Part 6

REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS, IBCS, LARGE PACKAGINGS, PORTABLE TANKS, MEGCS, BULK CONTAINERS, TANK VEHICLES, FREIGHT CONTAINERS & SEGREGATION DEVICES
CHAPTER 6.1 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS (OTHER THAN FOR DIVISION 6.2 SUBSTANCES)

6.1.1 GENERAL

6.1.1.1 The requirements of this Chapter do not apply to:

(a) packages containing radioactive material, which must comply with the Regulations of the International Atomic Energy Agency (IAEA), except that:

 (i) radioactive material possessing other dangerous properties (subsidary risks) must also comply with special provision 172; and

 (ii) low specific activity (LSA) material and surface contaminated objects (SCO) may be carried in certain packagings defined in the Model Regulations provided that the supplementary provisions set out in the IAEA Regulations are also met;

(b) pressure receptacles;

(c) packages whose net mass exceeds 400 kg;

(d) packagings for liquids, other than combination packagings with a capacity exceeding 450 litres.

6.1.1.2 The requirements for packagings in 6.1.4 are based on packagings currently used. In order to take into account progress in science and technology, there is no objection to the use of packagings having specifications different from those in 6.1.4, provided that they are equally effective, acceptable to the competent authority and able successfully to withstand the tests described in 6.1.1.3 and 6.1.5. Methods of testing other than those described in this Code are acceptable, provided they are equivalent.

6.1.1.3 Every packaging intended to contain liquids must successfully undergo a suitable leakproofness test, and be capable of meeting the appropriate test level indicated in 6.1.5.4.3:

(a) before it is first used for transport;

(b) after remanufacturing or reconditioning, before it is re-used for transport.

For this test, packagings need not have their own closures fitted.

The inner receptacle of composite packagings may be tested without the outer packaging provided the test results are not affected. This test is not necessary for inner packagings of combination packagings.

6.1.1.4 Packagings must be manufactured, reconditioned and tested under a quality assurance programme in order to ensure that each packaging meets the requirements of this Chapter.

NOTE: AS ISO 16106 [ISO 16106:2006] “Packaging - Transport packages for dangerous goods - Dangerous goods packagings, intermediate bulk containers (IBCs) and large packagings -Guidelines for the application of ISO 9001” provides acceptable guidance on procedures which may be followed.
6.1.1.5 Manufacturers and subsequent distributors of packagings must provide information regarding procedures to be followed and a description of the types and dimensions of closures (including required gaskets) and any other components needed to ensure that packages as presented for transport are capable of passing the applicable performance tests of this Chapter.

6.1.2 CODE FOR DESIGNATING TYPES OF PACKAGINGS

6.1.2.1 The code consists of:

(a) an Arabic numeral indicating the kind of packaging, e.g. drum, jerrican, etc., followed by:

(b) a capital letter(s) in Latin characters indicating the nature of the material, e.g. steel, wood, etc., followed where necessary by:

(c) an Arabic numeral indicating the category of packaging within the kind to which the packaging belongs.

6.1.2.2 In the case of composite packagings, two capital letters in Latin characters are used in sequence in the second position of the code. The first indicates the material of the inner receptacle and the second that of the outer packaging.

6.1.2.3 In the case of combination packagings, only the code number for the outer packaging is used.

6.1.2.4 The letters “T” or “V” or “W” may follow the packaging code. The letter “T” signifies a salvage packaging conforming to the requirements of 6.1.5.1.11. The letter “V” signifies a special packaging conforming to the requirements of 6.1.5.1.12. The letter “W” signifies that the packaging, although of the same type indicated by the code, is manufactured to a specification different from that in 6.1.4 and is considered equivalent under the requirements of 6.1.1.2.

6.1.2.5 The following numerals must be used for the kinds of packaging:

1. Drum
2. <Reserved>¹
3. Jerrican
4. Box
5. Bag
6. Composite packaging

6.1.2.6 The following capital letters must be used for the types of material:

A. Steel (all types and surface treatments)
B. Aluminium
C. Natural wood
D. Plywood
F. Reconstituted wood
G. Fibreboard
H. Plastics material
L. Textile
M. Paper, multiwall
N. Metal (other than steel or aluminium)
P. Glass, porcelain or stoneware
NOTE
Plastics materials, is taken to include other polymeric materials such as rubber.

6.1.2.7
The following table indicates the codes to be used for designating types of packagings depending on the kind of packagings, the material used for their construction and their category; it also refers to the paragraphs to be consulted for the appropriate requirements:

