressure relief must be provided to prevent excess pressure build-up within the piping.

6.7.4.5.5 Vacuum insulated tanks need not have an opening for inspection.

6.7.4.5.6 External fittings must be grouped together as far as reasonably practicable.

6.7.4.5.7 Each connection on a portable tank must be clearly marked to indicate its function.

6.7.4.5.8 Each stop-valve or other means of closure must be designed and constructed to a rated pressure not less than the MAWP of the shell taking into account the temperature expected during transport. All stop-valves with a screwed spindle must be closed by a clockwise motion of the handwheel. In the case of other stop-valves the position (open and closed) and direction of closure must be clearly indicated. All stop-valves must be designed to prevent unintentional opening.

6.7.4.5.9 When pressure-building units are used, the liquid and vapour connections to that unit must be provided with a valve as close to the jacket as reasonably practicable to prevent the loss of contents in case of damage to the pressure-building unit.

6.7.4.5.10 Piping must be designed, constructed and installed so as to avoid the risk of damage due to thermal expansion and contraction, mechanical shock and vibration. All piping must be of a suitable material. To prevent leakage due to fire, only steel piping and welded joints must be used between the jacket and the connection to the first closure of any outlet. The method of attaching the closure to this connection must be to the satisfaction of the competent authority or its authorised body. Elsewhere pipe joints must be welded when necessary.

6.7.4.5.11 Joints in copper tubing must be brazed or have an equally strong metal union. The melting point of brazing materials must be no lower than 525 °C. The joints must not decrease the strength of the tubing as may happen when cutting threads.

6.7.4.5.12 The materials of construction of valves and accessories must have satisfactory properties at the lowest operating temperature of the portable tank.

6.7.4.5.13 The burst pressure of all piping and pipe fittings must be not less than the highest of four times the MAWP of the shell or four times the pressure to which it may be subjected in service by the action of a pump or other device (except pressure-relief devices).
6.7.4.6 **Pressure-relief devices**

6.7.4.6.1 Every shell must be provided with not less than two independent spring-loaded pressure-relief devices. The pressure-relief devices must open automatically at a pressure not less than the MAWP and be fully open at a pressure equal to 110% of the MAWP. These devices must, after discharge, close at a pressure not lower than 10% below the pressure at which discharge starts and must remain closed at all lower pressures. The pressure-relief devices must be of the type that will resist dynamic forces including surge.

6.7.4.6.2 Shells for non-flammable refrigerated liquefied gases and hydrogen may in addition have frangible discs in parallel with the spring-loaded devices as specified in 6.7.4.7.2 and 6.7.4.7.3.

6.7.4.6.3 Pressure-relief devices must be designed to prevent the entry of foreign matter, the leakage of gas and the development of any dangerous excess pressure.

6.7.4.6.4 Pressure-relief devices must be approved by the competent authority or its authorised body.

6.7.4.7 **Capacity and setting of pressure-relief devices**

6.7.4.7.1 In the case of the loss of vacuum in a vacuum-insulated tank or of loss of 20% of the insulation of a tank insulated with solid materials, the combined capacity of all pressure-relief devices installed must be sufficient so that the pressure (including accumulation) inside the shell does not exceed 120% of the MAWP.

6.7.4.7.2 For non-flammable refrigerated liquefied gases (except oxygen) and hydrogen, this capacity may be achieved by the use of frangible discs in parallel with the required safety-relief devices. Frangible discs must rupture at nominal pressure equal to the test pressure of the shell.

6.7.4.7.3 Under the circumstances described in 6.7.4.7.1 and 6.7.4.7.2 together with complete fire engulfment the combined capacity of all pressure-relief devices installed must be sufficient to limit the pressure in the shell to the test pressure.

6.7.4.7.4 The required capacity of the relief devices must be calculated in accordance with a well-established technical code recognised by the competent authority ¹.

6.7.4.8 **Marking of pressure-relief devices**

6.7.4.8.1 Every pressure-relief device must be plainly and permanently marked with the following:

(a) The pressure (in bar or kPa) at which it is set to discharge;

¹ See for example CGA S-1.2-2003 “Pressure Relief Device Standards-Part 2-Cargo and Portable Tanks for Compressed Gases”
(b) The allowable tolerance at the discharge pressure for spring-loaded devices;
(c) The reference temperature corresponding to the rated pressure for frangible discs;
(d) The rated flow capacity of the device in standard cubic meters of air per second (m3/s); and
(e) The cross sectional flow areas of the spring loaded pressure-relief devices and frangible discs in mm2.

When practicable, the following information must also be shown:
(f) The manufacturer's name and relevant catalogue number.

6.7.4.8.2 The rated flow capacity marked on the pressure-relief devices must be determined according to ISO 4126 1:2004 and ISO 4126-7:2004.

6.7.4.9 Connections to pressure-relief devices

6.7.4.9.1 Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the safety device. No stop-valve must be installed between the shell and the pressure-relief devices except when duplicate devices are provided for maintenance or other reasons and the stop-valves serving the devices actually in use are locked open or the stop-valves are interlocked so that the requirements of 6.7.4.7 are always fulfilled. There must be no obstruction in an opening leading to a vent or pressure-relief device which might restrict or cut-off the flow from the shell to that device.

Pipework to vent the vapour or liquid from the outlet of the pressure-relief devices, when used, must deliver the relieved vapour or liquid to the atmosphere in conditions of minimum back-pressure on the relieving device.

6.7.4.10 Siting of pressure-relief devices

6.7.4.10.1 Each pressure-relief device inlet must be situated on top of the shell in a position as near the longitudinal and transverse centre of the shell as reasonably practicable. All pressure-relief device inlets must under maximum filling conditions be situated in the vapour space of the shell and the devices must be so arranged as to ensure that the escaping vapour is discharged unrestrictedly. For refrigerated liquefied gases, the escaping vapour must be directed away from the tank and in such a manner that it cannot impinge upon the tank. Protective devices which deflect the flow of vapour are permissible provided the required relief-device capacity is not reduced.

6.7.4.10.2 Arrangements must be made to prevent access to the devices by unauthorised persons and to protect the devices from damage caused by the portable tank overturning.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.7.4.11 Gauging devices

6.7.4.11.1 Unless a portable tank is intended to be filled by weight, it must be equipped with one or more gauging devices. Glass level-gauges and gauges made of other fragile material, which are in direct communication with the contents of the shell must not be used.

6.7.4.11.2 A connection for a vacuum gauge must be provided in the jacket of a vacuum-insulated portable tank.

6.7.4.12 Portable tank supports, frameworks, lifting and tie-down attachments

6.7.4.12.1 Portable tanks must be designed and constructed with a support structure to provide a secure base during transport. The forces specified in 6.7.4.2.12 and the safety factor specified in 6.7.4.2.13 must be considered in this aspect of the design. Skids, frameworks, cradles or other similar structures are acceptable.

6.7.4.12.2 The combined stresses caused by portable tank mountings (e.g. cradles, frameworks, etc.) and portable tank lifting and tie-down attachments must not cause excessive stress in any portion of the tank. Permanent lifting and tie-down attachments must be fitted to all portable tanks. Preferably they must be fitted to the portable tank supports but may be secured to reinforcing plates located on the tank at the points of support.

6.7.4.12.3 In the design of supports and frameworks the effects of environmental corrosion must be taken into account.

6.7.4.12.4 Forklift pockets must be capable of being closed off. The means of closing forklift pockets must be a permanent part of the framework or permanently attached to the framework. Single compartment portable tanks with a length less than 3.65 m need not have closed off forklift pockets provided that:

(a) The tank and all the fittings are well protected from being hit by the forklift blades; and

(b) The distance between the centres of the forklift pockets is at least half of the maximum length of the portable tank.

6.7.4.12.5 When portable tanks are not protected during transport, according to 4.2.3.3, the shells and service equipment must be protected against damage to the shell and service equipment resulting from lateral or longitudinal impact or overturning. External fittings must be protected so as to preclude the release of the shell contents upon impact or overturning of the portable tank on its fittings. Examples of protection include:

(a) Protection against lateral impact which may consist of longitudinal bars protecting the shell on both sides at the level of the median line;

(b) Protection of the portable tank against overturning which may consist of reinforcement rings or bars fixed across the frame;
(c) Protection against rear impact which may consist of a bumper or frame;
(d) Protection of the shell against damage from impact or overturning by use of an ISO frame in accordance with ISO 1496-3:1995;
(e) Protection of the portable tank from impact or overturning by a vacuum insulation jacket.

6.7.4.13 Design approval

6.7.4.13.1 The competent authority or its authorised body must issue a design approval certificate for any new design of a portable tank. This certificate must attest that a portable tank has been surveyed by that authority, is suitable for its intended purpose and meets the requirements of this Chapter. When a series of portable tanks is manufactured without change in the design, the certificate must be valid for the entire series. The certificate must refer to the prototype test report, the refrigerated liquefied gases allowed to be transported, the materials of construction of the shell and jacket and an approval number. The approval number must consist of the distinguishing sign or mark of the State in whose territory the approval was granted, indicated by the distinguishing sign for use in international road traffic\(^1\) (for Australia, the letters ‘AUS’), and a registration number. Any alternative arrangements according to 6.7.1.2 must be indicated on the certificate. A design approval may serve for the approval of smaller portable tanks made of materials of the same kind and thickness, by the same fabrication techniques and with identical supports, equivalent closures and other appurtenances.

6.7.4.13.2 The prototype test report for the design approval must include at least the following:

(a) The results of the applicable frame-work test specified in ISO 1496-3:1995;
(b) The results of the initial inspection and test in 6.7.4.14.3; and
(c) The results of the impact test in 6.7.4.14.1, when applicable.

6.7.4.14 Inspection and testing

6.7.4.14.1 Portable tanks meeting the definition of container in the International Convention for Safe Containers (CSC), 1972, as amended, must not be used unless they are successfully qualified by subjecting a representative prototype of each design to the Dynamic, Longitudinal Impact Test prescribed in the Manual for Tests and Criteria, Part IV, Section 40.

6.7.4.14.2 The tank and items of equipment of each portable tank must be inspected and tested before being put into service for the first time (initial inspection and test) and thereafter at not more than five-year intervals (5 year period inspection and test) with an intermediate periodic inspection and

\(^1\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

test (2.5 year periodic inspection and test) midway between the 5 year periodic inspections and tests. The 2.5 year inspection and test may be performed within 3 months of the specified date. An exceptional inspection and test must be performed regardless of the last periodic inspection and test when necessary according to 6.7.4.14.7.

6.7.4.14.3 The initial inspection and test of a portable tank must include a check of the design characteristics, an internal and external examination of the portable tank shell and its fittings with due regard to the refrigerated liquefied gases to be transported, and a pressure test referring to the test pressures according to 6.7.4.3.2. The pressure test may be performed as a hydraulic test or by using another liquid or gas with the agreement of the competent authority or its authorised body. Before the portable tank is placed into service, a leakproofness test and a test of the satisfactory operation of all service equipment must also be performed. When the shell and its fittings have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test. All welds subject to full stress level must be inspected during the initial test by radiographic, ultrasonic, or another suitable non-destructive test method. This does not apply to the jacket.

6.7.4.14.4 The 5 and 2.5 year periodic inspection and test must include an external examination of the portable tank and its fittings with due regard to the refrigerated liquefied gases transported, a leakproofness test, a test of the satisfactory operation of all service equipment and a vacuum reading, when applicable. In the case of non-vacuum insulated tanks, the jacket and insulation must be removed during a 2.5 year and a 5 year periodic inspection and tests but only to the extent necessary for a reliable appraisal.

6.7.4.14.5 <Reserved>

6.7.4.14.6 A portable tank may not be filled and offered for transport after the date of expiry of the last 5 year or 2.5 year periodic inspection and test as required by 6.7.4.14.2. However a portable tank filled prior to the date of expiry of the last periodic inspection and test may be transported for a period not to exceed three months beyond the date of expiry of the last periodic test or inspection. In addition, a portable tank may be transported after the date of expiry of the last periodic test and inspection:

(a) After emptying but before cleaning, for purposes of performing the next required test or inspection prior to refilling; and

(b) Unless otherwise exempted by the competent authority, for a period not to exceed six months beyond the date of expiry of the last periodic test or inspection, in order to allow the return of dangerous goods for proper disposal or recycling. Reference to this exemption must be mentioned in the transport document.

6.7.4.14.6.1 Except as provided for in 6.7.4.14.6, portable tanks which have missed the timeframe for their scheduled 5 year or 2.5 year periodic inspection and test may only be filled and offered for transport if a new 5 year periodic inspection and test is performed according to 6.7.4.14.4
6.7.4.14.7 The exceptional inspection and test is necessary when the portable tank shows evidence of damaged or corroded areas, leakage, or any other conditions that indicate a deficiency that could affect the integrity of the portable tank. The extent of the exceptional inspection and test must depend on the amount of damage or deterioration of the portable tank. It must include at least the 2.5 year inspection and test according to 6.7.4.14.4.

6.7.4.14.8 The internal examination during the initial inspection and test must ensure that the shell is inspected for pitting, corrosion, or abrasions, dents, distortions, defects in welds or any other conditions, that might render the portable tank unsafe for transport.

6.7.4.14.9 The external examination must ensure that:
(a) The external piping, valves, pressurising/cooling systems when applicable and gaskets are inspected for corroded areas, defects, or any other conditions, including leakage, that might render the portable tank unsafe for filling, discharge or transport;
(b) There is no leakage at any manhole covers or gaskets;
(c) Missing or loose bolts or nuts on any flanged connection or blank flange are replaced or tightened;
(d) All emergency devices and valves are free from corrosion, distortion and any damage or defect that could prevent their normal operation. Remote closure devices and self-closing stop-valves must be operated to demonstrate proper operation;
(e) Required marks on the portable tank are legible and in accordance with the applicable requirements; and
(f) The framework, the supports and the arrangements for lifting the portable tank are in satisfactory condition.

6.7.4.14.10 The inspections and tests in 6.7.4.14.1, 6.7.4.14.3, 6.7.4.14.4 and 6.7.4.14.7 must be performed or witnessed by an expert recognised by the competent authority or its authorised body. When the pressure test is a part of the inspection and test, the test pressure must be the one indicated on the data plate of the portable tank. While under pressure, the portable tank must be inspected for any leaks in the shell, piping or equipment.

6.7.4.14.11 In all cases when cutting, burning or welding operations on the shell of a portable tank have been effected, that work must be to the approval of the competent authority or its authorised body taking into account the pressure vessel code used for the construction of the shell. A pressure test to the original test pressure must be performed after the work is completed.

6.7.4.14.12 When evidence of any unsafe condition is discovered, the portable tank must not be returned to service until it has been corrected and the test is repeated and passed.

6.7.4.15 Marking
6.7.4.15.1 Every portable tank must be fitted with a corrosion resistant metal plate permanently attached to the portable tank in a conspicuous place readily accessible for inspection. When for reasons of portable tank arrangements the plate cannot be permanently attached to the shell, the shell must be marked with at least the information required by the pressure vessel code. As a minimum, at least the following information must be marked on the plate by stamping or by any other similar method:

(a) Owner information
 (i) Owner’s registration number;

(b) Manufacturing information
 (i) Country of manufacture;
 (ii) Year of manufacture;
 (iii) Manufacturer’s name or mark;
 (iv) Manufacturer’s serial number;

(c) Approval information
 (i) The United Nations packaging symbol

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;

 (ii) Approval country;
 (iii) Authorised body for the design approval;
 (iv) Design approval number;
 (v) Letters ‘AA’, if the design was approved under alternative arrangements (see 6.7.1.2);
 (vi) Pressure vessel code to which the shell is designed;

(d) Pressures
 (i) MAWP (in bar gauge or kPa gauge);
 (ii) Test pressure (in bar gauge or kPa gauge);
 (iii) Initial pressure test date (month and year);
 (iv) Identification mark of the initial pressure test witness;

(e) Temperatures
 (i) Minimum design temperature (in °C);

(f) Materials
 (i) Shell material(s) and material standard reference(s);
 (ii) Equivalent thickness in reference steel (in mm);

(g) Capacity
 (i) Tank water capacity at 20 °C (in litres);
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(h) Insulation
 (i) Either “Thermally insulated” or “Vacuum insulated” (as applicable);
 (ii) Effectiveness of the insulation system (heat influx) (in Watts)\(^6\);

(i) Holding times – For each refrigerated liquefied gas permitted to be transported in the portable tank:
 (i) Name, in full, of the refrigerated liquefied gas;
 (ii) Reference holding time (in days or hours)\(^6\);
 (iii) Initial pressure (in bar gauge or kPa gauge)\(^6\);
 (iv) Degree of filling (in kg)\(^6\);

(j) Periodic inspections and tests
 (i) Type of the most recent periodic test (2.5-year, 5-year or exceptional);
 (ii) Date of the most recent periodic test (month and year);
 (i) Identification mark of the authorised body who performed or witnessed the most recent test.

Note: 6. Means the unit must be indicated.
Figure 6.7.4.15.1: Example of identification plate marking

<table>
<thead>
<tr>
<th>Owner's registration number</th>
</tr>
</thead>
</table>

MANUFACTURING INFORMATION

<table>
<thead>
<tr>
<th>Country of manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of manufacture</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Manufacturer's serial number</td>
</tr>
</tbody>
</table>

APPROVAL INFORMATION

<table>
<thead>
<tr>
<th>Approval country</th>
<th>Authorised body for design approval</th>
<th>Design approval number</th>
<th>‘AA’ (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shell design code (pressure vessel code)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PRESSURES

<table>
<thead>
<tr>
<th>MAWP</th>
<th>bar or kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test pressure</td>
<td>bar or kPa</td>
</tr>
<tr>
<td>Initial pressure test date: (mm/yyyy)</td>
<td>Witness stamp:</td>
</tr>
</tbody>
</table>

TEMPERATURES

<table>
<thead>
<tr>
<th>Minimum design temperature</th>
<th>°C</th>
</tr>
</thead>
</table>

MATERIALS

<table>
<thead>
<tr>
<th>Shell material(s) and material standard reference(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Equivalent thickness in reference steel</th>
<th>mm</th>
</tr>
</thead>
</table>

CAPACITY

<table>
<thead>
<tr>
<th>Tank water capacity at 20 °C</th>
<th>litres</th>
</tr>
</thead>
</table>

INSULATION

<table>
<thead>
<tr>
<th>‘Thermally insulated’ or ‘Vacuum insulated’ (as applicable)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Heat influx</th>
<th>Watts</th>
</tr>
</thead>
</table>

HOLDING TIMES

<table>
<thead>
<tr>
<th>Refrigerated liquefied gas(es) permitted</th>
<th>Reference holding time</th>
<th>Initial pressure</th>
<th>Degree of filling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>days or hours</td>
<td>bar or kPa</td>
<td>kg</td>
</tr>
</tbody>
</table>

PERIODIC INSPECTIONS / TESTS

<table>
<thead>
<tr>
<th>Test type</th>
<th>Test date</th>
<th>Witness stamp</th>
<th>Test type</th>
<th>Test date</th>
<th>Witness stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mm/yyyy)</td>
<td></td>
<td></td>
<td>(mm/yyyy)</td>
<td></td>
</tr>
</tbody>
</table>

6.7.4.15.2 The following information must be durably marked either on the portable tank itself or on a metal plate firmly secured to the portable tank.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

Name of the owner and the operator

Name of the refrigerated liquefied gas being transported (and minimum mean bulk temperature)

Maximum permissible gross mass (MPGM) ________ kg

Unladen (tare) mass ________ kg

Actual holding time for gas being transported ______ days (or hours)

Portable tank instruction in accordance with 4.2.5.2.6

NOTE: For the identification of the refrigerated liquefied gas(es) being transported, see also Part 5.

6.7.4.15.3 If a portable tank is designed and approved for handling in open seas, the words "OFFSHORE PORTABLE TANK" must be marked on the identification plate.

6.7.5 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF MULTIPLE-ELEMENT GAS CONTAINERS (MEGCS) INTENDED FOR THE TRANSPORT OF NON-REFRIGERATED GASES

6.7.5.1 Application and Definitions

6.7.5.1.1 Application

This Section must be applied in conjunction with the legislation applicable in the particular State or Territory to pressure vessels. Where there is conflict, the requirements of that legislation and any Codes and Standards mandated by that legislation take precedence over this Section.

6.7.5.1.2 Definitions

For the purposes of this section:

Elements are cylinders, tubes or bundles of cylinders;

Leakproofness test means a test using gas subjecting the elements and the service equipment of the MEGC to an effective internal pressure of not less than 20% of the test pressure;

Manifold means an assembly of piping and valves connecting the filling and/or discharge openings of the elements;

Maximum permissible gross mass (MPGM) means the sum of the tare mass of the MEGC and the heaviest load authorised for transport;

Service equipment means measuring instruments and filling, discharge, venting and safety devices;

Structural equipment means the reinforcing, fastening, protective and stabilising members external to the elements.
6.7.5.2 General design and construction requirements

6.7.5.2.1 The MEGC must be capable of being filled and discharged without the removal of its structural equipment. It must possess stabilising members external to the elements to provide structural integrity for handling and transport. MEGCs must be designed and constructed with supports to provide a secure base during transport and with lifting and tie-down attachments which are adequate for lifting the MEGC including when loaded to its maximum permissible gross mass. The MEGC must be designed to be loaded onto a cargo transport unit or ship and must be equipped with skids, mountings or accessories to facilitate mechanical handling.

6.7.5.2.2 MEGCs must be designed, manufactured and equipped in such a way as to withstand all conditions to which they will be subjected during normal conditions of handling and transport. The design must take into account the effects of dynamic loading and fatigue.

6.7.5.2.3 Elements of an MEGC must be made of seamless steel or composite construction and be constructed and tested according to Chapter 6.2. All of the elements in an MEGC must be of the same design type.

6.7.5.2.4 Elements of MEGCs, fittings and pipework must be:
(a) compatible with the substances intended to be transported (for gases see ISO 11114-1:2012 + Amd 1:2017 and ISO 11114-2:2013); or
(b) properly passivated or neutralised by chemical reaction.

6.7.5.2.5 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.7.5.2.6 The materials of the MEGC, including any devices, gaskets, and accessories, must not adversely affect the gases intended for transport in the MEGC.

6.7.5.2.7 MEGCs must be designed to withstand, without loss of contents, at least the internal pressure due to the contents, and the static, dynamic and thermal loads during normal conditions of handling and transport. The design must demonstrate that the effects of fatigue, caused by repeated application of these loads through the expected life of the multiple-element gas container, have been taken into account.

6.7.5.2.8 MEGCs and their fastenings must, under the maximum permissible load, be capable of withstanding the following separately applied static forces:
(a) in the direction of travel: twice the MPGM multiplied by the acceleration due to gravity \((g)^5\);
(b) horizontally at right angles to the direction of travel: the MPGM (when the direction of travel is not clearly determined, the forces must be equal to twice the MPGM) multiplied by the acceleration due to gravity \((g)^5\);
(c) vertically upwards: the MPGM multiplied by the acceleration due to gravity \((g)\); and

(d) vertically downwards: twice the MPGM (total loading including the effect of gravity) multiplied by the acceleration due to gravity \((g)\).

Note: 5 means \(g = 9.81\) metres per second

6.7.5.2.9 Under the forces defined above, the stress at the most severely stressed point of the elements must not exceed the values given in either the relevant standards of 6.2.2.1 or, if the elements are not designed, constructed and tested according to those standards, in the technical code or standard recognised or approved by the competent authority of the country of use (see 6.2.3.1).

6.7.5.2.10 Under each of the forces in 6.7.5.2.8, the safety factor for the framework and fastenings to be observed must be as follows:

(a) for steels having a clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed yield strength; or

(b) for steels with no clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed 0.2% proof strength and, for austenitic steels, the 1% proof strength.

6.7.5.2.11 MEGCs intended for the transport of flammable gases must be capable of being electrically earthed.

6.7.5.2.12 The elements must be secured in a manner that prevents undesired movement in relation to the structure and the concentration of harmful localised stresses.

6.7.5.3 Service equipment

6.7.5.3.1 Service equipment must be configured or designed to prevent damage that could result in the release of the pressure receptacle contents during normal conditions of handling and transport. When the connection between the frame and the elements allows relative movement between the sub-assemblies, the equipment must be so fastened as to permit such movement without damage to working parts. The manifolds, the discharge fittings (pipe sockets, shut-off devices), and the stop-valves must be protected from being wrenched off by external forces. Manifold piping leading to shut-off valves must be sufficiently flexible to protect the valves and the piping from shearing, or releasing the pressure receptacle contents. The filling and discharge devices (including flanges or threaded plugs) and any protective caps must be capable of being secured against unintended opening.

6.7.5.3.2 Each element intended for the transport of gases of Division 2.3 must be fitted with a valve. The manifold for liquefied gases of Division 2.3 must be so designed that the elements can be filled separately and be kept isolated by a valve capable of being sealed. For the transport of gases of Division 2.1, the elements must be divided into groups of not more than 3000 litres isolated by a valve.
6.7.5.3.3 For filling and discharge openings of the MEGC, two valves in series must be placed in an accessible position on each discharge and filling pipe. One of the valves may be a non-return valve. The filling and discharge devices may be fitted to a manifold. For sections of piping which can be closed at both ends and where a liquid product can be trapped, a pressure-relief valve must be provided to prevent excessive pressure build-up. The main isolation valves on an MEGC must be clearly marked to indicate their directions of closure. Each stop-valve or other means of closure must be designed and constructed to withstand a pressure equal to or greater than 1.5 times the test pressure of the MEGC. All stop-valves with screwed spindles must close by a clockwise motion of the handwheel. For other stop-valves, the position (open or closed) and direction of closure must be clearly indicated. All stop-valves must be designed and positioned to prevent unintentional opening. Ductile metals must be used in the construction of valves or accessories.

6.7.5.3.4 Piping must be designed, constructed and installed so as to avoid damage due to expansion and contraction, mechanical shock and vibration. Joints in tubing must be brazed or have an equally strong metal union. The melting point of brazing materials must be no lower than 525 °C. The rated pressure of the service equipment and of the manifold must be not less than two thirds of the test pressure of the elements.

6.7.5.4 Pressure-relief devices

6.7.5.4.1 The elements of MEGCs used for the transport of UN 1013 carbon dioxide and UN 1070 nitrous oxide must be isolated by a valve into assemblies of not more than 3000 litres. Each assembly must be fitted with one or more pressure relief devices. If so required by the competent authority of the country of use, MEGCs for other gases must be fitted with pressure relief devices as specified by that competent authority.

6.7.5.4.2 When pressure relief devices are fitted, every element or group of elements of an MEGC that can be isolated must then be fitted with one or more pressure relief devices. Pressure relief devices must be of a type that will resist dynamic forces including liquid surge and must be designed to prevent the entry of foreign matter, the leakage of gas and the development of any dangerous excess pressure.

6.7.5.4.3 MEGCs used for the transport of certain non-refrigerated gases identified in instruction T50 in 4.2.5.2.6 may have a pressure-relief device as required by the competent authority of the country of use. Unless an MEGC in dedicated service is fitted with an approved pressure relief device constructed of materials compatible with the load, such a device must comprise a frangible disc preceding a spring-loaded device. The space between the frangible disc and the spring-loaded device may be equipped with a pressure gauge or a suitable telltale indicator. This arrangement permits the detection of disc rupture, pinholing or leakage which could cause a malfunction of the pressure relief device. The frangible disc must rupture at a nominal pressure 10% above the start-to-discharge pressure of the spring-loaded device.
6.7.5.4.4 In the case of multi-purpose MEGCs used for the transport of low-pressure liquefied gases, the pressure-relief devices must open at a pressure as specified in 6.7.3.7.1 for the gas having the highest maximum allowable working pressure of the gases allowed to be transported in the MEGC.

6.7.5.5 Capacity of pressure relief devices

6.7.5.5.1 The combined delivery capacity of the pressure relief devices when fitted must be sufficient that, in the event of total fire engulfment of the MEGC, the pressure (including accumulation) inside the elements does not exceed 120% of the set pressure of the pressure relief device. The formula provided in CGA S-1.2-2003 “Pressure Relief Device Standards, Part 2, Cargo and Portable Tanks for Compressed Gases” must be used to determine the minimum total flow capacity for the system of pressure relief devices. CGA S-1.1-2003 “Pressure Relief Device Standards, Part 1, Cylinders for Compressed Gases” may be used to determine the relief capacity of individual elements. Spring-loaded pressure relief devices may be used to achieve the full relief capacity prescribed in the case of low pressure liquefied gases. In the case of multi-purpose MEGCs, the combined delivery capacity of the pressure-relief devices must be taken for the gas which requires the highest delivery capacity of the gases allowed to be transported in the MEGC.

6.7.5.5.2 To determine the total required capacity of the pressure relief devices installed on the elements for the transport of liquefied gases, the thermodynamic properties of the gas must be considered (see, for example, CGA S-1.2-2003 “Pressure Relief Device Standards – Part 2 – Cargo and Portable Tanks for Compressed Gases” for low pressure liquefied gases and CGA S-1.1-2003 “Pressure Relief Device Standards, Part 1, Cylinders for Compressed Gases” for high pressure liquefied gases).

6.7.5.6 Marking of pressure-relief devices

6.7.5.6.1 Pressure relief devices must be clearly and permanently marked with the following:
(a) the manufacturer's name and relevant catalogue number.
(b) the set pressure and/or the set temperature;
(c) the date of the last test;
(d) The cross sectional flow areas of the spring loaded pressure-relief devices and frangible discs in mm².

6.7.5.6.2 The rated flow capacity marked on spring loaded pressure relief devices for low pressure liquefied gases must be determined according to ISO 4126 1:2004 and ISO 4126-7:2004.

6.7.5.7 Connections to pressure-relief devices

6.7.5.7.1 Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the pressure relief device.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

No stop-valve must be installed between the element and the pressure-relief devices, except when duplicate devices are provided for maintenance or other reasons, and the stop-valves serving the devices actually in use are locked open, or the stop-valves are interlocked so that at least one of the duplicate devices is always operable and capable of meeting the requirements of 6.7.5.5. There must be no obstruction in an opening leading to or leaving from a vent or pressure-relief device which might restrict or cut-off the flow from the element to that device. The opening through all piping and fittings must have at least the same flow area as the inlet of the pressure relief device to which it is connected. The nominal size of the discharge piping must be at least as large as that of the pressure relief device outlet. Vents from the pressure-relief devices, when used, must deliver the relieved vapour or liquid to the atmosphere in conditions of minimum backpressure on the relieving device.

6.7.5.8 Siting of pressure-relief devices

6.7.5.8.1 Each pressure relief device must, under maximum filling conditions, be in communication with the vapour space of the elements for the transport of liquefied gases. The devices, when fitted, must be so arranged as to ensure that the escaping vapour is discharged upwards and unrestrictedly as to prevent any impingement of escaping gas or liquid upon the MEGC, its elements or personnel. For flammable, pyrophoric and oxidising gases, the escaping gas must be directed away from the element in such a manner that it cannot impinge upon the other elements. Heat resistant protective devices which deflect the flow of gas are permissible provided the required pressure relief device capacity is not reduced.

6.7.5.8.2 Arrangements must be made to prevent access to the pressure-relief devices by unauthorised persons and to protect the devices from damage caused by the MEGC overturning.

6.7.5.9 Gauging devices

6.7.5.9.1 When a MEGC is intended to be filled by mass, it must be equipped with one or more gauging devices. Level-gauges made of glass or other fragile material must not be used.

6.7.5.10 MEGC supports, frameworks, lifting and tie-down attachments

6.7.5.10.1 MEGCs must be designed and constructed with a support structure to provide a secure base during transport. The forces specified in 6.7.5.2.8 and the safety factor specified in 6.7.5.2.10 must be considered in this aspect of the design. Skids, frameworks, cradles or other similar structures are acceptable.

6.7.5.10.2 The combined stresses caused by element mountings (e.g. cradles, frameworks, etc.) and MEGC lifting and tie-down attachments must not cause excessive stress in any element. Permanent lifting and tie-down attachments must be fitted to all MEGCs. In no case must mountings or attachments be welded onto the elements.
6.7.5.10.3 In the design of supports and frameworks, the effects of environmental corrosion must be taken into account.

6.7.5.10.4 When MEGCs are not protected during transport, according to 4.2.5.3, the elements and service equipment must be protected against damage resulting from lateral or longitudinal impact or overturning. External fittings must be protected so as to preclude the release of the elements' contents upon impact or overturning of the MEGC on its fittings. Particular attention must be paid to the protection of the manifold. Examples of protection include:

(a) protection against lateral impact which may consist of longitudinal bars;
(b) protection against overturning which may consist of reinforcement rings or bars fixed across the frame;
(c) protection against rear impact which may consist of a bumper or frame;
(d) protection of the elements and service equipment against damage from impact or overturning by use of an ISO frame in accordance with the relevant provisions of ISO 1496-3:1995.

6.7.5.11 Design approval

6.7.5.11.1 The competent authority or its authorised body must issue a design approval certificate for any new design of a MEGC. This certificate must attest that the MEGC has been surveyed by that authority, is suitable for its intended purpose and meets the requirements of this Chapter, the applicable provisions for gases of Chapter 4.1 and of packing instruction P200. When a series of MEGCs are manufactured without change in the design, the certificate must be valid for the entire series. The certificate must refer to the prototype test report, the materials of construction of the manifold, the standards to which the elements are made and an approval number. The approval number must consist of the distinguishing sign or mark of the country granting the approval, indicated by the distinguishing sign used on vehicles in international road traffic\(^1\) (for Australia, the letters ‘AUS’), and a registration number. Any alternative arrangements according to 6.7.1.2 must be indicated on the certificate. A design approval may serve for the approval of smaller MEGCs made of materials of the same type and thickness, by the same fabrication techniques and with identical supports, equivalent closures and other appurtenances.

6.7.5.11.2 The prototype test report for the design approval must include at least the following:

(a) the results of the applicable framework test specified in ISO 1496-3:1995;
(b) the results of the initial inspection and test specified in 6.7.5.12.3;

\(^1\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(c) the results of the impact test specified in 6.7.5.12.1; and
(d) certification documents verifying that the cylinders and tubes comply with the applicable standards.

6.7.5.12 Inspection and testing

6.7.5.12.1 MEGCs meeting the definition of container in the CSC must not be used unless they are successfully qualified by subjecting a representative prototype of each design to the Dynamic, Longitudinal Impact Test prescribed in the Manual for Tests and Criteria, Part IV, Section 41.

6.7.5.12.2 The elements and items of equipment of each MEGC must be inspected and tested before being put into service for the first time (initial inspection and test). Thereafter, MEGCs must be inspected at no more than five-year intervals (5 year periodic inspection). An exceptional inspection and test must be performed, regardless of the last periodic inspection and test, when necessary according to 6.7.5.12.5.

6.7.5.12.3 The initial inspection and test of an MEGC must include a check of the design characteristics, an external examination of the MEGC and its fittings with due regard to the gases to be transported, and a pressure test performed at the test pressures according to packing instruction P200. The pressure test of the manifold may be performed as a hydraulic test or by using another liquid or gas with the agreement of the competent authority or its authorised body. Before the MEGC is placed into service, a leakproofness test and a test of the satisfactory operation of all service equipment must also be performed. When the elements and their fittings have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test.

6.7.5.12.4 The 5-year periodic inspection must include an external examination of the structure, the elements and the service equipment in accordance with 6.7.5.12.6. The elements and the piping must be tested at the periodicity specified in packing instruction P200 and in accordance with the provisions described in 6.2.1.6. When the elements and equipment have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test.

6.7.5.12.5 An exceptional inspection and test is necessary when the MEGC shows evidence of damaged or corroded areas, leakage, or other conditions that indicate a deficiency that could affect the integrity of the MEGC. The extent of the exceptional inspection and test must depend on the amount of damage or deterioration of the MEGC. It must include at least the examinations required under 6.7.5.12.6.

6.7.5.12.6 The examinations must ensure that:

(a) the elements are inspected externally for pitting, corrosion, abrasions, dents, distortions, defects in welds or any other conditions, including leakage, that might render the MEGC unsafe for transport;
(b) the piping, valves, and gaskets are inspected for corroded areas, defects, and other conditions, including leakage, that might render the MEGC unsafe for filling, discharge or transport;

(c) missing or loose bolts or nuts on any flanged connection or blank flange are replaced or tightened;

(d) all emergency devices and valves are free from corrosion, distortion and any damage or defect that could prevent their normal operation. Remote closure devices and self-closing stop-valves must be operated to demonstrate proper operation;

(e) required marks on the MEGC are legible and in accordance with the applicable requirements; and

(f) the framework, the supports and the arrangements for lifting the MEGC are in satisfactory condition.

6.7.5.12.7 The inspections and tests in 6.7.5.12.1, 6.7.5.12.3, 6.7.5.12.4 and 6.7.5.12.5 must be performed or witnessed by a body authorised by the competent authority. When the pressure test is a part of the inspection and test, the test pressure must be the one indicated on the data plate of the MEGC. While under pressure, the MEGC must be inspected for any leaks in the elements, piping or equipment.

6.7.5.12.8 When evidence of any unsafe condition is discovered, the MEGC must not be returned to service until it has been corrected and the applicable tests and verifications are passed.

6.7.5.13 Marking

6.7.5.13.1 Every MEGC must be fitted with a corrosion resistant metal plate permanently attached to the MEGC in a conspicuous place readily accessible for inspection. The metal plate must not be affixed to the elements. The elements must be marked in accordance with Chapter 6.2. As a minimum, at least the following information must be marked on the plate by stamping or by any other similar method:

(a) Owner information
 (i) Owner’s registration number;
(b) Manufacturing information
 (i) Country of manufacture;
 (ii) Year of manufacture;
 (iii) Manufacturer’s name or mark;
 (iv) Manufacturer’s serial number;
(c) Approval information
 (i) The United Nations packaging symbol

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(ii) Approval country;
(iii) Authorised body for the design approval;
(iv) Design approval number;
(v) Letters ‘AA’, if the design was approved under alternative arrangements (see 6.7.1.2);

(d) Pressures
(i) Test pressure (in bar gauge)*;
(ii) Initial pressure test date (month and year);
(iii) Identification mark of the initial pressure test witness;

(e) Temperatures
(i) Design temperature range (in °C)*;

(f) Elements / Capacity
(i) Number of elements;
(ii) Total water capacity (in litres)*;

(g) Periodic inspections and tests
(i) Type of the most recent periodic test (5-year or exceptional);
(ii) Date of the most recent periodic test (month and year);
(iii) Identification mark of the authorised body who performed or witnessed the most recent test.

* the unit used must be indicated.

Figure 6.7.5.13.1: Example of identification plate marking

| Owner's registration number |
| MANUFACTURING INFORMATION |
| Country of manufacture |
| Year of manufacture |
| Manufacturer |
| Manufacturer’s serial number |
| APPROVAL INFORMATION |
| Approval country |
| Authorised body for design approval |
| Design approval number |
| ‘AA’ (if applicable) |
| PRESSURES |
| Test pressure | bar |
| Initial pressure test date: | (mm/yyyy) | Witness stamp: |
| TEMPERATURES |
| Design temperature range | °C to °C |
| ELEMENTS / CAPACITY |
| Number of elements |
| Total water capacity | litres |
| PERIODIC INSPECTIONS / TESTS |
6.7.5.13.2 The following information must be durably marked on a metal plate firmly secured to the MEGC:

Name of the operator

Maximum permissible load mass ________ kg

Working pressure at 15°C ________ bar gauge

Maximum permissible gross mass (MPGM) ________ kg

Unladen (tare) mass ________ kg
CHAPTER 6.8 - REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF BULK CONTAINERS

6.8.1 DEFINITIONS

For the purposes of this section:

Closed bulk container means a totally closed bulk container having a rigid roof, sidewalls, end walls and floor (including hopper-type bottoms). The term includes bulk containers with an opening roof, side or end wall that can be closed during transport. Closed bulk containers may be equipped with openings to allow for the exchange of vapours and gases with air and which prevent under normal conditions of transport the release of solid contents as well as the penetration of rain and splash water.

Flexible bulk container means a flexible container with a capacity not exceeding 15 m3 and includes liners and attached handling devices and service equipment.

Sheeted bulk container means an open top bulk container with rigid bottom (including hopper-type bottom), side and end walls and a non-rigid covering;

6.8.2 APPLICATION AND GENERAL REQUIREMENTS

6.8.2.1 Bulk containers and their service and structural equipment must be designed and constructed to withstand, without loss of contents, the internal pressure of the contents and the stresses of normal handling and transport.

6.8.2.2 Where a discharge valve is fitted, it must be capable of being made secure in the closed position and the whole discharge system must be suitably protected from damage. Valves having lever closures must be able to be secured against unintended opening and the open or closed position must be readily apparent.

6.8.2.3 Code for designating types of bulk container

The following table indicates the codes to be used for designating types of bulk containers:

<table>
<thead>
<tr>
<th>Types of bulk containers</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheeted bulk container</td>
<td>BK1</td>
</tr>
<tr>
<td>Closed bulk container</td>
<td>BK2</td>
</tr>
<tr>
<td>Flexible bulk container</td>
<td>BK3</td>
</tr>
</tbody>
</table>

6.8.2.4 In order to take account of progress in science and technology, the use of alternative arrangements which offer at least equivalent safety as provided by the requirements of this chapter may be considered by the competent authority.
6.8.3 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF FREIGHT CONTAINERS USED AS BK1 OR BK2 BULK CONTAINERS

6.8.3.1 Design and construction requirements

6.8.3.1.1 The general design and construction requirements of this section are deemed to be met if the bulk container complies with the requirements of ISO 1496-4:1991 “Series 1 Freight containers- Specification and testing - Part 4: Non pressurised containers for dry bulk” and the container is siftproof.

6.8.3.1.2 Freight containers designed and tested in accordance with ISO 1496 1:1990 “Series 1 Freight containers- Specification and testing – Part 1: General cargo containers for general purposes” must be equipped with operational equipment which is, including its connection to the freight container, designed to strengthen the end walls and to improve the longitudinal restraint as necessary to comply with the test requirements of ISO 1496-4:1991 as relevant.

6.8.3.1.3 Bulk containers must be siftproof. Where a liner is used to make the container siftproof it must be made of a suitable material. The strength of material used for, and the construction of, the liner must be appropriate to the capacity of the container and its intended use. Joins and closures of the liner must withstand pressures and impacts liable to occur under normal conditions of handling and transport. For ventilated bulk containers any liner must not impair the operation of ventilating devices.

6.8.3.1.4 The operational equipment of bulk containers designed to be emptied by tilting must be capable of withstanding the total filling mass in the tilted orientation.

6.8.3.1.5 Any movable roof or side or end wall or roof section must be fitted with locking devices with securing devices designed to show the locked state to an observer at ground level.

6.8.3.2 Service equipment

6.8.3.2.1 Filling and discharge devices must be so constructed and arranged as to be protected against the risk of being wrenched off or damaged during transport and handling. The filling and discharge devices must be capable of being secured against unintended opening. The open and closed position and direction of closure must be clearly indicated.

6.8.3.2.2 Seals of openings must be so arranged as to avoid any damage by the operation, filling and emptying of the bulk container.

6.8.3.2.3 Where ventilation is required bulk containers must be equipped with means of air exchange, either by natural convection, e.g. by openings, or active elements, e.g. fans. The ventilation must be designed to prevent negative pressures in the container at all times. Ventilating elements of bulk containers for the transport of flammable substances or substances...
emitting flammable gases or vapours must be designed so as not to be a source of ignition.

6.8.3.3 Inspection and testing
6.8.3.3.1 Freight containers used maintained and qualified as bulk containers in accordance with the requirements of this section must be tested and approved in accordance with the Convention for Safe Containers (CSC), 1972, as amended.

6.8.3.3.2 Freight containers used and qualified as bulk containers must be inspected periodically according to the CSC.

6.8.3.4 Marking
6.8.3.4.1 Freight containers used as bulk containers must be marked with a Safety Approval Plate in accordance with the CSC.

6.8.4 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION AND APPROVAL OF BK1 OR BK2 BULK CONTAINERS OTHER THAN FREIGHT CONTAINERS
6.8.4.1 Bulk containers covered in this section include skips, offshore bulk containers, bulk bins, swap bodies, trough shaped containers, roller containers, and load compartments of vehicles.

6.8.4.2 These bulk containers must be designed and constructed so as to be strong enough to withstand the shocks and loadings normally encountered during transport including, as applicable, transhipment between modes of transport.

6.8.4.3 Vehicles must comply with the requirements of, and be acceptable to, the competent authority responsible for land transport of the materials to be transported in bulk.

6.8.4.4 These bulk containers must be approved by the competent authority and the approval must include the code for designating types of bulk containers in accordance with 6.8.2.3 and the requirements for inspection and testing as appropriate.

6.8.4.5 Where it is necessary to use a liner in order to retain the dangerous goods it must meet the provisions of 6.8.3.1.3.

6.8.4.6 Except where 6.8.4.6.1 applies, the following statement must be shown on the transport document:

“Bulk container BK(x) approved by the competent authority of …………………..”

6.8.4.6.1 For transport only by road or rail within Australia, if the statement required by 6.8.4.6 is clearly and prominently marked on the outside of the bulk container, it may be omitted from the transport document.

BK(x) refers to the type of bulk container, BK1 or BK2 (see 6.8.2.3). (Not used from UN 18).
6.8.5 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF FLEXIBLE BULK CONTAINERS BK3

6.8.5.1 Design and construction requirements

6.8.5.1.1 Flexible bulk containers must be sift-proof.

6.8.5.1.2 Flexible bulk containers must be completely closed to prevent the release of contents.

6.8.5.1.3 Flexible bulk containers must be waterproof.

6.8.5.1.4 Parts of the flexible bulk container which are in direct contact with dangerous goods:

(a) Must not be affected or significantly weakened by those dangerous goods;

(b) Must not cause a dangerous effect e.g. catalysing a reaction or reacting with the dangerous goods; and

(c) Must not allow permeation of the dangerous goods that could constitute a danger under normal conditions of transport.

6.8.5.2 Service equipment and handling devices

6.8.5.2.1 Filling and discharge devices must be so constructed as to be protected against damage during transport and handling. The filling and discharge devices must be capable of being secured against unintended opening.

6.8.5.2.2 Slings of the flexible bulk container, if fitted, must withstand pressure and dynamic forces which can appear in normal conditions of handling and transport.

6.8.5.2.3 The handling devices must be strong enough to withstand repeated use.

6.8.5.3 Inspection and testing

6.8.5.3.1 Each flexible bulk container design type must successfully pass the tests prescribed in this Chapter before being used.

6.8.5.3.2 Tests must also be repeated after each modification of design type which alters the design, material or manner of construction of a flexible bulk container.

6.8.5.3.3 Tests must be carried out on flexible bulk containers prepared as for transport. Flexible bulk containers must be filled to the maximum mass at which they may be used and the contents must be evenly distributed. The substances to be transported in the flexible bulk container may be replaced by other substances except where this would invalidate the results of the tests. When another substance is used it must have the same physical characteristics (mass, grain size, etc.) as the substance to be transported. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total mass of the flexible bulk container, so long as they are placed so that the test results are not affected.
6.8.5.3.4 Flexible bulk containers must be manufactured and tested under a quality assurance programme which satisfies the competent authority, in order to ensure that each manufactured flexible bulk container meets the requirements of this Chapter.

6.8.5.3.5 Drop test

6.8.5.3.5.1 Applicability
For all types of flexible bulk containers, as a design type test.

6.8.5.3.5.2 Preparation for testing
The flexible bulk container must be filled to its maximum permissible gross mass.

6.8.5.3.5.3 The flexible bulk container must be dropped onto a target surface that is non-resilient and horizontal. The target surface must be:
(a) Integral and massive enough to be immovable;
(b) Flat with a surface kept free from local defects capable of influencing the test results;
(c) Rigid enough to be non-deformable under test conditions and not liable to become damaged by the tests; and
(d) Sufficiently large to ensure that the test flexible bulk container falls entirely upon the surface.

Following the drop, the flexible bulk container must be restored to the upright position for observation.

6.8.5.3.5.4 Drop height is:
Packing group III: 0.8 m

6.8.5.3.5.5 Criteria for passing the test:
(a) There must be no loss of contents. A slight discharge, e.g. from closures or stitch holes, upon impact is not to be considered to be a failure of the flexible bulk container provided that no further leakage occurs after the container has been restored to the upright position;
(b) There must be no damage which renders the flexible bulk container unsafe to be transported for salvage or for disposal.

6.8.5.3.6 Top lift test

6.8.5.3.6.1 Applicability
For all types of flexible bulk containers as a design type test.

6.8.5.3.6.2 Preparation for testing
Flexible bulk containers must be filled to six times the maximum net mass, the load being evenly distributed.
6.8.5.3.6.3 A flexible bulk container must be lifted in the manner for which it is designed until clear of the floor and maintained in that position for a period of five minutes.

6.8.5.3.6.4 Criteria for passing the test: there must be no damage to the flexible bulk container or its lifting devices which renders the flexible bulk container unsafe for transport or handling, and no loss of contents.

6.8.5.3.7 Topple test

6.8.5.3.7.1 Applicability
For all types of flexible bulk containers as a design type test.

6.8.5.3.7.2 Preparation for testing
The flexible bulk container must be filled to its maximum permissible gross mass.

6.8.5.3.7.3 Flexible bulk container must be toppled onto any part of its top by lifting the side furthest from the drop edge upon a target surface that is non-resilient and horizontal. The target surface must be:
(a) Integral and massive enough to be immovable;
(b) Flat with a surface kept free from local defects capable of influencing the test results;
(c) Rigid enough to be non-deformable under test conditions and not liable to become damaged by the tests; and
(d) Sufficiently large to ensure that the test flexible bulk container falls entirely upon the surface.

6.8.5.3.7.4 For all flexible bulk containers, the topple height is specified as follows:
Packing group III: 0.8 m

6.8.5.3.7.5 Criterion for passing the test: there must be no loss of contents. A slight discharge, e.g., from closures or stitch holes, upon impact is not to be considered to be a failure of the flexible bulk container provided that no further leakage occurs.

6.8.5.3.8 Righting test

6.8.5.3.8.1 Applicability
For all types of flexible bulk containers designed to be lifted from the top or side, as a design type test.

6.8.5.3.8.2 Preparation for testing
The flexible bulk container must be filled to not less than 95% of its capacity and to its maximum permissible gross mass.

6.8.5.3.8.3 The flexible bulk container, lying on its side, must be lifted at a speed of at least 0.1 m/s to an upright position, clear of the floor, by no more than half of the lifting devices.
6.8.5.3.8.4 Criterion for passing the test: there must be no damage to the flexible bulk container or its lifting devices which renders the flexible bulk container unsafe for transport or handling.

6.8.5.3.9 Tear test

6.8.5.3.9.1 Applicability
For all types of flexible bulk containers as a design type test.

6.8.5.3.9.2 Preparation for testing
The flexible bulk container must be filled to its maximum permissible gross mass.

6.8.5.3.9.3 With the flexible bulk container placed on the ground, a 300 mm cut must be made, completely penetrating all layers of the flexible bulk container on a wall of a wide face. The cut must be made at a 45° angle to the principal axis of the flexible bulk container, halfway between the bottom surface and the top level of the contents. The flexible bulk container must then be subjected to a uniformly distributed superimposed load equivalent to twice the maximum gross mass. The load must be applied for at least fifteen minutes. A flexible bulk container which is designed to be lifted from the top or the side must, after removal of the superimposed load, be lifted clear of the floor and maintained in that position for a period of fifteen minutes.

6.8.5.3.9.4 Criterion for passing the test: the cut must not propagate more than 25% of its original length.

6.8.5.3.10 Stacking test

6.8.5.3.10.1 Applicability
For all types of flexible bulk containers as a design type test.

6.8.5.3.10.2 Preparation for testing
The flexible bulk container must be filled to its maximum permissible gross mass.

6.8.5.3.10.3 The flexible bulk container must be subjected to a force applied to its top surface that is four times the design load-carrying capacity for 24 hours.

6.8.5.3.10.4 Criterion for passing the test: there must be no loss of contents during the test or after removal of the load.

6.8.5.4 Test report

6.8.5.4.1 A test report containing at least the following particulars must be drawn up and must be available to the users of the flexible bulk container:

1. Name and address of the test facility;
2. Name and address of applicant (where appropriate);
3. Unique test report identification;
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

4. Date of the test report;
5. Manufacturer of the flexible bulk container;
6. Description of the flexible bulk container design type (e.g. dimensions, materials, closures, thickness, etc.) and/or photograph(s);
7. Maximum capacity/maximum permissible gross mass;
8. Characteristics of test contents, e.g. particle size for solids;
9. Test descriptions and results;
10. The test report must be signed with the name and status of the signatory.

6.8.5.4.2 The test report must contain statements that the flexible bulk container prepared as for transport was tested in accordance with the appropriate provisions of this Chapter and that the use of other containment methods or components may render it invalid. A copy of the test report must be available to the competent authority.

6.8.5.5 Marking

6.8.5.5.1 Each flexible bulk container manufactured and intended for use according to this Code must bear marks that are durable, legible and placed in a location so as to be readily visible. Letters, numerals and symbols must be at least 24 mm high and must show:

(a) The United Nations packaging symbol \(\text{UN}\)

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8;

(b) The code BK3;

(c) A capital letter designating the packing group(s) for which the design type has been approved:
 \(Z\) for packing group III only;

(d) The month and year (last two digits) of manufacture;

(e) The character(s) identifying the country authorising the allocation of the mark; as indicated by the distinguishing signs used on vehicles in international road traffic\(^1\);

(f) The name or symbol of the manufacturer and other identification of the flexible bulk container as specified by the competent authority;

(g) The stacking test load in kg;

(h) The maximum permissible gross mass in kg.

Marks must be applied in the sequence shown in (a) to (h); each mark, required in these subparagraphs, must be clearly separated, e.g. by a

\(^1\) Distinguishing sign of the State of registration used on motor vehicles and trailers in international road traffic, e.g. in accordance with the Geneva Convention on Road Traffic of 1949 or the Vienna Convention on Road Traffic of 1968.
slash or space and presented in a way that ensures that all of the parts of the mark are easily identified.

6.8.5.5.2 Example of marking

\[\text{BK3/Z/11 09} \]

\[\text{RUS/NTT/MK-14-10} \]

\[56000/14000".\]
CHAPTER 6.9 - REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION, TESTING AND APPROVAL OF TANK VEHICLES

6.9.1 APPLICATION

The requirements of this Chapter apply to road tank vehicles and rail tank wagons intended for the transport of dangerous goods of Classes 2, 3, 4, 5, 6, 8 and 9.

6.9.2 REQUIREMENTS FOR TANK VEHICLES

6.9.2.1 Approval of tank designs

6.9.2.1.1 The design of a tank that forms part of or is used on a tank vehicle must be approved by the Competent Authority before it can be used for the transport of dangerous goods.

6.9.2.1.2 An application for design approval of a tank must demonstrate compliance with all of the applicable standards and codes that are relevant to the type of tank and vehicle, and the classes and types of dangerous goods it is intended to transport, as follows:

(a) for road tank vehicles - the relevant parts of AS 2809, as detailed in Table 6.1;
(b) for rail tank wagons - such codes or standards as are acceptable to the authority responsible for rail safety\(^1\) and the competent authority;
(c) for pressure vessels – AS 1210;
(d) for tanks to transport anhydrous ammonia – AS 2022.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Type of dangerous goods</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 2809 – Part 1</td>
<td>Part 1 applies to all road tank vehicles, in addition to the requirements of the applicable Part 2 – 6 according to the type of goods</td>
</tr>
<tr>
<td>AS 2809 – Part 2</td>
<td>Flammable liquids</td>
</tr>
<tr>
<td>AS 2809 – Part 3</td>
<td>Liquefied compressed gases</td>
</tr>
<tr>
<td>AS 2809 – Part 4</td>
<td>Toxic or corrosive liquids</td>
</tr>
<tr>
<td></td>
<td>The correct Type of tank (1–5)(^6) under this Part should be selected according to the properties of the dangerous goods to be transported</td>
</tr>
<tr>
<td>AS 2809 – Part 5</td>
<td>Bitumen-based products</td>
</tr>
<tr>
<td>AS 2809 – Part 6</td>
<td>Cryogenic gases & liquids</td>
</tr>
</tbody>
</table>

Table note:

\(^1\) Until a recognised Australian standard or national code of practice covering the design of rail tank wagons has been published, it is recommended that tank designs comply with standards applicable in North America or Europe.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

§ Where a Type 4 tank is specified by AS 2809 Part 4, a Type 5 tank may also be used.

6.9.2.1.3 The Competent Authority may also approve the design of a tank that forms part of, or is used, on a tank vehicle and that does not comply with the relevant requirements specified in 6.9.2.1.2 if –

(a) the application for design approval of the tank demonstrates compliance with other criteria which are acceptable to the Competent Authority; and

(b) the Competent Authority is satisfied that the use of the tank will not result in greater risk than a design that complies with the relevant requirements specified in 6.9.2.1.2.

6.9.2.2 Marking

6.9.2.2.1 Every tank vehicle must be fitted with a corrosion resistant metal plate permanently attached to the tank or its mounting in a conspicuous place readily accessible for inspection.

6.9.2.2.2 The compliance plate of a road tank vehicle must be in accordance with AS 2809 and 6.9.2.2.3.

6.9.2.2.3 A compliance plate fixed to a road tank vehicle or a rail tank wagon must include:

(a) the name of the manufacturer of the tank;

(b) the date on which the tank was manufactured;

(c) the tank serial number;

(d) the maximum allowable working pressure for the tank;

(e) the test pressure;

(f) the metallurgical design temperature of the tank if the temperature is above 50°C or below -20°C;

(g) the capacity of the tank;

(h) the maximum mass of dangerous goods that may be transported in the tank under the design approval;

(i) the maximum gross mass of the tank;

(j) the name of the Competent Authority who granted the approval and the approval number;

(k) the initial hydraulic test date and subsequent test dates for the tank;

(l) the name of the authority or organisation that witnessed the last hydraulic test; and

(m) if the design approval is based on compliance with an Australian Standard or other standard or code, the standard or code to which the tank or vehicle has been designed.

6.9.2.2.4 The details required by 6.9.2.2.3 must be stamped, embossed, engraved or otherwise permanently marked on the compliance plate.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

6.9.2.3 Inspection and maintenance

6.9.2.3.1 Road tank vehicles must be inspected and maintained in accordance with AS 2809.

6.9.2.3.2 Rail tank wagons must be inspected and maintained in accordance with the relevant design standard (see 6.9.2.1.2).

NOTE: Where the tank of a road or rail tank vehicle is also a pressure vessel, it must be maintained, tested and inspected in accordance with AS 3788 and any State or Territory law applicable to pressure vessels.
CHAPTER 6.10 - FREIGHT CONTAINERS

6.10.1 STANDARDS FOR FREIGHT CONTAINERS

A freight container used to transport dangerous goods must comply with:

(a) the standards specified in AS/NZS 3711 relating to the construction, maintenance and use of freight containers; or

(b) the standards specified by ISO for freight containers used to transport dangerous goods.

NOTE: Freight containers intended for transport by sea must comply with the International Convention for Safe Containers.
CHAPTER 6.11 - SEGREGATION DEVICES

NOTE 1: Segregation devices may only be used to facilitate the transport of incompatible goods where permitted by Section 9.2.2.

NOTE 2: Requirements for packing, using, marking and labelling of segregation devices are in Section 4.4.5.

6.11.1 TYPES OF SEGREGATION DEVICES

A segregation device may be:

(a) an Overpacking Drum Segregation Device as described in 6.11.2; or
(b) a Type I Segregation Device as detailed in 6.11.3; or
(c) a Type II Segregation Device in accordance with 6.11.4, used in accordance with an approval issued by the Competent Authority in 6.11.6; or
(d) a Non-Type I Underslung Segregation Device.

6.11.2 OVERPACKING DRUM SEGREGATION DEVICE

A removable head drum may be used as an Overpacking Drum Segregation Device provided the drum is:

(a) an approved drum for dangerous goods transport (Type Designator 1A2, 1B2 or 1H2), meeting the appropriate requirements of Chapter 6.1; and
(b) securely closed with its approved lid and closure.

6.11.3 TYPE I SEGREGATION DEVICE

6.11.3.1 A Type I Segregation Device must not exceed 450 litres in capacity. It need not be performance tested.

6.11.3.2 The device must be rigid, of substantial construction, liquid tight, with a permanently attached hinged lid and at least two suitable closing devices.

6.11.3.3 The device must be fixed to the vehicle by bolting, clamping or other suitable means and must not be lifted onto or from the vehicle when filled.

6.11.3.4 The interior of the Segregation Device must be smooth and free of any protrusion or fitting likely to cause damage to the packages within. It must allow for easy cleaning and be free of any cavities wherein spillage, dirt or contaminants might collect.

6.11.4 TYPE II SEGREGATION DEVICE

6.11.4.1 A Type II Segregation Device must be design-type approved in accordance with this sub-section. Each design type must be capable of successfully passing the design type tests specified in 6.11.5 and be approved by the Competent Authority.

6.11.4.2 General requirements

6.11.4.2.1 A Type II Segregation Device must not exceed 3000 litres in capacity.
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGRESSION DEVICES

6.11.4.2.2 A Type II Segregation Device may include a packaging, a large packaging, a tank, an Intermediate Bulk Container or a freight container provided it meets the requirements of this sub-section and is approved by the Competent Authority.

6.11.4.2.3 In approving a Type II Segregation Device, the Competent Authority may restrict the use of a particular device to certain specified dangerous goods or specified classes of dangerous goods.

6.11.4.3 Design and construction requirements

6.11.4.3.1 The segregation device must be of suitable design, construction, materials and strength for the intended service.

6.11.4.3.2 All body panels must be solid, substantial and resistant to penetration. Mesh, crate construction or similar is not acceptable but mesh reinforcing layers may be used. The body and panels must be resistant to or adequately protected from environmental deterioration.

6.11.4.3.3 The segregation device may be of fixed construction or may be designed to be folded, dismantled or collapsed for return transport.

6.11.4.3.4 The device must incorporate a base (which may also function as a lifting device) which raises the floor of the device at least 100mm above the floor of the transport vehicle at all times.

6.11.4.3.5 The segregation device must be designed for safe mechanical handling when fully loaded.

6.11.4.3.6 If intended to be stacked the device must be designed for safe stacking and be sufficiently strong to support the load imposed by similar devices to the maximum height likely to occur in transport.

6.11.4.3.7 The segregation device must be able to be restrained on or attached to the transport vehicle. Restraint components must be of sufficient strength to securely restrain the device when it is loaded to twice the approved gross load. Restraints must be of a type and so positioned that no distortion or undue stress is imposed on the device.

6.11.4.3.8 The interior of the segregation device must be smooth and free of any protrusion or fitting likely to cause damage to the packages transported within. It must allow for cleaning and be free of any cavities in which spillage, dirt or contaminants may collect.

6.11.4.3.9 Each type of segregation device must be designed, manufactured and tested under a quality assurance program in order to ensure that each meets the requirements of this Code.

6.11.5 DESIGN TYPE TESTS FOR TYPE II SEGRESSION DEVICES

6.11.5.1 The tests to which Type II Segregation Devices must be subjected are those specified for Large Packagings in Chapter 6.6, except that:

(a) the preparation for testing must be in accordance with 6.11.5.7; and
PART 6: REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES

(b) irrespective of the intended contents, the drop height must be based on the requirements for packing group III.

6.11.5.2 Subject to 6.11.5.9, tests must be carried out on a segregation device design-type as it would be prepared for transport.

6.11.5.3 One Type II Segregation Device of each type, size and manner of construction must be subjected to the tests specified in order in the table below, as set out in the clauses indicated in the table.

<table>
<thead>
<tr>
<th>Test</th>
<th>Reference Clause</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom Lift</td>
<td>6.6.5.3.1</td>
<td>required<sup>a</sup></td>
</tr>
<tr>
<td>Top Lift</td>
<td>6.6.5.3.2</td>
<td>required<sup>a</sup></td>
</tr>
<tr>
<td>Stacking</td>
<td>6.6.5.3.3</td>
<td>required<sup>b</sup></td>
</tr>
<tr>
<td>Drop</td>
<td>6.6.5.3.4</td>
<td>required</td>
</tr>
</tbody>
</table>

Table notes:
- ^a When the device is designed for this means of lifting
- ^b When the device is designed to be stacked.

6.11.5.4 A segregation device must be design type tested to a minimum rating of 0.75 kg per litre of available capacity. The person submitting the segregation device for approval must nominate any higher test rating required, before testing is initiated.

6.11.5.5 These tests must be repeated after each modification which significantly alters the design, material or manner of construction of the device.

6.11.5.6 The Competent Authority may at any time require proof, by tests in accordance with this section, that a Type II Segregation Device meets the requirements of the design type tests.

6.11.5.7 The design type tests must be performed:
- (a) by a testing laboratory registered by the National Association of Testing Authorities (NATA) for the relevant tests and the results reported on a NATA endorsed test certificate;
- (b) by a testing laboratory located overseas and recognised by the Competent Authority; or
- (c) where no such laboratory is available, at a suitable facility where the tests are supervised by a representative witnesses from the Competent Authority and the results are reported on a test certificate in accordance with the ADG Code.

6.11.5.8 The Competent Authority may permit the selective testing of segregation devices which differ only in minor aspects from the tested design type.
6.11.5.9 Preparation of Test Samples

6.11.5.9.1 Liner Bag

A 70-micron linear low-density polyethylene bag must be inserted into the test sample. The liner bag may be a pillow or gusseted bag of the following dimensions:

For pillow bags:

Length = H + 1.5 W

Width = 1.2 (L + W)

For gusseted bags:

Length = H + 1.5W

Width + Gusset Width = 1.2 (L + W)

Where:

L = Length of Segregation Device in metres
W = Width of Segregation Device in metres
H = Height of Segregation Device in metres

6.11.5.9.2 Filling Material

High flow plastic granules of approximately 0.75kg/L bulk density are to be used as the bulk filling material. For lift tests it is permissible to use additives such as bags of lead shot to achieve the requisite total contained mass with the condition that they are placed so that the test results are not affected in any way.

6.11.5.9.3 Filling

The Segregation Device is to be filled so that the filling material occupies not less than 95% of the total volume of the test sample (see 6.11.5.4).

6.11.6 MARKING

Each Type II Segregation Device manufactured in accordance with an approved design-type must be clearly and permanently marked on each side in lettering not less than 25mm high with the identification:

“AUSTRALIAN COMPETENT AUTHORITIES APPROVED SEGREGATION DEVICE FOR USE IN AUSTRALIA ONLY APPROVAL XXX TARE YYY GROSS ZZZ”

Where:

XXX is the unique number issued by the Competent Authority
YYY is the Tare Mass of the segregation device
ZZZ is the maximum permitted gross mass of the segregation device and contents
6.11.7 NON-TYPE I UNDERSLUNG SEGREGATION DEVICE

6.11.7.1 Any proposed underslung segregation device (which is not a Type I device) submitted for approval must comply with the requirements in this subsection and must be approved by the Competent Authority.

6.11.7.2 Design and construction requirements

6.11.7.2.1 The device must be designed to a maximum design load and be built with sufficient strength and rigidity to transport the maximum design load without failure or such distortion as would compromise any of the device’s function or features.

6.11.7.2.2 The device must be fitted with a permanently attached door and be liquid tight.

6.11.7.2.3 The device must have a door fitted with at least 2 securing devices and be capable of being locked against unauthorised access.

6.11.7.2.4 The device must be permanently attached to the vehicle to withstand a 2g force in any direction when loaded to its maximum design load.

6.11.7.2.5 The device must have a smooth interior free of any protrusion or fitting likely to damage packages within.

6.11.7.2.6 The device must be easy to clean and free from cavities where spillage or dirt or contaminants might collect.

6.11.7.2.7 The device must have a means of draining any liquid from the device which may accumulate due to leakage of any contents. When the device is in use the drainage facility must be tightly sealed.

6.11.7.2.8 The device, including supports and attachments, must have a ground clearance of at least 350mm and not project beyond the perimeter of the vehicle.

6.11.7.3 Application for approval

6.11.7.3.1 An application for the approval of a Competent Authority of a proposed underslung segregation device must be in writing and must include:

(a) a full description of the device;
(b) details of the dimensions, volumetric capacity and maximum design load (kg) of the device;
(c) signed detailed drawings of the device;
(d) details of the materials used in the device;
(e) details of the construction of the device;
(f) details of how the device is to be attached to the vehicle;
(g) any other information necessary to enable an assessment of whether the device complies with 6.11.7.2.
6.11.7.4 Approval number to be displayed

6.11.7.4.1 An approved underslung segregation device must be clearly and permanently marked, in a conspicuous position, in lettering not less than 25mm high with the following:

(a) for a device approved by a Competent Authority:
 Name of Competent Authority
 APPROVED SEGREGATION DEVICE
 FOR USE IN (State/Territory) ONLY
 APPROVAL XXX DESIGN LOAD YYY

(b) for a device approved by the Competent Authorities Panel:
 AUSTRALIAN COMPETENT AUTHORITIES
 APPROVED SEGREGATION DEVICE
 FOR USE IN AUSTRALIA ONLY
 AP REFERENCE CA20--/----
 DESIGN LOAD YYY

where:

XXX is the approval number issued by the Competent Authority
YYY is the maximum weight, in kg, that the device may carry."
PART 7: PROVISIONS CONCERNING TRANSPORT OPERATIONS
PART 7: PROVISIONS CONCERNING TRANSPORT OPERATIONS

Introductory Note

In UN21:

Chapter 7.1 contains operational provisions that are applicable to all modes of transport, covering:

(a) general provisions for transporting, offering and accepting for transport;
(b) new requirements for carrying and retaining documentation;
(c) loading requirements, including new provisions for loading and restraining flexible bulk containers;
(d) segregation of dangerous goods;
(e) special provisions applicable to some types of dangerous goods; and
(f) reporting of accidents and incidents.

Chapter 7.2 is “generally reserved for additional provisions applicable to the individual modes of transport that may be added by national, modal or regional authorities.” It includes special provisions for:

(g) transport of portable tanks on vehicles
(h) transport of radioactive material
(i) security of transport by road, rail or inland waterway

In this Code:

Chapter 7.1 includes only (a) and (e) of the above.

(b) is covered in Chapter 11.1.
(c) is covered in Chapter 8.1 which, in this Code, covers all stowage provisions.
(d) is covered in Part 9, that includes all compatibility and segregation issues.
(f) is not covered by this Code as it is addressed by the Regulations.

Australian specific special provisions that are applicable to particular types of dangerous goods have also been included in Chapter 7.1 so that all such provisions are grouped together.

Chapter 7.2 contains only special provisions for the transport of nominally empty storage vessels. The content of (g) above has been covered in Chapter 8.2. Neither (h) nor (i) are included in this Code, being subject to other legislation.
CHAPTER 7.1 - TRANSPORT PROVISIONS

NOTE: Additional general transport provisions may also exist in the Regulations. Among other things, there may be requirements concerning the retention of transport documents for specified periods.

7.1.1 GENERAL PROVISIONS

7.1.1.2 Dangerous goods must not be offered for transport unless:
 (a) the goods have been properly classified, packed, marked, labelled and described on a dangerous goods transport document; and
 (b) the goods are in a fit condition for transport as required by this Code, and no dangerous residue of the dangerous goods adheres to the outside of the package.

7.1.1.4 Dangerous goods must not be transported unless:
 (a) cargo transport units have been appropriately marked, labelled and placarded; and
 (b) cargo transport units are otherwise in a condition for transport as required by this Code.

7.1.1.12 If a cargo transport unit, pressure drum, MEGC or IBC is marked with notations indicating how it should be handled in the transport of dangerous goods, it must be handled in accordance with those notations.

1 Chapter 7.1 of UN20 is headed “Provisions Concerning Transport Operations by all Modes of Transport”.
2 7.1.1.3 of UN20 has documentation requirements that are covered by Chapter 11.1 of this Code.
3 7.1.1.5—7.1.1.10 of UN20 deals briefly with loading, segregating and restraining of packages of dangerous goods in cargo transport units. These provisions have been incorporated into Chapter 8.1 and Part 9 of this Code. 7.1.1.11 of UN20 has provisions for the loading of flexible bulk containers that, for consistency, have been relocated to Chapter 8.1.
7.1.2 <RESERVED> ¹

7.1.3 <RESERVED> ²

7.1.4 SPECIAL PROVISIONS APPLICABLE TO THE TRANSPORT OF CLASS 2 SUBSTANCES AND ARTICLES ³

7.1.4.1 Aerosols transported for the purposes of reprocessing or disposal under the provisions of Special Provision 327 must only be transported in well-ventilated cargo transport units as described in 7.1.4.5.

7.1.4.2 Dangerous goods of Class 2 must not be stowed near a source of heat.

7.1.4.3 If liquefied gas is transported in a cylinder fitted with a pressure relief device and the venting of the liquid would create a risk greater than the venting of the gas, the cylinder must be stowed so that the pressure relief device communicates with the vapour space.

7.1.4.4 When transporting gases in cylinders, the main cylinder valve must always be shut and any regulator removed prior to loading.

7.1.4.5 Ventilation

The following dangerous goods must not be transported in a placard load unless the cargo transport unit or compartment in which they are transported is ventilated to prevent the build-up of vapours that are likely to increase risk:

(a) dangerous goods [other than aerosols (UN 1950) and gas cartridges (UN 2037)] of Division 2.1 or 2.3, or subsidiary hazard of 2.1; or

(b) liquefied oxygen.

The ventilation must produce a flow of air that circulates throughout the unit or compartment, in particular through the highest and lowest parts of the unit or compartment, and must provide for the air to be released from the unit or compartment after it has circulated. However the requirements in the previous sentence do not apply in the case of a shipping container that is being used:

(a) to import those goods if appropriate measures are taken to check for vapours before the container is opened, and to be able to deal, when the container is opened, with any build-up of vapours that may have occurred; and

(b) to export those goods if the container will be accepted for carriage by sea or air without needing to comply with those requirements.

¹ Section 7.1.2 of UN20 deals briefly with the principles of segregating incompatible dangerous goods. Part 9 of this Code provides detailed requirements for segregating and separating dangerous goods when transported by road or rail in Australia.

² Section 7.1.3 of U209 contains special provisions applicable to the transport of explosives. Refer to the Australian Explosives Code.

³ Refer to Safety Data Sheets for detailed safety information about particular dangerous goods.
7.1.4.6 Transport of LP Gas on buses

LP Gas in cylinders must not be transported on a bus unless:
(a) no LP Gas cylinder individually has a capacity of more than 2.5 litres; and
(b) the total quantity of LP Gas on the bus is less than 250 litres.

7.1.5 SPECIAL PROVISIONS APPLICABLE TO THE TRANSPORT OF SELF-REACTIVE SUBSTANCES OF DIVISION 4.1, ORGANIC PEROXIDES OF DIVISION 5.2 AND SUBSTANCES STABILIZED BY TEMPERATURE CONTROL (OTHER THAN SELF-REACTIVE SUBSTANCES AND ORGANIC PEROXIDES)

7.1.5.1 All self-reactive substances, organic peroxides and polymerizing substances shall be protected from direct sunlight and all sources of heat, and placed in adequately ventilated areas.

NOTE: Some substances which are transported under temperature control are prohibited from transport by certain modes

7.1.5.2 Where a number of packages are assembled in a freight container, closed road vehicle or unit load, the total quantity of substance, the type and number of packages and the stacking arrangement shall not create an explosion hazard.

7.1.5.3 Temperature control provisions

7.1.5.3.1 These provisions apply to certain self-reactive substances when required by 2.4.2.3.4, and certain organic peroxides when required by 2.5.3.4.1 and certain polymerizing substances when required by 2.4.2.5.2 or special provision 386 of Chapter 3.3 which may only be transported under conditions where the temperature is controlled

7.1.5.3.2 These provisions also apply to the transport of substances for which:

(b) The proper shipping name as indicated in column 2 of the Dangerous Goods List of Chapter 3.2 or according to 3.1.2.6 contains the word “STABILIZED”; and

(c) The self-accelerating decomposition temperature (SADT) or the self-accelerating polymerisation temperature (SAPT)\(^2\) determined for the substance (with or without chemical stabilization) as offered for transport is:

 (i) 50 °C or less for single packagings and IBCs; or
 (ii) 45 °C or less for portable tanks.

When chemical inhibition is not used to stabilize a reactive substance which may generate dangerous amounts of heat and gas, or vapour, under normal transport conditions, these substances need to be transported under temperature control. These provisions do not apply to substances which are stabilized by the addition of chemical inhibitors

\(^{1}\) For transport of dangerous goods on passenger trains, see 9.2.4.7.
\(^{2}\) The SAPT shall be determined in accordance with the test procedures established for the SADT for self-reactive substances in accordance with Part II, Section 28 of the Manual of Tests and Criteria.
such that the SADT or the SAPT is greater than that prescribed in (b) (i) or (ii), above

7.1.5.3.3 In addition, if a self-reactive substance or organic peroxide or a substance the proper shipping name of which contains the word “STABILIZED” and which is not normally required to be transported under temperature control is transported under conditions where the temperature may exceed 55 °C, it may require temperature control.

7.1.5.3.4 The “control temperature” is the maximum temperature at which the substance can be safely transported. It is assumed that during transport the temperature of the immediate surroundings of the package does not exceed 55 °C and attains this value for a relatively short time only during each period of 24 hours. In the event of loss of temperature control, it may be necessary to implement emergency procedures. The “emergency temperature” is the temperature at which such procedures shall be implemented.

7.1.5.3.5 Derivation of control and emergency temperatures

<table>
<thead>
<tr>
<th>Type of receptacle</th>
<th>SADT*/SAPT*</th>
<th>Control temperature</th>
<th>Emergency temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single packagings and IBCs</td>
<td>20 °C or less over</td>
<td>20°C below SADT/SAPT</td>
<td>10 °C below</td>
</tr>
<tr>
<td></td>
<td>20 °C to 35 °C over</td>
<td>15 °C below SADT/SAPT</td>
<td>10 °C below</td>
</tr>
<tr>
<td></td>
<td>35 °C</td>
<td>10 °C below SADT/SAPT</td>
<td>SADT/SAPT 5 °C below</td>
</tr>
<tr>
<td>Portable tanks</td>
<td>< 45 °C</td>
<td>10 °C below SADT/SAPT</td>
<td>5 °C below SADT/SAPT</td>
</tr>
</tbody>
</table>

Table note: a i.e. the SADT/SAPT of the substance as packed for transport.

7.1.5.3.6 The control and emergency temperatures are derived using the table in 7.1.5.3.5 from the SADT or from the SAPT which are defined as the lowest temperatures at which self-accelerating decomposition or self-accelerating polymerization may occur with a substance in the packaging, IBC or portable tank as used in transport. An SADT or SAPT shall be determined in order to decide if a substance shall be subjected to temperature control during transport. Provisions for the determination of the SADT and SAPT are given in 2.4.2.3.4, 2.5.3.4.2 and 2.4.2.5.2 for self-reactive substances, organic peroxides and polymerizing substances and mixtures, respectively.