<table>
<thead>
<tr>
<th>Kind</th>
<th>Material</th>
<th>Category</th>
<th>Code</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Drums</td>
<td>A. Steel</td>
<td>non-removable head</td>
<td>1A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>1A2</td>
<td>6.1.4.1</td>
</tr>
<tr>
<td></td>
<td>B. Aluminium</td>
<td>non-removable head</td>
<td>1B1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>1B2</td>
<td>6.1.4.2</td>
</tr>
<tr>
<td></td>
<td>D. Plywood</td>
<td></td>
<td>1D</td>
<td>6.1.4.5</td>
</tr>
<tr>
<td></td>
<td>G. Fibre</td>
<td></td>
<td>1G</td>
<td>6.1.4.7</td>
</tr>
<tr>
<td></td>
<td>H. Plastics</td>
<td>non-removable head</td>
<td>1H1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>1H2</td>
<td>6.1.4.8</td>
</tr>
<tr>
<td></td>
<td>N. Metal, other than steel or aluminium</td>
<td>non-removable head</td>
<td>1N1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>1N2</td>
<td>6.1.4.3</td>
</tr>
<tr>
<td>2. <Reserved></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Jerricans</td>
<td>A. Steel</td>
<td>non-removable head</td>
<td>3A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>3A2</td>
<td>6.1.4.4</td>
</tr>
<tr>
<td></td>
<td>B. Aluminium</td>
<td>non-removable head</td>
<td>3B1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>3B2</td>
<td>6.1.4.4</td>
</tr>
<tr>
<td></td>
<td>H. Plastics</td>
<td>non-removable head</td>
<td>3H1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>removable head</td>
<td>3H2</td>
<td>6.1.4.8</td>
</tr>
<tr>
<td>4. Boxes</td>
<td>A. Steel</td>
<td></td>
<td>4A</td>
<td>6.1.4.14</td>
</tr>
<tr>
<td></td>
<td>B. Aluminium</td>
<td></td>
<td>4B</td>
<td>6.1.4.14</td>
</tr>
<tr>
<td></td>
<td>C. Natural wood</td>
<td>ordinary</td>
<td>4C1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with sift-proof walls</td>
<td>4C2</td>
<td>6.1.4.9</td>
</tr>
<tr>
<td></td>
<td>D. Plywood</td>
<td></td>
<td>4D</td>
<td>6.1.4.10</td>
</tr>
<tr>
<td></td>
<td>F. Reconstituted wood</td>
<td></td>
<td>4F</td>
<td>6.1.4.11</td>
</tr>
<tr>
<td></td>
<td>G. Fibreboard</td>
<td></td>
<td>4G</td>
<td>6.1.4.12</td>
</tr>
<tr>
<td></td>
<td>H. Plastics</td>
<td>expanded</td>
<td>4H1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>solid</td>
<td>4H2</td>
<td>6.1.4.13</td>
</tr>
<tr>
<td></td>
<td>N. Metal, other than steel or aluminium</td>
<td>without inner liner or coating</td>
<td>4N</td>
<td>6.1.4.14</td>
</tr>
<tr>
<td>5. Bags</td>
<td>H. Woven plastics</td>
<td>without inner liner or coating</td>
<td>5H1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sift-proof</td>
<td>5H2</td>
<td>6.1.4.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>water resistant</td>
<td>5H3</td>
<td></td>
</tr>
</tbody>
</table>
6. Composite packagings

<table>
<thead>
<tr>
<th>Kind</th>
<th>Material</th>
<th>Category</th>
<th>Code</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Plastics receptacle</td>
<td>in steel drum</td>
<td>6HA1</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in steel crate or box</td>
<td>6HA2</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in aluminium drum</td>
<td>6HB1</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in aluminium crate or box</td>
<td>6HB2</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in wooden box</td>
<td>6HC</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in plywood drum</td>
<td>6HD1</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in plywood box</td>
<td>6HD2</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in fibre drum</td>
<td>6HG1</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in fibreboard box</td>
<td>6HG2</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in plastics drum</td>
<td>6HH1</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in solid plastics box</td>
<td>6HH2</td>
<td>6.1.4.19</td>
<td></td>
</tr>
<tr>
<td>P. Glass, porcelain or stoneware receptacle</td>
<td>in steel drum</td>
<td>6PA1</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in steel crate or box</td>
<td>6PA2</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in aluminium drum</td>
<td>6PB1</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in aluminium crate or box</td>
<td>6PB2</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in wooden box</td>
<td>6PC</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in plywood drum</td>
<td>6PD1</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in wickerwork hamper</td>
<td>6PD2</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in fibre drum</td>
<td>6PG1</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in fibreboard box</td>
<td>6PG2</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in expanded plastics packaging</td>
<td>6PH1</td>
<td>6.1.4.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in solid plastics packaging</td>
<td>6PH2</td>
<td>6.1.4.20</td>
<td></td>
</tr>
</tbody>
</table>

6.1.3 MARKING

NOTE 1:

The marking indicates that the packaging which bears it corresponds to a successfully tested design type and that it complies with the requirements of this Chapter which are related to the manufacture, but not to the use, of the packaging. In itself, therefore, the mark does not necessarily confirm that the packaging may be used for any substance: generally the type of packaging (e.g. steel drum), its maximum capacity and/or mass, and any special requirements are specified for each substance in Part 3 of this Code.
NOTE 2: The marking is intended to be of assistance to packaging manufacturers, reconditioners, packaging users, regulatory authorities and everyone involved in the transport of dangerous goods. In relation to the use of a new packaging, the original marking is a means for its manufacturer(s) to identify the type and to indicate those performance test regulations that have been met.

NOTE 3: The marking does not always provide full details of the test levels, etc., and these may need to be taken further into account, e.g. by reference to a test certificate, to test reports or to a register of successfully tested packagings. For example, a packaging having an X or Y marking may be used for substances to which a packing group having a lesser degree of danger has been assigned with the relevant maximum permissible value of the relative density determined by taking into account the factor 1.5 or 2.25 indicated in the test requirements for packagings in 6.1.5 as appropriate, i.e. packing group I packaging tested for products of relative density 1.2 could be used as a packing group II packaging for products of relative density 1.8 or a packing group III packaging of relative density 2.7, provided of course that all the performance criteria can still be met with the higher relative density product.

6.1.3.1 Each packaging intended for use according to this Code must bear markings which are durable, legible and placed in a location and of such a size relative to the packaging as to be readily visible. For packages with a gross mass of more than 30 kg, the markings or a duplicate thereof must appear on the top or on a side of the packaging. Letters, numerals and symbols must be at least 12 mm high, except for packagings of 30 litres or 30 kg capacity or less, when they must be at least 6 mm in height and for packagings of 5 litres or 5 kg or less when they must be of an appropriate size.

The marking must show:
(a) the United Nations packaging symbol.

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8. For embossed metal packagings the capital letters “UN” may be applied as the symbol;
(b) the code designating the type of packaging according to 6.1.2;
(c) a code in two parts:
 (i) a letter designating the packing group(s) for which the design type has been successfully tested:
 X for packing groups I, II and III
 Y for packing groups II and III
 Z for packing group III only;
 (ii) the relative density, rounded off to the first decimal, for which the design type has been tested for packagings without inner packagings intended to contain liquids; this may be omitted when the relative density does not exceed 1.2. For packagings intended to contain solids or inner packagings, the maximum gross mass in kilograms;
6.1.3.1 Every new metal drum of a capacity greater than 100 litres must bear the marks described in 6.1.3.1(a) to (e) on the bottom, with an indication of the nominal thickness of at least the metal used in the body (in mm, to 0.1 mm), in permanent form (e.g. embossed). When the nominal thickness of either head of a metal drum is thinner than that of the body, the nominal thicknesses of the top head, body, and bottom head must be marked on the bottom in permanent form (e.g. embossed), for example “1.0-1.2-1.0” or “0.9-1.0-1.0”. Nominal thicknesses of metal must be determined according to the appropriate ISO or Australian standard, for example ISO 3574:1999 or AS/NZS 1595 for steel. The marks indicated in 6.1.3.1(f) and (g) must not be applied in a permanent form (e.g. embossed) except as provided in 6.1.3.5.

6.1.3.2 In addition to the durable markings prescribed in 6.1.3.1, every new metal drum of a capacity greater than 100 litres must bear the marks described in 6.1.3.1(a) to (e) on the bottom, with an indication of the nominal thickness of at least the metal used in the body (in mm, to 0.1 mm), in permanent form (e.g. embossed). When the nominal thickness of either head of a metal drum is thinner than that of the body, the nominal thicknesses of the top head, body, and bottom head must be marked on the bottom in permanent form (e.g. embossed), for example “1.0-1.2-1.0” or “0.9-1.0-1.0”. Nominal thicknesses of metal must be determined according to the appropriate ISO or Australian standard, for example ISO 3574:1999 or AS/NZS 1595 for steel. The marks indicated in 6.1.3.1(f) and (g) must not be applied in a permanent form (e.g. embossed) except as provided in 6.1.3.5.

6.1.3.3 Every packaging other than those referred to in 6.1.3.2 liable to undergo a reconditioning process must bear the marks indicted in 6.1.3.1(a) to (e) in a permanent form. Marks are permanent if they are able to withstand the reconditioning process (e.g. embossed). For packagings other than metal drums of a capacity greater than 100 litres, these permanent marks may replace the corresponding durable markings prescribed in 6.1.3.1.

6.1.3.4 For remanufactured metal drums, if there is no change to the packaging type and no replacement or removal of integral structural components, the required markings need not be permanent (e.g. embossed). Every other remanufactured metal drum must bear the markings in 6.1.3.1(a) to (e) in a permanent form (e.g. embossed) on the top head or side.

6.1.3.5 Metal drums made from materials (e.g. stainless steel) designed to be reused repeatedly may bear the markings indicated in 6.1.3.1(f) and (g) in a permanent form (e.g. embossed).
6.1.3.6 Packagings manufactured with recycled plastics material as defined in 1.2.1 must be marked “REC”. This mark must be placed near the mark prescribed in 6.1.3.1.

6.1.3.7 Marking must be applied in the sequence shown in 6.1.3.1; each element of the marking required in these sub-paragraphs and when appropriate, (h) to (j) of 6.1.3.8, must be clearly separated, e.g. by a slash or space, so as to be easily identifiable. For examples, see 6.1.3.10.

Any additional markings authorised by a competent authority must still enable the parts of the mark to be correctly identified with reference to 6.1.3.1.

6.1.3.8 After reconditioning a packaging, the reconditioner must apply to it, in sequence, a durable marking showing:

(a) the State in which the reconditioning was carried out, indicated by the distinguishing sign for motor vehicles in international traffic;

(b) the name of the reconditioner or other identification of the packaging specified by the competent authority;

(c) the year of reconditioning; the letter “R”; and, for every packaging successfully passing the leakproofness test in 6.1.1.3, the additional letter “L”.

6.1.3.9 When, after reconditioning, the markings required by 6.1.3.1(a) to (d) no longer appear on the top head or the side of a metal drum, the reconditioner also must apply them in a durable form followed by 6.1.3.8(h), (i) and (j). These markings must not identify a greater performance capability than that for which the original design type had been tested and marked.

6.1.3.10 Examples of markings for NEW packagings:

- **4G/Y145/S/02/ AUS/9014** as in 6.1.3.1(a), (b), (c), (d) and (e) for a new fibreboard box
- **IAI/Y1.4/I50/98/ NL/VL824** as in 6.1.3.1(a), (b), (c), (d) and (e) for a new steel drum to contain liquids
- **1A2/Y150/S/01/ NL/VL825** as in 6.1.3.1(a), (b), (c), (d) and (e) for a new steel drum to contain solids, or inner packagings
- **4HW/Y136/S/98/ NL/VL826** as in 6.1.3.1(a), (b), (c), (d) and (e) for a new plastics box of equivalent specification
- **1A2/Y/100/01/ USA/MM5** as in 6.1.3.1(a), (b), (c), (d) and (e) for a remanufactured steel drum to contain liquids

6.1.3.11 Examples of markings for RECONDITIONED packagings:

- **IAI/Y1.4/150/97/ AUS/co1/06 RL** as in 6.1.3.1(a), (b), (c), (d) and (e) for a new steel drum to contain liquids
- **1A2/Y150/S/99/ AUS/co2/06 R** as in 6.1.3.1(a), (b), (c), (d), and (e) for a new steel drum to contain solids, or inner packagings
6.1.3.12 Example of marking for SALVAGE packagings:

\[1A2T/Y300/S/01/\text{USA/abc}\]

as in 6.1.3.1(a), (b), (c), (d) and (e)
as in 6.1.3.1(f) and (g)

NOTE: The markings, for which examples are given in 6.1.3.10, 6.1.3.11 and 6.1.3.12, may be applied in a single line or in multiple lines provided the correct sequence is respected.

6.1.3.13 Inner packaging markings

6.1.3.13.1 A plastics inner packaging must be marked with the following:
(a) the approval number assigned to that design type of packaging by a Competent Authority; and
(b) the month and year of manufacture of the inner packaging; and
(c) a marking that enables the origins of the packaging to be traced.

6.1.3.13.2 A packaging that is only used as an inner packaging must not be marked with the United Nations packaging symbol.

6.1.3.14 Packagings that have not been performance tested

If a packaging is exempt from performance testing, it must be marked in a manner that enables its origins to be traced.

6.1.4 REQUIREMENTS FOR PACKAGINGS

6.1.4.0 General requirements

Any permeation of the substance contained in the packaging must not constitute a danger under normal conditions of transport.