7.1.5.3.7 Control and emergency temperatures, where appropriate, are provided for currently assigned self-reactive substances in 2.4.2.3.2.3 and for currently assigned organic peroxide formulations in 2.5.3.2.4.
7.1.5.3.8 The actual transport temperature may be lower than the control temperature but shall be selected so as to avoid dangerous separation of phases.

7.1.5.4 Transport under temperature control

NOTE: Since the circumstances to be taken into account differ for the various modes of transport, only general guidance is provided.

7.1.5.4.1 Maintenance of the prescribed temperature is an essential feature of the safe transport of substances stabilized by temperature control. In general, there shall be:

(a) Thorough inspection of the cargo transport unit prior to loading;
(b) Instructions to the carrier about the operation of the refrigeration system;
(c) Procedures to be followed in the event of loss of control;
(d) Regular monitoring of operating temperatures; and
(e) Provision of a back-up refrigeration system or spare parts.

7.1.5.4.2 Any control and temperature sensing devices in the refrigeration system shall be readily accessible and all electrical connections weather-proof. The temperature of air space within the cargo transport unit shall be measured by two independent sensors and the output shall be recorded so that temperature changes are readily detectable. The temperature shall be checked every four to six hours and logged. When substances having a control temperature of less than +25 °C are carried, the cargo transport unit shall be equipped with visible and audible alarms, powered independently of the refrigeration system, set to operate at or below the control temperature.

7.1.5.4.3 If during transport the control temperature is exceeded, an alert procedure shall be initiated involving any necessary repairs to the refrigeration equipment or an increase in the cooling capacity (e.g. by adding liquid or solid refrigerants). The temperature shall also be checked frequently and preparations made for implementation of the emergency procedures. If the emergency temperature is reached, the emergency procedures shall be initiated.

7.1.5.4.4 The suitability of a particular means of temperature control for transport depends on a number of factors. Factors to be considered include:

(a) The control temperature(s) of the substance(s) to be transported;
(b) The difference between the control temperature and the anticipated ambient temperature conditions;
(c) The effectiveness of the thermal insulation;
(d) The duration of transport; and
(e) Allowance of a safety margin for delays.

7.1.5.4.5 Suitable methods for preventing the control temperature being exceeded are, in order of increasing control capability:

(a) Thermal insulation; provided that the initial temperature of the substance(s) to be transported is sufficiently below the control temperature;
(b) Thermal insulation with coolant system; provided that:
 (i) An adequate quantity of coolant (e.g. liquid nitrogen or solid carbon dioxide), allowing a reasonable margin for delay, is carried;
 (ii) Liquid oxygen or air is not used as coolant;
 (iii) There is a uniform cooling effect even when most of the coolant has been consumed; and
 (iv) The need to ventilate the unit before entering is clearly indicated by a warning on the door(s) of the unit;

(c) Single mechanical refrigeration; provided that for substance(s) to be transported with a flash point lower than the sum of the emergency temperature plus 5 °C explosionproof electrical fittings are used within the cooling compartment to prevent ignition of flammable vapours;

(d) Combined mechanical refrigeration system with coolant system; provided that:
 (i) The two systems are independent of one another;
 (ii) The provisions in (b) and (c) are complied with;

(e) Dual mechanical refrigeration system; provided that:
 (i) Apart from the integral power supply unit, the two systems are independent of one another;
 (ii) Each system alone is capable of maintaining adequate temperature control; and
 (iii) For substance(s) to be transported with a flash point lower than the sum of the emergency temperature plus 5 °C explosion-proof electrical fittings are used within the cooling compartment to prevent ignition of flammable vapours.

7.1.6 <RESERVED>

7.1.7 SPECIAL PROVISIONS APPLICABLE TO THE TRANSPORT OF DIVISION 6.1 (TOXIC) AND DIVISION 6.2 (INFECTIOUS) SUBSTANCES

7.1.7.1 Division 6.1 (toxic) substances

7.1.7.1.1 <Reserved>

7.1.7.1.2 Decontamination of cargo transport units

A rail wagon, road vehicle, freight container or other cargo transport unit which has been used to carry substances marked as or known to be toxic (packing groups I, II and III) must, after unloading and before removal of placards, be inspected for contamination. Until such contamination has been removed, a cargo transport unit which has been contaminated must not be returned to service and placards and other markings indicating the presence of the dangerous goods must not be removed.

7.1.7.2 Division 6.2 (infectious) substances

1 Separation from foodstuffs is addressed in Part 9 of this Code.
2 Carrier responsibilities are assigned by the Regulations.
PART 7: PROVISIONS CONCERNING TRANSPORT OPERATIONS

7.1.7.2.1 <Reserved> ¹

7.1.7.2.2 Action to be taken in the event of damage or leakage

Any person responsible for the carriage of packages containing infectious substances who becomes aware of damage to or leakage from such packages must:

(a) avoid handling the package or keep handling to a minimum; and
(b) ensure that adjacent packages are inspected in a safe manner for contamination and any that may have been contaminated are put aside; and
(c) inform emergency services, the appropriate public health authority or veterinary authority, and provide information on any other jurisdictions of transit where persons may have been exposed to danger; and
(d) notify the consignor and/or the consignee.

7.1.7.2.3 <Reserved> ²

7.1.8 <RESERVED> ³

7.1.9 <RESERVED> ⁴

7.1.10 <RESERVED> ⁵

7.1.11 SPECIAL PROVISIONS APPLICABLE TO THE TRANSPORT OF DIVISION 4.3 ⁶

Dangerous goods of Division 4.3, or with a Subsidiary Hazard of 4.3 must be kept dry during transport.

¹ Decontamination of the transport unit is addressed by other legislation.
² Decontamination of the transport unit is addressed by other legislation.
³ Section 7.1.8 of UN20 contains special provisions applicable to the transport of radioactive material. Refer to the Code of Practice for the Safe Transport of Radioactive Substances.
⁴ Section 7.1.9 of UN20 contains reporting requirements for accidents and incidents. These are dealt with in Part 14 of the Regulations.
⁵ Section 7.1.10 of UN20 imposes obligations for the retention and reproduction of documentation and associated information which are regulatory issues, outside the remit of this Code.
⁶ Refer to Safety Data Sheets for detailed safety information about particular dangerous goods.
CHAPTER 7.2 - TRANSPORT OF NOMINALLY EMPTY STORAGE VESSELS

7.2.1 APPLICATION
The provisions of this Chapter apply only to road and rail transport in Australia.

7.2.2 <RESERVED> 2

7.2.3 <RESERVED> 3

7.2.4 <RESERVED> 4

7.2.5 <DELETED>

7.2.6 <DELETED>

7.2.7 TRANSPORT OF NOMINALLY EMPTY STORAGE VESSELS

NOTE: This section does not apply to packagings, cylinders, pressure drums, IBCs, demountable tanks, portable tanks, bulk containers or MEGCs that are transported in accordance with this Code.

7.2.7.1 This Section applies to the transport of nominally empty tanks or hoppers that have been used in fixed underground or above ground installations for the storage of LP Gas, or any other dangerous goods except:

(a) Classes 1 and 7; and
(b) Division 2.1 (other than LP Gas), Divisions 2.3, 5.2, and 6.2; and
(c) Self-reactive substances or desensitised explosives of Division 4.1; and
(d) Desensitised explosives of Class 3; and
(e) Packing group I of any Class or Division; and
(f) Goods too dangerous to be transported.

NOTE: Storage tanks and hoppers that have been cleaned so as to be free from dangerous goods are not subject to this Code.

7.2.7.2 Prior to transport, tanks and hoppers described in 7.2.7.1 must:

(a) be deemed structurally sound for that purpose; and
(b) have any holes repaired in such a way as will prevent any leakage of solid, liquid or vapour during transport; and
(c) be drained as far as is practicable to minimise residual dangerous goods; and

1 Chapter 7.2 of UN20 is headed “Modal Provisions”.
2 The content of Section 7.2.2 which, in UN20 is headed “Special Provisions applicable to the Transport of Portable Tanks on Vehicles”, has been relocated to Section 8.2.2 in Chapter 8.2 of this Code, along with other transport unit restraint requirements.
3 Section 7.2.3 of UN20 applies to the transport of radioactive material by road and rail. See the Code of Practice for the Safe Transport of Radioactive Substances.
4 Section 7.2.4 of UN20 relates to security measures which are addressed in Australia by other legislation.
(d) except as required for pressure equalisation and safety valves on pressure vessels, have all pipework capped; and
(e) if gas tanks, be free from leaks.

7.2.7.3 Nominally empty storage vessels transported according to this Section must be secured to the vehicle in accordance with the Load Restraint Guide.

7.2.7.4 Vehicles transporting nominally empty storage vessels must be placarded as required by Chapter 5.3 of this Code for a vehicle transporting the particular dangerous goods in a portable tank.

7.2.7.5 Transport documentation complying with Chapter 11.1 and emergency information complying with Chapter 11.2 must be carried in the cabin of the vehicle transporting the nominally empty vessel.

7.2.7.6 Nominally empty storage vessels must be segregated from other dangerous goods in accordance with Chapter 9.2.

7.2.7.7 Vehicles transporting nominally empty storage vessels in accordance with this Section must carry safety equipment specified for the dangerous goods in Part 12.

7.2.7.8 An exemption or determination must be obtained from the Competent Authority before transporting, other than in accordance with this Section, tanks and other previously fixed receptacles or containers that have been used for the storage of dangerous goods and are not free from dangerous goods.
CHAPTER 7.3 - RESERVED

PART 8: STOWAGE AND RESTRAINT
CHAPTER 8.1 - STOWAGE AND RESTRAINT ON OR IN CARGO TRANSPORT UNITS

8.1.1 APPLICATION

8.1.1.1 This chapter applies to the stowage into cargo transport units, and the restraint of packages, overpacks, large packagings, IBCs, cylinders, MEGCs and flexible bulk containers containing dangerous goods and unpackaged dangerous articles that together constitute a placard load.

8.1.1.2 Where requirements are assigned in this chapter to ‘packages’, they apply to packagings containing dangerous goods. They must equally be applied to overpacks, large packagings, segregation devices, IBCs, cylinders and MEGCs containing dangerous goods, and to unpackaged dangerous articles.

NOTE 1: Special provisions relating to the packing, stowage and restraint of particular dangerous goods may be found in Part 7, or in detailed packing instructions in Chapter 4.1, as referenced in Columns (8) and (9) of the Dangerous Goods List in Chapter 3.2.

NOTE 2: Additional guidance on the packing of cargo transport units can be found in the Load Restraint Guide and in the IMO/ILO/UNECE Guidelines for Packing Cargo Transport Units (CTUs) contained in the supplement to the IMDG Code.

NOTE 3: Requirements for restraining portable cargo transport units are in Chapter 8.2.

8.1.2 GENERAL REQUIREMENTS FOR STOWAGE AND RESTRAINT

8.1.2.1 Packages must only be loaded in cargo transport units which are strong enough to withstand the shocks and loadings normally encountered during transport, having regard to the conditions to be expected during the anticipated journey. The cargo transport unit should be constructed in such a way as to prevent the loss of contents. Where appropriate the cargo transport unit should be fitted with devices to facilitate securing and handling of the dangerous goods.

8.1.2.2 The interior and exterior of a cargo transport unit must be inspected prior to loading to ensure that there is no damage that could affect its integrity or that of the packages to be loaded in it.

8.1.2.3 Packages must be stowed and restrained in the cargo transport unit in accordance with the Load Restraint Guide, or in a manner which provides at least the equivalent levels of safety and security.

8.1.2.4 Cargo transport units must be loaded so that incompatible dangerous or other goods are segregated in accordance with Chapter 9.2. Specific loading instructions such as orientation arrows, not to be double stacked, keep dry or temperature control requirements must be met. Liquid dangerous goods should be loaded below dry dangerous goods whenever possible.
8.1.2.5 Packages must be restrained by suitable means (such as fastening straps, sliding slatboards, adjustable brackets) in the cargo transport unit in a manner that will prevent any movement during transport which would change the orientation of the packages or cause them to be damaged. Movement of packages may also be prevented by filling any voids by the use of dunnage or by blocking and bracing. Where restraints such as banding or straps are used, these must not be over-tightened to cause damage or deformation of the package.

8.1.2.6 When dangerous goods are transported with other goods, all goods must be restrained in the cargo transport units so as to prevent the release of dangerous goods. Packages must be stowed and restrained so as to prevent damage to other goods and equipment. Any other goods and equipment must be stowed and restrained in the cargo transport unit so as to prevent damage to the dangerous goods.

8.1.2.7 Packagings and IBCs that are fitted with a vented closure must be stowed and restrained with the closure uppermost.

8.1.2.8 If the dangerous goods are of a kind that may lead to the formation of flammable, toxic or other harmful atmospheres, they must be stowed so that no harmful atmosphere will accumulate in the vehicle cabin in event of leakage.

8.1.2.9 During loading and unloading, packages containing dangerous goods must be protected from being damaged. Particular attention must be paid to the handling of packages during their preparation for transport, to the type of cargo transport unit on which they are to be carried and to the method of loading or unloading, so that accidental damage is not caused through dragging or mishandling of the packages. Packages that appear to be leaking or damaged so that the contents may escape must not be accepted for transport. If a package is found to be damaged so that the contents leak, the damaged package must not be transported but moved to a safe place.

8.1.2.10 If packages containing dangerous goods are stowed on a pallet, the pallet must be of sound construction and free of projections.

8.1.2.11 Any thing used to restrain another thing for the purposes of this Chapter ("the device") must be in good condition, and must be free from any defect that might lessen the ability of the device to achieve its function.

8.1.3 OPEN AND NON-RIGID SIDED VEHICLES AND CONTAINERS

8.1.3.1 This Section applies to the transport of dangerous goods on vehicles and freight containers that are not closed cargo transport units (e.g. stowed on an open tray or platform or in a curtain sided cargo transport unit).

NOTE: Vehicles and freight containers with curtain sides are not closed cargo transport units and are therefore subject to this Section.

8.1.3.2 Except where 8.1.3.4 or 8.1.3.5 applies, if unpackaged dangerous articles or dangerous goods in packages are transported on a vehicle or container described in 8.1.3.1:
PART 8: STOWAGE AND RESTRAINT

(a) they must be stowed and restrained within rigid sides or gates; and
(b) no dangerous article or package containing dangerous goods may protrude above the sides or gates by more than 30% of the height of the article or package; and
(c) no parts of an article or package may protrude horizontally beyond the sides or gates.

8.1.3.3 Despite 8.1.3.2, gates to the rear of the dangerous goods on a road vehicle may be omitted if:

(a) the dangerous goods are loaded towards the front of the vehicle; and
(b) other goods are stowed and restrained at the rear of the dangerous goods in accordance with the Load Restraint Guide in such a manner that the dangerous goods will be prevented from falling from the vehicle during transport; and
(c) those other goods remain in place throughout the journey.

8.1.3.4 If dangerous goods of Class 2 that are secured in gas industry cylinder pallets (stillages), are transported on a vehicle or container described in 8.1.3.1:

(a) the cylinders must be secured within the frame of the stillage, by a lashing system to meet the Load Restraint Guide; and
(b) not more than 45% of the height of the cylinder may protrude above the stillage rail; and
(c) the stillages must be stowed and restrained on the vehicle or open freight container in accordance with the Load Restraint Guide.

NOTE: For orientation of cylinders of liquefied gas, see also 7.1.4.3.

8.1.3.5 Dangerous goods in IBCs, large packagings, segregation devices, pressure drums, MEGCs or bundles of cylinders are not subject to 8.1.3.2 if they are restrained in accordance with the Load Restraint Guide.
PART 8: STOWAGE AND RESTRAINT

CHAPTER 8.2 - RERAINT OF CARGO TRANSPORT UNITS ON VEHICLES

8.2.1 RESTRAINING FREIGHT CONTAINERS

A freight container containing dangerous goods which is transported on a vehicle must be restrained on the vehicle:

(a) for road transport, in accordance with the performance standards specified in Load Restraint Guide; and

(b) for rail transport, as required under the relevant legislation or agreements concerning Rail Safety.

NOTE: These requirements will normally be met by the use of four engaged twist locks.

8.2.2 RESTRAINING PORTABLE TANKS

8.2.2.1 Portable tanks may only be transported on vehicles whose fastenings are capable, in conditions of maximum permissible loading of the portable tanks, of absorbing the forces specified in 6.7.2.2.12, 6.7.3.2.9 or 6.7.4.2.12, as appropriate.

NOTE: Usage of portable tanks is subject to Chapter 4.2 of this Code. For liquids, particular attention is drawn to 4.2.1.9.6.

8.2.2.2 A portable tank which is transported on a vehicle must be securely fastened to the vehicle using either:

(a) four engaged twist locks; or

(b) another equally effective method for securing the portable tank, in accordance with the Load Restraint Guide.

8.2.2.3 Except when the tank is nominally empty, dangerous goods in the liquid state must not be transported on a road vehicle in a portable tank having a capacity of more than 7,500 litres, unless:

(a) the height of the centroid of the tank cross section at tank half length falls within an isosceles triangle having:

(i) a base length at ground level equal to the overall width between the outside walls of the outside tyres of the main load bearing axle groups, and

(ii) base angles not exceeding 64 degrees; or

(b) the distance between the ground and the load bearing surface of the bottom corner casting of the loaded tank does not exceed 1100mm.

8.2.2.4 If a portable tank is marked with notations indicating how it should be handled in the transport of dangerous goods, it must be handled in accordance with those notations.

8.2.3 RESTRAINING BULK CONTAINERS

8.2.3.1 A bulk container in the form of a freight container must be restrained on the vehicle in accordance with 8.2.1.

8.2.3.2 A BK1 or BK2 bulk container that is not an integral part of the vehicle and is not in the form of a freight container must be restrained on the vehicle in accordance with the Load Restraint Guide.

8.2.3.3 A flexible (BK3) bulk container must be restrained in a cargo transport unit in accordance with section 8.2.4.

8.2.3.4 If a bulk container is marked with notations indicating how it should be handled in the transport of dangerous goods, it must be handled in accordance with the notations.

8.2.4 STOWING AND RESTRAINING FLEXIBLE BULK CONTAINERS

8.2.4.1 Flexible bulk containers must be transported within a conveyance with rigid sides and ends that extend at least two-thirds of the height of the flexible bulk container.

NOTE: When loading flexible bulk containers in a freight container particular attention is to be paid to the IMO/ILO/UNECE Guidelines for Packing Cargo Transport Units (CTUs) contained in the supplement to the International Maritime Dangerous Goods Code.

8.2.4.2 Flexible bulk containers must be secured by suitable means capable of restraining the container in the conveyance in a manner that will prevent any movement during transport which would change the orientation of the container or cause the container to be damaged. Movement of the containers may also be prevented by filling any voids by the use of dunnage or by blocking and bracing. Where restraints such as banding or straps are used, these must not be over-tightened to cause damage or deformation to the flexible bulk containers.

8.2.4.3 Flexible bulk containers must not be stacked for road or rail transport.
PART 9: SEGREGATION
CHAPTER 9.1 - INCOMPATIBLE GOODS

9.1.1 INTERPRETATION

Class, Division and Subsidiary Hazard. For the purpose of this Part, a reference to a class of dangerous goods (for example, Class 4) is a reference to that class, to every hazard division into which that class is sub-divided (for example, Divisions 4.1, 4.2 and 4.3) and to every subsidiary hazard corresponding to that class or division (for example, Subsidiary Hazards 4.1, 4.2 and 4.3). A reference to a hazard division into which a class is sub-divided (for example, Division 4.1) is a reference only to that division, and to the subsidiary hazard (if any) corresponding to that hazard division (for example, Subsidiary Hazards 4.1).

9.1.2 INCOMPATIBILITY BASED ON CLASSIFICATION

9.1.2.1 Table 9.1 gives an indication of dangerous goods compatibility for land transport purposes, based on Classes, Divisions, Subsidiary Hazards and some specific types of goods.

NOTE 1: Where it is indicated in Table 9.1 that goods of particular classification combinations are incompatible, then all goods of those combinations should be considered incompatible unless there is substantial documented evidence that particular goods are in fact compatible. This evidence could include a statement on the Safety Data Sheet\(^1\) of both substances or articles that they are compatible.

NOTE 2: Compatibility assessment based on Table 9.1 has no validity under the IMDG Code, ICAO Rules or IATA Regulations for sea and air transport.

NOTE 3: Depending on other risk factors, compatibility assessment based on Table 9.1 may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

9.1.2.2 Explosives

9.1.2.2.1 Except where otherwise specially provided for in this Code and the Australian Explosives Code, goods of Class 1 are incompatible with dangerous goods of other classes.

9.1.2.2.2 For the purposes of this Code, dangerous goods of Division 1.4, compatibility group S are considered compatible with other dangerous goods provided the aggregate quantity of all dangerous goods in the cargo transport unit is less than a placard load.

NOTE: The Australian Explosives Code does not restrict the transport of Division 1.4S with other dangerous goods.

\(^1\) Safety Data Sheets [SDS] are also known as Material Safety Data Sheets [MSDS].
9.1.2.3 Food and food packagings

Despite an entry in Table 9.1 that food and food packagings are incompatible with dangerous goods of Class 8, food ingredients that are Class 8 dangerous goods are not considered to be incompatible with other food ingredients if the intended use of those ingredients is for the manufacture of food, or food ingredients, containing those ingredients (or like ingredients), with or without other ingredients.
Table 9.1: Incompatibility based on Classification

Goods are considered incompatible if, in this table, any of the following conditions are met:

a) the primary hazard of one is incompatible with the primary hazard of the other; or
b) the primary hazard of one is incompatible with a subsidiary hazard of the other; or

c) a subsidiary hazard of one is incompatible with a subsidiary hazard of the other.

<table>
<thead>
<tr>
<th>CLASS or DIVISION</th>
<th>1</th>
<th>2.1</th>
<th>2.2</th>
<th>2.3</th>
<th>3</th>
<th>4.1</th>
<th>4.2</th>
<th>4.3</th>
<th>5.1</th>
<th>5.2</th>
<th>6</th>
<th>7(7)</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Explosives</td>
<td>(1)</td>
</tr>
<tr>
<td>2.1 Flammable gas</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.2 Non-flammable non-toxic gas</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.3 Toxic gas</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N(8)</td>
</tr>
<tr>
<td>3 Flammable liquids</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.1 Flammable solids</td>
<td>(1)</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.2 Spontaneously combustible</td>
<td>(1)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.3 Dangerous when wet</td>
<td>(1)</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.1 Oxidising substances</td>
<td>(1)</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5.2 Organic peroxides</td>
<td>(1)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6 Toxic or infectious substances</td>
<td>(1)</td>
<td>0</td>
<td>N(8)</td>
<td></td>
</tr>
<tr>
<td>7 Radioactive material (7)</td>
<td>(1)</td>
<td>N</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N</td>
<td>0</td>
<td>N(8)</td>
<td></td>
</tr>
<tr>
<td>8 Corrosive substances</td>
<td>(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>0</td>
<td>N(6)</td>
<td>0</td>
<td>N(8)</td>
</tr>
<tr>
<td>9 Miscellaneous dangerous goods / environmentally hazardous substances</td>
<td>(1)</td>
<td>0</td>
</tr>
</tbody>
</table>

Food or Food empties

Fire-risk substances or Combustible liquids
In this table:

0 means compatible unless a numbered exception applies.
N means incompatible unless a numbered exception applies.

Exceptions (see Table 9.1):

(1) Explosives are incompatible in transport with all other dangerous goods in all quantities except as provided in the Australian Explosives Code or, for Division 1.4S, where 9.1.2.2.2 applies.

(2) Division 2.1 and Class 3 are incompatible in transport if both are in tanks or other receptacles with a capacity individually exceeding 500 L.

(3) Division 2.1 is incompatible in transport with gases of Division 2.2 that have a subsidiary hazard 5.1 except when all are packed in cylinders or pressure drums not exceeding 500 L capacity.

(4) Division 2.3 is incompatible in transport with gases of Division 2.2 that have a subsidiary hazard 5.1 except when all are packed in cylinders or pressure drums not exceeding 500 L capacity.

(5) Class 5 is incompatible with those Class 6 or Class 9 materials that are fire-risk substances.

(6) Some specific examples of these Classes or Divisions are incompatible — see Table 9.2.

(7) See the Code of Practice for the Safe Transport of Radioactive Substances regarding the compatibility of Class 7 with undeveloped photographic film, personnel and mail.

(8) Food and food packagings are incompatible with these classes in all quantities, except where 9.1.2.3 applies.
9.1.3 SPECIFIC EXAMPLES OF INCOMPATIBLE GOODS

Table 9.2 lists some examples of particular dangerous goods which are incompatible. The dangerous goods specified in an item in column 1 of Table 9.2 are incompatible with the dangerous goods specified in that item in column 2 of the Table.

<table>
<thead>
<tr>
<th>Column 1 Dangerous Goods or Group of Dangerous Goods</th>
<th>Column 2 Goods Incompatible with Column 1 Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Ammonium nitrate</td>
<td>- Tetranitromethane</td>
</tr>
<tr>
<td></td>
<td>- Dichloroisocyanuric acid</td>
</tr>
<tr>
<td></td>
<td>- Trichloroisocyanuric acid</td>
</tr>
<tr>
<td></td>
<td>- any:</td>
</tr>
<tr>
<td></td>
<td>- o bromate</td>
</tr>
<tr>
<td></td>
<td>- o chlorate</td>
</tr>
<tr>
<td></td>
<td>- o chlorite</td>
</tr>
<tr>
<td></td>
<td>- o hypochlorite</td>
</tr>
<tr>
<td></td>
<td>- o chloroisocyanurate</td>
</tr>
<tr>
<td></td>
<td>- o inorganic nitrate</td>
</tr>
<tr>
<td>- Calcium hypochlorite (Dry or Hydrated) and its mixtures</td>
<td>- Ammonium nitrate</td>
</tr>
<tr>
<td></td>
<td>- Dichloroisocyanuric acid</td>
</tr>
<tr>
<td></td>
<td>- Trichloroisocyanuric acid</td>
</tr>
<tr>
<td></td>
<td>- any chloroisocyanurate</td>
</tr>
<tr>
<td>- Class 6</td>
<td>- Nitromethane</td>
</tr>
<tr>
<td>- Concentrated strong acids</td>
<td>- Concentrated strong alkalis</td>
</tr>
<tr>
<td>- Cyanide compounds</td>
<td>- Acids</td>
</tr>
</tbody>
</table>

Note: Although both acids and bases (alkalis) are both Class 8 dangerous goods they can be incompatible as a transport load. In particular, what is described as strong acids and strong bases have long been considered incompatible due to the potential for violent reaction. The exact strength of the acid or base that will result in a violent reaction (explosion or fire) or evolve gases (flammable or toxic) depends heavily on the actual acids or bases being transported. Incompatibilities should be determined from the SDS in the first instance. Advice can also be obtained from a suitable industrial chemist, dangerous goods transport professional or State or Territory regulatory authority.

CHAPTER 9.2 - SEGREGATION

9.2.1 APPLICATION AND PRINCIPLES

NOTE: Goods segregated in accordance with this Chapter will not necessarily comply with the IMDG Code, ICAO Rules or IATA Regulations for sea and air transport.
9.2.1.1 The segregation requirements of this chapter apply only to placard loads of dangerous goods, except:

(a) where, in the explanatory text at the foot of Table 9.1, it is indicated that particular goods are incompatible in all quantities; and
(b) 9.2.1.4 which applies to all quantities of dangerous goods; and
(c) dangerous goods carried on passenger trains when 9.2.4.7 applies.

9.2.1.2 This chapter does not apply to dangerous goods transported on trains or rail wagons that are being shunted at not more than 15 kilometres per hour.

9.2.1.3 Dangerous goods must not be transported on the same road vehicle or train with incompatible goods unless the dangerous goods and the incompatible goods:

(a) are segregated in accordance with this chapter; or
(b) are otherwise allowed under this Code to be transported together.

9.2.1.4 An overpack, a large packaging or a segregation device must not contain dangerous goods which are incompatible with one another, except where all the dangerous goods are packed as limited quantities in accordance with Chapter 3.4, in which case 3.4.5 applies.

9.2.1.5 A cargo transport unit must not contain dangerous goods which are incompatible with each other unless segregated in accordance with Section 9.2.2.

9.2.1.6 When interpreting the requirements of this chapter, the following principles from UN20 must be applied:

(a) Incompatible dangerous goods must be segregated from one another so as to effectively minimise risk in the event of accidental leakage or spillage or any other accident.
(b) Whenever dangerous goods are stowed together, the most stringent segregation provisions for any of the goods must be applied.
(c) Dangerous goods packages required to bear a subsidiary hazard label, the segregation appropriate to the subsidiary hazard must be applied when it is more stringent than that required by the primary hazard.

9.2.2 SEGREGATION METHODS

9.2.2.1 Separate road vehicles

Except where otherwise specified in Section 9.2.3, dangerous goods are segregated from incompatible goods in accordance with this Code if the dangerous goods are carried on one vehicle and the incompatible goods are carried on another vehicle forming part of the same combination road vehicle.

9.2.2.2 Separate rail wagons or load platforms

Except where otherwise specified in Section 9.2.3 or 9.2.4, dangerous goods are segregated on a train from incompatible goods in accordance with this Code if the dangerous goods and the incompatible goods are carried on separate rail wagons or load platforms.
9.2.2.3 Separate freight containers

Except where otherwise specified in Section 9.2.3 or 9.2.4, dangerous goods are segregated from incompatible goods in accordance with this Code if:

(a) either the dangerous goods or the incompatible goods are contained in a closed freight container with rigid sides and ends; or
(b) when transported by rail in other demountable cargo transport units such as open or curtain-sided freight containers on the same load platform of a rail wagon, there is a distance (which may be occupied by other loading) of at least 6 m, measured horizontally, between the unit loaded with the dangerous goods and the unit loaded with the incompatible goods.

9.2.2.4 Packagings for segregation

9.2.2.4.1 Dangerous goods are segregated from incompatible goods if the dangerous goods are packed in a Packaging for Segregation that:

(a) has been approved for that purpose by a Competent Authority; and
(b) has three levels of containment, comprising:
 (i) an inner packaging; and
 (ii) a leakproof intermediate packaging; and
 (iii) an outer packaging; and
(c) has been tested in accordance with Section 6.1.5 of this Code to the standard required for dangerous goods of packing group I; and
(d) is marked with the words “Approved Packaging for Segregation”; and
(e) if the dangerous goods are of packing group I, also complies with 9.2.2.4.2.

9.2.2.4.2 When a packaging for segregation is used for dangerous goods of packing group I:

(a) the intermediate packaging required by 9.2.2.4.1(b)(ii) must be of metal or rigid plastics construction; and
(b) if inert absorbent material is required, that material must be contained inside the intermediate packaging; and
(c) the marking required by 9.2.2.4.1(d) must be supplemented with the expression “PGI”, so that it reads “Approved Packaging for Segregation, PGI”.

9.2.2.5 Large packagings

Dangerous goods are segregated from incompatible goods if the dangerous goods are packed in a large packaging in accordance with a Packing Instruction in Chapter 4.1 that is:

(a) authorised for those goods by an entry in Column 8 of the Dangerous Goods List in Chapter 3.2; and
(b) prefixed ‘LP’ (e.g. ‘LP01’ for many liquid dangerous goods of packing group III).

The large packaging must not contain goods that are incompatible with each other.
NOTE: 9.2.2.5 provides segregation only for the dangerous goods that are in the large packaging. If the incompatible goods are also dangerous goods, these must also be in a large packaging (where authorised), a packaging for segregation, a segregation device, or be otherwise segregated from the first dangerous goods in accordance with this Chapter.

9.2.2.6 Segregation devices

Dangerous goods of packing group II or III are segregated from incompatible goods in accordance with this Code if either the dangerous goods or the incompatible goods are packed in accordance with Section 4.4.5, in a segregation device which meets the requirements of Chapter 6.11.

9.2.3 SPECIAL SEGREGATION PROVISIONS

Despite 9.2.2.1, 9.2.2.2 and 9.2.2.3, some goods which react dangerously must not be transported on the same road vehicle or combination road vehicle or, when transported by rail, must be separated by intervening wagons or load platforms, in accordance with Table 9.3.

Table 9.3: Restricted Loads on Certain Vehicles

<table>
<thead>
<tr>
<th>Row No.</th>
<th>Goods A</th>
<th>Receptacle Size</th>
<th>Goods B</th>
<th>Receptacle Size</th>
<th>Restriction Road</th>
<th>Restriction Rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Any dangerous goods of Class 5 or Subsidiary Hazard 5.1</td>
<td>> 500 kg(L)</td>
<td>Any dangerous goods of Class or Subsidiary Hazard 3, or Combustible Liquid</td>
<td>> 500 L</td>
<td>a b</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Any dangerous goods of Division or Subsidiary Hazard 2.1</td>
<td>> 500 L</td>
<td>Any dangerous goods of Class or Subsidiary Hazard 3, 4 or 5</td>
<td>> 500 kg(L)</td>
<td>a b</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Ammonium Nitrate of any Division in any form (including UN 0222, 1942, 2067, 2071, 2426 or 3375)</td>
<td>> 500 L</td>
<td>Any sensitising or initiating agent #</td>
<td>Any</td>
<td>a b</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>UN 3414 Sodium Cyanide Solution of Division 6.1</td>
<td>> 500 L</td>
<td>UN 2014, 2015 or 2984 Hydrogen Peroxide of Division 5.1 #</td>
<td>Any</td>
<td>a b</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Any Cyanide of Division 6.1</td>
<td>Any</td>
<td>Any Acid of Class 8 #</td>
<td>Any</td>
<td>c d</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Any Cyanide of Division 6.1</td>
<td>> 500 kg(L)</td>
<td>Any Acid of Class 8</td>
<td>> 500 L</td>
<td>c e</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Any placard load of Explosives</td>
<td>Any</td>
<td>Any other placard load</td>
<td>Any</td>
<td>f g</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: A reference in this table to Goods A or Goods B: means those goods only while they are in receptacles of the sizes indicated, but does not include residues of those goods in those receptacles when they are nominally empty and this is clearly evident from the transport documentation in accordance with 11.1.3.1.
Restrictions (see Table 9.3)

a. (Road) Dangerous goods mentioned in the column headed Goods A must not be transported on any road vehicle at the same time as goods described as Goods B in the same numbered row of this table, even if the Goods A and Goods B are in different freight containers, bulk containers, portable tanks or different vehicles making up a combination vehicle.

b. (Rail) A freight container or wagon transporting a placard load that includes dangerous goods described as Goods A must be separated on a train from a freight container or wagon transporting a placard load that includes Goods B in the same row of this table by at least one intervening load platform that may, subject to the other segregation provisions of this Chapter, be loaded with other dangerous goods.

c. (Road) A placard load on a road vehicle, including a combination vehicle, must not include at the same time, Cyanides of Division 6.1 and Acids of Class 8, in any quantity, even if they are in separate cargo transport units or on different vehicles making up a combination vehicle, unless Packagings for Segregation are used in accordance with 9.2.2.4.

d. (Rail) Except where e. applies, a freight container or wagon transporting a placard load that includes Cyanides of Division 6.1 must be separated on a train by at least two intervening load platforms from a freight container, portable tank or wagon transporting a placard load that includes Acids of Class 8.

e. (Rail) A freight container or wagon transporting Cyanide of Division 6.1 in a receptacle > 500 kg(L) must be separated on a train from a freight container or wagon transporting any Acid of Class 8 in a receptacle > 500 L by at least 15 intervening load platforms that may, subject to the other segregation provisions of this Chapter, be loaded with other dangerous goods. However, if all of the receptacles in or on a freight container or wagon transporting such Cyanide, or such Acid, or both, are nominally empty, it is only necessary that the container or wagon be separated by at least 2 such intervening load platforms.

f. (Road) See Australian Explosives Code.

g. (Rail) A rail wagon transporting a Category 2 or 3 explosives load (see Australian Explosives Code) must be separated on a train by at least two intervening load platforms from a freight container or wagon transporting a placard load of other dangerous goods. See Australian Explosives Code for separation between placard loads of explosives.

Except where this substance is transported in a Packaging for Segregation in accordance with 9.2.2.4.

9.2.4 ADDITIONAL RAIL PROVISIONS

9.2.4.1 Except for transport in a rail tank wagon or where 9.2.4.7 applies, dangerous goods must not be transported in the nearest cargo transport unit to either end of the train.
9.2.4.2 Except as provided in 9.2.4.7, a placard load of dangerous goods must not be transported in the nearest cargo transport unit to rolling stock carrying people (including a locomotive or van carrying train crew).

9.2.4.3 A rail tank wagon transporting dangerous goods of Division 2.1 must not:
(a) despite 9.2.4.1, be the first or last wagon of a train; or
(b) be marshalled immediately coupled to another such tank wagon unless exempted by the Competent Authority.

9.2.4.4 <Reserved>

9.2.4.5 Dangerous goods must be separated by at least two intervening load platforms from other containers or wagons on the train which are transporting loads which could pose a significant piercing hazard, such as logs, rails, beams and pipes which are not effectively protected by bulkheads.

9.2.4.6 Dangerous goods must not be transported by rail in a bi-modal (road/rail) tank wagon unless approved by the Competent Authority and agreed by the rail track owner.

9.2.4.7 Passenger trains
9.2.4.7.1 Dangerous goods must not be taken on board a passenger train or transported in a passenger compartment or in an area designated on a passenger train for the carriage of passenger luggage, except:
(a) medical gases that may be required for use by a passenger during the journey; and
(b) other dangerous goods that are:
 (i) in quantities not exceeding those specified as limited quantities for the particular substance or article in Column (7) of the Dangerous Goods List in Chapter 3.2; and
 (ii) the personal property of a passenger on the train.

9.2.4.7.2 A rail wagon that is attached to the rear of a passenger train may transport not more than 5 tonnes of dangerous goods, other than:
(a) Class 1 or 7; or
(b) Division 2.1 or 2.3; or
(c) Packing group I of any Class or Division.

9.2.4.7.3 The dangerous goods transported in the rail wagon described in 9.2.4.7.2 must be:
(a) segregated in accordance with Section 9.2.2; and
(b) described on transport documentation in accordance with Chapter 11.1.

9.2.4.7.4 The rail wagon described in 9.2.4.7.2 must be placarded when the dangerous goods in the wagon is a placard load.
9.2.4.8 Double stacking of freight containers

9.2.4.8.1 Where double stacking of freight containers is permitted by the rail track owner, the following may be loaded in a vertical stack:

(a) freight containers of dangerous goods of the same UN Number; or
(b) dangerous goods of Class 3, 6 and 9 (mixed or in separate containers); or
(c) a freight container of dangerous goods and a freight container of non-dangerous goods; or
(d) freight containers that contain less than a placard load of dangerous goods.

9.2.4.8.2 The following loads of dangerous goods in freight containers may not be transported in a vertical stack:

(a) liquid or gaseous dangerous goods in portable tanks or multiple element gas containers; or
(b) dangerous goods of Class 1; or
(c) freight containers known to contain food or food packaging with freight or bulk containers or portable tanks placarded with label model Nos. 2.3, 6.1, 6.2, 7(A–E), 8 or 10 (mixed class); or
(d) dangerous goods in open or curtain-sided containers; or
(e) all other combinations not permitted under subclause 9.2.4.8.1.

NOTE 1: The segregation requirements of this chapter still apply.