6.1.4.1 Steel drums

1A1 non-removable head
1A2 removable head

6.1.4.1.1 Body and heads must be constructed of steel sheet of a suitable type and of adequate thickness in relation to the capacity of the drum and to its intended use.

NOTE: In the case of carbon steel drums, “suitable” steels are identified in ISO 3573:1999 “Hot rolled carbon steel sheet of commercial and drawing qualities” and ISO 3574:1999 “Cold-reduced carbon steel sheet of commercial and drawing qualities”. For carbon steel drums below 100 litres “suitable” steels in addition to the above standards are also identified in ISO 11949:1995 “Cold-reduced electrolytic tinplate”, ISO 11950:1995 “Cold-reduced electrolytic chromium/chromium oxide-coated steel” and ISO 11951:1995 “Cold-reduced blackplate in coil form for the production of tinplate or electrolytic chromium/chromium-oxide coated steel”.

6.1.4.1.2 Body seams must be welded on drums intended to contain more than 40 litres of liquid. Body seams must be mechanically seamed or welded on drums intended to contain solids or 40 litres or less of liquids.

6.1.4.1.3 Chimes must be mechanically seamed or welded. Separate reinforcing rings may be applied.
6.1.4.1.4 The body of a drum of a capacity greater than 60 litres must, in general, have at least two expanded rolling hoops or, alternatively, at least two separate rolling hoops. If there are separate rolling hoops they must be fitted tightly on the body and so secured that they cannot shift. Rolling hoops must not be spot welded.

6.1.4.1.5 Openings for filling, emptying and venting in the bodies or heads of non-removable head (1A1) drums must not exceed 7 cm in diameter. Drums with larger openings are considered to be of the removable head type (1A2). Closures for openings in the bodies and heads of drums must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Closure flanges may be mechanically seamed or welded in place. Gaskets or other sealing elements must be used with closures, unless the closure is inherently leakproof.

6.1.4.1.6 Closure devices for removable head drums must be so designed and applied that they will remain secure and drums will remain leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with all removable heads.

6.1.4.1.7 If materials used for body, heads, closures and fittings are not in themselves compatible with the contents to be transported, suitable internal protective coatings or treatments must be applied. These coatings or treatments must retain their protective properties under normal conditions of transport.

6.1.4.1.8 Maximum capacity of drum: 450 litres
6.1.4.1.9 Maximum net mass: 400 kg

6.1.4.2 Aluminium drums

1B1 non-removable head
1B2 removable head

6.1.4.2.1 Body and heads must be constructed of aluminium at least 99% pure or of an aluminium base alloy. Material must be of a suitable type and of adequate thickness in relation to the capacity of the drum and to its intended use.

6.1.4.2.2 All seams must be welded. Chime seams, if any, must be reinforced by the application of separate reinforcing rings.

6.1.4.2.3 The body of a drum of a capacity greater than 60 litres must, in general, have at least two expanded rolling hoops or, alternatively, at least two separate rolling hoops. If there are separate rolling hoops they must be fitted tightly on the body and so secured that they cannot shift. Rolling hoops must not be spot welded.

6.1.4.2.4 Openings for filling, emptying and venting in the bodies or heads of non-removable head (1B1) drums must not exceed 7 cm in diameter. Drums with larger openings are considered to be of the removable head type (1B2). Closures for openings in the bodies and heads of drums must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Closure flanges must be welded in place so that the weld provides a leakproof seam. Gaskets or other sealing elements must be used with closures, unless the closure is inherently leakproof.

6.1.4.2.5 Closure devices for removable head drums must be so designed and applied that they will remain secure and drums will remain leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with all removable heads.
6.1.4.2.6 Maximum capacity of drum: 450 litres
6.1.4.2.7 Maximum net mass: 400 kg

6.1.4.3 Drums of metal other than steel or aluminium

1N1 non-removable head
1N2 removable head

6.1.4.3.1 The body and heads must be constructed of a metal or of a metal alloy other than steel or aluminium. Material must be of a suitable type and of adequate thickness in relation to the capacity of the drum and to its intended use.

6.1.4.3.2 Chime seams, if any, must be reinforced by the application of separate reinforcing rings. All seams, if any, must be joined (welded, soldered, etc.) in accordance with the technical state of the art for the used metal or metal alloy.

6.1.4.3.3 The body of a drum of a capacity greater than 60 litres must, in general, have at least two expanded rolling hoops or, alternatively, at least two separate rolling hoops. If there are separate rolling hoops they must be fitted tightly on the body and so secured that they cannot shift. Rolling hoops must not be spot welded.

6.1.4.3.4 Openings for filling, emptying and venting in the bodies or heads of non-removable head (1N1) drums must not exceed 7 cm in diameter. Drums with larger openings are considered to be of the removable head type (1N2). Closures for openings in the bodies and heads of drums must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Closure flanges must be joined in place (welded, soldered, etc.) in accordance with the technical state of the art for the used metal or metal alloy so that the seam join is leakproof. Gaskets or other sealing elements must be used with closures, unless the closure is inherently leakproof.

6.1.4.3.5 Closure devices for removable head drums must be so designed and applied that they will remain secure and drums will remain leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with all removable heads.

6.1.4.3.6 Maximum capacity of drum: 450 litres
6.1.4.3.7 Maximum net mass: 400 kg

6.1.4.4 Steel or aluminium jerricans

3A1 steel, non-removable head
3A2 steel, removable head
3B1 aluminium, non-removable head
3B2 aluminium, removable head

6.1.4.4.1 Body and heads must be constructed of steel sheet, of aluminium at least 99% pure or of an aluminium base alloy. Material must be of a suitable type and of adequate thickness in relation to the capacity of the jerrican and to its intended use.

6.1.4.4.2 Chimes of steel jerricans must be mechanically seamed or welded. Body seams of steel jerricans intended to contain more than 40 litres of liquid must be welded. Body seams of steel jerricans intended to contain 40 litres or less must be mechanically seamed or welded. For aluminium jerricans, all seams must be welded. Chime seams, if any, must be reinforced by the application of a separate reinforcing ring.
6.1.4.3 Openings in jerricans (3A1 and 3B1) must not exceed 7 cm in diameter. Jerricans with larger openings are considered to be of the removable head type (3A2 and 3B2). Closures must be so designed that they will remain secure and leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with closures, unless the closure is inherently leakproof.