NOTE 2: Placards, including labels and Emergency Information Panels when required must be visible from both sides of the rail wagon. In well wagons this may require relocating or additional placarding (see 5.3.7.2.4).
PART 10: BULK TRANSFER OF DANGEROUS GOODS
CHAPTER 10.1 - TRANSFER EQUIPMENT

10.1.1 APPLICATION AND DEFINITIONS

10.1.1.1 Application

This Part applies to the transfer by gravity, pump or pressure differential of liquid, solid or gaseous dangerous goods into or out of a tank vehicle, or into or out of a portable tank, demountable tank, bulk container, pressure drum, tube, MEGC or IBC that is on a vehicle, utilising pipework and/or hose assembly.

10.1.1.2 Definitions

For the purposes of this Part:

Maximum delivery pressure means the maximum pressure that can occur in a system regardless of whether or not it is under pump pressure or at zero flow, including the effects of dead heading and system back pressure;

Maximum design pressure means the maximum pressure for which hose assembly has been designed and tested;

Transfer out of a vehicle includes transfer out of the tank of a tank vehicle or from a portable tank, demountable tank, bulk container, pressure drum, tube, MEGC or IBC that is on a vehicle;

Transfer into a vehicle includes transfer into the tank of a tank vehicle or into a portable tank, demountable tank, bulk container, pressure drum, tube, MEGC or IBC that is on a vehicle.

10.1.2 TRANSFER EQUIPMENT AND HOSE ASSEMBLIES

10.1.2.1 General

Transfer equipment and hose assemblies used for transfer of dangerous goods must be fit for purpose.

10.1.2.2 Hose assemblies for Class 2 (other than LP Gas or anhydrous ammonia)

A hose assembly used to transfer dangerous goods of Class 2, other than LP Gas or anhydrous ammonia (UN 1005), must have a maximum design pressure of not less than 1.5 times the maximum delivery pressure of the transfer system in which the hose is used.

10.1.2.3 Hose assemblies for LP Gas

A hose assembly used to transfer LP Gas must:
(a) comply with AS/NZS 1869 or UL 21;
(b) be tested in accordance with AS/NZS 1869; and
(c) be retested in accordance with AS/NZS 1596.

10.1.2.4 Hose assemblies for anhydrous ammonia (UN 1005)

A hose assembly used to transfer anhydrous ammonia (UN 1005) must:
(a) comply with AS/NZS 2022; and
(b) be tested in accordance with AS/NZS 2022.
PART 10: BULK TRANSFER OF DANGEROUS GOODS

10.1.2.5 **Hose assemblies for Class 3 petroleum products**

10.1.2.5.1 A hose assembly used to transfer dangerous goods of Class 3 petroleum products must:
(a) comply with AS 2683; and
(b) be tested in accordance with AS 2683.

10.1.2.5.2 <Reserved>

10.1.2.6 **Hose assemblies for liquid dangerous goods other than Class 2 or Class 3 petroleum products**

A hose assembly used to transfer dangerous goods in liquid form other than Class 2 or Class 3 petroleum products must:
(a) comply with AS 2594;
(b) be tested in accordance with AS 2594; and
(c) have a rated maximum design pressure of not less than 1.5 times the maximum delivery pressure of the transfer system in which the hose is used.

10.1.3 **HOSE TESTING**

10.1.3.1 **Periodic inspection**

A hose assembly must be inspected for damage over its entire length at intervals of not more than one month.

10.1.3.2 **Electrical continuity testing**

10.1.3.2.1 This clause applies to a hose assembly used to transfer:
(a) dangerous goods of Class 3 or 4; or
(b) dangerous goods (other than Class 2) with a Subsidiary Hazard of 3 or 4.

10.1.3.2.2 The hose assembly must be tested in accordance with AS 1180.13B for electrical continuity before it is first used to transfer dangerous goods. The resistance of the hose assembly must comply with the resistance values specified for electrical properties in AS 2683 for the kind of hose assembly being tested.

10.1.3.2.3 The hose assembly must be retested in accordance with AS 1180.13B, and, where applicable to the kind of hose assembly being tested, for electrical continuity in accordance with AS 1180.13C at intervals of no more than 6 months. The resistance of the hose assembly must comply with the resistance values specified for electrical properties in AS 2683 for the kind of hose assembly being tested.

10.1.3.2.4 If a hose assembly consists of two or more Kind 1 hose assemblies\(^1\) coupled together, it must be constructed, assembled and maintained so that the resistance between the end couplings does not exceed 10 ohms.

10.1.3.2.5 If a hose assembly consists of two or more hose assemblies which are not of Kind 1, it must be constructed, assembled and maintained so that the resistance between the couplings does not exceed the resistance

\(^1\) Kind 1 hose as described in AS 2683.
values for electrical properties in AS 2683 for the relevant kind of hose assembly.

10.1.3.3 Hydrostatic pressure testing

Unless otherwise specified in this Code or a relevant Standard, a hose assembly used to transfer dangerous goods must be hydrostatically tested at the pressure required by this Code, which must be not less than the rated maximum working pressure:

(a) not more than 12 months before its initial use; and
(b) thereafter at the intervals required by the relevant standard, or, otherwise, on or before each anniversary of its first use.

10.1.3.4 Keeping records

10.1.3.4.1 Each hose assembly must be marked with a distinctive identifying number.

10.1.3.4.2 An accurate record must be kept for the life of each hose assembly of:
(a) the date on which each test required to be carried out by this Chapter is carried out;
(b) the nature of the test carried out;
(c) the date on which maintenance work is carried out on the hose assembly; and
(d) the nature of the maintenance work.
CHAPTER 10.2 - TRANSFER REQUIREMENTS

10.2.1 WHERE TO TRANSFER DANGEROUS GOODS

10.2.1.1 Position of vehicle during transfer of Division 2.1 or Class 3

10.2.1.1.1 Dangerous goods of Division 2.1, Class 3, or with a Subsidiary Hazard 2.1 or 3, must not be transferred into or out of a road vehicle unless the vehicle is positioned:
(a) so that it can be driven away in a forward direction; or
(b) if it is not reasonably practicable to drive the vehicle in a forward direction owing to the layout of the site so that it can be driven away with minimal manoeuvring.

10.2.1.1.2 The area through which the vehicle needs to move or manoeuvre in order to leave the premises on which the transfer takes place must, as far as practicable, be kept clear while the vehicle is on the premises.

10.2.1.2 Transfer in a public area

10.2.1.2.1 This sub-section applies at any place that is:
(a) in a built up area with public access; or
(b) within 15 metres of any building or any other place where there is likely to be a concentration of people, other than a building on the premises where the transfer takes place.

10.2.1.2.2 Dangerous goods of packing group I or Division 2.3 [other than ammonia, anhydrous (UN 1005) or ammonia solution (UN 3318)] must not be transferred out of a road vehicle in a place described in 10.2.1.2.1.

10.2.1.2.3 Dangerous goods must not be transferred out of one vehicle into another vehicle in a place described in 10.2.1.2.1.

10.2.1.3 Transfer operation within a designated transfer area

If dangerous goods are to be transferred into or out of a vehicle, and the occupier of premises has marked or otherwise designated an area on the premises in which a transfer operation is to take place, the vehicle must be parked within the designated area during the transfer operation.

10.2.1.4 Transfer in enclosed space

Dangerous goods must not be transferred into or out of a vehicle that is in an enclosed space if the transfer is likely to give rise to dangerous concentrations of dusts, mists or vapours.

10.2.1.5 Positioning of hose assembly during transfer

If dangerous goods are to be transferred into or out of a vehicle in an area which is accessible to other vehicles, all reasonably practicable measures must be taken to prevent any vehicle from driving over the hose assembly or striking its connections.
10.2.2 PREVENTING FIRE DURING A TRANSFER OPERATION

10.2.2.1 Distance from ignition sources
During a transfer operation into or out of a vehicle, there must be no source of ignition: within any hazardous area determined in accordance with AS/NZS 60079.10.1.

10.2.2.2 Engine precautions
10.2.2.2.1 During transfer of dangerous goods of Class, Division or Subsidiary Hazard 2.1, 3 or 4 out of a road vehicle, the engine of the vehicle must remain stopped unless the transfer involves the use of a pump or compressor driven by the vehicle’s engine. This does not prevent the minimal necessary use of the engine to clear the contents of hoses back into the tank following the transfer.

10.2.2.2.1A During transfer of dangerous goods of Class, Division or Subsidiary Hazard 2.1, 3 or 4 into a road vehicle, the engine of the vehicle must remain stopped unless the vehicle is a vacuum tank vehicle.

10.2.2.2.2 The engine of the vehicle, and any internal combustion auxiliary engine on the vehicle, must be stopped while hose connections for the transfer of dangerous goods of Division or Subsidiary Hazard 2.1 are coupled to or uncoupled from the vehicle or tank on the vehicle.

10.2.2.3 Electrical bonding
10.2.2.3.1 Before LP Gas is transferred into or out of a vehicle, the supplying receptacle must be electrically bonded to the receiving receptacle in accordance with AS/NZS 1596.

10.2.2.3.2 Where dangerous goods of Division 2.1 (other than LP Gas) are transferred into or out of a vehicle and the receiving receptacle is not an underground tank, the supplying receptacle must be electrically bonded to the receiving receptacle before the transfer commences. The bonding must remain in place until all hose assemblies have been uncoupled and all closures have been closed.

10.2.2.3.3 Before dangerous goods of Class 3 are transferred into or out of a vehicle, the supplying receptacle must be electrically bonded to the receiving receptacle in accordance with AS 1940.

10.2.2.4 Loading spear for Class 3
If a tank is filled from the top with dangerous goods of Class or Subsidiary Hazard 3, and is not filled through a tight fill connection and fill pipe in accordance with AS 1692, the loading spear must be in contact with the bottom of the tank while the goods are being transferred.

1 AS/NZS 60079.10.1 is an internationally based Standard that has now replaced the AS/NZS 2430 series of Standards. These Standards are recognised nationally as defining hazardous areas. They prescribe distances both in text and pictorially. These distances vary with the type of dangerous goods and, in the case of tanker loading, are different for installations with or without vapour recovery.
10.2.2.5 Heater restrictions
Except where permitted by 13.1.3.5, if a road tank vehicle is equipped with a burner or other means to heat the cargo, the heater must not be operated during a transfer operation.

10.2.3 TRANSFER OF DANGEROUS GOODS - GENERAL REQUIREMENTS

10.2.3.1 Dangerous goods must not be transferred into or out of a vehicle, unless the vehicle is secured against movement.

10.2.3.2 If dangerous goods are transferred into or out of a vehicle, a person must:
(a) remain in proximity with the vehicle during the transfer operation; and
(b) be in a position to observe all relevant valves, fittings, gauges and hose connections that are used or may be used during the transfer operation; and
(c) have access to all equipment necessary to stop the transfer operation in the event of an escape, leak or spill.

10.2.3.3 Dangerous goods must not be transferred into or out of a road vehicle, while the cabin of the vehicle is occupied.

10.2.3.4 The level of light at all valves, fittings, gauges and hose connections that are used or may be used during a transfer operation must be adequate to allow the transfer operation to be conducted safely.

10.2.3.5 If dangerous goods are transferred under gas pressure into or out of a vehicle:
(a) the design pressure of the supplying receptacle must not be exceeded; and
(b) the gas used in the transfer operation must be chemically inert to the dangerous goods being transferred; and
(c) air must not be used to transfer dangerous goods of Class 3 or 4 or with a Subsidiary Hazard of 3 or 4.

10.2.3.6 A hose used in connection with a transfer operation should be handled so as to avoid excessive curvature, stress, abrasion or kinking that may damage the hose or its connections.

10.2.3.7 Despite 10.2.3.1 and 10.2.3.3, if a bitumen tank vehicle is coupled with road making plant, bitumen may be transferred between the vehicles by a connecting hose while the vehicles are in motion and while the cabins are occupied. However the tank vehicle drive away protection system required by AS2809 may only be overridden by the road making plant coupled to the bitumen tank vehicle to allow the coupled units to be moved.

10.2.4 TRANSFER OF GAS

10.2.4.1 LP Gas must be transferred into or out of a vehicle in accordance with AS/NZS 1596.
10.2.4.2 Liquefied gas must not be transferred into a storage tank or other receptacle housed within a building unless:
(a) the building is designed and used solely for the purpose of storing dangerous goods of Class 2; or
(b) the building may be used for that purpose under a law of the State of Territory in which the building is located that relates to the storage and handling of dangerous goods.

10.2.4.3 Subject to 10.2.4.1, when dangerous goods of Division 2.1 or Division 2.3 are transferred out of a vehicle into a storage receptacle and if:
(a) the line of sight between the vehicle, portable tank or MEGC and the filling point of the storage container is obstructed so that one cannot be seen from the other; or
(b) the transfer is at a place described in 10.2.1.2.1:

10.2.4.4 A person must not transfer liquefied oxygen into or out of a road vehicle unless, during the transfer operation, all surfaces within a distance of 1 metre of the transfer hose are made of concrete or other non-combustible material.

10.2.5 TRANSFER OF DANGEROUS GOODS OF CLASS 3

10.2.5.1 Dangerous goods of Class or Subsidiary Hazard 3 must be transferred out of a vehicle into a storage receptacle, in accordance with AS 1940. Direct transfer of these goods out of the vehicle into drums or smaller packagings is not permitted except at facilities designed or designated for the purpose, taking into account the requirements of AS 1940 and AS/NZS 60079.10.

10.2.5.2 If a pump is fitted to or carried on the vehicle to or from which dangerous goods of Class or Subsidiary Hazard of 3 are transferred:
(a) the propulsion engine of the vehicle must not be used to power the pump unless:
 (i) the engine is a compression-ignition engine; and
 (ii) the pump and all associated pipework are shielded from the engine of the vehicle by the provision of a fire shield or by equally effective means; and
 (iii) the pump driving engine requirements of AS 2809.2 are complied with; and
(b) a spark ignition engine must not be used to power an auxiliary or portable pumping unit; and
(c) an auxiliary or portable pumping unit powered by a compression-ignition engine must not be used unless the unit is approved by a Competent Authority for that purpose and is operated in accordance with the approval; and
(d) an electric motor must not be used to power the pump unless the motor and all associated electrical fittings and equipment are suitable for use in a Zone 1 hazardous area as defined in AS/NZS 60079.10.
10.2.5.3 All valves and closures that were removed or opened to enable the transfer to take place must be reinstated or closed after the transfer is completed.

10.2.5.4 Manner of filling

10.2.5.4.1 Except where 10.2.5.4.2 applies, when dangerous goods of Class or Subsidiary Hazard 3 are transferred into or out of a vehicle, the receptacle on the vehicle and the receiving tank or storage receptacle must be connected by pipeline and hose connection.

10.2.5.4.2 A hand-held nozzle may be used for the transfer of dangerous goods of Class or Subsidiary Hazard 3 into or out of a vehicle if:

(a) the transfer:
 (i) takes place on premises which are a farm or mine site; or
 (ii) is into or out of a tank described in AS 1940 as a minor storage tank; and

(b) the receiving tank or storage container is fitted with a fill pipe at the tank or container opening.
CHAPTER 10.3 - ULLAGE AND MAXIMUM PERMITTED FILLING RATIO

NOTE: This Chapter applies only to the filling of tank vehicles.

Portable tanks and MEGCs must be filled only in accordance with the provisions for use in Chapter 4.2, as referenced:

(a) for portable tanks, –from the portable tank instructions and special provisions for the particular dangerous goods in Columns (10) and (11) of the Dangerous Goods List in Chapter 3.2; or

(b) for MEGCs, –from packing instruction P200 in Chapter 4.1.

Bulk containers must be filled in accordance with the provisions for use in Chapter 4.3., as referenced from Column (10) of the Dangerous Goods List.

IBC must be filled in accordance with the provisions of 4.1.1, 4.1.2 and the relevant IBC packing instructions and special packing provisions in 4.1.4.2, as referenced from Columns (8) and (9) of the Dangerous Goods List.

10.3.1 ULLAGE

10.3.1.1 Liquid dangerous goods (other than Class 2)

Unless elsewhere specified in this Code or a relevant code or standard referenced in this Code, the ullage in a tank vehicle containing liquid dangerous goods (other than dangerous goods of Class 2) must not be less than:

(a) 2% - for dangerous goods having a coefficient of expansion of not more than 90×10^{-5} per degree Celsius;

(b) 3% - for dangerous goods having a coefficient of expansion of more than 90×10^{-5} but not more than 135×10^{-5} per degree Celsius;

(c) 4% - for dangerous goods having a coefficient of expansion of more than 135×10^{-5} but not more than 180×10^{-5} per degree Celsius;

(d) 5% - for dangerous goods having a coefficient of expansion of more than 180×10^{-5} per degree Celsius.

10.3.1.2 Ullage of large tank or compartment

10.3.1.2.1 This clause applies to liquids having a viscosity less than 2,680 mm²/s at 20°C, or the maximum temperature of the substance during transport in the case of the heated substance, that are either:

(a) dangerous goods; or

(b) liquids other than dangerous goods that are transported in the same tank, or in another tank on the same vehicle or combination vehicle, as dangerous goods.

10.3.1.2.2 Any liquid described in 10.3.1.2.1, must not be transported in a large compartment tank as defined in AS 2809.1, if the ullage in the large compartment is more than 20% but less than 85%.
NOTE 1: 10.3.1.2.2 applies only to those tanks or compartments of a road tank vehicle that individually exceed 8,600 L. It does not apply to portable tanks, or to smaller tanks or compartments on the same vehicle.

NOTE 2: This ullage requirement corresponds to a restriction on the transport of a large compartment tank having a degree of filling of more than 15% but less than 80%.

NOTE 3: Different limits apply to the compartment sizes and degree of filling of portable tanks in 4.2.1.9.6.

10.3.1.2.3 10.3.1.2.2 does not apply to liquefied gases, or to TARS, LIQUID (UN 1999), or to elevated temperature liquids (UN 3256 and 3257), or to waste dangerous goods transported in vacuum tank vehicles.

10.3.1.3 Ullage—Class 2 refrigerated liquid

If dangerous goods of Class 2 in the form of a refrigerated liquid are transferred into a tank vehicle, the tank must not be filled with liquid to the extent that, when the liquid is uniformly at the temperature which corresponds to the start-to-discharge pressure of:

(a) the safety relief valve of the tank; or

(b) where the tank is fitted with a pressure control valve in addition to a safety relief valve— the pressure control valve;

the ullage below the inlet to the valve is less than 2% when the tank is level.

NOTE: Consideration should also be given to Portable Tank Instruction T75 and any Portable Tank Special Provisions specified for the substance in Column (11) of the Dangerous Goods List in Chapter 3.2.

10.3.2 MAXIMUM PERMITTED FILLING RATIO - CLASS 2 LIQUID

10.3.2.1 The maximum permitted filling ratio for a tank vehicle containing dangerous goods of Class 2 in a liquefied form (other than refrigerated liquid) is:

(a) for goods covered under AS/NZS 1596, as specified in the filling instructions set out in that Standard;

(b) for tank vehicles with a capacity of 5000L or more transporting propane, 0.45, as determined in accordance with Table 2.1 of AS 2809.3;

(c) in all other circumstances, the relevant ratio specified in Portable Tank Instruction T50 in Chapter 4.2;

(d) if paragraph (c) applies but no ratio is specified in Portable Tank Instruction T50 – the ratio determined by a Competent Authority in relation to goods of that type when transferred into a tank of that type.
PART 11: DOCUMENTATION
PART 11: DOCUMENTATION

Note: The numbering and structure of Chapter 11 was revised in 2020 to align with that of the UN Model Regulations. This was necessary to facilitate future updates to the Code.

CHAPTER 11.1 - TRANSPORT DOCUMENTATION

Introductory Notes

NOTE 1: Documentation prepared in accordance with this Part may not be acceptable for sea or air transport. See the relevant modal code or Chapter 5.4 of the UN Model Regulations for details of documentation required for intermodal transport by sea or air.

NOTE 2: The IATA “Shipper’s Declaration for Dangerous Goods” will also be acceptable under this Code as a transport document if all the required information is inserted.

NOTE 3: Division 11.1 of the Regulations specifies who must provide and carry dangerous goods transport documentation.

11.1.1 DANGEROUS GOODS TRANSPORT INFORMATION

11.1.1.1 General

11.1.1.1.1 Except as otherwise provided, the consignor who offers dangerous goods for transport shall give to the prime contractor the information applicable to those dangerous goods, including any additional information and documentation as specified in this Code. This information may be provided on a dangerous goods transport document or, with the agreement of the carrier, by EDP or EDI techniques.

11.1.1.1.2 When dangerous goods transport information is given to the prime contractor by EDP or EDI techniques, documentation must be carried in the vehicle in hard copy form.

11.1.1.1.3 When the dangerous goods transport information is given to the prime contractor by EDP or EDI techniques, the consignor shall be able to produce the information without delay as a paper document, with the information in the sequence required by this Chapter.

11.1.1.2 FORM OF THE TRANSPORT DOCUMENT

11.1.1.2.1 A dangerous goods transport document may be in any form, provided it contains all of the information required by this Code.

11.1.1.2.2 If both dangerous and non-dangerous goods are listed in one document, the dangerous goods must be listed first.

11.1.1.2.3 A dangerous goods transport document may consist of more than one page, provided pages are consecutively numbered.

11.1.1.2.4 The information on a dangerous goods transport document must be in English, easy to identify, legible and durable.
PART 11: DOCUMENTATION

11.1.1.2.5 The form shown in Figure B1 in Appendix B is an example of the intermodal dangerous goods transport document included in UN20, the IMDG Code and ADR, that may be suitable for sea or land transport. It may be used for transport in accordance with this Code if all information required by this Chapter is inserted in the spaces provided. This does not preclude the use of other formats that meet the requirements of this Chapter.

11.1.1.3 CONSIGNOR, CONSIGNEE AND DATE

11.1.1.3.1 The name and address of the consignor and the consignee of the dangerous goods must be included on the dangerous goods transport document, including the consignor’s contact telephone number which:

(i) for dangerous goods transported in bulk containers, portable tanks, tank vehicles, or receptacles with a capacity of more than 500 kg(L), should be the number of the ‘telephone advisory service’ provided under Regulation 14.2.1; or

(ii) whenever practicable, should be a number at which the consignor, or a person acting on behalf of the consignor, is accessible to answer questions relating to the goods consigned, whenever the goods are being transported; and

11.1.1.3.2 The date the dangerous goods transport document or an electronic copy of it was prepared or given to the initial carrier must be included.

11.1.1.4 INFORMATION REQUIRED ON THE DANGEROUS GOODS TRANSPORT DOCUMENT

11.1.1.4.1 Dangerous Goods Description

The dangerous goods transport document must contain the following information for each type of dangerous good or article offered for transport:

(a) the UN Number of the goods;
(b) the proper shipping name of the goods or the name of the goods that appears on the packaging, article or other receptacle in which the goods are contained;¹
(c) the Class or Division of the goods;
(d) each Subsidiary Hazard (if any) of the goods;
(e) the packing group (if any) for the goods;
(f) a description of each type of package or other receptacle to be transported, for example:
 (i) “drum” or “DRM”; and
 (ii) “intermediate bulk container” or “IBC”;
(g) the number of packages or receptacles of each type to be transported; and
(h) except for empty uncleaned packagings, the aggregate quantity of dangerous goods covered by the description of each item of dangerous goods bearing a different proper shipping name, UN number or packing group. For dangerous goods transported in

¹ When entered as part of a character string (e.g. on the intermodal dangerous goods form), the proper shipping name, supplemented where necessary by the technical name, must be used.
salvage packagings, an estimate of the quantity of dangerous goods must be given.

NOTE 1: The number, type and capacity of each inner packaging within the outer packaging of a combination packaging is not required to be indicated.

NOTE 2: The aggregate quantity of a type of dangerous goods required by 11.1.1.4.1(h) may be described by stating:

(a) if the goods are a gas:
 (i) the total capacity in litres of all gas receptacles in which those goods will be transported; or
 (ii) if more convenient, the number of each type of receptacle in which the goods will be transported [as required by 11.1.1.4.1(g)] together with the capacity of each of those receptacles; or

(b) if the goods are a liquid or a solid:
 (i) the total amount, expressed in litres or kilograms, of dangerous goods of that type to be transported; or
 (ii) if more convenient, the number of each type of package or other receptacle in which the goods will be transported [as required by 11.1.1.4.1(g)] together with the amount of dangerous goods each contains.

11.1.1.4.2 Placement and Sequence of the Dangerous Goods Description

11.1.1.4.2.1 When describing a type of dangerous goods, the UN Number, name, Class or Division, Subsidiary Hazard and the packing group for the goods must appear before the other elements of the description.

11.1.1.4.2.2 Where the transport document is in the form of the Multimodal Dangerous Goods Form shown at Figure B1 in Appendix B, or any other format where the dangerous goods description is entered as a character string, the first five elements of the dangerous goods description specified in 11.1.1.4.1 must be shown in the order listed above (i.e. (a), (b), (c), (d), (e) with no information interspersed, except as provided in this Code.).

 e.g: “UN1098 ALLYL ALCOHOL 6.1 (3) I”; or

 “UN1098, ALLYL ALCOHOL, Division 6.1, (Class 3), PG I”.

NOTE 1: Knowledge of the actual location of dangerous goods within the cargo transport unit can be invaluable in an emergency. The inclusion of a sketch or other representation is encouraged where practicable.

NOTE 2: In addition to the requirements of this Code, other elements of information may be required by the competent authority or for certain modes of transport (e.g. flash point for sea transport). Unless permitted or required by this Code,
additional information must be placed after the dangerous goods description.

11.1.1.4.3 Information which supplements the proper shipping name in the dangerous goods description

The proper shipping name in the dangerous goods description must be supplemented as follows:

(a) Technical names for “n.o.s.” and other generic descriptions: Proper shipping names that are assigned special provision 274 or 318 in Column 6 of the Dangerous Goods List must be supplemented with their technical or chemical group names as described in 3.1.2.8;

(b) Empty uncleaned packagings, bulk containers and tanks: Empty means of containment (including packagings, IBCs, bulk containers, portable tanks, tank-vehicles and tank-wagons) which contain the residue of dangerous goods of classes other than Class 7 must be described as such by, for example, placing the words “EMPTY UNCLEANED” or “RESIDUE LAST CONTAINED” before or after the dangerous goods description specified in 11.1.1.4.1 (a) to (e);

Empty, as yet unused dangerous goods prelabelled packagings should be clearly identified as such on documentation, outer packaging or vehicle to avoid inappropriate emergency response.

(c) Wastes: For waste dangerous goods (other than radioactive wastes) which are being transported for disposal, or for processing for disposal, the proper shipping name must be preceded by the word “WASTE”, unless this is already a part of the proper shipping name;

(d) Elevated temperature substances: If the proper shipping name of a substance which is transported or offered for transport in a liquid state at a temperature equal to or exceeding 100 °C, or in a solid state at a temperature equal to or exceeding 240 °C, does not convey the elevated temperature condition (for example, by using the term “MOLTEN” or “ELEVATED TEMPERATURE” as part of the shipping name), the word “HOT” must immediately precede the proper shipping name.

11.1.1.5 INFORMATION REQUIRED IN ADDITION TO THE DANGEROUS GOODS DESCRIPTION

In addition to the dangerous goods description the following information must be included after the dangerous goods description on the dangerous goods transport document.

11.1.1.5.1 <Reserved>

11.1.1.5.2 <Reserved>

11.1.1.5.3 Salvage packagings including large salvage packagings and salvage pressure receptacles
For dangerous goods transported in salvage packagings including large salvage packagings or salvage pressure receptacles, the words “SALVAGE PACKAGING” or “SALVAGE PRESSURE RECEPTACLE” must be included.

11.1.1.5.4 Substances stabilised by temperature control

If the word “STABILISED” is part of the proper shipping name (see also 3.1.2.6), when stabilisation is by means of temperature control, the control and emergency temperatures (see 7.1.5.3) must be indicated in the transport document, as follows:

“Control temperature: °C Emergency temperature: °C”

11.1.1.5.5 Self-reactive substances, polymerizing substances and organic peroxides

For self-reactive substances, organic peroxides or polymerizing substances which require temperature control during transport, the control and emergency temperatures (see 7.1.5.3) must be indicated on the dangerous goods transport document, as follows:

“Control temperature: °C Emergency temperature: °C”

11.1.1.5.5.1 When for certain self-reactive substances of Division 4.1 or organic peroxides of Division 5.2 the competent authority has permitted the “EXPLOSIVE” subsidiary hazard label (model No. 1) to be dispensed with for the specific package, a statement to this effect must be included.

11.1.1.5.5.2 When organic peroxides or self-reactive substances are transported under conditions where a determination is required (for organic peroxides, see 2.5.3.2.5, 4.1.7.2.2, 4.2.1.13.1 and 4.2.1.13.3; for self-reactive substances, see 2.4.2.3.2.4 and 4.1.7.2.2), a statement to this effect must be included in the dangerous goods transport document. A copy of the classification determination and conditions of transport for non-listed organic peroxides and self-reactive substances must be attached to the dangerous goods transport document.

11.1.1.5.5.3 When a sample of an organic peroxide (see 2.5.3.2.5.1) or a self-reactive substance (see 2.4.2.3.2.4(b)) is transported, a statement to this effect must be included in the dangerous goods transport document.

11.1.1.5.6 Infectious substances

When substances of division 6.2 are transported, the full address of the consignee must be shown on the document, together with the name and telephone number of a responsible person.

11.1.1.5.7 <Reserved>

11.1.1.5.8 <Reserved>

11.1.1.5.9 Transport of IBCs or portable tanks after the date of expiry of the last periodic test or inspection
PART 11: DOCUMENTATION

For transport in accordance with 4.1.2.2 (b), 6.7.2.19.6 (b), 6.7.3.15.6 (b) or 6.7.4.14.6 (b), a statement to this effect must be included in the transport document, as follows:

- "Transport in accordance with 4.1.2.2(b)"
- "Transport in accordance with 6.7.2.19.6(b)"
- "Transport in accordance with 6.7.3.15.6(b)" or
- "Transport in accordance with 6.7.4.14.6(b)" as appropriate.

11.1.1.5.10 <Reserved>

11.1.1.5.11 Classification where new data is available (see 2.0.0.2)

For transport in accordance with 2.0.0.2, a statement to this effect shall be included in the transport document, as follows “Classified in accordance with 2.0.0.2”.

11.1.1.5.12 Transport of UN Nos. 3528, 3529 and 3530

For transport of UN Nos. 3528, 3529 and 3530, the transport document, when required according to special provision 363, shall contain the following additional statement “Transport in accordance with special provision 363”.

11.1.1.5.13 Actual holding time

In the case of portable tanks carrying refrigerated liquefied gases the consignor shall enter in the transport document the date at which the actual holding time ends, in the following format:

"END OF HOLDING TIME: (DD/MM/YYYY)".

11.1.6 <RESERVED>

11.1.2 SPECIAL DOCUMENTATION PROVISIONS

11.1.2.1 Combination road vehicles

When dangerous goods are transported in a placard load on a combination road vehicle, the transport documentation must indicate which dangerous goods are stowed in each vehicle forming part of the combination.

11.1.2.2 Amending documentation after unloading

When part of a load of dangerous goods is unloaded from a vehicle, or transferred out of a tank, bulk container or freight container on the vehicle, the transport documentation must where practicable be amended to reflect the types and quantities of dangerous goods remaining on the vehicle.

NOTE: 11.1.2.2 cannot be applied to tanks containing dangerous goods of Class 2 where the aggregate quantity in the tank is
determined by the capacity of the tank and is not dependent on the degree of filling.

11.1.2.3 <DELETED>

11.1.2.4 Goods Not Subject to this Code

11.1.2.4.1 This sub-section applies to goods which are mentioned in the Dangerous Goods List in Chapter 3.2 that are not subject to this Code because of a Special Provision referenced from Column (6) or because they have been determined by the Competent Authority not to be dangerous goods.

11.1.2.4.2 Goods described in 11.1.2.4.1 that are legitimately marked or labelled as dangerous goods under the IMDG, ICAO or IATA Code for transport by sea or air, may be described on transport documentation in accordance with the relevant Code.

11.1.2.4.3 When goods described in 11.1.2.4.1 are transported in a cargo transport unit that is placarded indicating the presence of dangerous goods and there is no documentation in accordance with 11.1.2.4.2, the transport documentation should indicate, in lieu of the dangerous goods description required by 11.1.1.1.4, that the goods are not subject to the ADG Code.

11.1.3 ROAD TRANSPORT DOCUMENTATION

11.1.3.1 Transport documentation must be carried in the cabin of each road vehicle transporting dangerous goods.

11.1.3.2 Every road vehicle transporting a placard load of dangerous goods must be fitted with an emergency information holder in accordance with Chapter 11.2 and the transport documentation must be carried with the emergency information in that holder.

11.1.3.3 Every road vehicle transporting less than a placard load of dangerous goods must carry the documentation:

(a) in any emergency information holder fitted in the cabin of the vehicle;

or

(b) where no emergency information holder is fitted, elsewhere in the cabin in a prominent location.

11.1.3.4 Despite 11.1.1.2, the documentation must be of a size, and be in a form, that is suitable for carrying in the emergency information holder.

11.1.3.5 The documentation must not be in a sealed envelope or be otherwise kept in a way that would prevent it from being able to be read by the driver, while it is in the vehicle.
11.1.4 RAIL TRANSPORT DOCUMENTATION

For the rail journey, a train manifest may be used instead of transport documentation required by this Chapter provided:

(a) the train manifest contains, for each type of dangerous goods to be transported, the proper shipping name, the Class or Division and any Subsidiary Hazard, the UN Number, the packing group (if any), the aggregate quantity, the wagon number and the location on the train where the goods are loaded;

(b) provision is made for the train manifest to be updated when the attachment or detachment of vehicles loaded with dangerous goods occurs; and

(c) while ever the train is transporting dangerous goods, all of the information required by this Chapter to be included on the documentation is available from a central location provided by the rail operator for which contact details are provided on or with the manifest.

CHAPTER 11.2 - EMERGENCY INFORMATION

11.2.1 DEFINITIONS

In this Chapter:

Emergency information, in relation to dangerous goods transported on a vehicle, means:

(a) the Dangerous Goods – Initial Emergency Response Guide; or

(b) an emergency procedure guide for the dangerous goods transported on the vehicle and the emergency procedure guide in relation to vehicle fire; or

(c) for use on trains transporting dangerous goods, the rail operator’s Dangerous Goods Emergency Instructions for train crews which provides contact numbers for dangerous goods emergencies or

(d) a relevant international or foreign standard, legible and in English, that is equivalent to the information provided by Standards Australia publication HB76. Any use of an international or foreign standard must be approved by the Competent Authority.

Note 1: An example of a relevant international or foreign standard is the 2012 Emergency Response Guidebook (ERG2016) developed jointly by Transport Canada (TC), the U.S. Department of Transportation (DOT), the Secretariat of Transport and Communications of Mexico (SCT) and with the collaboration of CIQUIME (Centro de Información Química para Emergencias) of Argentina.

1 Division 11.2 of the Regulations requires emergency information to be carried on each road vehicle or train transporting dangerous goods in a placard load.
Note 2: Such international or foreign standards that are acceptable must be supplemented by correct Australian emergency contact information.

Emergency procedure guide, in relation to particular dangerous goods, is a guide outlining procedures to be taken in the event of an emergency involving the goods which is either:

(a) in the form, or substantially in the form, of an emergency procedure guide for the goods published by Standards Australia; or

(b) in a form approved by a Competent Authority in relation to goods of that kind.

Emergency procedure guide, in relation to vehicle fire, means a guide outlining procedures to be taken in the event of a fire on a road vehicle which is either:

(a) in the form, or substantially in the form, of the emergency procedure guide for vehicle fire published by Standards Australia; or

(b) in a form approved by a Competent Authority.

Emergency information holder means a holder:

(a) of a size and shape suitable for carrying emergency information and transport documentation; and

(b) marked with the words “emergency procedure guides” or “emergency information” in red letters at least 10 millimetres high on a white background.

11.2.2 PLACEMENT OF EMERGENCY INFORMATION HOLDER

11.2.2.1 An emergency information holder must be securely placed on a road vehicle:

(a) on the inside of a door of the cabin; or

(b) immediately adjacent to a door of the cabin; or

(c) if the construction of the vehicle does not allow the holder to be attached to the inside of or adjacent to a cabin door - elsewhere in the cabin of the vehicle, provided that the position of the holder is identified on a notice affixed to the inside of the driver’s door of the cabin.

11.2.2.2 Any emergency information holder that is located other than as specified in 11.2.2.1(a) must be visible and accessible.
PART 12: SAFETY EQUIPMENT FOR ROAD VEHICLES
CHAPTER 12.1 - SAFETY EQUIPMENT FOR ROAD VEHICLES

12.1.1 APPLICATION

Every road vehicle transporting a placard load of dangerous goods must be equipped with:
(a) fire extinguishers in accordance with 12.1.2; and
(b) at least three portable warning devices that comply with AS 3790 and are clean and in good condition; and
(c) personal protective equipment and safety equipment in accordance with 12.1.3.

12.1.2 FIRE EXTINGUISHERS

12.1.2.1 A road vehicle transporting a placard load of dangerous goods must be equipped with a fire extinguisher or fire extinguishers in good working order and in accordance with Table 12.1.

12.1.2.2 On a combination vehicle, each separate unit on which a placard load of dangerous goods is transported must be equipped with fire extinguishers in good working order and in accordance with Table 12.1.

12.1.2.3 A fire extinguisher required by this Section must comply with:
(a) AS/NZS 1841.1 and AS/NZS 1850 and AS1851; and
(b) AS/NZS 1841.4 or 5 as appropriate for the vehicle and load being carried.

12.1.2.4 Each fire extinguisher required by this Section must be mounted securely by means of a quick-release attachment.

12.1.2.5 Extinguisher Location

12.1.2.5.1 Each fire extinguisher required by this Section must be located so as to be readily accessible for use.

12.1.2.5.2 On road tank vehicles, fire extinguishers must be located and stowed in accordance with AS 2809.1.

12.1.2.5.3 Where two or more fire extinguishers are required for the load area of any vehicle, one should be located on the left (near) side towards the rear of the vehicle and, wherever practicable, another should be mounted on the right (off) side towards the front of the vehicle.

12.1.2.5.4 Except in the case of a combination vehicle, if only one fire extinguisher is required for any vehicle, wherever practicable it should be located:
(a) on the discharge side of a road tank vehicle; or
(b) in the cabin for all other vehicles.

12.1.2.5.5 If 12.1.2.5.4 or Table 12.1 requires that a fire extinguisher be located in the cabin, as an alternative to being located in the cabin the fire extinguisher may be located directly behind the cabin or may be mounted on the rear of the cabin.
Table 12.1: Minimum Fire Extinguisher Requirements for Road Vehicles Transporting a Placard Load of Dangerous Goods

<table>
<thead>
<tr>
<th>Load:</th>
<th>Required extinguishers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All types of dangerous goods packed in:</td>
<td>1 x 30B dry powder that is to be placed in the cabin (see 12.1.2.5.5), or at the front of any trailer transporting a placard load</td>
</tr>
<tr>
<td>- packages, drums, overpacks, segregation devices</td>
<td></td>
</tr>
<tr>
<td>- intermediate bulk containers (IBCs) containing non-flammables – any quantity</td>
<td></td>
</tr>
<tr>
<td>- IBCs containing flammables with up to (and including) 10,000 L total capacity or containing up to (and including) 10,000 kg in total</td>
<td></td>
</tr>
<tr>
<td>Required extinguishers:</td>
<td></td>
</tr>
<tr>
<td>Non-flammable goods packed in:</td>
<td></td>
</tr>
<tr>
<td>pressure drums, tubes, multiple element gas containers (MEGCs), tanks, bulk containers (solids)</td>
<td></td>
</tr>
<tr>
<td>Required extinguishers:</td>
<td></td>
</tr>
<tr>
<td>1 x 60B dry powder, or 2 x 30B dry powder, in the load area</td>
<td></td>
</tr>
<tr>
<td>1 x 10B dry powder in the cabin (see 12.1.2.5.5)</td>
<td></td>
</tr>
<tr>
<td>Flammable goods packed in:</td>
<td></td>
</tr>
<tr>
<td>- pressure drums, tubes, MEGCs, tanks, bulk containers (solids)</td>
<td></td>
</tr>
<tr>
<td>- IBCs > 10,000 L total capacity or containing >10,000 kg. in total</td>
<td></td>
</tr>
<tr>
<td>Required extinguishers:</td>
<td></td>
</tr>
<tr>
<td>2 x 60B dry powder, or 1x 80B dry powder and 1 x 20B foam, in the load area</td>
<td></td>
</tr>
<tr>
<td>1 x 10B dry powder in the cabin (see 12.1.2.5.5)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: In this table “flammable goods” means dangerous goods of Division 2.1, Class 3 or Class 4, or having a subsidiary hazard of 2.1, 3 or 4.