6.1.4.4 If materials used for body, heads, closures and fittings are not in themselves compatible with the contents to be transported, suitable internal protective coatings or treatments must be applied. These coatings or treatments must retain their protective properties under normal conditions of transport.

6.1.4.5 Maximum capacity of jerrican: 60 litres

6.1.4.6 Maximum net mass: 120 kg

6.1.4.5 Plywood drums

1D

6.1.4.5.1 The wood used must be well-seasoned, commercially dry and free from any defect likely to lessen the effectiveness of the drum for the purpose intended. If a material other than plywood is used for the manufacture of the heads, it must be of a quality equivalent to the plywood.

6.1.4.5.2 At least two-ply plywood must be used for the body and at least three-ply plywood for the heads; the plies must be firmly glued together by a water resistant adhesive with their grain crosswise.

6.1.4.5.3 The body and heads of the drum and their joins must be of a design appropriate to the capacity of the drum and to its intended use.

6.1.4.5.4 In order to prevent sifting of the contents, lids must be lined with kraft paper or some other equivalent material which must be securely fastened to the lid and extend to the outside along its full circumference.

6.1.4.5.5 Maximum capacity of drum: 250 litres

6.1.4.5.6 Maximum net mass: 400 kg

6.1.4.6 <Reserved> (Deleted by UN)

6.1.4.7 Fibre drums

1G

6.1.4.7.1 The body of the drum must consist of multiple plies of heavy paper or fibreboard (without corrugations) firmly glued or laminated together and may include one or more protective layers of bitumen, waxed kraft paper, metal foil, plastics material, etc.

6.1.4.7.2 Heads must be of natural wood, fibreboard, metal, plywood, plastics or other suitable material and may include one or more protective layers of bitumen, waxed kraft paper, metal foil, plastics material, etc.

6.1.4.7.3 The body and heads of the drum and their joins must be of a design appropriate to the capacity of the drum and to its intended use.

6.1.4.7.4 The assembled packaging must be sufficiently water resistant so as not to delaminate under normal conditions of transport.

6.1.4.7.5 Maximum capacity of drum: 450 litres

6.1.4.7.6 Maximum net mass: 400 kg
6.1.4.8 Plastics drums and jerricans

- 1H1 drums, non-removable head
- 1H2 drums, removable head
- 3H1 jerricans, non-removable head
- 3H2 jerricans, removable head

6.1.4.8.1 The packaging must be manufactured from suitable plastics material and be of adequate strength in relation to its capacity and intended use. Except for recycled plastics material as defined in 1.2.1, no used material other than production residues or regrind from the same manufacturing process may be used. The packaging must be adequately resistant to ageing and to degradation caused either by the substance contained or by ultra-violet radiation.

6.1.4.8.2 If protection against ultra-violet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the packaging. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, retesting may be waived if the carbon black content does not exceed 2% by mass or if the pigment content does not exceed 3% by mass; the content of inhibitors of ultra-violet radiation is not limited.

6.1.4.8.3 Additives serving purposes other than protection against ultra-violet radiation may be included in the composition of the plastics material provided that they do not adversely affect the chemical and physical properties of the material of the packaging. In such circumstances, retesting may be waived.

6.1.4.8.4 The wall thickness at every point of the packaging must be appropriate to its capacity and intended use, taking into account the stresses to which each point is liable to be exposed.

6.1.4.8.5 Openings for filling, emptying and venting in the bodies or heads of non-removable head drums (1H1) and jerricans (3H1) must not exceed 7 cm in diameter. Drums and jerricans with larger openings are considered to be of the removable head type (1H2 and 3H2). Closures for openings in the bodies or heads of drums and jerricans must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Gaskets or other sealing elements must be used with closures unless the closure is inherently leakproof.

6.1.4.8.6 Closure devices for removable head drums and jerricans must be so designed and applied that they will remain secure and leakproof under normal conditions of transport. Gaskets must be used with all removable heads unless the drum or jerrican design is such that, where the removable head is properly secured, the drum or jerrican is inherently leakproof.

6.1.4.8.7 Maximum capacity of drums and jerricans:
- 1H1, 1H2: 450 litres
- 3H1, 3H2: 60 litres

6.1.4.8.8 Maximum net mass:
- 1H1, 1H2: 400 kg
- 3H1, 3H2: 120 kg

6.1.4.9 Boxes of natural wood

- 4C1 ordinary
6.1.4.9.1 The wood used must be well-seasoned, commercially dry and free from defects that would materially lessen the strength of any part of the box. The strength of the material used and the method of construction must be appropriate to the capacity and intended use of the box. The tops and bottoms may be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type.

6.1.4.9.2 Fastenings must be resistant to vibration experienced under normal conditions of transport. End grain nailing must be avoided whenever practicable. Joins which are likely to be highly stressed must be made using clenched or annular ring nails or equivalent fastenings.

6.1.4.9.3 Box 4C2: each part must consist of one piece or be equivalent thereto. Parts are considered equivalent to one piece when one of the following methods of glued assembly is used: – Lindermann joint, tongue and groove joint, ship lap or rabbet joint or butt joint with at least two corrugated metal fasteners at each joint.

6.1.4.9.4 Maximum net mass: 400 kg

6.1.4.10 Plywood boxes

6.1.4.10.1 Plywood used must be at least 3-ply. It must be made from well-seasoned rotary cut, sliced or sawn veneer, commercially dry and free from defects that would materially lessen the strength of the box. The strength of the material used and the method of construction must be appropriate to the capacity and intended use of the box. All adjacent plies must be glued with water resistant adhesive. Other suitable materials may be used together with plywood in the construction of boxes. Boxes must be firmly nailed or secured to corner posts or ends or be assembled by equally suitable devices.

6.1.4.10.2 Maximum net mass: 400 kg

6.1.4.11 Reconstituted wood boxes

6.1.4.11.1 The walls of boxes must be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type. The strength of the material used and the method of construction must be appropriate to the capacity of the boxes and to their intended use.

6.1.4.11.2 Other parts of the boxes may be made of other suitable material.

6.1.4.11.3 Boxes must be securely assembled by means of suitable devices.

6.1.4.11.4 Maximum net mass: 400 kg

6.1.4.12 Fibreboard boxes

6.1.4.12.1 Strong and good quality solid or double-faced corrugated fibreboard (single or multiwall) must be used, appropriate to the capacity of the box and to its intended use. The water resistance of the outer surface must be such that the increase in mass, as determined in a test carried out over a period of 30 minutes by the Cobb method of determining water absorption, is not greater than 155 g/m² - see ISO 535:1991 or AS/NZS 1301.411s. It must have proper bending qualities. Fibreboard must be cut, creased without scoring, and slotted so as to permit assembly without cracking, surface breaks or
undue bending. The fluting of corrugated fibreboard must be firmly glued to the facings.

6.1.4.12.2 The ends of boxes may have a wooden frame or be entirely of wood or other suitable material. Reinforcements of wooden battens or other suitable material may be used.

6.1.4.12.3 Manufacturing joins in the body of boxes must be taped, lapped and glued, or lapped and stitched with metal staples. Lapped joins must have an appropriate overlap.

6.1.4.12.4 Where closing is effected by gluing or taping, a water resistant adhesive must be used.

6.1.4.12.5 Boxes must be designed so as to provide a good fit to the contents.

6.1.4.12.6 Maximum net mass: 400 kg

6.1.4.13 **Plastics boxes**

| 4H1 | expanded plastics boxes |
| 4H2 | solid plastics boxes |

6.1.4.13.1 The box must be manufactured from suitable plastics material and be of adequate strength in relation to its capacity and intended use. The box must be adequately resistant to ageing and to degradation caused either by the substance contained or by ultra-violet radiation.

6.1.4.13.2 An expanded plastics box must comprise two parts made of a moulded expanded plastics material, a bottom section containing cavities for the inner packagings and a top section covering and interlocking with the bottom section. The top and bottom sections must be designed so that the inner packagings fit snugly. The closure cap for any inner packaging must not be in contact with the inside of the top section of this box.

6.1.4.13.3 For dispatch, an expanded plastics box must be closed with a self-adhesive tape having sufficient tensile strength to prevent the box from opening. The adhesive tape must be weather resistant and its adhesive compatible with the expanded plastics material of the box. Other closing devices at least equally effective may be used.

6.1.4.13.4 For solid plastics boxes, protection against ultra-violet radiation, if required, must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the box. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, retesting may be waived if the carbon black content does not exceed 2% by mass or if the pigment content does not exceed 3% by mass; the content of inhibitors of ultra-violet radiation is not limited.

6.1.4.13.5 Additives serving purposes other than protection against ultra-violet radiation may be included in the composition of the plastics material provided that they do not adversely affect the chemical or physical properties of the material of the box. In such circumstances, retesting may be waived.

6.1.4.13.6 Solid plastics boxes must have closure devices made of a suitable material of adequate strength and so designed as to prevent the box from unintentional opening.

6.1.4.13.7 Maximum net mass: 4H1: 60 kg

4H2: 400 kg
6.1.4.14 Steel, aluminium or other metal boxes

- 4A steel
- 4B aluminium
- 4N metal, other than steel or aluminium, boxes

6.1.4.14.1 The strength of the metal and the construction of the box must be appropriate to the capacity of the box and to its intended use.

6.1.4.14.2 Boxes must be lined with fibreboard or felt packing pieces or must have an inner liner or coating of suitable material, as required. If a double seamed metal liner is used, steps must be taken to prevent the ingress of substances, particularly explosives, into the recesses of the seams.

6.1.4.14.3 Closures may be of any suitable type; they must remain secured under normal conditions of transport.

6.1.4.14.4 Maximum net mass: 400 kg

6.1.4.15 Textile bags

- 5L1 without inner liner or coating
- 5L2 sift-proof
- 5L3 water resistant

6.1.4.15.1 The textiles used must be of good quality. The strength of the fabric and the construction of the bag must be appropriate to the capacity of the bag and to its intended use.

6.1.4.15.2 Bags, sift-proof, 5L2: – the bag must be made sift-proof, for example by the use of:

(a) paper bonded to the inner surface of the bag by a water resistant adhesive such as bitumen; or

(b) plastics film bonded to the inner surface of the bag; or

(c) one or more inner liners made of paper or plastics material.

6.1.4.15.3 Bags, water resistant, 5L3: - to prevent the entry of moisture the bag must be made waterproof, for example by the use of:

(a) separate inner liners of water resistant paper (e.g. waxed kraft paper, tarred paper or plastics-coated kraft paper); or

(b) plastics film bonded to the inner surface of the bag; or

(c) one or more inner liners made of plastics material.

6.1.4.15.4 Maximum net mass: 50 kg

6.1.4.16 Woven plastics bags

- 5H1 without inner liner or coating
- 5H2 sift-proof
- 5H3 water resistant

6.1.4.16.1 Bags must be made from stretched tapes or monofilaments of a suitable plastics material. The strength of the material used and the construction of the bag must be appropriate to the capacity of the bag and to its intended use.

6.1.4.16.2 If the fabric is woven flat, the bags must be made by sewing or some other method ensuring closure of the bottom and one side. If the fabric is tubular, the bag must be closed by sewing, weaving or some other equally strong method of closure.
6.1.4.16.3 Bags, sift-proof, 5H2: – the bag must be made sift-proof, for example by means of:

(a) paper or a plastics film bonded to the inner surface of the bag; or
(b) one or more separate inner liners made of paper or plastics material.

6.1.4.16.4 Bags, water resistant, 5H3: – to prevent the entry of moisture, the bag must be made waterproof, for example by means of:

(a) separate inner liners of water resistant paper (e.g. waxed kraft paper, double-tarred kraft paper or plastics-coated kraft paper); or
(b) plastics film bonded to the inner or outer surface of the bag; or
(c) one or more inner plastics liners.