NOTE 2: In cases of combination vehicles, these directions apply to every separate trailer transporting a placard load.

NOTE 3: If more than one dry powder fire extinguisher is required in the load area, one may be replaced with a foam or water fire extinguisher of at least 9L capacity. If a foam or water fire extinguisher is used it must be suitable for the types of fire scenarios likely to be encountered and selected with the aim of preventing the spread of fire to the load.

NOTE 4: A foam or water firefighting system using compressed air, electric pumps or other means, may be used in place of portable fire extinguishers in the load area. The firefighting system must be operational even when the engine of the vehicle is turned off and must be suitable for the types of fire scenarios likely to be encountered with the aim of preventing the spread of fire to the load.
12.1.3 PERSONAL PROTECTIVE EQUIPMENT AND SAFETY EQUIPMENT

12.1.3.1 Table 12.2 specifies the minimum personal protective and safety equipment that must be provided, based on the classification of the dangerous goods being transported.

12.1.3.2 A road vehicle transporting a placard load of dangerous goods must carry the personal protective equipment and safety equipment specified in Table 12.2 for all the dangerous goods in the load, based on their primary hazards and any subsidiary hazard, subject to any conditions incorporated in the table and its explanatory notes.

12.1.3.3 All personal protective equipment and safety equipment provided in accordance with this section must be:
 (a) clean; and
 (b) suitable for purpose; and
 (c) in sound operating condition, ready for use.

12.1.3.4 Personal protective equipment provided in accordance with this section must be in sufficient quantities for and suitable for use by:
 (a) the driver of the vehicle; and
 (b) where required for escape purposes, any other persons travelling in the vehicle.

12.1.3.5 Respiratory protection equipment required to be carried for escape purposes must be carried securely and in an accessible position in the cabin of the vehicle.

12.1.3.6 Other personal protective equipment and safety equipment provided for occupants of a road vehicle transporting dangerous goods must be carried securely and in a readily accessible position in the vehicle.
Table 12.2: Minimum Personal Protective and Safety Equipment on Road Vehicles transporting a Placard Load

<table>
<thead>
<tr>
<th>Minimum Equipment Required</th>
<th>2.1 [a]</th>
<th>2.2</th>
<th>2.3</th>
<th>3</th>
<th>4</th>
<th>5.1 (solids)</th>
<th>5.1 (liquids)</th>
<th>5.2</th>
<th>6.1</th>
<th>6.2</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory protection equipment for escape purposes</td>
<td>No</td>
<td>No</td>
<td>[b]</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>[b]</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Gas tight goggles or full face shield as appropriate</td>
<td>[c]</td>
<td>[c]</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Eye-wash kit [d]</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chemically resistant gloves or gauntlets</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Thermally insulated gloves or gauntlets</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chemically resistant suit or coveralls</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chemically resistant boots</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Any electric torch</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Electric torch complying with AS/NZS 60079.11 or other recognised Standard</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table notes:

[a] A vehicle transporting unodourised LP Gas, Butane or Propane must additionally be equipped with a gas detector suitable for detection of LP Gas, in accordance with AS 1596.

[b] The minimum requirement is air supplied short term breathing apparatus suitable for escape purposes, except when, even in an emergency, the dangerous goods will not give rise to harmful vapours, gases or dust. Note that where a driver attends to the loading or transfer of goods, SCBA with a duration of greater than 15 minutes may be required by other (e.g. health and safety) legislation.

The minimum requirement is a compressed air or compressed oxygen self contained breathing apparatus, or chemical oxygen self-contained self-rescuer, certified to comply with AS/NZS 1716 and providing breathable air for not less than 15 minutes.

Respiratory protection equipment is not required where the dangerous goods will not give rise to harmful vapours, gases or dust, even in an emergency.

[c] Yes – if the goods are in receptacles with a capacity > 500 L or the goods are cryogenic liquids.

No – otherwise

“Gas tight goggles” means face hugging goggles with increased facial seal.
[d] Where an eyewash kit is required, it must be of at least 250 mL capacity, filled and ready for use.

[e] Yes – if the goods are elevated temperature substances or dry ice.
 No – otherwise.

NOTE 1: Where an item of Personal Protective or Safety Equipment is required based on the primary hazard or subsidiary hazard of any item of dangerous goods in the load, that item must be carried, except that where thermally insulated gloves or gauntlets are required and carried, any requirement for chemically resistant gloves or gauntlets may be ignored.

NOTE 2: Under other legislation, it may be necessary to carry additional Personal Protective Equipment where it is specified for the purpose on the Safety Data Sheet.
CHAPTER 13.1 - PROCEDURES DURING TRANSPORT

13.1.1 APPLICATION

This Chapter applies only to road vehicles transporting a placard load of dangerous goods.

13.1.2 BREAKDOWNS

13.1.2.1 General Measures

If a road vehicle transporting dangerous goods is disabled on a road or street, or has stopped and constitutes a traffic hazard, other road users must be alerted by:

(a) if:

(i) the battery has not been disconnected to prevent danger and there are flashing hazard lights on the vehicle—turning the hazard lights on and leaving them on while the vehicle is stopped; or

(ii) the battery has not been disconnected to prevent danger and there are no flashing hazard lights on the vehicle—turning the parking lights on and leaving them on while the vehicle is stopped; and

(b) placing a portable warning device in a manner required by 13.1.2.2

13.1.2.2 Placement of portable warning triangles

The portable warning triangles must be placed as follows:

(a) if the speed limit for the road is 80 kilometres per hour or more:

(i) 1 triangle at least 200 metres, but not over 250 metres, behind the vehicle; and

(ii) if the vehicle is on a one-way or divided road, 1 triangle between the triangle required by paragraph (i) and the vehicle; and

(iii) if the vehicle is not on a one-way road or divided road, 1 triangle at least 200 metres, but not over 250 metres, in front of the vehicle or fallen load; and

(iv) 1 triangle at the side of the vehicle closer to traffic;

(b) if the speed limit for the road is less than 80 kilometres per hour:

(i) 1 triangle at least 50 metres, but not over 150 metres, behind the vehicle; and

(ii) if the vehicle is on a one-way or divided road, 1 triangle between the triangle required by paragraph (i) and the vehicle; and

(iii) if the vehicle is not on a one-way road or divided road, 1 triangle at least 50 metres, but not over 150 metres, in front of the vehicle or fallen load; and

(iv) 1 triangle at the side of the vehicle closer to traffic.

NOTE: Regulation 13.1.1 of the Model subordinate instrument provides that a driver who complies with an Australian Road Rule requiring the placement of portable warning triangles does not need to comply with the requirements in Part 13 with respect to portable warning devices.
13.1.3 GENERAL PRECAUTIONS DURING TRANSPORT

13.1.3.1 Passengers

No person apart from the following may ride in the cabin of a road vehicle transporting dangerous goods:

(a) an authorised officer, police officer or officer of an emergency service, or a person authorised to ride in the vehicle by such a person; or

(b) an employee of, or other person authorised to ride in the vehicle by, the owner of the vehicle or the prime contractor.

13.1.3.2 Parking requirements

13.1.3.2.1 On parking a road vehicle transporting dangerous goods:

(a) the parking brake must be fully applied; and

(b) if the vehicle is powered by a compression ignition engine, the vehicle must not be parked in gear unless:

(i) the vehicle is fitted with a device to prevent the engine from starting if the vehicle moves; and

(ii) the device is engaged.

13.1.3.2.2 Where a vehicle may be parked

13.1.3.2.2.1 A road vehicle transporting dangerous goods must not be parked or left standing:

(a) in a built-up area with public access; or

(b) within 15 metres of any building in which there is or is likely to be a concentration of people (other than a building on premises where the vehicle is loaded or unloaded); or

(c) at any other place in which there is or is likely to be a concentration of people; or

(d) within 8 metres of another vehicle which is transporting placarded dangerous goods.

13.1.3.2.2.2 Despite 13.1.3.2.2.1, a vehicle may be parked or left standing in circumstances mentioned in 13.1.3.2.2.1 if:

(a) it is reasonably necessary to do so:

(i) for the purpose of loading or unloading dangerous goods onto or from the vehicle; or

(ii) because the vehicle has broken down; or

(iii) because of a dangerous situation involving the vehicle; or

(iv) to comply with the requirement of any law; or

(v) for a brief rest or refreshment break; or

(vi) for the normal operation of the vehicle, such as a bitumen spray vehicle; and

the vehicle is not parked or left standing for any longer than is necessary and the dangerous goods are kept secure; or

(b) the Competent Authority or other local, State or Territory authority responsible for regulating the use or parking of vehicles has
approved the place as a place in which vehicles transporting dangerous goods may be parked or left standing.

13.1.3.2.2.3 A vehicle transporting dangerous goods of Division 2.1 or Class 3, 4 or 5 or with a Subsidiary Hazard of 2.1, 3, 4 or 5 must not be parked or left standing within 15 metres of a naked flame.

13.1.3.2.2.4 13.1.3.2.2.1(d) does not apply to a road vehicle transporting dangerous goods that is parked or left standing in an area to which there is no public access.

13.1.3.2.2.5 Despite 13.1.3.2.2.1, a vehicle carrying BATTERIES, WET, FILLED WITH ACID, electric storage (UN 2794) of Packing Group III that each have a gross mass of 65kg or less, and that together have a gross mass of 5000 kg or less, may:

(a) park in a public place if:
 (i) in the case of an enclosed vehicle, the load area is locked; or
 (ii) in the case of a tray-sided vehicle, the load is covered, or the vehicle is supervised; and

(b) be garaged in a residential area if:
 (i) in the case of an enclosed vehicle, the load area is locked; or
 (ii) in the case of a tray-sided vehicle, the garage is locked.

13.1.3.2.2.6 However, 13.1.3.2.2.5 only applies if the transport documentation for the load states the number of batteries in the load, and if that number is adjusted after each delivery so that it accurately states the number of batteries in the load at all times.

13.1.3.3 Unloading the vehicle

Other than for transfer to another vehicle or to another mode of transport, dangerous goods must not be unloaded from a road vehicle unless:

(a) the consignee, or a person acting on the consignee's behalf, is present and receives the goods; or
(b) if the driver, prime contractor or consignor has agreed with the consignee for the goods to be unloaded into a secure place, the goods are unloaded into that place.

13.1.3.4 Detaching a trailer from a prime mover or combination road vehicle

A trailer containing dangerous goods must not be detached from a prime mover or a combination road vehicle other than:

(a) at a vehicle marshalling area, designated by a local, State or Territory authority, where the loading and unloading of goods is permitted; or
(b) at a transport depot designed for the loading and unloading of goods; or

1 The Regulations may allow for unloading in emergency situations.
(c) for the purposes of immediate exchange of trailers between prime movers or combination road vehicles, provided this is carried out off road and security is maintained; or
(d) in an emergency requiring the trailer to be detached in the interests of safety; or
(e) in the event of the vehicle becoming disabled on a road or street.

13.1.3.5 Operation of burners

13.1.3.5.1 Except as provided in 13.1.3.5.2, where a road tank vehicle is equipped with a burner to heat the load, the burner must not be operated when the vehicle is moving.

13.1.3.5.2 Burners may be operated on moving bitumen tankers if done in accordance with AS 2809.5, however the burner on a spray vehicle must not be operated when the vehicle is spraying bitumen.

13.1.4 ROUTES

13.1.4.1 Routes for road vehicles transporting dangerous goods must be pre-planned whenever possible to the extent practicable, taking into account the factors in this Section\(^1\).

13.1.4.2 Routes should be selected to minimise the risk of personal injury or harm to the environment or property during the journey.

13.1.4.3 Routes should wherever practicable avoid heavily populated or environmentally sensitive areas, congested crossings, tunnels, narrow streets, alleys, or sites where there may be, a concentration of people.

13.1.4.4 A road vehicle transporting dangerous goods must observe any requirements or restrictions on the selection of routes or times of travel which have been determined by the Competent Authority.

\(^1\) While it is not always practicable to pre-plan in detail the route of a courier or local pick-up or delivery vehicle, the driver should nonetheless be made aware of any areas to avoid in localities where travel is anticipated.
APPENDIX A: GOODS TOO DANGEROUS TO BE TRANSPORTED

A 1 Appendix A lists a number of substances and articles which are considered to be goods too dangerous to be transported.

A 2 If an entry in this Appendix includes the expression ‘N.E.S.’, it refers to goods not elsewhere specified. In those cases, the goods named in this entry are also named in one or more entries in the Dangerous Goods Lists in Chapter 3.2. An entry in the Dangerous Goods Lists describes goods of that name that may be transported. For example, it may be possible to transport a substance in compliance with this Code after mixing it with diluents, stabilisers, inhibitors, desensitisers, phlegmatisers, solvents, wetting agents or adulterants, as specified in the Dangerous Goods List, to overcome the instability inherent in the goods. The entry in this Appendix refers to goods that do not meet the description specified in the Dangerous Goods Lists and any associated Special Provisions in Chapter 3.3.

A 3 The list in this Appendix is not an exhaustive listing of goods too dangerous to be transported (see 3.1.1.3).

A 4 Under Regulation 1.5.1(2)(a), the Competent Authority may determine that other goods are to be classified as goods too dangerous to be transported, or that goods listed in this Appendix are not too dangerous to be transported.

A 5 Some State and Territory legislation, that embodies the principles of the NOHSC National Standard on the Storage and Handling of Dangerous Goods, makes reference to this list and assigns a label or placard to these goods, for use when they are kept or handled on premises. The use of that label/placard is not authorised by this Code for transport purposes.
Table A1: List of some goods too dangerous to be transported

<table>
<thead>
<tr>
<th>Acetyl acetone peroxide, N.E.S.</th>
<th>Aziridine, N.E.S. (Alt: Ethyleneimine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetyl benzoyle peroxide, N.E.S.</td>
<td>Azotetrazole, N.E.S.</td>
</tr>
<tr>
<td>Acetyl cyclohexane sulfonyl peroxide, N.E.S.</td>
<td>Barium azide, N.E.S.</td>
</tr>
<tr>
<td>Acetylene (liquefied)</td>
<td>Benzene diazonium chloride, N.E.S.</td>
</tr>
<tr>
<td>Acetylene silver nitrate</td>
<td>Benzene diazonium nitrate, N.E.S.</td>
</tr>
<tr>
<td>Acetyl hydroperoxide, N.E.S. (Alt: Peracetic acid)</td>
<td>Benzene-1,3-disulfohydrazide, N.E.S.</td>
</tr>
<tr>
<td>Acetyl peroxide, N.E.S.</td>
<td>Benzene trioxonide</td>
</tr>
<tr>
<td>Acrolein dimer, N.E.S.</td>
<td>Benzoicidazoles, N.E.S.</td>
</tr>
<tr>
<td>Acrolein, N.E.S.</td>
<td>Benzoyl azide</td>
</tr>
<tr>
<td>Acrylaldehyde, N.E.S. (Alt: Acrolein)</td>
<td>Biphenyl trioxonide</td>
</tr>
<tr>
<td>Acrylic acid, N.E.S.</td>
<td>2,2-Bis-(tert-butylperoxy) butane, N.E.S.</td>
</tr>
<tr>
<td>Acrylic acid, N.E.S.</td>
<td>1,1-Bis-(tert-butylperoxy) cyclohexane, N.E.S.</td>
</tr>
<tr>
<td>Acrylic acid isobutyl ester, N.E.S. (Alt: Isobutyl acrylate)</td>
<td>2,2-Bis-(4,4-di-tert-butylperoxy cyclohexyl) propane, N.E.S.</td>
</tr>
<tr>
<td>Acrylic aldehyde, N.E.S. (Alt: Acrolein)</td>
<td>Bis-(2-methylbenzoyl) peroxide, N.E.S.</td>
</tr>
<tr>
<td>Acrylonitrile, N.E.S.</td>
<td>Bis-(3,5,5-trimethyl-1,2-dioxolanyl-3)peroxide, N.E.S.</td>
</tr>
<tr>
<td>Allyl aldehyde, N.E.S. (Alt: Acrolein)</td>
<td>Bromine azide</td>
</tr>
<tr>
<td>Aluminium dross, wet or hot</td>
<td>4-Bromo-1,2-dinitrobenzene</td>
</tr>
<tr>
<td>Ammonium azide</td>
<td>Bromosilane</td>
</tr>
<tr>
<td>Ammonium bromate</td>
<td>Butadienes, N.E.S.</td>
</tr>
<tr>
<td>Ammonium chloride</td>
<td>1,2,4-Butanetriol trinitrate</td>
</tr>
<tr>
<td>Ammonium fulminate</td>
<td>2-Butenal, N.E.S. (Alt: Crotonaldehyde)</td>
</tr>
<tr>
<td>Ammonium nitrate,N.E.S.</td>
<td>Butene oxide, N.E.S. (Alt: 1,2-Butylene oxide)</td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>tert-Butoxyacarbonyl azide</td>
</tr>
<tr>
<td>Ammonium permanganate</td>
<td>n-Butoxyethylene, N.E.S. (Alt: Butyl vinyl ether)</td>
</tr>
<tr>
<td>Ammonium picrate, N.E.S.</td>
<td>Butyl acrylate, N.E.S.</td>
</tr>
<tr>
<td>Ammonium salt and a chlorate, mixtures of</td>
<td>1,2-Butylene oxide, N.E.S.</td>
</tr>
<tr>
<td>Ammonium salt and a nitrate, mixtures of</td>
<td>tert-Butyl hydroperoxide, N.E.S.</td>
</tr>
<tr>
<td>tert-Amyl hydroperoxide, N.E.S.</td>
<td>tert-Butyl peracetate, N.E.S.</td>
</tr>
<tr>
<td>tert-Amyl perdecanoate, N.E.S.</td>
<td>tert-Butyl perdiethylacetate and tert-Butyl perbenzoate mixtures, N.E.S.</td>
</tr>
<tr>
<td>tert-Amyl peroxycetate, N.E.S.</td>
<td>tert-Butyl peroxybenzoate, N.E.S.</td>
</tr>
<tr>
<td>tert-Amyl peroxybenzoate, N.E.S.</td>
<td>tert-Butyl peroxyneodecanoate, N.E.S.</td>
</tr>
<tr>
<td>tert-Amyl peroxypropionate, N.E.S.</td>
<td>tert-Butyl peroxypropionate, N.E.S.</td>
</tr>
<tr>
<td>Antimony sulfide and chlorate, mixtures of</td>
<td>Antimony sulfide and chlorate mixtures of Arsenic sulfide and chlorate, mixtures of Ascaridole</td>
</tr>
<tr>
<td>Arsenic sulfide and chlorate, mixtures of</td>
<td></td>
</tr>
<tr>
<td>Ascaridole</td>
<td>Azaurolic acid (salts of), N.E.S.</td>
</tr>
<tr>
<td>Azaurolic acid (salts of), N.E.S.</td>
<td>Azidodithiocarbonic acid</td>
</tr>
<tr>
<td>Azido guanidine picrate, N.E.S.</td>
<td>Azidoethyl nitrate</td>
</tr>
<tr>
<td>5-Azido-1-hydroxy tetrazole</td>
<td>Azido guanidine picrate, N.E.S.</td>
</tr>
<tr>
<td>Azido hydroxy tetrazole (mercury and silver salts)</td>
<td>Azido hydroxy tetrazole (mercury and silver salts)</td>
</tr>
<tr>
<td>3-Azido-1,2-propylene glycol dinitrate</td>
<td>3-Azido-1,2-propylene glycol dinitrate</td>
</tr>
<tr>
<td>tert-Butyl peroxyvalerate, N.E.S. (Alt: tert-Butyl perpivalate)</td>
<td>Diazodinitrophenol, N.E.S.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Butyl vinyl ether, N.E.S.</td>
<td>Diazodiphenylmethane</td>
</tr>
<tr>
<td>Calcium azide, N.E.S.</td>
<td>Diazonium nitrates, N.E.S.</td>
</tr>
<tr>
<td>Carbazide</td>
<td>Diazonium perchlorates, N.E.S.</td>
</tr>
<tr>
<td>Charcoal screenings, wet</td>
<td>1,3-Diazopropene</td>
</tr>
<tr>
<td>Charcoal, wet</td>
<td>Dibenzyl perdicarbonate, N.E.S.</td>
</tr>
<tr>
<td>Chloral, anhydrous, N.E.S.</td>
<td>Dibenzyl peroxydicarbonate, N.E.S.</td>
</tr>
<tr>
<td>Chloric acid, N.E.S.</td>
<td>Dibromoacetylene</td>
</tr>
<tr>
<td>Chlorine azide</td>
<td>Di-tert-butyl peroxazelate, N.E.S.</td>
</tr>
<tr>
<td>Chlorine cyanide, N.E.S. (Alt: Cyanogen chloride)</td>
<td>2,2-Di-(tert-butylperoxy) butane, N.E.S. (Alt: 2,2-Bis-(tert-butylperoxy) butane)</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>1,1-Di-(4-tert-butylperoxy)cyclohexane, N.E.S. (Alt: 1,1-Bis-(4-tert-butylperoxy)cyclohexane)</td>
</tr>
<tr>
<td>Chloroacetone, N.E.S.</td>
<td>Di-n-butylperoxydicarbonate, N.E.S.</td>
</tr>
<tr>
<td>p-Chlorobutadiene-1,3, N.E.S. (Alt: Chloroprene)</td>
<td>Di-(tert-butylperoxy) pthalate, N.E.S.</td>
</tr>
<tr>
<td>3-Chloroperoxybenzoic acid, N.E.S.</td>
<td>2,2-Di-(tert-butylperoxy)propane, N.E.S.</td>
</tr>
<tr>
<td>Chloroprene, N.E.S.</td>
<td>Dichloroacetylene, N.E.S.</td>
</tr>
<tr>
<td>Chlorotrifluoroethylene, N.E.S. (Alt: Trifluorochloroethylene)</td>
<td>N,N'-Dichlorozodicarbonimide (salts of), N.E.S.</td>
</tr>
<tr>
<td>Cinnamene, N.E.S. (Alt: Styrene monomer)</td>
<td>Di-4-chlorobenzoyl peroxide, N.E.S. (Alt: p-Chlorobenzoyl peroxide)</td>
</tr>
<tr>
<td>Cinnamol, N.E.S. (Alt: Styrene monomer)</td>
<td>Dichloroethyl sulfide</td>
</tr>
<tr>
<td>Coal briquettes, hot</td>
<td>2,2-Di-(4,4-di(tert-butylperoxy)cyclohexyl) propane, N.E.S.</td>
</tr>
<tr>
<td>Coke, hot</td>
<td>Di-2,4-dichlorobenzoyl peroxide, N.E.S.</td>
</tr>
<tr>
<td>Copper acetylide</td>
<td>Diethanol nitrosamine dinitrate, N.E.S.</td>
</tr>
<tr>
<td>Copper amine azide</td>
<td>Diethylene glycol dinitrate</td>
</tr>
<tr>
<td>Copper tetramine nitrate</td>
<td>Diethylgold bromide</td>
</tr>
<tr>
<td>Crotonaldehyde, N.E.S.</td>
<td>Diethyl perdicarbonate, N.E.S.</td>
</tr>
<tr>
<td>Cumyl hydroperoxide, N.E.S.</td>
<td>Diethyl peroxydicarbonate, N.E.S. (Alt: Diethyl percarbonate)</td>
</tr>
<tr>
<td>Cumyl peroxyneodecanoate, N.E.S.</td>
<td>2,2-Dihydroperoxy propane, N.E.S.</td>
</tr>
<tr>
<td>Cumyl peroxyneohexanoate, N.E.S.</td>
<td>1,8-Dihydroxy-2,4,5,7-tetranitroantraquinone (Chrysaminic acid)</td>
</tr>
<tr>
<td>Cumyl peroxyvalate, N.E.S.</td>
<td>Di-(1-hydroxytetrazole), N.E.S.</td>
</tr>
<tr>
<td>Cyanogen chloride, N.E.S.</td>
<td>Diiodacetylene</td>
</tr>
<tr>
<td>Cyanuric triazide</td>
<td>Diisobutryl peroxide, N.E.S. (Alt: Isobutryl peroxide)</td>
</tr>
<tr>
<td>Cyclohexanone peroxide, N.E.S.</td>
<td>Diisopropylbenzene hydroperoxide, N.E.S.</td>
</tr>
<tr>
<td>Cyclotetramethylene tetranitramine, N.E.S. (Alt: HMX)</td>
<td>Di-(2-methylbenzoyl) peroxide, N.E.S.</td>
</tr>
<tr>
<td>Cyclotrimethylene trinitramine, N.E.S. (Alt: RDX or Cyclonitro)</td>
<td>2,5-Dimethyl-2,5-di-(tert-butylperoxy)hexyne-3, N.E.S.</td>
</tr>
<tr>
<td>Diacetone alcohol peroxides, N.E.S.</td>
<td>2,5-Dimethyl-2,5-dihydroperoxyhexane, N.E.S.</td>
</tr>
<tr>
<td>Diacetyl peroxide, N.E.S. (Alt: Acetyl peroxide)</td>
<td>3,5-Dimethyl-3,5-dihydroxydioxolane-1,2, N.E.S.</td>
</tr>
<tr>
<td>1,1-Di- (tert-amylperoxy)cyclohexane, N.E.S.</td>
<td>2,5-Dimethyl-2,5-di-(3,5,5-trimethylhexanoylperoxy)hexane, N.E.S.</td>
</tr>
<tr>
<td>p-Diazo dibenzenes</td>
<td></td>
</tr>
</tbody>
</table>
Dimethyleneimine, N.E.S. (Alt: Ethyleneimine)
2,5-Dimethylhexane-2,5-dihydroperoxide, N.E.S.
(Alt: 2,5-Dimethyl-2,5-dihydroperoxy hexane)
1,1-Dimethyl-3-hydroxybutyl peroxyneopentanoate, N.E.S.
Di-(1-naphthoyl) peroxide
Di-(2-neodecanoyloxyisopropyl) benzene, N.E.S.
Dinitro-7,8-dimethylglycoluril, N.E.S.
1,3-Dinitro-5,5-dimethyl hydantoin
1,3-Dinitro-4,5-dinitrosobenzene
1,1-Dinitroethane, N.E.S.
1,2-Dinitroethane
Dinitroglycoluril
Dinitromethane
Dinitropyrene glycol
2,4-Dinitroresorcinol (heavy metal salts of), N.E.S.
4,6-Dinitroresorcinol (heavy metal salts of), N.E.S.
Dinitroresorcinols, N.E.S.
3,5-Dinitrosalicylic acid (lead salt), N.E.S.
Dinitrobenzylidene and salts of, N.E.S.
N,N-Dinitroso-N,N'-dimethylterephthalimide, N.E.S.
N,N'-Dinitrosopentamethylenetetramine, N.E.S.
2,2-Dinitrostilbene
1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate, N.E.S.
2,4-Dinitro-1,3,5-trimethylbenzene
Di-(β-nitroxyethyl) ammonium nitrate
α,α'-Di-(nitroxy) methylether
1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine, N.E.S.
Diperoxy azelaic acid, N.E.S.
Diperoxy dodecane diacid, N.E.S.
Dipropionyl peroxide, N.E.S. (Alt: Propionyl peroxide)
Distearyl perdicarbonate, N.E.S.
Distearyle peroxydicarbonate, N.E.S.
(Alt: Distearyl perdicarbonate)
Di-(3,5,5-trimethyl-1,2-dioxolanyl-3) peroxide, N.E.S.
Di-(3,5,5-trimethylhexanoyl) peroxide, N.E.S.
Divinyl, N.E.S. (Alt: Butadienes)
Divinyl ether, N.E.S.
Divinyl oxide, N.E.S. (Alt: Divinyl ether)

2,6-Epoxy-5-hexenal, N.E.S. (Alt: Acrolein dimer)
Ethanolamine dinitrate
Ethyl acrylate, N.E.S.
Ethyl 3,3-di-(tert-amylperoxy)butyrate, N.E.S.
Ethylene diamine diperchlorate
Ethylene glycol dinitrate
Ethyleneimine, N.E.S.
Ethyl hydroperoxide
Ethyl methacrylate, N.E.S.
Ethyl methyl ketone peroxide(s), N.E.S.
Ethyl nitrate
Ethyl nitrite
Ethyl perchlorate
Ethyl propenoate, N.E.S. (Alt: Ethyl acrylate)
Flammable mixture of dangerous goods of Division 2.1 or sub-hazard 2.1 with oxygen, nitrous oxide or air
Formaldehyde, gaseous
2-Formyl-3,4-dihydro-2H-pyran, N.E.S.
(Alt: Acrolein dimer)
Fulminate of mercury, N.E.S.
Fulminating gold
Fulminating platinum
Fulminating silver
Fulminic acid
Galactan trinitrate
Galactsan trinitrate
Glycerol-1,3-dinitrate
Glycerol monogluconate trinitrate
Glycerol monolactate trinitrate
Guanyl nitrosaminoguanildene hydrazine, N.E.S.
Guanyl nitrosaminoguanyl tetrazine
Hafnium metal powder, N.E.S., having a particle size less than 3 micrometres if mechanically produced or 10 micrometres if chemically produced
Hexamethylene triperoxide diamine, N.E.S.
Hexamethylo benzene hexanitrate
Hexanitroazoxy benzene
2,2,4,4',6,6'-Hexanitro-3,3'-dihydroxazobenzene, N.E.S.
2,2',3',4,4',6-Hexamitrophenylamine, N.E.S.
2,3',4,4',6,6'-p-Hexamitrophenylether
N,N'-(Hexanitrophenyl) ethylene dinitramine, N.E.S.
Hexanitrophenyl urea
Hexanitroethane
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexanitrooxanilide</td>
<td>N.E.S.</td>
</tr>
<tr>
<td>HMX, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Hydrazine azide</td>
<td></td>
</tr>
<tr>
<td>Hydrazine chlorate</td>
<td></td>
</tr>
<tr>
<td>Hydrazine dicarbonic acid diazide</td>
<td></td>
</tr>
<tr>
<td>Hydrazine perchlorate</td>
<td></td>
</tr>
<tr>
<td>Hydrazine selenate</td>
<td></td>
</tr>
<tr>
<td>Hydrocyanic acid, anhydrous, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Hydrogen cyanide, anhydrous, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Hydrogen peroxide, concentrations greater than 60% hydrogen peroxide, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Hydroxylamine iodide</td>
<td></td>
</tr>
<tr>
<td>Hyponitrous acid</td>
<td></td>
</tr>
<tr>
<td>Ignition element for lighter, containing pyrophoric liquid</td>
<td></td>
</tr>
<tr>
<td>Initiating explosives, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Inositol hexanitrate, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Inulin trinitrate, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Iodine azide, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Iodoxy compounds, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Iridium nitratopentamine iridium nitrate</td>
<td></td>
</tr>
<tr>
<td>Isobutyl acrylate, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Isobutyl methacrylate, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Isobutyl methyl ketone peroxide, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Isobutyryl peroxide, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Isoprene, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Isopropyl 1,3-butadiene, N.E.S. (Alt: Isoprene)</td>
<td></td>
</tr>
<tr>
<td>Isopropylcumyl hydroperoxide, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>(Alt: Diisopropylbenzene hydroperoxide)</td>
<td></td>
</tr>
<tr>
<td>Isothiocyanic acid</td>
<td></td>
</tr>
<tr>
<td>Lead azide, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Lead mononitroresorcinat, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Lead picrate, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Lead styphnate, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Lead 2,4,6-trinitroresorinate, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Lighters (cigarettes) containing pyrophoric liquid</td>
<td></td>
</tr>
<tr>
<td>Magnesium dross, wet or hot</td>
<td></td>
</tr>
<tr>
<td>Mannitan tetranitrate</td>
<td></td>
</tr>
<tr>
<td>Mercurous azide</td>
<td></td>
</tr>
<tr>
<td>Mercury acetylide</td>
<td></td>
</tr>
<tr>
<td>Mercury iodide aquabasic ammonobasic (Iodide of Millon’s base)</td>
<td></td>
</tr>
<tr>
<td>Mercury nitride</td>
<td></td>
</tr>
<tr>
<td>Mercury oxycyanide, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Methacrylic acid, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Methazoic acid</td>
<td></td>
</tr>
<tr>
<td>Methyl acetylene/propadiene, mixtures, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>β-Methyl acrolein, N.E.S. (Alt: Crotonaldehyde)</td>
<td></td>
</tr>
<tr>
<td>Methyl acrylate, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Methylamine dinitramine and dry salts thereof</td>
<td></td>
</tr>
<tr>
<td>Methylamine nitroform</td>
<td></td>
</tr>
<tr>
<td>Methylamine perchlorate, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Methyl-1,3-butadiene, N.E.S. (Alt: Isoprene)</td>
<td></td>
</tr>
<tr>
<td>Methylcyclohexanone peroxide(s), N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Methyl dichloroarsine</td>
<td></td>
</tr>
<tr>
<td>Methylenedioxyglycol dinitrate</td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone peroxide(s), N.E.S.</td>
<td></td>
</tr>
<tr>
<td>α-Methylglucoside tetranitrate</td>
<td></td>
</tr>
<tr>
<td>α-Methylglycerol trinitrate</td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone peroxide(s), N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate monomer, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Methyl nitramine, metal salts of</td>
<td></td>
</tr>
<tr>
<td>Methyl nitrate</td>
<td></td>
</tr>
<tr>
<td>Methyl nitrite</td>
<td></td>
</tr>
<tr>
<td>Methyl picric acid, heavy metal salts of</td>
<td></td>
</tr>
<tr>
<td>Methylpropyl acrylate, N.E.S. (Alt: Isobutyl acrylate)</td>
<td></td>
</tr>
<tr>
<td>Methylstyrenes, ortho-, meta-, para-, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Methyl trimethylmethane trinitrate</td>
<td></td>
</tr>
<tr>
<td>Methylvinylbenzenes, N.E.S. (Alt: Vinyl toluenes)</td>
<td></td>
</tr>
<tr>
<td>Monochloroacetone, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Naphthalene dioxonide</td>
<td></td>
</tr>
<tr>
<td>Naphthyamine perchlorate</td>
<td></td>
</tr>
<tr>
<td>Nickel picrate</td>
<td></td>
</tr>
<tr>
<td>Nitrat paper (unstable)</td>
<td></td>
</tr>
<tr>
<td>Nitrate of diazonium compounds</td>
<td></td>
</tr>
<tr>
<td>N-Nitroaniline</td>
<td></td>
</tr>
<tr>
<td>m-Nitrobenzene diazonium perchlorate</td>
<td></td>
</tr>
<tr>
<td>Nitrocellulose, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Nitrocotton, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>6-Nitro-4-diazotoluene-3-sulfonic acid, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Nitroethyl nitrate</td>
<td></td>
</tr>
<tr>
<td>Nitroethylenol polymer</td>
<td></td>
</tr>
<tr>
<td>Nitrogen trichloride</td>
<td></td>
</tr>
<tr>
<td>Nitrogen triiodide</td>
<td></td>
</tr>
<tr>
<td>Nitrogen triiodide monoamine</td>
<td></td>
</tr>
<tr>
<td>Nitroglycerine, liquid, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Nitroguanidine, N.E.S.</td>
<td></td>
</tr>
<tr>
<td>Nitroguanidine nitrate</td>
<td></td>
</tr>
<tr>
<td>1-Nitro hydantoin</td>
<td></td>
</tr>
<tr>
<td>Nitrosobutanetriol trinitrate</td>
<td></td>
</tr>
</tbody>
</table>
Nitromannite, N.E.S.

N-Nitro-*N*-methylglycolamide nitrate
2-Nitro-2-methylpropanol nitrate

m-Nitrophenyldinitro methane

Nitrostarch, N.E.S.
Nitrosugars, N.E.S.

Octogen, N.E.S.

1,7-Octadiene-3,5-diyn-1,8-dimethoxy-9-octadecyanoic acid

Organic peroxide type A, liquid
Organic peroxide type A, solid

Pentaerythrite tetrinitrate, N.E.S.
Pentaerythritol tetrinitrate, N.E.S.

2-Nitro-2-methylpropanol nitrate

Phenylethylene, N.E.S. (Alt: Styrene monomer)

Phosphorus (white or red) and a chlorate, mixtures of

Propenal, N.E.S. (Alt: Acrolein)

Propenenitrile, N.E.S. (Alt: Acrylonitrile)

Propenoic acid, N.E.S. (Alt: Acrylic acid)

Propionyl peroxide, N.E.S.

Propylene aldehyde, N.E.S. (Alt: Crotonaldehyde)

Propyleneimine, N.E.S.

Pyridine perchlorate

Quebrachitol pentanitrate

Selenium nitride

Self-reactive liquid type A

Self-reactive solid type A

Shaped charges (commercial) containing more than 220g of explosives

Silver acetylide, N.E.S.

Silver azide, N.E.S.

Silver chloride, N.E.S.

Silver chlorite, N.E.S.

Silver fulminate, N.E.S.

Silver oxalate, N.E.S.

Silver perchlorate

Silver picrate, N.E.S.

Sodium dinitro-o cresolate, N.E.S.

Sodium picramate, N.E.S.

Sodium picryl peroxide

Sodium tetranitride

Styrene, monomer, N.E.S.

Sucrose octanitrate, N.E.S.

Sulfur and chloride, loose mixtures of

Sulfur trioxide, N.E.S.

Sulfuric anhydride, N.E.S. (Alt: Sulfur trioxide)

Tetraazido benzene quinone

Tetrachloromethyl perchlorate

Tetraethylammonium perchlorate, N.E.S.

Tetrafluorohydrazine

Tetrahydrofuran, N.E.S.

Tetramethylene diperoxide dicarbamide

Tetranitrodiglycerin

2,3,4,6-Tetranitrophenol

2,3,4,6-Tetranitrophenyl methyl nitramine

2,3,4,6-Tetranitrophenyl nitramine

Tetrinitroresorcinol, N.E.S.

2,3,5,6-Tetranitroso 1,4-dinitrobenzene

2,3,5,6-Tetranitroso nitrobenzene, N.E.S.

Tetrazine, N.E.S.

Tetrazolylazide, N.E.S.

Titanium dichloride

Tolylenes, mixed isomers, N.E.S. (Alt: Vinyl tolenes)

Trichloroacetaldehyde, anhydrous, N.E.S. (Alt: Chloral)

Trichloroacetic aldehyde, anhydrous, N.E.S. (Alt: Chloral)

Trichloromethyl perchlorate

Trifluorochloroethylene, N.E.S.

Trifluoromonochloroethylene, N.E.S.

Triformoxime trinitrate

Trimethylene glycol diperchlorate

Trimethylol nitromethane trinitrate

2,2,4,4-Trimethylpentyl-2-peroxyneodecanoate, N.E.S.