6.1.4.16.5 Maximum net mass: 50 kg

6.1.4.17 Plastics film bags

5H4

6.1.4.17.1 Bags must be made of a suitable plastics material. The strength of the material used and the construction of the bag must be appropriate to the capacity of the bag and to its intended use. Joins and closures must withstand pressures and impacts liable to occur under normal conditions of transport.

6.1.4.17.2 Maximum net mass: 50 kg

6.1.4.18 Paper bags

5M1 multiwall

5M2 multiwall, water resistant

6.1.4.18.1 Bags must be made of a suitable kraft paper or of an equivalent paper with at least three plies, the middle ply of which may be net-cloth with adhesive bonding to the outer ply. The strength of the paper and the construction of the bags must be appropriate to the capacity of the bag and to its intended use. Joins and closures must be sift-proof.

6.1.4.18.2 Bags 5M2: to prevent the entry of moisture, a bag of four plies or more must be made waterproof by the use of either a water resistant ply as one of the two outermost plies or a water resistant barrier made of a suitable protective material between the two outermost plies; a bag of three plies must be made waterproof by the use of a water resistant ply as the outermost ply.

Where there is a danger of the substance contained reacting with moisture or where it is packed damp, a waterproof ply or barrier, such as double-tarred kraft paper, plastics-coated kraft paper, plastics film bonded to the inner surface of the bag, or one or more inner plastics liners, must also be placed next to the substance. Joins and closures must be waterproof.

6.1.4.18.3 Maximum net mass: 50 kg

6.1.4.19 Composite packagings (plastics material)

6HA1 plastics receptacle with outer steel drum
6HA2 plastics receptacle with outer steel crate or box
6HB1 plastics receptacle with outer aluminium drum
6HB2 plastics receptacle with outer aluminium crate or box
6HC plastics receptacle with outer wooden box
6HD1 plastics receptacle with outer plywood drum
6HD2 plastics receptacle with outer plywood box
6HG1 plastics receptacle with outer fibre drum
6HG2 plastics receptacle with outer fibreboard box
6HH1 plastics receptacle with outer plastics drum
6HH2 plastics receptacle with outer solid plastics box

6.1.4.19.1 Inner receptacle

6.1.4.19.1.1 The requirements of 6.1.4.8.1 and 6.1.4.8.3 to 6.1.4.8.6 apply to inner plastics receptacles.

6.1.4.19.1.2 The inner plastics receptacle must fit snugly inside the outer packaging, which must be free of any projection that might abrade the plastics material.

6.1.4.19.1.3 Maximum capacity of inner receptacle:
- 6HA1, 6HB1, 6HD1, 6HG1, 6HH1: 250 litres
- 6HA2, 6HB2, 6HC, 6HD2, 6HG2, 6HH2: 60 litres

6.1.4.19.1.4 Maximum net mass:
- 6HA1, 6HB1, 6HD1, 6HG1, 6HH1: 400 kg
- 6HA2, 6HB2, 6HC, 6HD2, 6HG2, 6HH2: 75 kg

6.1.4.19.2 Outer packaging

6.1.4.19.2.1 Plastics receptacle with outer steel or aluminium drum 6HA1 or 6HB1: – the relevant requirements of 6.1.4.1 or 6.1.4.2, as appropriate, apply to the construction of the outer packaging.

6.1.4.19.2.2 Plastics receptacle with outer steel or aluminium crate or box 6HA2 or 6HB2: – the relevant requirements of 6.1.4.14 apply to the construction of the outer packaging.

6.1.4.19.2.3 Plastics receptacle with outer wooden box 6HC: – the relevant requirements of 6.1.4.9 apply to the construction of the outer packaging.

6.1.4.19.2.4 Plastics receptacle with outer plywood drum 6HD1: – the relevant requirements of 6.1.4.5 apply to the construction of the outer packaging.

6.1.4.19.2.5 Plastics receptacle with outer plywood box 6HD2: – the relevant requirements of 6.1.4.10 apply to the construction of the outer packaging.

6.1.4.19.2.6 Plastics receptacle with outer fibre drum 6HG1: – the requirements of 6.1.4.7.1 to 6.1.4.7.4 apply to the construction of the outer packaging.

6.1.4.19.2.7 Plastics receptacle with outer fibreboard box 6HG2: – the relevant requirements of 6.1.4.12 apply to the construction of the outer packaging.

6.1.4.19.2.8 Plastics receptacle with outer plastics drum 6HH1: – the requirements of 6.1.4.8.1 and 6.1.4.8.2 to 6.1.4.8.6 apply to the construction of the outer packaging.

6.1.4.19.2.9 Plastics receptacles with outer solid plastics box (including corrugated plastics material) 6HH2: – the requirements of 6.1.4.13.1 and 6.1.4.13.4 to 6.1.4.13.6 apply to the construction of the outer packaging.
6.1.4.20 Composite packagings (glass, porcelain or stoneware)

6PA1 receptacle with outer steel drum
6PA2 receptacle with outer steel crate or box
6PB1 receptacle with outer aluminium drum
6PB2 receptacle with outer aluminium crate or box
6PC receptacle with outer wooden box
6PD1 receptacle with outer plywood drum
6PD2 receptacle with outer wickerwork hamper
6PG1 receptacle with outer fibre drum
6PG2 receptacle with outer fibreboard box
6PH1 receptacle with outer expanded plastics packaging
6PH2 receptacle with outer solid plastics packaging

6.1.4.20.1 Inner receptacle

6.1.4.20.1.1 Receptacles must be of a suitable form (cylindrical or pear-shaped) and be made of good quality material free from any defect that could impair their strength. The walls must be sufficiently thick at every point.

6.1.4.20.1.2 Screw-threaded plastics closures, ground glass stoppers or closures at least equally effective must be used as closures for receptacles. Any part of the closure likely to come into contact with the contents of the receptacle must be resistant to those contents. Care must be taken to ensure that the closures are so fitted as to be leakproof and are suitably secured to prevent any loosening during transport. If vented closures are necessary, they must comply with 4.1.1.8.