1,3,5-Trimethyl-2,4,6-trinitrobenzene

Trinitroacetic acid, N.E.S.

Trinitroacetonitrile

Trinitroamine cobalt

Trinitrobenzene, N.E.S.

Trinitrobenzoic acid, N.E.S.

2,4,6-Trinitro-1,3-diazobenzene

Trinitroethanol

Trinitroethylnitrate

Trinitromethane

1,3,5-Trinitronaphthalene

Trinitrophenol, N.E.S. (Alt: Picric acid)

2,4,6-Trinitrophenyl guanidine, N.E.S.

2,4,6-Trinitrophenyl nitramine
APPENDICES

2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate, N.E.S.
2,4,6-Trinitroso-3-methyl nitraminoanisole
Trinitrotetramine cobalt nitrate
2,4,6-Trinitro-1,3,5-triazido benzene, N.E.S.
Tri-({β-nitroxyethyl) ammonium nitrate
Tris-bis-bifuoroamino diethoxy propane (TVOPA)
Urea nitrate, N.E.S.
Vinyl acetate, N.E.S.
Vinyl benzene, N.E.S. (Alt: Styrene, monomer)
Vinyl bromide, N.E.S.
Vinyl-n-butylether, N.E.S. (Alt: Vinyl butylether)
Vinyl butyrate, N.E.S.
Vinyl chloride, N.E.S.
Vinyl cyanide, N.E.S. (Alt: Acrylonitrile)
Vinyl ether, N.E.S. (Alt: Divinyl ether)
Vinyl ethyl ether, N.E.S.
Vinyl fluoride, N.E.S.
Vinylidene, N.E.S.
Vinyl isobutylether, N.E.S.
Vinyl methyl ether, N.E.S.
Vinyl nitrate polymer
Vinyl pyridines, N.E.S.
Vinyl toluenes, mixed isomers, N.E.S.
Vinyl trichlorosilane, N.E.S.
p-Xylyl diazide
Zirconium picramate, N.E.S.
APPENDIX B: FORMS

NOTE 1: Appendix B of UN20 is a Glossary of Terms relating to Explosives. That Glossary is repeated in the Australian Explosives Code. Where the symbol ‘†’ is included in Column 2 of the Dangerous Goods List in Section 3.2.5 of this Code, this is an indication that reference should be made to Appendix B of UN20 or to Appendix 5 of the Australian Explosives Code.

NOTE 2: This appendix includes forms that are referenced in the text of this Code that may be useful when consigning or transporting dangerous goods, or in responding to emergencies. The use of these forms is not mandated by this Code or the Regulations. These forms may be printed from this publication by printing only the page number(s) of the required form.

B 1 Multimodal Dangerous Goods Form

Figure B1 is a copy of the Multimodal Dangerous Goods Form, reproduced from Chapter 5.4 of UN20. Use of such a form is mandatory under the IMDG Code for sea transport of dangerous goods.

For road and rail transport in Australia, the actual format of the dangerous goods transport document is not mandated. Flexibility of transport documentation design is permitted within the constraints of Chapter 11.1, to allow for computer generated documentation and preprinted forms.

The Multimodal Dangerous Goods Form is, however, an acceptable form of documentation under this Code and may be useful for small consignments where details are entered by hand. Particular attention is drawn to the need to enter the dangerous goods details at Item 14 as a character string in a particular sequence (see 11.1.1.2.3).

If using this form as a transport document solely for transport of dangerous goods by road or rail within Australia, it is not necessary to complete those fields that are required by the international Codes but are not mandated in Part 11 of this Code.

B 2 <DELETED>

B 3 Revised Hazchem Emergency Action Code Pocket Card

Figure B3 is a double sided card that provides interpretation of the revised Hazchem Codes as incorporated in Appendix C.

When used in conjunction with Hazchem Codes on emergency information panels prepared in accordance with the previous edition of this Code, any characters in reverse print should be read as the corresponding letter in normal print. The advice provided by following this card will still be valid.
Figure B1: Multimodal Dangerous Goods Form

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Shipper / Consignor / Sender</td>
</tr>
<tr>
<td>2.</td>
<td>Transport document number</td>
</tr>
<tr>
<td>3.</td>
<td>Page 1 of \ldots... pages</td>
</tr>
<tr>
<td>4.</td>
<td>Shipper’s reference</td>
</tr>
<tr>
<td>5.</td>
<td>Freight Forwarder’s reference</td>
</tr>
<tr>
<td>6.</td>
<td>Consignee</td>
</tr>
<tr>
<td>7.</td>
<td>Carrier (to be completed by the carrier)</td>
</tr>
</tbody>
</table>

SHIPPER’S DECLARATION

I hereby declare that the contents of this consignment are fully and accurately described below by the proper shipping name, and are classified, packaged, marked and labelled / placarded and are in all respects in proper condition for transport according to the applicable international and national governmental regulations.

8. This shipment is within the limitations prescribed for: (Delete non-applicable)
 - PASSENGER AND CARGO AIRCRAFT
 - CARGO AIRCRAFT ONLY

9. Additional handling information

10. Vessel / flight No. and date

11. Port / place of loading

12. Port / place of discharge

13. Destination

14. Shipping marks * Number and kind of packages; description of goods
 Gross mass (kg)
 Net mass Cube (m^3)

15. Container identification No./ vehicle registration No.

16. Seal number(s)

17. Container/vehicle size & type

18. Tare (kg)

19. Total gross mass (including tare) (kg)

CONTAINER/VEHICLE PACKING CERTIFICATE

I hereby declare that the goods described above have been packed/loaded into the container/vehicle identified above in accordance with the applicable provisions **

MUST BE COMPLETED AND SIGNED FOR ALL CONTAINER / VEHICLE LOADS BY PERSON RESPONSIBLE FOR PACKING / LOADING

20. Name of company

 Haulier’s name

 22. Name of company (OF SHIPPER PREPARING THIS NOTE)

 Name / Status of declarant

 Vehicle reg. no.

 21. RECEIVING ORGANISATION RECEIPT

 Name / Status of declarant

 Received the above number of packages/containers/trailers in apparent good order and condition unless stated hereon: RECEIVING ORGANISATION REMARKS:

 Place and date

 Signature and date

 Signature of declarant

 DRIVER’S SIGNATURE

 Signature of declarant

** See 5.4.2.1 of the UN Model Regulations.
MULTIMODAL DANGEROUS GOODS FORM

1. Shipper / Consignor / Sender

2. Transport document number

3. Page ……. of ……… pages

4. Shipper’s reference

5. Freight Forwarder’s reference

14. Shipping marks

<table>
<thead>
<tr>
<th>Number and kind of packages; description of goods</th>
<th>Gross mass (kg)</th>
<th>Net mass Cube (m3)</th>
</tr>
</thead>
</table>

* For DANGEROUS GOODS you must specify: proper shipping name, hazard class, UN No., packing group (where assigned) and any other element of information required under applicable national and international regulations.
Figure B3: Revised Hazchem Pocket Card

HAZCHEM Emergency Action Code

FOR FIRE OR SPILLAGE

<table>
<thead>
<tr>
<th>1</th>
<th>COARSE SPRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>FINE SPRAY</td>
</tr>
<tr>
<td>3</td>
<td>FOAM</td>
</tr>
<tr>
<td>4</td>
<td>DRY AGENT</td>
</tr>
<tr>
<td>•</td>
<td>ALCOHOL RESISTANT FOAM</td>
</tr>
</tbody>
</table>

Additional Information

DRY AGENT

Water must not be allowed to come into contact with the substance at risk.

ALCOHOL RESISTANT FOAM •2 or •3

Alcohol resistant foam is the preferred medium.

If not available:

– If •2 – use Fine Spray or Water Fog

– If •3 – use Normal Protein Foam

V Substance can be violently or even explosively reactive, including combustion.

LTS

Liquid-Tight Chemical Protective Suit with BA.

Full FIRE KIT should also be worn for thermal protection if the substance is:

- Liquid Oxygen
- or Liquefied Toxic Gas (Division 2.3)
- or Toxic Gas with sub-hazard 2.1 or 5.1
- or Class or sub-hazard 3
- or Division 5.1 PGI with sub-hazard 6.1 or 8
- or carried at temperature > 100°C

DILUTE

May be washed to drain with large quantities of water.

CONTAIN

Prevent, by any means available, spillage from entering drains or water course.

E

People should be warned to stay indoors with all doors and windows closed, but evacuation may need to be considered. Consult Control, Police and product expert.
APPENDIX C: HAZCHEM CODES

Introductory Notes

C1 Scope and Application

C1.1 This Appendix provides additional information that may be useful in event of an emergency for most dangerous goods listed in the Dangerous Goods List in Chapter 3.2. For the UN Numbers with information, two codes are listed in C3, as follows:

(a) the HAZCHEM Code, as listed in the Dangerous Goods Emergency Action Code List 2013, published by HM Fire Service Inspectorate of the United Kingdom. This is the primary code used in Australia; and

(b) the Hazard Identification Number (HIN) assigned in the ADR and RID, which is provided for information purposes only.

NOTE The list of Emergency Action Codes (EACs) is current at the time of publishing the ADGC. Later editions of the Dangerous Goods Emergency Action Code List may need to be checked for amendments to the Hazchem Codes.

C1.2 When dangerous goods are transported in portable tanks, demountable tanks, multiple element gas containers, bulk containers or tank vehicles, it is a requirement of Chapter 5.3 of this Code that the Hazchem Code be displayed on the emergency information panel. This Hazchem Code should be determined from the list in C3.

C1.3 The codes allocated and shown in the list in C3 apply to transport of the single substance by road or rail. These codes will not necessarily apply for non-transport incidents although they may be used to provide some indication of the action that may be necessary.

C2 Hazchem Codes

NOTE: The Hazchem Code is fully titled “Hazchem Emergency Action Code”. In European publications, it is now frequently referred to simply as “Emergency Action Code” or “EAC”. In Australia it is still commonly known as the Hazchem Code.

C2.1 General

C2.1.1 A Hazchem Code offers guidance on appropriate initial emergency response in a potentially dangerous situation such as leakage, spillage or fire involving the dangerous goods to which it relates.

C2.1.2 The Hazchem Code is composed of a number, followed by one or more letters as detailed in C2.2–C2.65.

C2.1.3 Hazchem Codes are allocated to most dangerous goods in Column 2 of the table at C3.
C2.1.4 In some cases, there is more than one Hazchem Code shown in C3 for a single UN number. In each such instance, a notation which is explained at the end of the table indicates how to determine which of the multiple entries applies e.g. for UN 1224 Ketones where two Hazchem Codes are listed – the notation (3) next to the entry 3YE indicates that this Hazchem Code applies only to ketones of packing groups I and II – 3Y therefore applies to packing group III.

C2.1.5 Substances in Class 7, i.e. radioactive material, have not been allocated Hazchem Codes.

C2.2 Extinguishing Media

C2.2.1 The firefighting extinguishing media is determined by reference to the first character of the Hazchem Code as follows:

1 denotes coarse water spray
2 denotes fine water spray
3 denotes normal foam i.e. protein based foam that is not alcohol resistant
4 denotes dry agent — water MUST NOT be allowed to come into contact with substance

NOTE: Any higher number than the one shown can be used but a lower number must not be used.

C2.2.2 A bullet ‘•’ sometimes precedes the number 2 or 3 in the list in C3.

•2 and •3, have the following meanings:

•2 denotes that alcohol resistant foam is the preferred firefighting medium but, if it is not available, fine water spray can be used.

•3 denotes that alcohol resistant foam is the preferred firefighting medium but, if it is not available, normal foam can be used.

For example, the Hazchem Code assigned to UN 1193 Ethyl Methyl Ketone in C3 is •2YE. The ‘•’ here indicates to the emergency services that alcohol resistant foam is the preferred firefighting medium. However, if such foam is not available, fine water spray, as the next most effective medium, should be used.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Risk of Violent Reaction or Explosion</th>
<th>Recommended Personal Protective Equipment</th>
<th>Appropriate Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Yes</td>
<td>Liquid-tight chemical protective clothing and breathing apparatus</td>
<td>Dilute</td>
</tr>
<tr>
<td>R</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Yes</td>
<td>Full fire kit and breathing apparatus</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Yes</td>
<td>Liquid-tight chemical protective clothing and breathing apparatus</td>
<td>Contain</td>
</tr>
<tr>
<td>X</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Yes</td>
<td>Full fire kit and breathing apparatus</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTE: See C 2.3 to C2.5 for further details.

C2.3 Personal protection

C2.3.1 Where the second character of the Hazchem Code is S, T, Y or Z, normal firefighting clothing is appropriate, i.e. self-contained open circuit positive pressure compressed air breathing apparatus, worn in combination with fire kit, firefighters’ gloves and firefighters’ boots.

NOTE 1: Leather boots may not provide adequate chemical resistance and therefore caution should be exercised in their use.

NOTE 2: Letters S, T, Y and Z, which in previous editions of this Code were shown in reverse printing or square brackets for some dangerous goods, are now always shown in normal print, indicating that breathing apparatus should be used for all significant incidents.

NOTE 3: LP Gas, which in previous Codes was assigned a Hazchem Code of 2WE, is now assigned to 2YE in recognition that the most important personal protection from this substance is thermal protection that is best provided by full fire kit, including breathing apparatus.

C2.3.2 Where the second character of the Hazchem Code is P, R, W or X, liquid-tight chemical protective clothing in combination with breathing apparatus specified in C2.3.1, should be used.

C2.3.3 For some substances for which liquid-tight chemical protective clothing is indicated, full fire kit should also be worn for thermal protection. This applies to incidents involving the following substances when they are assigned to P, R, W, or X:

(a) UN 1073 Oxygen, Refrigerated Liquid;
(b) All Division 2.3 Toxic Gases when transported in the liquefied state;
(c) Any Division 2.3 Gas with a Subsidiary Hazard of 2.1 or 5.1;
(d) Class or Subsidiary Hazard 3 liquids;
(e) Division 5.1 substances of packing group I, having a Subsidiary Hazard of 6.1 or 8;
(f) Substances transported at elevated temperature > 100 °C.

However, an incident controller may determine, through a risk based assessment, that full fire kit need not be worn.

C2.4 Violent Reaction

C2.4.1 Where the second character of the Hazchem Code is a P, S, W or Y there is a danger that the substance can be violently or explosively reactive. This danger may be present due to one of the following:

- Violent or explosive decomposition of the material involved, including ignition or friction.
- The ignition of a flammable gas or vapour cloud (this danger exists for all flammable gases and flammable liquids with a flash point below 60 °C)
- The rapid acceleration of combustion due to the involvement of an oxidiser.
- A reaction with water which is itself violent, and may also evolve flammable gases.

C2.4.2 The actual dangers present can be determined from the placards on vehicles or containers, or by reference to the classes, divisions and subsidiary hazards shown on the transport document.

C2.5 Contain/dilute

Where the second character of an Hazchem Code is W, X, Y or Z spillages and decontamination run-off should be prevented from entering drains and watercourses. Where the second character of the code is P, R, S or T spillages and decontamination run-off may be washed to drains with large quantities of water. Due care must however still be exercised to avoid unnecessary pollution of watercourses.

NOTE 1: Ideally most contamination and decontamination run-off should be contained. However, this will not always be practical for normal emergency services operations, as life-saving operational procedures must take precedence over other considerations at the scene of an incident. Nevertheless, all steps that are reasonably practicable should be taken to contain contaminants and the emergency service should always inform the environmental authority as soon as possible so that appropriate advice can be given.

NOTE 2: Potentially polluting substances, even apparently harmless substances such as food and beverages, can cause serious problems if discharged into a watercourse e.g. 250 litres of a soft drink, milk or beer would constitute a pollutant as it can lead to deoxygenation of the water. Firefighting foams are also a potential source of pollution and their entry into watercourses and drainage systems should be prevented whenever possible.

C2.6 E “Public Safety Hazard”

An ‘E’ following the first two characters of a Hazchem Code indicates that there may be a public safety hazard outside the immediate area of the incident, and that the following actions should be considered:

C2.6.1 People should be warned to stay indoors with all doors and windows closed, preferably in rooms upstairs and facing away from the incident. Ignition sources should be eliminated and any ventilation stopped.

C2.6.2 Effects may spread beyond the immediate vicinity. All non-essential personnel should be instructed to move at least 250 metres away from the incident.

C2.6.3 Police and Fire Brigade incident commanders should consult each other and with a product expert, or with a source of product expertise.
The possible need for subsequent evacuation should be considered, but it should be remembered that in most cases it will be safer to remain in a building than to evacuate. Some situations where evacuation may be necessary are listed in Table C2.

<table>
<thead>
<tr>
<th>EXAMPLES</th>
<th>ASSESSMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.(i) Smoke from product fire which is allowed to burn out. (Often the safest and least environmentally damaging option.)</td>
<td>Nuisance effects will last several hours. Smoke or gas concentrations in open air are unpleasant but short-term exposure is not likely to be dangerous.</td>
</tr>
<tr>
<td>(ii) Small/low concentration long lasting toxic emission.</td>
<td></td>
</tr>
<tr>
<td>2. A larger long lasting toxic gas emission which will be carried towards an inhabited area after a predicted wind change not due for at least two hours.</td>
<td>Area considered for evacuation will not be exposed to significant danger for at least an hour, preferably longer.</td>
</tr>
<tr>
<td>3. Evacuation of people from an isolated house in the country may be feasible, possibly using additional BA sets.</td>
<td>Downwind area is very sparsely populated and resources are available to protect people during their evacuation.</td>
</tr>
<tr>
<td>4.(i) Righting a loaded road tanker or rail tank wagon, especially one carrying a liquefied gas.</td>
<td>Area considered for evacuation could be exposed to danger as a result of actions necessary to restore normality at a time determined by the recovery team.</td>
</tr>
<tr>
<td>(ii) Recovering or clearing petrol from drains.</td>
<td></td>
</tr>
</tbody>
</table>

C2.7 Assigning Hazchem Codes to multi-loads

The following procedure must be used to assign a Hazchem Code to a vehicle or cargo transport unit transporting more than one type of dangerous goods to which different Hazchem Codes are assigned by C3.

C2.7.1 1st character of the code

The number forming the first character of the code for a multi-load is the highest of the numbers occurring in the Hazchem Codes for the individual dangerous goods.

- If the 1st character of the calculated multi-load Hazchem Code is 2 or 3 and if one or more of the individual Hazchem Codes has an alcohol resistant bullet include an alcohol resistant bullet in the multi-load Hazchem Code.

- If the 1st character of the calculated multi-load Hazchem Code is 4 do not include a bullet, even if one or more of the individual Hazchem Codes includes an alcohol resistant bullet (on the basis that 4 indicates that a dry agent must be used).

C2.7.2 2nd Character of the code
C2.7.2.1 The letter forming the second character of the code should be determined from the first letter of the Hazchem Code for each of the dangerous goods from the chart below.

Table C2.7: Hazchem Code chart for determination of Hazchem codes for multi-loads

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>R</td>
<td>P</td>
<td>R</td>
<td>P</td>
<td>R</td>
<td>W</td>
<td>X</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>S</td>
<td>P</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>W</td>
<td>W</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>T</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>X</td>
<td>W</td>
<td>X</td>
<td>W</td>
<td>X</td>
<td>W</td>
<td>X</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>Y</td>
<td>W</td>
<td>W</td>
<td>Y</td>
<td>Y</td>
<td>W</td>
<td>W</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Z</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

C2.7.2.2 If the letter forming the second character of the code for each of the dangerous goods is the same, then that letter will automatically form the second character of the Hazchem Code for the multi-load.

C2.7.2.3 If however the letter forming the second character of the code for each of the dangerous goods is different, then one of those letters should be selected along the top row of the chart and then a second letter should be selected down the far left-hand column i.e. the two bold sections. The letter in the square where the appropriate column and row meet is the ‘resultant letter’ for those two substances. If there are only two dangerous goods to be carried in the multi-load, then that resultant letter is the letter forming the second character of the Hazchem Code for that multi-load.

C2.7.2.4 If there are more than two dangerous goods to be carried in the multi-load, then use the ‘resultant letter’ obtained in paragraph C2.7.2.3 along the top row as above and select another letter down the far left-hand column as above. The letter in the square where the appropriate column and row meet is the new ‘resultant letter’. If there are no more dangerous goods to be carried in the multi-load, then that resultant letter is the letter forming the second character of the code. If there are any further dangerous goods to be carried then this procedure must be repeated until all the other letters have been used.

C2.7.3 Letter ‘E’

The letter ‘E’ must be included as the third character in the multi-load Hazchem Code if it occurs in the Hazchem Code of any of the dangerous goods to be carried. If the letter ‘E’ does not occur in any of the Hazchem Codes of the dangerous goods to be carried, the Hazchem Code will be just a two character code determined from C2.7.2 above.
Example of how to calculate the Hazchem Code for a multi-load:

There are three substances to be carried as a multi-load, having Hazchem Codes of 3Y, •2S and 4WE.

1ST CHARACTER (NUMBER)

The first character of the Hazchem Code for each of the three substances is 2, 3 and 4. The highest number must be taken as the first character of the code for the multi-load and therefore the first character will be 4.

Alcohol resistant bullet

The bullet in •2S is not assigned to the mixed load because the first character is 4 (see 2.7.1).

If the example had only included 3Y and •2S the first character would be 3 and the alcohol resistant bullet would be required.

2ND CHARACTER (LETTER)

The second character for the Hazchem Code for each of the three substances is Y, S and W. Taking the Y along the top row of the chart and the S along the left hand column, the intersection is at Y and therefore the character for the first two substances would be Y. This resultant character (Y) is then taken along the top row and the character for the third substance (W) is taken along the left hand column. The intersection point is now W. The second character of the code for the three substances is therefore W.

LETTER ‘E’

The third substance has an ‘E’ as a third character and therefore the multi-load must also have an ‘E’.

The resultant Hazchem Code for the three substances carried as a multi-load will therefore be 4WE.
NOTE 1: The HIN listing below and its explanation in C4 are provided for information purposes only.

NOTE 2: The use of the bullet ‘•’ sometimes preceding ‘2’ or ‘3’ in the Hazchem Code is explained in C2.2.2.

Table Notes:
(1) No HIN issued under RID and ADR
(2) No Hazchem Code issued to these articles
(3) This Hazchem Code applies to PG I & II
(4) This Hazchem Code applies only to PG I
(5) This Hazchem Code applies only to liquid material carried under this UN No.
(6) This Hazchem applies only when transported at > 100 ºC
(7) This Hazchem Code applies only when ethanol is being transported

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>2SE</td>
<td>239</td>
<td>1039</td>
<td>2SE</td>
<td>23</td>
<td>1073</td>
<td>2P</td>
<td>225</td>
</tr>
<tr>
<td>1002</td>
<td>2T</td>
<td>20</td>
<td>1040</td>
<td>2PE</td>
<td>263</td>
<td>1075</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>1003</td>
<td>2P</td>
<td>225</td>
<td>1041</td>
<td>2SE</td>
<td>239</td>
<td>1076</td>
<td>2XE</td>
<td>268</td>
</tr>
<tr>
<td>1005</td>
<td>2XE</td>
<td>268</td>
<td>1043</td>
<td>2RE</td>
<td>(1)</td>
<td>1077</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>1006</td>
<td>2T</td>
<td>20</td>
<td>1044</td>
<td>(2)</td>
<td>(1)</td>
<td>1078</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>1008</td>
<td>2RE</td>
<td>268</td>
<td>1045</td>
<td>2PE</td>
<td>(1)</td>
<td>1079</td>
<td>2RE</td>
<td>268</td>
</tr>
<tr>
<td>1009</td>
<td>2TE</td>
<td>20</td>
<td>1046</td>
<td>2T</td>
<td>20</td>
<td>1080</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>1010</td>
<td>2YE</td>
<td>239</td>
<td>1048</td>
<td>2RE</td>
<td>268</td>
<td>1081</td>
<td>2SE</td>
<td>239</td>
</tr>
<tr>
<td>1011</td>
<td>2YE</td>
<td>23</td>
<td>1049</td>
<td>2SE</td>
<td>23</td>
<td>1082</td>
<td>2WE</td>
<td>263</td>
</tr>
<tr>
<td>1012</td>
<td>2YE</td>
<td>23</td>
<td>1050</td>
<td>2RE</td>
<td>268</td>
<td>1083</td>
<td>2PE</td>
<td>23</td>
</tr>
<tr>
<td>1013</td>
<td>2T</td>
<td>20</td>
<td>1051</td>
<td>2WE</td>
<td>(1)</td>
<td>1085</td>
<td>2YE</td>
<td>239</td>
</tr>
<tr>
<td>1016</td>
<td>2SE</td>
<td>263</td>
<td>1052</td>
<td>2XE</td>
<td>886</td>
<td>1086</td>
<td>2YE</td>
<td>239</td>
</tr>
<tr>
<td>1017</td>
<td>2XE</td>
<td>265</td>
<td>1053</td>
<td>2WE</td>
<td>263</td>
<td>1087</td>
<td>2YE</td>
<td>239</td>
</tr>
<tr>
<td>1018</td>
<td>2TE</td>
<td>20</td>
<td>1055</td>
<td>2YE</td>
<td>23</td>
<td>1088</td>
<td>•3YE</td>
<td>33</td>
</tr>
<tr>
<td>1020</td>
<td>2TE</td>
<td>20</td>
<td>1056</td>
<td>2TE</td>
<td>20</td>
<td>1089</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>1021</td>
<td>2TE</td>
<td>20</td>
<td>1057</td>
<td>(2)</td>
<td>(1)</td>
<td>1090</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>1022</td>
<td>2TE</td>
<td>20</td>
<td>1058</td>
<td>2TE</td>
<td>20</td>
<td>1091</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>1023</td>
<td>2SE</td>
<td>263</td>
<td>1059</td>
<td>2SE</td>
<td>239</td>
<td>1092</td>
<td>•2WE</td>
<td>663</td>
</tr>
<tr>
<td>1026</td>
<td>2PE</td>
<td>263</td>
<td>1060</td>
<td>2YE</td>
<td>23</td>
<td>1093</td>
<td>•3WE</td>
<td>336</td>
</tr>
<tr>
<td>1027</td>
<td>2YE</td>
<td>23</td>
<td>1061</td>
<td>2PE</td>
<td>23</td>
<td>1098</td>
<td>•2WE</td>
<td>663</td>
</tr>
<tr>
<td>1028</td>
<td>2TE</td>
<td>20</td>
<td>1062</td>
<td>2X</td>
<td>26</td>
<td>1099</td>
<td>2WE</td>
<td>336</td>
</tr>
<tr>
<td>1029</td>
<td>2TE</td>
<td>20</td>
<td>1063</td>
<td>2YE</td>
<td>23</td>
<td>1100</td>
<td>3YE</td>
<td>336</td>
</tr>
<tr>
<td>1030</td>
<td>2YE</td>
<td>23</td>
<td>1064</td>
<td>2WE</td>
<td>263</td>
<td>1104</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>1032</td>
<td>2PE</td>
<td>23</td>
<td>1065</td>
<td>2T</td>
<td>20</td>
<td>1105</td>
<td>•3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1033</td>
<td>2YE</td>
<td>23</td>
<td>1066</td>
<td>2T</td>
<td>20</td>
<td>1105</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>1035</td>
<td>2YE</td>
<td>23</td>
<td>1067</td>
<td>2PE</td>
<td>265</td>
<td>1106</td>
<td>•2WE(3)</td>
<td>338</td>
</tr>
<tr>
<td>1036</td>
<td>2PE</td>
<td>23</td>
<td>1069</td>
<td>2RE</td>
<td>(1)</td>
<td>1106</td>
<td>•2W</td>
<td>38</td>
</tr>
<tr>
<td>1037</td>
<td>2YE</td>
<td>23</td>
<td>1070</td>
<td>2P</td>
<td>25</td>
<td>1107</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1038</td>
<td>2YE</td>
<td>223</td>
<td>1071</td>
<td>2SE</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDICES

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1108</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1109</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1110</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1111</td>
<td>3WE</td>
<td>33</td>
</tr>
<tr>
<td>1112</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1113</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1114</td>
<td>3WE</td>
<td>33</td>
</tr>
<tr>
<td>1120</td>
<td>2YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1121</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1123</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1127</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1128</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1129</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1130</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1131</td>
<td>2WE</td>
<td>336</td>
</tr>
<tr>
<td>1133</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1134</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1135</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1136</td>
<td>2W</td>
<td>663</td>
</tr>
<tr>
<td>1137</td>
<td>3WE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1138</td>
<td>3W</td>
<td>30</td>
</tr>
<tr>
<td>1139</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1140</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1141</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>1144</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>1145</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1146</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1147</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1148</td>
<td>2YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1149</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1150</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1152</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1153</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1154</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1155</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1156</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1157</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1158</td>
<td>3WE</td>
<td>338</td>
</tr>
<tr>
<td>1159</td>
<td>3YE</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1160</td>
<td>2WE</td>
<td>338</td>
</tr>
<tr>
<td>1161</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1162</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>1163</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>1164</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1165</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1166</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1167</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>1169</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1170</td>
<td>2YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1171</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1172</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1173</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1175</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1176</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1177</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1178</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1179</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1180</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1181</td>
<td>2W</td>
<td>63</td>
</tr>
<tr>
<td>1182</td>
<td>3WE</td>
<td>663</td>
</tr>
<tr>
<td>1183</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>1184</td>
<td>2YE</td>
<td>336</td>
</tr>
<tr>
<td>1185</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>1188</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1189</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1190</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1191</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1192</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1193</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1194</td>
<td>2WE</td>
<td>336</td>
</tr>
<tr>
<td>1195</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1196</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>1197</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1198</td>
<td>2W</td>
<td>38</td>
</tr>
<tr>
<td>1199</td>
<td>3Y</td>
<td>63</td>
</tr>
<tr>
<td>1201</td>
<td>2YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1202</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1203</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1204</td>
<td>2YE</td>
<td>(1)</td>
</tr>
<tr>
<td>1206</td>
<td>3YE</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1207</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1208</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1210</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1210</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1212</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1213</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1214</td>
<td>2WE</td>
<td>338</td>
</tr>
<tr>
<td>1216</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1218</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>1219</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1220</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1221</td>
<td>2WE</td>
<td>338</td>
</tr>
<tr>
<td>1222</td>
<td>3YE</td>
<td>(1)</td>
</tr>
<tr>
<td>1223</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1224</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1224</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1228</td>
<td>3WE</td>
<td>336/36</td>
</tr>
<tr>
<td>1229</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1230</td>
<td>2WE</td>
<td>336</td>
</tr>
<tr>
<td>1231</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1233</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1234</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1235</td>
<td>2WE</td>
<td>338</td>
</tr>
<tr>
<td>1237</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1238</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>1239</td>
<td>3WE</td>
<td>663</td>
</tr>
<tr>
<td>1242</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>1243</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1244</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>1245</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1246</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>1247</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>1248</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1249</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1250</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1251</td>
<td>2WE</td>
<td>639</td>
</tr>
<tr>
<td>1259</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>1261</td>
<td>2Y</td>
<td>(1)</td>
</tr>
<tr>
<td>1262</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1263</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1263</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1264</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1265</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1266</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1266</td>
<td>3Y</td>
<td>30</td>
</tr>
</tbody>
</table>
APPENDICES

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1267</td>
<td>3WE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1267</td>
<td>3W</td>
<td>30</td>
</tr>
<tr>
<td>1268</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1268</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1270</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1270</td>
<td>3YE(7)</td>
<td>33</td>
</tr>
<tr>
<td>1272</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1274</td>
<td>2YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1274</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1275</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1276</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1277</td>
<td>2WE</td>
<td>338</td>
</tr>
<tr>
<td>1278</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1279</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1280</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1281</td>
<td>2WE</td>
<td>33</td>
</tr>
<tr>
<td>1286</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1286</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1287</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1287</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1288</td>
<td>3WE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1288</td>
<td>3W</td>
<td>30</td>
</tr>
<tr>
<td>1289</td>
<td>2WE(3)</td>
<td>338</td>
</tr>
<tr>
<td>1289</td>
<td>2W</td>
<td>38</td>
</tr>
<tr>
<td>1292</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1293</td>
<td>2YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1293</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>1294</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1295</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>1296</td>
<td>2WE</td>
<td>338</td>
</tr>
<tr>
<td>1297</td>
<td>2WE(3)</td>
<td>338</td>
</tr>
<tr>
<td>1297</td>
<td>2W</td>
<td>38</td>
</tr>
<tr>
<td>1298</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>1299</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1300</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1300</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1301</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>1302</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>1303</td>
<td>2YE</td>
<td>339</td>
</tr>
<tr>
<td>1304</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>1305</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>1306</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1306</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1307</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1307</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1308</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1308</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1309</td>
<td>4Y</td>
<td>40</td>
</tr>
<tr>
<td>1310</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1312</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1313</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1314</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1318</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1320</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1321</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1322</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1323</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1324</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>1325</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1326</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1327</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>1328</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1330</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1331</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>1332</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1333</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>1334</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1336</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1337</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1338</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1339</td>
<td>4Y</td>
<td>40</td>
</tr>
<tr>
<td>1340</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1341</td>
<td>4Y</td>
<td>40</td>
</tr>
<tr>
<td>1343</td>
<td>4Y</td>
<td>40</td>
</tr>
<tr>
<td>1344</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1345</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1346</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1347</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1348</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1349</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1350</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1352</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1353</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>1354</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1355</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1356</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1357</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1358</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1360</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>1361</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1362</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1363</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1364</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1365</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1369</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1372</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>1373</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1374</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1376</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1378</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1379</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1380</td>
<td>4W</td>
<td>333</td>
</tr>
<tr>
<td>1381</td>
<td>1WE</td>
<td>46</td>
</tr>
<tr>
<td>1382</td>
<td>1W</td>
<td>40</td>
</tr>
<tr>
<td>1383</td>
<td>4Y</td>
<td>43</td>
</tr>
<tr>
<td>1384</td>
<td>1S</td>
<td>40</td>
</tr>
<tr>
<td>1385</td>
<td>1W</td>
<td>40</td>
</tr>
<tr>
<td>1386</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1387</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>1389</td>
<td>4W</td>
<td>X323</td>
</tr>
<tr>
<td>1390</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1391</td>
<td>4W</td>
<td>X323</td>
</tr>
<tr>
<td>1392</td>
<td>4W</td>
<td>X323</td>
</tr>
<tr>
<td>1393</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1394</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1395</td>
<td>4W</td>
<td>462</td>
</tr>
<tr>
<td>1396</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1397</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>1398</td>
<td>4Y</td>
<td>423</td>
</tr>
<tr>
<td>1400</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1401</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1402</td>
<td>4W</td>
<td>X423/</td>
</tr>
<tr>
<td>1403</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1404</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>1405</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1407</td>
<td>4W</td>
<td>X423</td>
</tr>
<tr>
<td>1408</td>
<td>4W</td>
<td>462</td>
</tr>
<tr>
<td>1409</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1410</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>1411</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>1413</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>1414</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>1415</td>
<td>4W</td>
<td>X423</td>
</tr>
<tr>
<td>1417</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1418</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>1419</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>1420</td>
<td>4W</td>
<td>X323</td>
</tr>
<tr>
<td>1421</td>
<td>4W</td>
<td>X323</td>
</tr>
<tr>
<td>1422</td>
<td>4W</td>
<td>X323</td>
</tr>
<tr>
<td>1423</td>
<td>4W</td>
<td>X423</td>
</tr>
<tr>
<td>1426</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>1427</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>1428</td>
<td>4W</td>
<td>X423</td>
</tr>
<tr>
<td>1431</td>
<td>1W</td>
<td>48</td>
</tr>
<tr>
<td>1432</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>1433</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>1435</td>
<td>4Y</td>
<td>423</td>
</tr>
<tr>
<td>1436</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>1437</td>
<td>4Y</td>
<td>40</td>
</tr>
<tr>
<td>1438</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1439</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1442</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1444</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1445</td>
<td>1Y</td>
<td>56</td>
</tr>
<tr>
<td>1446</td>
<td>1Y</td>
<td>56</td>
</tr>
<tr>
<td>1447</td>
<td>1Y</td>
<td>56</td>
</tr>
<tr>
<td>1448</td>
<td>1Y</td>
<td>56</td>
</tr>
<tr>
<td>1449</td>
<td>1Y</td>
<td>56</td>
</tr>
<tr>
<td>1450</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1451</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1452</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1453</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1454</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1455</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1456</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1457</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1458</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1459</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1461</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1462</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1463</td>
<td>1W</td>
<td>568</td>
</tr>
<tr>
<td>1465</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1466</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1467</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1469</td>
<td>1Y</td>
<td>56</td>
</tr>
<tr>
<td>1470</td>
<td>1Y</td>
<td>56</td>
</tr>
<tr>
<td>1471</td>
<td>1W</td>
<td>50</td>
</tr>
<tr>
<td>1472</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1473</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1474</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1475</td>
<td>1Y</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1476</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1477</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1479</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1481</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1482</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1483</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1484</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1485</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1486</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1487</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1488</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1489</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1490</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1491</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1492</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1493</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1494</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1495</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1496</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1497</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1498</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1499</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1500</td>
<td>1Z</td>
<td>56</td>
</tr>
<tr>
<td>1502</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1503</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1504</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1505</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1506</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1507</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>1508</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1509</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1510</td>
<td>2W</td>
<td>665</td>
</tr>
<tr>
<td>1511</td>
<td>1X</td>
<td>58</td>
</tr>
<tr>
<td>1512</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1513</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1514</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1515</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1516</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>1517</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>1541</td>
<td>¥2X</td>
<td>669</td>
</tr>
<tr>
<td>1544</td>
<td>¥2X</td>
<td>66/60</td>
</tr>
<tr>
<td>1545</td>
<td>3WE</td>
<td>639</td>
</tr>
<tr>
<td>1546</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1547</td>
<td>¥3X</td>
<td>60</td>
</tr>
<tr>
<td>1548</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1549</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1550</td>
<td>2Z</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1551</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1553</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1554</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1555</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1556</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>1557</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>1558</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1559</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1560</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1561</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1562</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1564</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1565</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1566</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1567</td>
<td>2Z</td>
<td>64</td>
</tr>
<tr>
<td>1569</td>
<td>2W</td>
<td>63</td>
</tr>
<tr>
<td>1570</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1571</td>
<td>2X</td>
<td>(1)</td>
</tr>
<tr>
<td>1572</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1573</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1574</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1575</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1577</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1578</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1579</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1580</td>
<td>2XE</td>
<td>66</td>
</tr>
<tr>
<td>1581</td>
<td>2XE</td>
<td>26</td>
</tr>
<tr>
<td>1582</td>
<td>2XE</td>
<td>26</td>
</tr>
<tr>
<td>1583</td>
<td>2XE(3)</td>
<td>66</td>
</tr>
<tr>
<td>1583</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1585</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1586</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1587</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1588</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>1589</td>
<td>2XE</td>
<td>(1)</td>
</tr>
<tr>
<td>1590</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1591</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1593</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1594</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1595</td>
<td>¥3XE</td>
<td>668</td>
</tr>
<tr>
<td>1596</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1597</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1598</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1599</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1600</td>
<td>2W</td>
<td>60</td>
</tr>
<tr>
<td>1601</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1602</td>
<td>2X(4)</td>
<td>66</td>
</tr>
<tr>
<td>1602</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1603</td>
<td>2W</td>
<td>63</td>
</tr>
<tr>
<td>1604</td>
<td>2W</td>
<td>83</td>
</tr>
<tr>
<td>1605</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1606</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1607</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1608</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1611</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1612</td>
<td>2RE</td>
<td>26</td>
</tr>
<tr>
<td>1613</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>1614</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>1616</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1617</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1618</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1620</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1621</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1622</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1623</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1624</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1625</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1626</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1627</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1629</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1630</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1631</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1634</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1636</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1637</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1638</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1639</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1640</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1641</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1642</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1643</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1644</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1645</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1646</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1647</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1648</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>1649</td>
<td>2WE</td>
<td>66</td>
</tr>
<tr>
<td>1650</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1651</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1652</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1653</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1654</td>
<td>2X</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1655</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>1656</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1657</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1658</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1659</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1660</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>1661</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1662</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1663</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1664</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1665</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1669</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1670</td>
<td>2XE</td>
<td>66</td>
</tr>
<tr>
<td>1671</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1672</td>
<td>2XE</td>
<td>66</td>
</tr>
<tr>
<td>1673</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1674</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1677</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1678</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1679</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1680</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1683</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1684</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1685</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1686</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1687</td>
<td>2XE</td>
<td>(1)</td>
</tr>
<tr>
<td>1688</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1689</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1690</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1691</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1692</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1693</td>
<td>2XE</td>
<td>66/60</td>
</tr>
<tr>
<td>1694</td>
<td>2XE</td>
<td>66</td>
</tr>
<tr>
<td>1695</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>1697</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1698</td>
<td>2XE</td>
<td>66</td>
</tr>
<tr>
<td>1699</td>
<td>2XE</td>
<td>66</td>
</tr>
<tr>
<td>1700</td>
<td>2X</td>
<td>(1)</td>
</tr>
<tr>
<td>1701</td>
<td>2XE</td>
<td>60</td>
</tr>
<tr>
<td>1702</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1704</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1707</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1708</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1709</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1710</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1711</td>
<td>2X</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1712</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1713</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>1714</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>1715</td>
<td>3W</td>
<td>83</td>
</tr>
<tr>
<td>1716</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>1717</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>1718</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1719</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1722</td>
<td>3W</td>
<td>668</td>
</tr>
<tr>
<td>1723</td>
<td>2WE</td>
<td>338</td>
</tr>
<tr>
<td>1724</td>
<td>4W</td>
<td>X839</td>
</tr>
<tr>
<td>1725</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>1726</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>1727</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1728</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1729</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>1730</td>
<td>4WE</td>
<td>X80</td>
</tr>
<tr>
<td>1731</td>
<td>4WE</td>
<td>80</td>
</tr>
<tr>
<td>1732</td>
<td>4W</td>
<td>86</td>
</tr>
<tr>
<td>1733</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>1736</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>1737</td>
<td>2X</td>
<td>68</td>
</tr>
<tr>
<td>1738</td>
<td>2X</td>
<td>68</td>
</tr>
<tr>
<td>1739</td>
<td>2X</td>
<td>88</td>
</tr>
<tr>
<td>1740</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1741</td>
<td>2WE</td>
<td>268</td>
</tr>
<tr>
<td>1742</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1743</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1744</td>
<td>2XE</td>
<td>886</td>
</tr>
<tr>
<td>1745</td>
<td>4WE</td>
<td>568</td>
</tr>
<tr>
<td>1746</td>
<td>4WE</td>
<td>568</td>
</tr>
<tr>
<td>1747</td>
<td>4W</td>
<td>X83</td>
</tr>
<tr>
<td>1748</td>
<td>1W</td>
<td>50</td>
</tr>
<tr>
<td>1749</td>
<td>2WE</td>
<td>265</td>
</tr>
<tr>
<td>1750</td>
<td>2X</td>
<td>68</td>
</tr>
<tr>
<td>1751</td>
<td>2X</td>
<td>68</td>
</tr>
<tr>
<td>1752</td>
<td>2XE</td>
<td>668</td>
</tr>
<tr>
<td>1753</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1754</td>
<td>4WE</td>
<td>X88</td>
</tr>
<tr>
<td>1755</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1756</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1757</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1758</td>
<td>4WE</td>
<td>X88</td>
</tr>
<tr>
<td>1759</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>1760</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>1761</td>
<td>2X</td>
<td>86</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>1762</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1763</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1764</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1765</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1766</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1767</td>
<td>4W</td>
<td>X83</td>
</tr>
<tr>
<td>1768</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1769</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1770</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1771</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1772</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1773</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1774</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>1775</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1776</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1777</td>
<td>4WE</td>
<td>88</td>
</tr>
<tr>
<td>1778</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1779</td>
<td>•2W</td>
<td>83</td>
</tr>
<tr>
<td>1780</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>1781</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1782</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1783</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1784</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1786</td>
<td>2W</td>
<td>886</td>
</tr>
<tr>
<td>1787</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1788</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1789</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1790</td>
<td>2W(4)</td>
<td>886</td>
</tr>
<tr>
<td>1791</td>
<td>2X</td>
<td>86</td>
</tr>
<tr>
<td>1792</td>
<td>4WE</td>
<td>80</td>
</tr>
<tr>
<td>1793</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1794</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1796</td>
<td>2P(4)</td>
<td>885</td>
</tr>
<tr>
<td>1796</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1798</td>
<td>2P</td>
<td>(1)</td>
</tr>
<tr>
<td>1799</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1800</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1801</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1802</td>
<td>2P</td>
<td>85</td>
</tr>
<tr>
<td>1803</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1804</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>1805</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1806</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>1807</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1808</td>
<td>4WE</td>
<td>X80</td>
</tr>
<tr>
<td>1809</td>
<td>4WE</td>
<td>668</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1810</td>
<td>4WE</td>
<td>X668</td>
</tr>
<tr>
<td>1811</td>
<td>2X</td>
<td>86</td>
</tr>
<tr>
<td>1812</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1813</td>
<td>2W</td>
<td>80</td>
</tr>
<tr>
<td>1814</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1815</td>
<td>•3WE</td>
<td>338</td>
</tr>
<tr>
<td>1816</td>
<td>4W</td>
<td>X83</td>
</tr>
<tr>
<td>1817</td>
<td>4WE</td>
<td>X80</td>
</tr>
<tr>
<td>1818</td>
<td>4WE</td>
<td>X80</td>
</tr>
<tr>
<td>1819</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1823</td>
<td>2W</td>
<td>80</td>
</tr>
<tr>
<td>1824</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1825</td>
<td>2W</td>
<td>80</td>
</tr>
<tr>
<td>1826</td>
<td>2W(4)</td>
<td>885</td>
</tr>
<tr>
<td>1826</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1827</td>
<td>4WE</td>
<td>X80</td>
</tr>
<tr>
<td>1828</td>
<td>4WE</td>
<td>X88</td>
</tr>
<tr>
<td>1829</td>
<td>4WE</td>
<td>X88</td>
</tr>
<tr>
<td>1830</td>
<td>2P</td>
<td>80</td>
</tr>
<tr>
<td>1831</td>
<td>4WE</td>
<td>X886</td>
</tr>
<tr>
<td>1832</td>
<td>2W</td>
<td>80</td>
</tr>
<tr>
<td>1833</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>1834</td>
<td>4WE</td>
<td>X668</td>
</tr>
<tr>
<td>1835</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1836</td>
<td>4WE</td>
<td>X88</td>
</tr>
<tr>
<td>1837</td>
<td>4WE</td>
<td>X80</td>
</tr>
<tr>
<td>1838</td>
<td>4WE</td>
<td>X668</td>
</tr>
<tr>
<td>1839</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1840</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1841</td>
<td>2Z</td>
<td>90</td>
</tr>
<tr>
<td>1843</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1845</td>
<td>2T</td>
<td>(1)</td>
</tr>
<tr>
<td>1846</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1847</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1848</td>
<td>•2W</td>
<td>80</td>
</tr>
<tr>
<td>1849</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1851</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1854</td>
<td>4Y</td>
<td>43</td>
</tr>
<tr>
<td>1855</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>1856</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>1857</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>1858</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>1859</td>
<td>2PE</td>
<td>268</td>
</tr>
<tr>
<td>1860</td>
<td>2YE</td>
<td>239</td>
</tr>
<tr>
<td>1862</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>1863</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1863</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1865</td>
<td>3YE</td>
<td>(1)</td>
</tr>
<tr>
<td>1866</td>
<td>•3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1866</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>1868</td>
<td>1X</td>
<td>46</td>
</tr>
<tr>
<td>1869</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>1870</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>1871</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>1872</td>
<td>1X</td>
<td>56</td>
</tr>
<tr>
<td>1873</td>
<td>2P</td>
<td>558</td>
</tr>
<tr>
<td>1884</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1885</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1886</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1887</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1888</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1889</td>
<td>2XE</td>
<td>668</td>
</tr>
<tr>
<td>1891</td>
<td>2W</td>
<td>60</td>
</tr>
<tr>
<td>1892</td>
<td>2XE</td>
<td>66</td>
</tr>
<tr>
<td>1894</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1895</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>1897</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>1898</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>1902</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1903</td>
<td>2X(4)</td>
<td>88/80</td>
</tr>
<tr>
<td>1905</td>
<td>2X</td>
<td>88</td>
</tr>
<tr>
<td>1906</td>
<td>2W</td>
<td>80</td>
</tr>
<tr>
<td>1907</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1908</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>1910</td>
<td>2X</td>
<td>(1)</td>
</tr>
<tr>
<td>1911</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>1912</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>1913</td>
<td>2T</td>
<td>22</td>
</tr>
<tr>
<td>1914</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1915</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>1916</td>
<td>•3W</td>
<td>63</td>
</tr>
<tr>
<td>1917</td>
<td>•3WE</td>
<td>339</td>
</tr>
<tr>
<td>1918</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1919</td>
<td>3WE</td>
<td>339</td>
</tr>
<tr>
<td>1920</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>1921</td>
<td>•2WE</td>
<td>336</td>
</tr>
<tr>
<td>1922</td>
<td>•2WE</td>
<td>338</td>
</tr>
<tr>
<td>1923</td>
<td>1S</td>
<td>40</td>
</tr>
<tr>
<td>1928</td>
<td>4WE</td>
<td>X323</td>
</tr>
<tr>
<td>1929</td>
<td>1S</td>
<td>40</td>
</tr>
<tr>
<td>1931</td>
<td>2Z</td>
<td>90</td>
</tr>
<tr>
<td>1932</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1989</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>1990</td>
<td>3Z</td>
<td>90</td>
</tr>
<tr>
<td>1991</td>
<td>•3YE</td>
<td>336</td>
</tr>
<tr>
<td>1992</td>
<td>•3WE(3)</td>
<td>336</td>
</tr>
<tr>
<td>1993</td>
<td>•3W</td>
<td>36</td>
</tr>
<tr>
<td>1994</td>
<td>•3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1994</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>1995</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>1995</td>
<td>2WE(3)</td>
<td>33</td>
</tr>
<tr>
<td>1999</td>
<td>2W</td>
<td>30</td>
</tr>
<tr>
<td>2000</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>2001</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>2002</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>2004</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>2006</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>2008</td>
<td>4Y</td>
<td>43/40</td>
</tr>
<tr>
<td>2009</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>2010</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2011</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2012</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2013</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2014</td>
<td>2P</td>
<td>58</td>
</tr>
<tr>
<td>2015</td>
<td>2P</td>
<td>559</td>
</tr>
<tr>
<td>2016</td>
<td>2X</td>
<td>(1)</td>
</tr>
<tr>
<td>2017</td>
<td>2XE</td>
<td>(1)</td>
</tr>
<tr>
<td>2018</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2019</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2020</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2021</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2022</td>
<td>3X</td>
<td>68</td>
</tr>
<tr>
<td>2023</td>
<td>•3W</td>
<td>63</td>
</tr>
<tr>
<td>2024</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2025</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2026</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2027</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2028</td>
<td>2X</td>
<td>(1)</td>
</tr>
<tr>
<td>2029</td>
<td>•2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2030</td>
<td>•2X</td>
<td>886/86</td>
</tr>
<tr>
<td>2031</td>
<td>2P(4)</td>
<td>885</td>
</tr>
<tr>
<td>2032</td>
<td>2R</td>
<td>85</td>
</tr>
<tr>
<td>2033</td>
<td>2PE</td>
<td>856</td>
</tr>
<tr>
<td>2034</td>
<td>2W</td>
<td>80</td>
</tr>
<tr>
<td>2035</td>
<td>2SE</td>
<td>23</td>
</tr>
<tr>
<td>2036</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>2036</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>2037</td>
<td>(2)</td>
<td>(1)</td>
</tr>
<tr>
<td>2038</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2044</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>2045</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>2046</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2048</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>2049</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2050</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2051</td>
<td>•2W</td>
<td>83</td>
</tr>
<tr>
<td>2052</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2053</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>2054</td>
<td>•2W</td>
<td>883</td>
</tr>
<tr>
<td>2055</td>
<td>3Y</td>
<td>39</td>
</tr>
<tr>
<td>2056</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>2057</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>2057</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2058</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2059</td>
<td>•2YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>2059</td>
<td>•2Y</td>
<td>30</td>
</tr>
<tr>
<td>2067</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>2071</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>2073</td>
<td>2XE</td>
<td>20</td>
</tr>
<tr>
<td>2074</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2075</td>
<td>2X</td>
<td>69</td>
</tr>
<tr>
<td>2076</td>
<td>•2X</td>
<td>68</td>
</tr>
<tr>
<td>2077</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2078</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2079</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2186</td>
<td>2RE</td>
<td>(1)</td>
</tr>
<tr>
<td>2187</td>
<td>2T</td>
<td>22</td>
</tr>
<tr>
<td>2188</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>2189</td>
<td>2WE</td>
<td>263</td>
</tr>
<tr>
<td>2190</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>2191</td>
<td>2XE</td>
<td>26</td>
</tr>
<tr>
<td>2192</td>
<td>2PE</td>
<td>263</td>
</tr>
<tr>
<td>2193</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>2194</td>
<td>2RE</td>
<td>(1)</td>
</tr>
<tr>
<td>2195</td>
<td>2RE</td>
<td>(1)</td>
</tr>
<tr>
<td>2196</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2197</td>
<td>2RE</td>
<td>268</td>
</tr>
<tr>
<td>2198</td>
<td>2RE</td>
<td>(1)</td>
</tr>
<tr>
<td>2199</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>2200</td>
<td>2YE</td>
<td>239</td>
</tr>
<tr>
<td>2201</td>
<td>2P</td>
<td>225</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>2202</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2203</td>
<td>2SE</td>
<td>23</td>
</tr>
<tr>
<td>2204</td>
<td>2PE</td>
<td>263</td>
</tr>
<tr>
<td>2205</td>
<td>•3X</td>
<td>60</td>
</tr>
<tr>
<td>2206</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2208</td>
<td>1X</td>
<td>50</td>
</tr>
<tr>
<td>2209</td>
<td>•2X</td>
<td>80</td>
</tr>
<tr>
<td>2210</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>2211</td>
<td>2Y</td>
<td>90</td>
</tr>
<tr>
<td>2212</td>
<td>2X</td>
<td>90</td>
</tr>
<tr>
<td>2213</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>2214</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2215</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2216</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>2217</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>2218</td>
<td>•2W</td>
<td>839</td>
</tr>
<tr>
<td>2219</td>
<td>•2Y</td>
<td>30</td>
</tr>
<tr>
<td>2222</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2224</td>
<td>3Z</td>
<td>60</td>
</tr>
<tr>
<td>2225</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2226</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2227</td>
<td>3W</td>
<td>39</td>
</tr>
<tr>
<td>2232</td>
<td>•2XE</td>
<td>66</td>
</tr>
<tr>
<td>2233</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2234</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>2235</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2236</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2237</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2238</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2239</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2240</td>
<td>2W</td>
<td>88</td>
</tr>
<tr>
<td>2241</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2242</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2243</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2244</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2245</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>2246</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2247</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2248</td>
<td>•3W</td>
<td>83</td>
</tr>
<tr>
<td>2249</td>
<td>•3WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2250</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2251</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>2252</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>2253</td>
<td>3Z</td>
<td>60</td>
</tr>
<tr>
<td>2254</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>2256</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>2351</td>
<td>•3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>2351</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>2352</td>
<td>•3YE</td>
<td>339</td>
</tr>
<tr>
<td>2353</td>
<td>•3WE</td>
<td>338</td>
</tr>
<tr>
<td>2354</td>
<td>•3WE</td>
<td>336</td>
</tr>
<tr>
<td>2356</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2357</td>
<td>•2W</td>
<td>83</td>
</tr>
<tr>
<td>2358</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2359</td>
<td>•2WE</td>
<td>338</td>
</tr>
<tr>
<td>2360</td>
<td>•3WE</td>
<td>336</td>
</tr>
<tr>
<td>2361</td>
<td>3WE</td>
<td>38</td>
</tr>
<tr>
<td>2362</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>2363</td>
<td>3WE</td>
<td>33</td>
</tr>
<tr>
<td>2364</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2366</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2367</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2368</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2370</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2372</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>2373</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>2374</td>
<td>•3YE</td>
<td>33</td>
</tr>
<tr>
<td>2375</td>
<td>3WE</td>
<td>33</td>
</tr>
<tr>
<td>2376</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>2377</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>2378</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2379</td>
<td>3WE</td>
<td>338</td>
</tr>
<tr>
<td>2380</td>
<td>•2YE</td>
<td>33</td>
</tr>
<tr>
<td>2381</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2382</td>
<td>•2WE</td>
<td>663</td>
</tr>
<tr>
<td>2383</td>
<td>•2WE</td>
<td>338</td>
</tr>
<tr>
<td>2384</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2385</td>
<td>•3YE</td>
<td>33</td>
</tr>
<tr>
<td>2386</td>
<td>3WE</td>
<td>338</td>
</tr>
<tr>
<td>2387</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2388</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2390</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>2391</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>2392</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>2393</td>
<td>•3YE</td>
<td>33</td>
</tr>
<tr>
<td>2394</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2395</td>
<td>•3WE</td>
<td>338</td>
</tr>
<tr>
<td>2396</td>
<td>•2WE</td>
<td>336</td>
</tr>
<tr>
<td>2397</td>
<td>•3YE</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2398</td>
<td>•3YE</td>
<td>33</td>
</tr>
<tr>
<td>2399</td>
<td>•2WE</td>
<td>338</td>
</tr>
<tr>
<td>2400</td>
<td>•3YE</td>
<td>33</td>
</tr>
<tr>
<td>2401</td>
<td>•2WE</td>
<td>883</td>
</tr>
<tr>
<td>2402</td>
<td>•3WE</td>
<td>33</td>
</tr>
<tr>
<td>2403</td>
<td>•3YE</td>
<td>33</td>
</tr>
<tr>
<td>2404</td>
<td>•2WE</td>
<td>336</td>
</tr>
<tr>
<td>2405</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2406</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2407</td>
<td>•3WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2409</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2410</td>
<td>•2WE</td>
<td>33</td>
</tr>
<tr>
<td>2411</td>
<td>•3WE</td>
<td>336</td>
</tr>
<tr>
<td>2412</td>
<td>3WE</td>
<td>33</td>
</tr>
<tr>
<td>2413</td>
<td>•2Y</td>
<td>30</td>
</tr>
<tr>
<td>2414</td>
<td>3WE</td>
<td>33</td>
</tr>
<tr>
<td>2416</td>
<td>•3YE</td>
<td>33</td>
</tr>
<tr>
<td>2417</td>
<td>2PE</td>
<td>268</td>
</tr>
<tr>
<td>2418</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>2419</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>2420</td>
<td>2WE</td>
<td>268</td>
</tr>
<tr>
<td>2421</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>2422</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>2424</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>2425</td>
<td>2Y</td>
<td>60</td>
</tr>
<tr>
<td>2426</td>
<td>1Y</td>
<td>59</td>
</tr>
<tr>
<td>2427</td>
<td>2Y</td>
<td>50</td>
</tr>
<tr>
<td>2428</td>
<td>2Y</td>
<td>50</td>
</tr>
<tr>
<td>2429</td>
<td>2Y</td>
<td>50</td>
</tr>
<tr>
<td>2430</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>2431</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2432</td>
<td>•3X</td>
<td>60</td>
</tr>
<tr>
<td>2433</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2434</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>2435</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>2436</td>
<td>•2WE</td>
<td>33</td>
</tr>
<tr>
<td>2437</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>2438</td>
<td>•3WE</td>
<td>663</td>
</tr>
<tr>
<td>2439</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2440</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2441</td>
<td>4WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2442</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>2443</td>
<td>4WE</td>
<td>80</td>
</tr>
<tr>
<td>2444</td>
<td>4WE</td>
<td>X88</td>
</tr>
<tr>
<td>2446</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2447</td>
<td>1WE</td>
<td>446</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>2505</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2506</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2507</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2508</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2509</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2511</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2512</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2513</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>2514</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>2515</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2516</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2517</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>2518</td>
<td>3Z</td>
<td>60</td>
</tr>
<tr>
<td>2520</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2521</td>
<td>3W</td>
<td>663</td>
</tr>
<tr>
<td>2522</td>
<td>2W</td>
<td>69</td>
</tr>
<tr>
<td>2524</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2525</td>
<td>3Z</td>
<td>60</td>
</tr>
<tr>
<td>2526</td>
<td>2W</td>
<td>38</td>
</tr>
<tr>
<td>2527</td>
<td>3W</td>
<td>39</td>
</tr>
<tr>
<td>2528</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2529</td>
<td>2W</td>
<td>38</td>
</tr>
<tr>
<td>2531</td>
<td>3W</td>
<td>89</td>
</tr>
<tr>
<td>2533</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2534</td>
<td>2WE</td>
<td>263</td>
</tr>
<tr>
<td>2535</td>
<td>2WE</td>
<td>338</td>
</tr>
<tr>
<td>2536</td>
<td>2YE</td>
<td>33</td>
</tr>
<tr>
<td>2538</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>2541</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2542</td>
<td>3X</td>
<td>60</td>
</tr>
<tr>
<td>2545</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>2546</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>2547</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>2548</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>2552</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2554</td>
<td>3WE</td>
<td>33</td>
</tr>
<tr>
<td>2555</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>2556</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>2557</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>2558</td>
<td>2W</td>
<td>663</td>
</tr>
<tr>
<td>2560</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2561</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2564</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2565</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2567</td>
<td>2X</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2570</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2571</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2572</td>
<td>3X</td>
<td>60</td>
</tr>
<tr>
<td>2573</td>
<td>1Y</td>
<td>56</td>
</tr>
<tr>
<td>2574</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2576</td>
<td>1X</td>
<td>80</td>
</tr>
<tr>
<td>2577</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>2578</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2579</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2580</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2581</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2582</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2583</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2584</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2585</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2586</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2587</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2588</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2589</td>
<td>3W</td>
<td>63</td>
</tr>
<tr>
<td>2590</td>
<td>2X</td>
<td>90</td>
</tr>
<tr>
<td>2591</td>
<td>2TE</td>
<td>22</td>
</tr>
<tr>
<td>2599</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>2601</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>2602</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>2603</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2604</td>
<td>4WE</td>
<td>883</td>
</tr>
<tr>
<td>2605</td>
<td>3WE</td>
<td>663</td>
</tr>
<tr>
<td>2606</td>
<td>3WE</td>
<td>663</td>
</tr>
<tr>
<td>2607</td>
<td>2Y</td>
<td>39</td>
</tr>
<tr>
<td>2608</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2609</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2610</td>
<td>3W</td>
<td>38</td>
</tr>
<tr>
<td>2611</td>
<td>2W</td>
<td>63</td>
</tr>
<tr>
<td>2612</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2614</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>2615</td>
<td>3YE</td>
<td>33</td>
</tr>
<tr>
<td>2616</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>2616</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2617</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2618</td>
<td>3Y</td>
<td>39</td>
</tr>
<tr>
<td>2619</td>
<td>3W</td>
<td>83</td>
</tr>
<tr>
<td>2620</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2621</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>2622</td>
<td>2WE</td>
<td>336</td>
</tr>
<tr>
<td>2623</td>
<td>1Z</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2624</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>2626</td>
<td>2P</td>
<td>50</td>
</tr>
<tr>
<td>2627</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>2628</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>2629</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>2630</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>2642</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>2643</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2644</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>2645</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2646</td>
<td>2X</td>
<td>66</td>
</tr>
<tr>
<td>2647</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2648</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2649</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2650</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2651</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2653</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2655</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2656</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2657</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2659</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2660</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2661</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2664</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2667</td>
<td>3X</td>
<td>60</td>
</tr>
<tr>
<td>2668</td>
<td>2W</td>
<td>663</td>
</tr>
<tr>
<td>2669</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2670</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2671</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2672</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2673</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2674</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2676</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>2677</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2678</td>
<td>2W</td>
<td>80</td>
</tr>
<tr>
<td>2679</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2680</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2681</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2682</td>
<td>2W</td>
<td>80</td>
</tr>
<tr>
<td>2683</td>
<td>2W</td>
<td>86</td>
</tr>
<tr>
<td>2684</td>
<td>2W</td>
<td>38</td>
</tr>
<tr>
<td>2685</td>
<td>2W</td>
<td>83</td>
</tr>
<tr>
<td>2686</td>
<td>2W</td>
<td>83</td>
</tr>
<tr>
<td>2687</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>2688</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2689</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>2690</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2691</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>2692</td>
<td>4WE</td>
<td>X88</td>
</tr>
<tr>
<td>2693</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2698</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2699</td>
<td>2X</td>
<td>88</td>
</tr>
<tr>
<td>2705</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2707</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>2709</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2710</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2713</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2714</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>2715</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>2716</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2717</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>2719</td>
<td>1W</td>
<td>56</td>
</tr>
<tr>
<td>2720</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>2721</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>2722</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>2723</td>
<td>1Y</td>
<td>50</td>
</tr>
<tr>
<td>2724</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>2725</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>2726</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>2727</td>
<td>1Y</td>
<td>65</td>
</tr>
<tr>
<td>2728</td>
<td>1Z</td>
<td>50</td>
</tr>
<tr>
<td>2729</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2730</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2732</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2733</td>
<td>2WE(3)</td>
<td>338</td>
</tr>
<tr>
<td>2733</td>
<td>2W</td>
<td>38</td>
</tr>
<tr>
<td>2734</td>
<td>2W</td>
<td>883/83</td>
</tr>
<tr>
<td>2735</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>2738</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2739</td>
<td>3X</td>
<td>80</td>
</tr>
<tr>
<td>2740</td>
<td>3WE</td>
<td>668</td>
</tr>
<tr>
<td>2741</td>
<td>1Y</td>
<td>56</td>
</tr>
<tr>
<td>2742</td>
<td>3W</td>
<td>638</td>
</tr>
<tr>
<td>2743</td>
<td>3W</td>
<td>638</td>
</tr>
<tr>
<td>2744</td>
<td>3W</td>
<td>638</td>
</tr>
<tr>
<td>2745</td>
<td>2X</td>
<td>68</td>
</tr>
<tr>
<td>2746</td>
<td>2X</td>
<td>68</td>
</tr>
<tr>
<td>2747</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2748</td>
<td>2X</td>
<td>68</td>
</tr>
<tr>
<td>2749</td>
<td>3YE</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2750</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2751</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>2752</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2753</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2754</td>
<td>3X</td>
<td>60</td>
</tr>
<tr>
<td>2757</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2758</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2759</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2760</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2761</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2762</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2763</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2764</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2771</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2772</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2775</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2776</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2777</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2778</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2779</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2780</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2781</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2782</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2783</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2784</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2785</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2786</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2787</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>2788</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2789</td>
<td>2P</td>
<td>83</td>
</tr>
<tr>
<td>2790</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2793</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>2794</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2795</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2796</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2797</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2798</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2799</td>
<td>2W</td>
<td>80</td>
</tr>
<tr>
<td>2800</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2801</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>2802</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2803</td>
<td>2Z</td>
<td>80</td>
</tr>
<tr>
<td>2805</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>2806</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>2807</td>
<td>2Z</td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2809</td>
<td>2X</td>
<td>86</td>
</tr>
<tr>
<td>2810</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2811</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2812</td>
<td>2X</td>
<td>(1)</td>
</tr>
<tr>
<td>2813</td>
<td>4W</td>
<td>X423/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>423</td>
</tr>
<tr>
<td>2814</td>
<td>2XE</td>
<td>606</td>
</tr>
<tr>
<td>2815</td>
<td>2X</td>
<td>86</td>
</tr>
<tr>
<td>2817</td>
<td>2X</td>
<td>86</td>
</tr>
<tr>
<td>2818</td>
<td>2X</td>
<td>86</td>
</tr>
<tr>
<td>2819</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2820</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2821</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2822</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2823</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2826</td>
<td>2W</td>
<td>83</td>
</tr>
<tr>
<td>2829</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2830</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>2831</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2834</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2835</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>2837</td>
<td>2R</td>
<td>80</td>
</tr>
<tr>
<td>2838</td>
<td>3YE</td>
<td>339</td>
</tr>
<tr>
<td>2839</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2840</td>
<td>3W</td>
<td>30</td>
</tr>
<tr>
<td>2841</td>
<td>3W</td>
<td>36</td>
</tr>
<tr>
<td>2842</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2844</td>
<td>4Y</td>
<td>423</td>
</tr>
<tr>
<td>2845</td>
<td>3W</td>
<td>333</td>
</tr>
<tr>
<td>2846</td>
<td>4Y</td>
<td>(1)</td>
</tr>
<tr>
<td>2849</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2850</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2851</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>2852</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>2853</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2854</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2855</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2856</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2857</td>
<td>2Z</td>
<td>(1)</td>
</tr>
<tr>
<td>2858</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>2859</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2861</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2862</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2863</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2864</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2865</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>2869</td>
<td>4W</td>
<td>80</td>
</tr>
<tr>
<td>2870</td>
<td>4W</td>
<td>X333</td>
</tr>
<tr>
<td>2870</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>2871</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2872</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2873</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2874</td>
<td>•2X</td>
<td>60</td>
</tr>
<tr>
<td>2875</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2876</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2878</td>
<td>4Y</td>
<td>40</td>
</tr>
<tr>
<td>2879</td>
<td>4WE</td>
<td>X886</td>
</tr>
<tr>
<td>2880</td>
<td>1W</td>
<td>50</td>
</tr>
<tr>
<td>2881</td>
<td>4Y</td>
<td>43/40</td>
</tr>
<tr>
<td>2900</td>
<td>2X</td>
<td>606</td>
</tr>
<tr>
<td>2901</td>
<td>2WE</td>
<td>265</td>
</tr>
<tr>
<td>2902</td>
<td>2X(4)</td>
<td>66</td>
</tr>
<tr>
<td>2902</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2903</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>2904</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2905</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2907</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>2920</td>
<td>•3W</td>
<td>883/83</td>
</tr>
<tr>
<td>2921</td>
<td>2X</td>
<td>884/84</td>
</tr>
<tr>
<td>2922</td>
<td>2X(4)</td>
<td>886</td>
</tr>
<tr>
<td>2922</td>
<td>2X</td>
<td>86</td>
</tr>
<tr>
<td>2923</td>
<td>2X</td>
<td>886/86</td>
</tr>
<tr>
<td>2924</td>
<td>•3WE(3)</td>
<td>338</td>
</tr>
<tr>
<td>2924</td>
<td>•3W</td>
<td>38</td>
</tr>
<tr>
<td>2925</td>
<td>1W</td>
<td>48</td>
</tr>
<tr>
<td>2926</td>
<td>1X</td>
<td>46</td>
</tr>
<tr>
<td>2927</td>
<td>2XE(3)</td>
<td>668</td>
</tr>
<tr>
<td>2927</td>
<td>2X</td>
<td>68</td>
</tr>
<tr>
<td>2928</td>
<td>2X</td>
<td>668/68</td>
</tr>
<tr>
<td>2929</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>2930</td>
<td>2X</td>
<td>664/64</td>
</tr>
<tr>
<td>2931</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2933</td>
<td>•3Y</td>
<td>30</td>
</tr>
<tr>
<td>2934</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2935</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2936</td>
<td>•2X</td>
<td>60</td>
</tr>
<tr>
<td>2937</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>2940</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>2941</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2942</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2943</td>
<td>•2Y</td>
<td>30</td>
</tr>
<tr>
<td>2945</td>
<td>•2WE</td>
<td>338</td>
</tr>
<tr>
<td>2946</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2947</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>2948</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2949</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2950</td>
<td>4Y</td>
<td>423</td>
</tr>
<tr>
<td>2956</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>2965</td>
<td>4WE</td>
<td>382</td>
</tr>
<tr>
<td>2966</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>2967</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>2968</td>
<td>4Y</td>
<td>423</td>
</tr>
<tr>
<td>2969</td>
<td>2Z</td>
<td>90</td>
</tr>
<tr>
<td>2983</td>
<td>•2WE</td>
<td>336</td>
</tr>
<tr>
<td>2984</td>
<td>2R</td>
<td>50</td>
</tr>
<tr>
<td>2985</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>2986</td>
<td>4W</td>
<td>X83</td>
</tr>
<tr>
<td>2987</td>
<td>4W</td>
<td>X80</td>
</tr>
<tr>
<td>2988</td>
<td>4WE</td>
<td>X338</td>
</tr>
<tr>
<td>2989</td>
<td>1Z</td>
<td>40</td>
</tr>
<tr>
<td>2990</td>
<td>2Z</td>
<td>(1)</td>
</tr>
<tr>
<td>2991</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>2992</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2993</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>2994</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2995</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>2996</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>2997</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>2998</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3005</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>3006</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3009</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>3010</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3011</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>3012</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3013</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>3014</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3015</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>3016</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3017</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>3018</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3019</td>
<td>•3W</td>
<td>663/63</td>
</tr>
<tr>
<td>3020</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3021</td>
<td>•3WE</td>
<td>336</td>
</tr>
<tr>
<td>3022</td>
<td>•2YE</td>
<td>339</td>
</tr>
<tr>
<td>3023</td>
<td>3WE</td>
<td>663</td>
</tr>
<tr>
<td>3024</td>
<td>•3WE</td>
<td>336</td>
</tr>
<tr>
<td>3025</td>
<td>•3WE</td>
<td>663/63</td>
</tr>
<tr>
<td>3026</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3027</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3028</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>3048</td>
<td>4W</td>
<td>642</td>
</tr>
<tr>
<td>3054</td>
<td>3WE</td>
<td>30</td>
</tr>
<tr>
<td>3055</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>3056</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>3057</td>
<td>2XE</td>
<td>268</td>
</tr>
<tr>
<td>3064</td>
<td>•2YE</td>
<td>(1)</td>
</tr>
<tr>
<td>3065</td>
<td>•2YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>3066</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>3070</td>
<td>2TE</td>
<td>20</td>
</tr>
<tr>
<td>3071</td>
<td>•3WE</td>
<td>63</td>
</tr>
<tr>
<td>3072</td>
<td>2Z</td>
<td>(1)</td>
</tr>
<tr>
<td>3073</td>
<td>•3W</td>
<td>638</td>
</tr>
<tr>
<td>3077</td>
<td>2Z</td>
<td>90</td>
</tr>
<tr>
<td>3078</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>3079</td>
<td>•3WE</td>
<td>663</td>
</tr>
<tr>
<td>3080</td>
<td>•3W</td>
<td>63</td>
</tr>
<tr>
<td>3082</td>
<td>•3Z</td>
<td>90</td>
</tr>
<tr>
<td>3083</td>
<td>2WE</td>
<td>265</td>
</tr>
<tr>
<td>3084</td>
<td>2W</td>
<td>885/85</td>
</tr>
<tr>
<td>3085</td>
<td>1W</td>
<td>58</td>
</tr>
<tr>
<td>3086</td>
<td>2W</td>
<td>665/65</td>
</tr>
<tr>
<td>3087</td>
<td>1W</td>
<td>56</td>
</tr>
<tr>
<td>3088</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>3089</td>
<td>4Y</td>
<td>40</td>
</tr>
<tr>
<td>3090</td>
<td>4Y</td>
<td>(1)</td>
</tr>
<tr>
<td>3091</td>
<td>4Y</td>
<td>(1)</td>
</tr>
<tr>
<td>3092</td>
<td>•2Y</td>
<td>30</td>
</tr>
<tr>
<td>3093</td>
<td>2W</td>
<td>885/85</td>
</tr>
<tr>
<td>3094</td>
<td>4W</td>
<td>823</td>
</tr>
<tr>
<td>3095</td>
<td>2W</td>
<td>884/84</td>
</tr>
<tr>
<td>3096</td>
<td>4W</td>
<td>842</td>
</tr>
<tr>
<td>3097</td>
<td>1Y</td>
<td>(1)</td>
</tr>
<tr>
<td>3098</td>
<td>2W</td>
<td>(1)</td>
</tr>
<tr>
<td>3099</td>
<td>2W</td>
<td>(1)</td>
</tr>
<tr>
<td>3100</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>3101</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3102</td>
<td>1WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3103</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3104</td>
<td>1WE</td>
<td>(1)</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>3105</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3106</td>
<td>1WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3107</td>
<td>2W</td>
<td>(1)</td>
</tr>
<tr>
<td>3108</td>
<td>1W</td>
<td>539</td>
</tr>
<tr>
<td>3109</td>
<td>2W</td>
<td>539</td>
</tr>
<tr>
<td>3110</td>
<td>1W</td>
<td>539</td>
</tr>
<tr>
<td>3111</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3112</td>
<td>1WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3113</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3114</td>
<td>1WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3115</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3116</td>
<td>1WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3117</td>
<td>2W</td>
<td>(1)</td>
</tr>
<tr>
<td>3118</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>3119</td>
<td>2W</td>
<td>539</td>
</tr>
<tr>
<td>3120</td>
<td>1W</td>
<td>539</td>
</tr>
<tr>
<td>3121</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>3122</td>
<td>2WE</td>
<td>665/65</td>
</tr>
<tr>
<td>3123</td>
<td>4W</td>
<td>623</td>
</tr>
<tr>
<td>3124</td>
<td>2W</td>
<td>664/64</td>
</tr>
<tr>
<td>3125</td>
<td>4W</td>
<td>642</td>
</tr>
<tr>
<td>3126</td>
<td>1W</td>
<td>48</td>
</tr>
<tr>
<td>3127</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>3128</td>
<td>1W</td>
<td>46</td>
</tr>
<tr>
<td>3129</td>
<td>4W</td>
<td>X382/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>3130</td>
<td>4W</td>
<td>X362/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>3131</td>
<td>4W</td>
<td>X482/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>482</td>
</tr>
<tr>
<td>3132</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>3133</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>3134</td>
<td>4W</td>
<td>462</td>
</tr>
<tr>
<td>3135</td>
<td>4W</td>
<td>423</td>
</tr>
<tr>
<td>3136</td>
<td>2T</td>
<td>22</td>
</tr>
<tr>
<td>3137</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>3138</td>
<td>2YE</td>
<td>223</td>
</tr>
<tr>
<td>3139</td>
<td>2Y</td>
<td>(1)</td>
</tr>
<tr>
<td>3140</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3141</td>
<td>2Z</td>
<td>60</td>
</tr>
<tr>
<td>3142</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3143</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3144</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3145</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3146</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3147</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>3252</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>3253</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>3254</td>
<td>3W</td>
<td>333</td>
</tr>
<tr>
<td>3255</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3256</td>
<td>2Y</td>
<td>30</td>
</tr>
<tr>
<td>3257</td>
<td>2Y</td>
<td>99</td>
</tr>
<tr>
<td>3258</td>
<td>1Y</td>
<td>99</td>
</tr>
<tr>
<td>3259</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3260</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3261</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3262</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3263</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3264</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3265</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3266</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3267</td>
<td>2X</td>
<td>88/80</td>
</tr>
<tr>
<td>3268</td>
<td>2Z</td>
<td>(1)</td>
</tr>
<tr>
<td>3269</td>
<td>2YE</td>
<td>(1)</td>
</tr>
<tr>
<td>3270</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>3271</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>3272</td>
<td>3Y</td>
<td>30</td>
</tr>
<tr>
<td>3273</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
<tr>
<td>3274</td>
<td>3YW</td>
<td>30</td>
</tr>
<tr>
<td>3275</td>
<td>3WE</td>
<td>336</td>
</tr>
<tr>
<td>3276</td>
<td>3WE</td>
<td>338</td>
</tr>
<tr>
<td>3277</td>
<td>3W</td>
<td>663/63</td>
</tr>
<tr>
<td>3278</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3279</td>
<td>2X</td>
<td>68</td>
</tr>
<tr>
<td>3280</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3281</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3282</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3283</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3284</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3285</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3286</td>
<td>3WE</td>
<td>368</td>
</tr>
<tr>
<td>3287</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3288</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3289</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3290</td>
<td>2X</td>
<td>66/60</td>
</tr>
<tr>
<td>3291</td>
<td>2X</td>
<td>606</td>
</tr>
<tr>
<td>3292</td>
<td>4W</td>
<td>(1)</td>
</tr>
<tr>
<td>3293</td>
<td>2X</td>
<td>60</td>
</tr>
<tr>
<td>3294</td>
<td>2WE</td>
<td>663</td>
</tr>
<tr>
<td>3295</td>
<td>3YE(3)</td>
<td>33</td>
</tr>
</tbody>
</table>
APPENDICES

<table>
<thead>
<tr>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
<th>UN</th>
<th>HAZCHEM</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3398</td>
<td>4W</td>
<td>X323</td>
<td>3444</td>
<td>2X</td>
<td>60</td>
<td>3490</td>
<td>4WE</td>
<td>623</td>
</tr>
<tr>
<td>3399</td>
<td>4W</td>
<td>X323</td>
<td>3445</td>
<td>2X</td>
<td>60</td>
<td>3491</td>
<td>4WE</td>
<td>623</td>
</tr>
<tr>
<td>3400</td>
<td>2Y</td>
<td>40</td>
<td>3446</td>
<td>2X</td>
<td>60</td>
<td>3492</td>
<td>2WE</td>
<td>668</td>
</tr>
<tr>
<td>3401</td>
<td>4W</td>
<td>X423</td>
<td>3447</td>
<td>2X</td>
<td>60</td>
<td>3493</td>
<td>2WE</td>
<td>668</td>
</tr>
<tr>
<td>3402</td>
<td>4W</td>
<td>X423</td>
<td>3448</td>
<td>2X</td>
<td>60/60</td>
<td>3494</td>
<td>3WE(3)</td>
<td>336</td>
</tr>
<tr>
<td>3403</td>
<td>4W</td>
<td>X423</td>
<td>3449</td>
<td>2X</td>
<td>66</td>
<td>3495</td>
<td>3W</td>
<td>36</td>
</tr>
<tr>
<td>3404</td>
<td>4W</td>
<td>X423</td>
<td>3450</td>
<td>2X</td>
<td>66</td>
<td>3496</td>
<td>2WE</td>
<td>86</td>
</tr>
<tr>
<td>3405</td>
<td>2Y</td>
<td>56</td>
<td>3451</td>
<td>2X</td>
<td>60</td>
<td>3497</td>
<td>2Y</td>
<td>(1)</td>
</tr>
<tr>
<td>3406</td>
<td>2Y</td>
<td>56</td>
<td>3452</td>
<td>2X</td>
<td>60</td>
<td>3498</td>
<td>1Y</td>
<td>40</td>
</tr>
<tr>
<td>3407</td>
<td>2Y</td>
<td>50</td>
<td>3453</td>
<td>2X</td>
<td>80</td>
<td>3499</td>
<td>2X</td>
<td>80</td>
</tr>
<tr>
<td>3408</td>
<td>2Y</td>
<td>56</td>
<td>3454</td>
<td>2X</td>
<td>60</td>
<td>3500</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>3409</td>
<td>2X</td>
<td>60</td>
<td>3455</td>
<td>2X</td>
<td>68</td>
<td>3501</td>
<td>2Z</td>
<td>20</td>
</tr>
<tr>
<td>3410</td>
<td>2X</td>
<td>60</td>
<td>3456</td>
<td>2X</td>
<td>60/60</td>
<td>3502</td>
<td>2YE</td>
<td>23</td>
</tr>
<tr>
<td>3411</td>
<td>2Z</td>
<td>60</td>
<td>3457</td>
<td>2X</td>
<td>60</td>
<td>3503</td>
<td>2XE</td>
<td>26</td>
</tr>
<tr>
<td>3412</td>
<td>2X</td>
<td>60</td>
<td>3458</td>
<td>2Z</td>
<td>60</td>
<td>3504</td>
<td>2WE</td>
<td>28</td>
</tr>
<tr>
<td>3413</td>
<td>2X</td>
<td>80</td>
<td>3459</td>
<td>2X</td>
<td>60</td>
<td>3505</td>
<td>2WE</td>
<td>263</td>
</tr>
<tr>
<td>3414</td>
<td>2X</td>
<td>66/60</td>
<td>3460</td>
<td>2X</td>
<td>60</td>
<td>3506</td>
<td>2WE</td>
<td>238</td>
</tr>
<tr>
<td>3415</td>
<td>2Z</td>
<td>60</td>
<td>3461</td>
<td>2X</td>
<td>60</td>
<td>3507</td>
<td>2X</td>
<td>(1)</td>
</tr>
<tr>
<td>3416</td>
<td>2Z</td>
<td>60</td>
<td>3462</td>
<td>2X</td>
<td>60/60</td>
<td>3508</td>
<td>2E(2)</td>
<td>(1)</td>
</tr>
<tr>
<td>3417</td>
<td>2X</td>
<td>60</td>
<td>3463</td>
<td>2W</td>
<td>83</td>
<td>3509</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>3418</td>
<td>2X</td>
<td>60</td>
<td>3464</td>
<td>2X</td>
<td>66/60</td>
<td>3510</td>
<td>1Z</td>
<td>(1)</td>
</tr>
<tr>
<td>3419</td>
<td>2X</td>
<td>80</td>
<td>3465</td>
<td>2X</td>
<td>66/60</td>
<td>3511</td>
<td>2SE</td>
<td>(1)</td>
</tr>
<tr>
<td>3420</td>
<td>2X</td>
<td>80</td>
<td>3466</td>
<td>2X</td>
<td>66/60</td>
<td>3512</td>
<td>2TE</td>
<td>(1)</td>
</tr>
<tr>
<td>3421</td>
<td>2X</td>
<td>86</td>
<td>3467</td>
<td>2X</td>
<td>66/60</td>
<td>3513</td>
<td>2RE</td>
<td>(1)</td>
</tr>
<tr>
<td>3422</td>
<td>2X</td>
<td>60</td>
<td>3468</td>
<td>2SE</td>
<td>(1)</td>
<td>3514</td>
<td>2S</td>
<td>(1)</td>
</tr>
<tr>
<td>3423</td>
<td>2X</td>
<td>80</td>
<td>3469</td>
<td>3WE(3)</td>
<td>338</td>
<td>3515</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>3424</td>
<td>2X</td>
<td>60</td>
<td>3470</td>
<td>3W</td>
<td>38</td>
<td>3516</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>3425</td>
<td>2X</td>
<td>80</td>
<td>3471</td>
<td>2X</td>
<td>86</td>
<td>3517</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>3426</td>
<td>2X</td>
<td>60</td>
<td>3472</td>
<td>2X</td>
<td>80</td>
<td>3518</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>3427</td>
<td>2X</td>
<td>60</td>
<td>3473</td>
<td>2WE</td>
<td>(1)</td>
<td>3519</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>3428</td>
<td>2X</td>
<td>60</td>
<td>3474</td>
<td>1W</td>
<td>(1)</td>
<td>3520</td>
<td>2XE</td>
<td>(1)</td>
</tr>
<tr>
<td>3429</td>
<td>2X</td>
<td>60</td>
<td>3475</td>
<td>3YE</td>
<td>33</td>
<td>3521</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>3430</td>
<td>2X</td>
<td>60</td>
<td>3476</td>
<td>4W</td>
<td>(1)</td>
<td>3522</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>3431</td>
<td>2X</td>
<td>60</td>
<td>3477</td>
<td>2X</td>
<td>(1)</td>
<td>3523</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>3432</td>
<td>2X</td>
<td>90</td>
<td>3478</td>
<td>2Y</td>
<td>(1)</td>
<td>3524</td>
<td>2RE</td>
<td>(1)</td>
</tr>
<tr>
<td>3434</td>
<td>2X</td>
<td>60</td>
<td>3479</td>
<td>2W</td>
<td>(1)</td>
<td>3525</td>
<td>2PE</td>
<td>(1)</td>
</tr>
<tr>
<td>3436</td>
<td>2X</td>
<td>60</td>
<td>3480</td>
<td>2Y</td>
<td>(1)</td>
<td>3526</td>
<td>2WE</td>
<td>(1)</td>
</tr>
<tr>
<td>3437</td>
<td>2Z</td>
<td>60</td>
<td>3481</td>
<td>2Y</td>
<td>(1)</td>
<td>3527</td>
<td>1W</td>
<td>(1)</td>
</tr>
<tr>
<td>3438</td>
<td>2Z</td>
<td>60</td>
<td>3482</td>
<td>4WE</td>
<td>X323</td>
<td>3528</td>
<td>2YE</td>
<td>(1)</td>
</tr>
<tr>
<td>3439</td>
<td>2X</td>
<td>66/60</td>
<td>3483</td>
<td>3WE</td>
<td>663</td>
<td>3529</td>
<td>2YE</td>
<td>(1)</td>
</tr>
<tr>
<td>3440</td>
<td>2X</td>
<td>66/60</td>
<td>3484</td>
<td>2X</td>
<td>886</td>
<td>3530</td>
<td>2Y</td>
<td>(1)</td>
</tr>
<tr>
<td>3441</td>
<td>2X</td>
<td>60</td>
<td>3485</td>
<td>1W</td>
<td>58</td>
<td>3531</td>
<td>1W</td>
<td>40</td>
</tr>
<tr>
<td>3442</td>
<td>2X</td>
<td>60</td>
<td>3486</td>
<td>1W</td>
<td>58</td>
<td>3532</td>
<td>2W</td>
<td>40</td>
</tr>
<tr>
<td>3443</td>
<td>2X</td>
<td>60</td>
<td>3487</td>
<td>1W</td>
<td>58</td>
<td>3533</td>
<td>1W</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3488</td>
<td>2WE</td>
<td>663</td>
<td>3534</td>
<td>2W</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3489</td>
<td>2WE</td>
<td>663</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN</td>
<td>HAZCHEM</td>
<td>HIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3535</td>
<td>2X(4)</td>
<td>664</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3535</td>
<td>2X</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3536</td>
<td>4Y</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3537</td>
<td>2SE</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3538</td>
<td>2T</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3539</td>
<td>2RE</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3540</td>
<td>3YE</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3541</td>
<td>1Z</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3542</td>
<td>1W</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3543</td>
<td>4W</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3544</td>
<td>2Y</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3545</td>
<td>2WE</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3546</td>
<td>2X</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3547</td>
<td>2X</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3548</td>
<td>1Z</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C4 Hazard Identification Number (HIN)

NOTE: This Section C4 and the HIN listing in C3 are provided for information purposes only.

There is no requirement of this Code to apply a Hazard Identification Number (HIN) to any load of dangerous goods being transported in Australia.

The HIN is usually displayed on portable tanks, bulk containers and some freight containers loaded with dangerous goods sourced from Europe and some other countries. It is displayed in the upper half of the RID/ADR Plate that is placarded on the cargo transport unit, together with the Class label. The UN Number is displayed in the lower half.

The HIN is not strictly an emergency action code. Rather it is a numerical system of identifying the hazard of the dangerous goods in more detail than is provided by the dangerous goods classification alone.

C4.1 The HIN consists of two or three figures. In general, the figures indicate the following hazards:

- 2 Emissions of gas due to pressure or to chemical reaction
- 3 Flammability of liquids (vapours) and gases or self-heating liquids
- 4 Flammability of solids or self-heating solids
- 5 Oxidising (fire-intensifying) effect
- 6 Toxicity (or risk of infection)
- 7 Radioactivity
- 8 Corrosivity
- 9 Risk of spontaneous, violent reaction

NOTE 1: The hazards assigned above to numbers ‘4’ to ‘8’ inclusive are similar to the hazards indicated by the same numbers in the United Nations dangerous goods classification system used in this Code

NOTE 2: Spontaneous violent reaction within the meaning of hazard ‘9’ above includes the possibility of the risk of explosion, disintegration and polymerisation reaction with the release of considerable heat or flammable and/or toxic gases.

C4.2 Doubling of a figure indicates an intensification of that particular hazard.
C4.3 Where the hazard associated with a substance can be adequately indicated by a single figure, this is followed by zero.

C4.4 The following combinations of figures have a special meaning: 22, 323, 333, 362, 382, 423, 44, 446, 462, 482, 539, 606, 623, 642, 823, 842 and 90, (see C4.6).

C4.5 If the letter ‘X’ prefixes a hazard identification number, this indicates that the substance will react dangerously with water. For these substances, water may only be used with the approval of experts.

C4.6 The hazard identification numbers have the following meanings:

- **20**: Asphyxiating gas or gas with no subsidiary hazard
- **22**: Refrigerated liquefied gas, Asphyxiating
- **223**: Refrigerated liquefied gas, flammable
- **225**: Refrigerated liquefied gas, oxidising (fire intensifying)
- **23**: Flammable gas
- **239**: Flammable gas, which can spontaneously lead to violent reaction
- **25**: Oxidising (fire-intensifying) gas
- **26**: Toxic gas
- **263**: Toxic gas, flammable
- **265**: Toxic gas, oxidising (fire-intensifying)
- **268**: Toxic gas, corrosive
- **30**: Flammable liquid (flash-point between 23°C and 61°C inclusive) or flammable liquid or solid in the molten state with a flash point above 61°C, heated to a temperature equal to or above its flash point, or self-heating liquid
- **323**: Flammable liquid which reacts with water, emitting flammable gases
- **X323**: Flammable liquid which reacts dangerously with water, emitting flammable gases
- **33**: Highly flammable liquid (flash-point below 23°C)
- **333**: Pyrophoric liquid
- **X333**: Pyrophoric liquid, which reacts dangerously with water
- **336**: Highly flammable liquid, toxic
- **338**: Highly flammable liquid, corrosive
- **X338**: Highly flammable liquid, corrosive, which reacts dangerously with water
- **339**: Highly flammable liquid which can spontaneously lead to violent reaction.
- **36**: Flammable liquid (flash-point between 23°C and 61°C inclusive), slightly toxic or self-heating liquid toxic.
- **362**: Flammable liquid, toxic, which reacts with water, emitting flammable gases.
X362 Flammable liquid, toxic, which reacts dangerously with water, emitting flammable gases

368 Flammable liquid, toxic, corrosive

38 Flammable liquid (flash-point between 23°C and 61°C inclusive), slightly corrosive or self-heating liquid, corrosive

382 Flammable liquid, corrosive, which reacts with water, emitting flammable gases

X382 Flammable liquid, corrosive, which reacts dangerously with water, emitting flammable gases

39 Flammable liquid, which can spontaneously lead to violent reaction

40 Flammable solid, or self-reactive substance, or self heating substance

423 Solid which reacts with water, emitting flammable gases

X423 Flammable solid which reacts dangerously with water, emitting flammable gases

43 Spontaneously flammable (Pyrophoric) solid

44 Flammable solid, in the molten state at an elevated temperature

446 Flammable solid, toxic, in the molten state, at an elevated temperature

46 Flammable or self-heating solid, toxic

462 Toxic solid which reacts with water, emitting flammable gases

X462 Solid which reacts dangerously with water, emitting toxic gases

48 Flammable or self-heating solid, corrosive

482 Corrosive solid which reacts with water, emitting corrosive gases

X482 Solid which reacts dangerously with water, emitting corrosive gases

50 Oxidising (fire-intensifying) substance

539 Flammable organic peroxide

55 Strongly oxidising (fire-intensifying) substance

556 Strongly oxidising (fire-intensifying) substance, toxic

558 Strongly oxidising (fire-intensifying) substance, corrosive

559 Strongly oxidising (fire-intensifying) substance, which can spontaneously lead to violent reaction

56 Oxidising substance (fire-intensifying), toxic

568 Oxidising substance (fire-intensifying), toxic, corrosive

58 Oxidising substance (fire-intensifying), corrosive

59 Oxidising substance (fire-intensifying) which can spontaneously lead to violent reaction

60 Toxic or slightly toxic substance

606 Infectious substance

623 Toxic liquid, which reacts with water, emitting flammable gases
63 Toxic substance, flammable (flash-point between 23°C and 61°C inclusive)
638 Toxic substance, flammable (flash-point between 23°C and 61°C inclusive), corrosive
639 Toxic substance, flammable (flash-point not above 61°C inclusive), which can spontaneously lead to violent reaction
64 Toxic solid, flammable or self-heating
642 Toxic solid, which reacts with water, emitting flammable gases
65 Toxic substance, oxidising (fire-intensifying)
66 Highly toxic substance
663 Highly toxic substance, flammable (flash-point not above 61°C inclusive)
664 Highly Toxic substance, flammable or self-heating
665 Highly toxic substance, oxidising (fire-intensifying)
668 Highly toxic substance, corrosive
669 Highly toxic substance which can spontaneously lead to a violent reaction
68 Toxic substance, corrosive
69 Toxic or slightly toxic substance, which can spontaneously lead to violent reaction
70 Radioactive material
72 Radioactive gas
723 Radioactive gas, flammable
73 Radioactive liquid, flammable (flash-point not above 61°C inclusive)
74 Radioactive solid, flammable
75 Radioactive material oxidising (fire-intensifying)
76 Radioactive material, toxic
78 Radioactive material, corrosive
80 Corrosive or slightly corrosive substance
X80 Corrosive or slightly corrosive substance, which reacts dangerously with water
823 Corrosive liquid which reacts with water, emitting flammable gases
83 Corrosive or slightly corrosive substance, flammable (flash-point between 23°C and 61°C inclusive)
X83 Corrosive or slightly corrosive substance, flammable (flash-point between 23°C and 61°C inclusive), which reacts dangerously with water
839 Corrosive or slightly corrosive substance, flammable (flash-point between 23°C and 61°C inclusive), which can spontaneously lead to violent reaction
Corrosive or slightly corrosive substance, flammable (flash-point between 23°C and 61°C inclusive), which can spontaneously lead to violent reaction and which reacts dangerously with water.

84 Corrosive solid, flammable or self-heating
842 Corrosive solid which reacts with water, emitting flammable gases
85 Corrosive or slightly corrosive substance, oxidising (fire-intensifying)
856 Corrosive or slightly corrosive substance, oxidising (fire-intensifying) and toxic
86 Corrosive or slightly corrosive substance, toxic
88 Highly corrosive substance
X88 Highly corrosive substance, which reacts dangerously with water
883 Highly corrosive substance, flammable (flash point between 23°C and 61°C inclusive)
884 Highly corrosive solid, flammable or self-heating
885 Highly corrosive substance, oxidising (fire-intensifying)
886 Highly corrosive substance, toxic
X886 Highly corrosive substance, toxic which reacts dangerously with water
89 Corrosive or slightly corrosive substance, which can spontaneously lead to violent reaction
90 Environmentally hazardous substance; miscellaneous dangerous substances
99 Miscellaneous dangerous substance carried at an elevated temperature

Water must not to be used except by approval of experts
APPENDIX D: CODE OF PRACTICE FOR REPROCESSING STEEL DRUMS

NOTE 1: This Appendix has the full title ‘Code of Practice for the Reprocessing of Closed Head Steel Drums in the Nominal Capacity Range of 200-220 Litres’. Previous editions were published separately as Supplement 1 to earlier editions of this Code.

NOTE 2: Adherence to this Code of Practice is necessary in order to prevent those reprocessed drums which show unsatisfactory performance characteristics from being used in the transport of dangerous goods.

D1 SCOPE
This mandatory Code of Practice has been prepared by the Advisory Committee on the Transport of Dangerous Goods. It is to be adhered to by those persons reprocessing non-removable head steel drums in the nominal capacity range of between 200 and 220 litres, for second and subsequent use of these drums in the transport of dangerous goods of packing groups II and III.

It recognises the long standing practice of the use of reprocessed drums for the transport of dangerous goods in Australia. The purpose of this Code of Practice is to afford a mechanism to control the quality of drums prior to subsequent use and to that end it sets out:

(a) selection criteria for drums intended for second or subsequent use in transporting dangerous goods; and

(b) reprocessing procedures to which such drums must be subjected.

Reprocessed drums must not be used for dangerous goods of packing group I.

Notwithstanding drums being reprocessed to the requirements of this Code of Practice, the responsibility for the selection and suitability of the drums for a particular purpose remains with the packer.

This Code of Practice is to be read in conjunction with this ADG Code.

D2 DEFINITIONS AND PROHIBITED PRACTICES

Drum for the purposes of this Code of Practice is a flat ended cylindrical receptacle made of metal with filling apertures in the body and/or in the top head, with or without rolling hoops or corrugations and with ends permanently fixed to the body by means such as seaming or welding and has a nominal capacity of 200 to 220 litres and commonly known as a closed or non-removable head steel drum.

In House describes the circumstances where a packer of dangerous goods reuses or launders drums on the packer’s premises for the packer’s own use but does not make such drums available to others as packagings for dangerous goods.

Launder means the action of washing the exterior and interior of drums and where necessary, repainting the exterior of the drums to obliterate
all previous package markings (other than packaging approval markings), with or without chaining or de-scaling the interior prior to filling.

Packer means a person who fills, or causes to be filled, the drum.

Recondition means the actions of both mechanical repair and laundering of drums involving processes which require reformation to original shape of any component by mechanical means, and repairs of holes by welding, but excludes the process of remaking.

Remake means the action of replacing one or both ends of a drum.

Reuse means the action of in-house refilling of drums with goods of a type chemically similar to the goods initially packed. Reuse does not include laundering, but rinsing and painting, if needed, are permitted.

Reprocess means the actions of either laundering or reconditioning drums.

Rinsing means the action of washing a drum with fluids whose residues need not be removed, other than by drying, before the drum is refilled.

Weld means the action of repairing a hole by welding. Welding does not include the placing of a patch.

Welding is not permitted on the bottom of a drum or within 50mm of a body seam, chime of flange.

Welding of holes longer than 15mm or those caused by corrosion or fatigue is not permitted.

D3 SELECTION OF DRUMS

A drum may be re-used or reprocessed for use with dangerous goods provided that:

(a) the drum is selected for re-use, laundering or reconditioning, or rejection, in accordance with the criteria specified in the selection table in Section D9; and

(b) the drum selected for reprocessing does not exhibit damage to a degree equivalent to those illustrations designated as `NOT ACCEPTABLE’ in the Pictorial Guide in Section D10 of this Code of Practice.

D4 EQUIPMENT

Reprocessors must possess both leak testing equipment and a set of scales. Both of these must be calibrated against Australian Standards or equivalent and only used within their calibration period. The following equipment is optional:

- washing machine
- spray painting equipment
- chaining or de-scaling equipment
- de-denter
Reprocessors who possess either a de-denter or a chime straightener (or both) will be deemed to be reconditioners.

All equipment must be adequately protected to minimise the risk of injury to equipment operators.

D5 TESTING OF DRUMS

Except for drums which are only being re-used, every drum must be subjected to the following tests before being utilised for the transport of dangerous goods:

D5.1 Leakproofness Test

Description of test:
A pressure of 20kPa must be applied using a test method approved by the Competent Authority.

Criteria for passing the test successfully:
There must be no leakage.

NOTE: Leakproofness testing equipment must be adequately protected to minimise the risk of injury to equipment operators.

D5.2 Tare Weight Test

Description of test:
The clean empty reprocessed drum must be weighted to an accuracy of +/- 0.1 kg.

Criteria for passing the test successfully:
The mass of the drum must be not less than 15.5kg.

D6 MARKING OF DRUMS

Drums reprocessed in accordance with this Code of Practice must be marked in accordance with Section 6.1.3.

D7 APPROVAL OF REPROCESSORS

Each reprocessing facility must be approved as a laundering or reconditioning facility by the Competent Authority in whose jurisdiction the facility is located.

NOTE: Details of approved drum reprocessors can be obtained from the Competent Authority.

The following steps must be undertaken to obtain approval:

(a) The reprocessor must make an application for approval to the Competent Authority. The application must be in writing and will:

 (i) nominate responsible persons in charge of the reprocessing operation;
(ii) list the reprocessing equipment in the facility; (Essential and optional equipment for reprocessors is listed at D4 of this Code of Practice)

(iii) verify that all reprocessed drums, prior to being placed into dangerous goods service will have:
- had their tare mass determined;
- passed through all necessary processes in this Code of Practice; and
- been leak tested;

(iv) nominate an identifying mark for use under D6.

(b) Following receipt of an application completed in accordance with (a), the Competent Authority will inspect the reprocessor's premises and witness all the equipment listed under (a)(ii) in operation. (The level of equipment will depend on whether a reconditioner or launderer is being inspected). For this inspection, leak testing equipment must be set up and equipped with an accurate gauge.

(c) If satisfied with the site inspection under (b) the Competent Authority will grant written approval to the reprocessor. The approval will include a confirmation of the identifying mark nominated in (a)(iv) and advice of approval as a ‘reconditioner’ or a ‘launderer’.

(d) The Competent Authority will fully re-inspect the reprocessor's premises at least biennially.

D8 TRAINING

It is a requirement of this Code of Practice that reprocessor's staff involved in the reprocessing of drums for use in the transport of dangerous goods are trained in the drum selection procedures and the procedures for reprocessing and testing contained in this Code of Practice.

D9 DRUM AND PROCESS SELECTION

To be suitable for reuse, laundering or reconditioning for packaging dangerous goods, a drum must:

(a) be an approved drum, complying with Chapter 6.1 of this Code, as verified by markings in accordance with 6.1.3;

(b) have a minimum tare mass of 15.5 kg; and

(c) not be damaged to such an extent that, after reprocessing, it may not be capable of meeting the performance tests of this Code applicable to drums for their intended service.

Detailed criteria to be applied to the selection of drum suitable for reprocessing are provided in Table D overleaf. This table also indicates what processing is required for different types of damage.

This table should be used for segregating drums into those to be reused and those which are candidates for reprocessing or rejection.
The pictorial guide provided at D10, must be used to assist in interpreting damage levels referred to in Table D.

Table D: Reprocessing Criteria and Options

<table>
<thead>
<tr>
<th>CRITERIA FOR SELECTION</th>
<th>PROCESS OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reuse</td>
</tr>
<tr>
<td>Criteria based on Original (as new) Status</td>
<td></td>
</tr>
<tr>
<td>Approved drums</td>
<td>2</td>
</tr>
<tr>
<td>Unapproved drums</td>
<td>-</td>
</tr>
<tr>
<td>Weight Criterion</td>
<td></td>
</tr>
<tr>
<td>Minimum Tare Mass: – Nominally > 15.5kg</td>
<td>2</td>
</tr>
<tr>
<td>– Nominally < 15.5kg</td>
<td>-</td>
</tr>
<tr>
<td>Damage Criteria</td>
<td></td>
</tr>
<tr>
<td>Damage Categories</td>
<td></td>
</tr>
<tr>
<td>Ullage Reduction:</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>2</td>
</tr>
<tr>
<td>Major</td>
<td>-</td>
</tr>
<tr>
<td>Apparent Leaks:</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>-</td>
</tr>
<tr>
<td>Major</td>
<td>-</td>
</tr>
<tr>
<td>Flanges:</td>
<td></td>
</tr>
<tr>
<td>Rust Pitted</td>
<td>-</td>
</tr>
<tr>
<td>Loose in Head</td>
<td>-</td>
</tr>
<tr>
<td>Out of Round</td>
<td>-</td>
</tr>
<tr>
<td>Thread Damage</td>
<td>-</td>
</tr>
<tr>
<td>Bungs:</td>
<td></td>
</tr>
<tr>
<td>Rust Pitted</td>
<td>-</td>
</tr>
<tr>
<td>Thread or Mechanical Damage</td>
<td>-</td>
</tr>
<tr>
<td>Blown Ends:</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>-</td>
</tr>
<tr>
<td>Major</td>
<td>-</td>
</tr>
<tr>
<td>General End Damage:</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>2</td>
</tr>
<tr>
<td>Major</td>
<td>-</td>
</tr>
<tr>
<td>Out of Rounds</td>
<td>-</td>
</tr>
<tr>
<td>Dents:</td>
<td></td>
</tr>
<tr>
<td>Body – Within Bands:</td>
<td></td>
</tr>
<tr>
<td>Shallow and rounded</td>
<td>2</td>
</tr>
<tr>
<td>Deep</td>
<td>-</td>
</tr>
<tr>
<td>Creased</td>
<td>-</td>
</tr>
<tr>
<td>Body – Adjacent to Chime</td>
<td>-</td>
</tr>
<tr>
<td>Swedge:</td>
<td></td>
</tr>
<tr>
<td>Shallow and rounded</td>
<td>2</td>
</tr>
<tr>
<td>Creased</td>
<td>-</td>
</tr>
<tr>
<td>Seam:</td>
<td></td>
</tr>
<tr>
<td>Shallow and rounded</td>
<td>2</td>
</tr>
<tr>
<td>Creased</td>
<td>-</td>
</tr>
<tr>
<td>Chime – Folded:</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>2</td>
</tr>
<tr>
<td>Major</td>
<td>-</td>
</tr>
</tbody>
</table>
APPENDICES

CRITERIA FOR SELECTION

<table>
<thead>
<tr>
<th>PROCESS OPTION</th>
<th>Reuse</th>
<th>Launder</th>
<th>Recondition</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chime – Flattened</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Corrosion:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Major</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Internal:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Major</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Modifications to Body or Ends</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Key to Table D:

1. ‘Approved’ means the drum has been originally approved in accordance with this Code and is marked accordingly.
2. Denotes an acceptable option.
3. Denotes mandatory action.

NOTE: Any drum, irrespective of the extent of damage, may be rejected.

D10 PICTORIAL GUIDE

This section provides illustrations of drums which have been used for the transport of dangerous goods and have suffered varying degrees of damage. The reprocessor must examine each drum received to determine the extent of its damage and the type of reprocessing to be undertaken in order to render it suitable to be used in the transport of dangerous goods.

The illustrations are designed to provide guidance to reproprocessors in the selection of drums based on the condition of the drum. Drums suffering damage to a degree equivalent to those illustrations designated as ‘NOT ACCEPTABLE’ must not be reprocessed for use with dangerous goods. The illustrations have been reproduced, with permission, from the Shell publication ‘Guidelines for the Selection of Used Drums’.

This pictorial guide should be used in conjunction with the Selection Guide in Table D.
Figure D1: Reprocessing steel drums – dents

A large dent. NOT ACCEPTABLE
The dent is too deep to be blown out satisfactorily.
Note the damage to the swedged rolling hoops.
These sharp indents are potential leak areas.

Major body denting. NOT ACCEPTABLE
The dents cannot be blown out.
Note the damage to the swedged rolling hoops.
The sharp indentations will be the site of leaks.

Deep dents. NOT ACCEPTABLE
The 5 dents shown in the photo are too deep to be blown out successfully.
Note the sharp dents in both swedged rolling hoops, which are potential leak areas.

Shallow dents. ACCEPTABLE.
Can be blown out sufficiently to make the drum usable.
Figure D2: Reprocessing steel drums – chime and head damage

Two photos of the same damage. NOT ACCEPTABLE.

Dent in chime is too deep to be rolled out.
Any attempt will result in splitting of chime and cracking of the drum body.

NOT ACCEPTABLE.

The chime dent can be hammered out to enable the drum to fit the rollers.
The dent can then be rolled out further but in doing so the buckles in the head could be cut by the rollers resulting in leaks.

NOT ACCEPTABLE.

The chime cannot be re-rolled nor can the dent in the body be blown out.
INDEX

Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment, 31
ADR (defined), 31
alphabetical index of substances and articles (Table 3.2.4.2), 518
American Society for Testing and Materials [W], 7
article (defined), 6
assigned organic peroxides in packagings (Table 2.5.3.2.4), 101
assigned self-reactive substances in packagings (Table 2.4.2.3.2.3), 80
Australian Explosives Code, 43
Australian Explosives Code (defined) [W], 32
Australian Radiation Protection and Nuclear Safety Authority (ARPANSA), 41
Australian Radiation Protection and Nuclear Safety Authority (ARPANSA) [W], 139
Australian Standard, 945, 1218
Australian Standard (defined) [W], 32
Australian Standard, and ISO, 34, 945
biological products, 137
bulk container (defined), 7, 22
Canadian Transport Emergency Centre [W], 7
class (defined), 7
Class 1 - explosives, 51
acceptance procedure, 58
assignment of fireworks to hazard divisions, 59
assignment to hazard divisions, 59
classification codes, 54
classification procedure, 55
compatibility groups, 53, 55
default fireworks classification table (Table 2.1.3.5.5), 61
definitions and general provisions, 51
divisions, 52
exclusions, 65
scheme of procedure for classifying a substance or article (Fig. 2.1.1), 58
special packing provisions, 806
Class 2 - gases, 66
special packing provisions, 808
Class 3 – flammable liquids, 70
Class 4 - flammable solids - substances liable to spontaneous combustion - substances which, in contact with water, emit flammable gases
special packing provisions for self-reactive substances of Division 4.1, 810
Class 5 - oxidising substances and organic peroxides, 95
special packing provisions for organic peroxides, 810
Class 6 - toxic and infectious substances, 124
special packing provisions for part of, 812
Class 7 - radioactive material, 139
Class 8 - corrosive substances, 142
Class 9 - miscellaneous dangerous substances and articles, including environmentally hazardous substances, 145
classes, divisions, packing groups, 43
classification of pesticides, 131
Code of Practice for the Safe Transport of Radioactive Substances, 43
Code of Practice for the Safe Transport of Radioactive Substances (defined) [W], 32
Code, the
Amendment Package No. 3, 4
amendments commence January 2016, 4
assignment of duties, 4
Codes, standards and rules referred to, 31
defined, 6, 20
exceptions, 3
interpreting terms, vs Regulations, 6, 18
jurisdictional legislation required, 2
offence not committed until 2017, 4
units of measurement, 29
combination road vehicle (defined), 8
combustible liquid (defined), 8
competent authority (defined), 8
composite packagings (defined), 8
Compressed Gas Association (US) [W], 7
consignor (defined), 23
corrosive substances, 142
dangerous goods
goods too dangerous to be transported, 1179
dangerous goods (defined), 23
Dangerous Goods Code units of measurement, 29
conversion into SI units, 29
Dangerous Goods List, 45, 46, 165, 169, 170
dangerous goods list (Table 3.2.3), 174
Dangerous Goods List, abbreviations / symbols and their meanings, 172
Dangerous Goods List, design approval, 1042
Dangerous Goods List, special provisions, 633
Dangerous Goods List, structure of, 170
Dangerous Goods List, the four types of entry, 46
dangerous goods, transport
consignment by post, 4
coolant / conditioner, 4
forbidden goods, 5
lamps, 5
radioactive materials, 5
dangerous situation (defined), 9
definitions, 6, 27, 52, 75, 76, 91, 92, 95, 124, 132, 142, 145, 148, 149, 1024, 1049, 1068, 1085, 1096, 1147, 1165, 1217
Documentation, 901, 905, 1158
Emergency Responders Guide, Canada [W], 9
emergency service (defined), 9
EN standard (defined) [W], 32
European Committee for Standardisation [W], 32
exemption, 3
explosives, 51
definitions, 52
flammable liquids, 70
forms
Multimodal Dangerous Goods Form, 1185
revised hazchem emergency action code pocket card, 1185
free from dangerous goods (defined), 10
freight container (defined), 10
GHS, marking in accordance with, 40
goods too dangerous to be transported, 1179
Hazard Identification Number (HIN), 1212
Hazard code (defined), 11
Hazard Code, meaning of second character, 1191
Hazard Codes, 1190
hose assembly (defined), 11
IATA Regulations (defined) [W], 32
ICAO Rules (defined) [W], 32
IMDG Code (defined) [W], 32
Initial Emergency Response Guide (defined), 32
Intermediate Bulk Container (IBC) (defined), 11, 24
International Atomic Energy Agency [W], 11
International Civil Aviation Organisation [W], 11
International Convention for Safe Containers (defined), 32
International Maritime Organisation [W], 11
Interpretation of references to GHS, 40
ISO (standard) (defined) [W], 32, 34
key terms, definitions (aerosols, bag, box, consignee etc.), listings, 6, 22
Labelling, 852, 855, 859
Limited Quantity, 13
liquids (defined), 13
Load Restraint Guide (defined), 33
Manual of Tests and Criteria (defined), 14
manufactured product (defined), 14
Marking, 852, 855, 873, 883, 911, 973, 985, 1013, 1219
material Safety Data Sheet (defined), 19
methods for determining oral and dermal toxicity of mixtures, 130
miscellaneous dangerous substances and articles, including environmentally hazardous substances, 145
Model Subordinate Law, xxxix, 3 defined, 6, 14 terms defined in the text of, 22
National Code of Practice for the Preparation of Material Safety Data Sheets (defined) [W], 33
National Code of Practice for the Storage and Handling of Dangerous Goods (defined) [W], 33
National Standard for the Storage and Handling of Dangerous Goods (defined) [W], 33
numbered Regulation (defined), 18
OECD Guidelines for the testing of Chemicals (defined), 33
OECD Test Guidelines [W], 149
Office of Inspector of Transport Security [W], 40
outer packaging (defined), 15
oxidising substances and organic peroxides, 95
percentage sign (%) defined, 31
personal protection, 1192 Placard, 893 Placarding, 852, 873, 885, 887, 888, 891, 893 portable tank (defined), 16 portable tank instructions, 824 portable tank special provisions, 839 precedence of hazard characteristics, 47 Preparation of Safety Data Sheets for Hazardous Chemicals Code of Practice [W], 19 prime contractor (defined), 25 radioactive material, 139 radioactive material ARPANSA codes [W], 5, 41, 139, 813, 847 rail operator (defined), 25 Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, 2 Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria (US), 14 reconditioned packagings (defined), 17 recycled plastics material (defined), 17 Regulations interpreting terms, vs Code, 6 Regulations, the (defined), 18 reused packagings (definition), 18 revised hazchem emergency action code pocket card, 1185 RID (defined), 33 Safety Data Sheet (defined), 19 scope and application, 2 semi-trailer (defined), 19 source of ignition (defined), 20 standard numbers - SA, AS, SNZ, NZS etc., 34 standards and rules referred to in this Code, 31, 34, See also Australian Standard; ISO; Table 1.2 substances under the Code, class and division definitions, 43 tank (defined), 26 telephone advisory service (defined), 27 terms defined in the text of the Model Subordinate Law, 22 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification (defined) [W], 33 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification [W], 131 this Code (defined), 20 toxic and infectious substances, 124 transfer operation (defined), 21 Transport and Infrastructure Council Amendment Package No. 2, 139 Amendment Package No. 3, 4 transport of dangerous goods. See dangerous goods, transport transport of samples, 50 ullage (defined), 21 UN Number (defined), 21 UN numbers and proper shipping names, 45 UN packaging symbol, 962 UN Recommendations Manual of Tests and Criteria (defined), 33
APPENDICES

UN Special Provisions, dangerous goods list, 633	United Nations Economic Commission for Europe (UNECE) [W], 21
UN20 (defined), 33	vehicle owner (defined), 27
United Nations, 2	violent reaction, 1192
'weight' vs 'mass', 31	