6.1.4.20.1.3 The receptacle must be firmly secured in the outer packaging by means of cushioning and/or absorbent materials.

6.1.4.20.1.4 Maximum capacity of receptacle: 60 litres

6.1.4.20.1.5 Maximum net mass: 75 kg

6.1.4.20.2 Outer packaging

6.1.4.20.2.1 Receptacle with outer steel drum 6PA1:
– the relevant requirements of 6.1.4.1 apply to the construction of the outer packaging. The removable lid required for this type of packaging may nevertheless be in the form of a cap.

6.1.4.20.2.2 Receptacle with outer steel crate or box 6PA2:
– the relevant requirements of 6.1.4.14 apply to the construction of the outer packaging. For cylindrical receptacles the outer packaging must, when upright, rise above the receptacle and its closure. If the crate surrounds a pear-shaped receptacle and is of matching shape, the outer packaging must be fitted with a protective cover (cap).

6.1.4.20.2.3 Receptacle with outer aluminium drum 6PB1:
– the relevant requirements of 6.1.4.2 apply to the construction of the outer packaging.

6.1.4.20.2.4 Receptacle with outer aluminium crate or box 6PB2:
– the relevant requirements of 6.1.4.14 apply to the construction of the outer packaging.

6.1.4.20.2.5 Receptacle with outer wooden box 6PC:
– the relevant requirements of 6.1.4.9 apply to the construction of the outer packaging.
6.1.4.20.2.6 Receptacle with outer plywood drum 6PD1:
– the relevant requirements of 6.1.4.5 apply to the construction of the outer packaging.

6.1.4.20.2.7 Receptacle with outer wickerwork hamper 6PD2:
– the wickerwork hamper must be properly made with material of good quality. It must be fitted with a protective cover (cap) so as to prevent damage to the receptacle.

6.1.4.20.2.8 Receptacle with outer fibre drum 6PG1:
– the relevant requirements of 6.1.4.7.1 to 6.1.4.7.4 apply to the construction of the outer packaging.

6.1.4.20.2.9 Receptacle with outer fibreboard box 6PG2:
– the relevant requirements of 6.1.4.12 apply to the construction of the outer packaging.

6.1.4.20.2.10 Receptacle with outer expanded plastics or solid plastics packaging (6PH1 or 6PH2):
– the materials of both outer packagings must meet the relevant requirements of 6.1.4.13. Solid plastics packaging must be manufactured from high density polyethylene or some other comparable plastics material. The removable lid for this type of packaging may nevertheless be in the form of a cap.

6.1.4.21 Inner packagings

NOTE: The requirements of 6.1.4.21 are additional to those of UN18 and are therefore applicable only to inner packagings that are filled in Australia.

6.1.4.21.1 An inner packaging that is a cylindrical tinplate can with a friction closure must be manufactured in accordance with AS 2854.

6.1.4.21.2 An inner packaging that is a tinplate can with a threaded closure must be manufactured in accordance with AS 2854.

6.1.4.21.3 An inner packaging that is a glass packaging must be free from faults of a nature liable to impair their strength. In particular internal strains must have been suitably relieved. The thickness of wall must be at least 3 mm for receptacles that with their contents have a mass of more than 35 kg and a least 2 mm for other receptacles. Glass bottles and other glass receptacles must be capable of withstanding without permanent damage hydraulic pressure of 175 kPa for one minute.

6.1.4.21.4 An inner packaging that is a plastics bottle used to transport a liquid must be capable of withstanding at ambient temperature, without leakage:
(a) a hydraulic pressure of 175 kPa for one minute; and
(b) a drop test of 1 m, in all of the orientations illustrated in Figure 6.1, onto a hard, smooth and horizontal surface when full of fresh water.
No bottle need be used for more than one test.

6.1.4.21.5 An inner packaging that is a plastics receptacle that is used to transport a solid must be capable of withstanding at ambient temperature, without leakage or rupture, a drop test of 1 m, in all of the orientations illustrated in Figure 6.1, onto a hard, smooth and horizontal surface, when filled to maximum gross lidded capacity with the goods to be packed or substituted with substances of the same density and other relevant physical properties. No receptacle need be used for more than one test.
6.1.5 TEST REQUIREMENTS FOR PACKAGINGS

6.1.5.1 Performance and frequency of tests

6.1.5.1.1 The design type of each packaging must be tested as provided in 6.1.5 in accordance with procedures established by the competent authority.

6.1.5.1.2 Each packaging design type must successfully pass the tests prescribed in this Chapter before being used. A packaging design type is defined by the design, size, material and thickness, manner of construction and packing, but may include various surface treatments. It also includes packagings which differ from the design type only in their lesser design height.

6.1.5.1.3 Tests must be repeated on production samples at intervals established by the competent authority. For such tests on paper or fibreboard packagings, preparation at ambient conditions is considered equivalent to the requirements of 6.1.5.2.3.

6.1.5.1.4 Tests must also be repeated after each modification which alters the design, material or manner of construction of a packaging.

6.1.5.1.5 The competent authority may permit the selective testing of packagings that differ only in minor respects from a tested type, e.g. smaller sizes of inner packagings or inner packagings of lower net mass; and packagings such as drums, bags and boxes which are produced with small reductions in external dimension(s).

6.1.5.1.6 <Reserved> (by UN)

NOTE: For the conditions for assembling different inner packagings in an outer packaging and permissible variations in inner packagings, see 4.1.1.5.1.

6.1.5.1.7 <Reserved>

NOTE: In this Code, requirements for special packagings marked “V” have been relocated to 6.1.5.1.12 to avoid confusion with headings.

6.1.5.1.8 The competent authority may at any time require proof, by tests in accordance with this section, that serially-produced packagings meet the requirements of the design type tests.

6.1.5.1.9 If an inner treatment or coating is required for safety reasons, it must retain its protective properties even after the tests.

6.1.5.1.10 Provided the validity of the test results is not affected several tests may be made on one sample.

6.1.5.1.11 Salvage packagings

Salvage packagings (see 1.2.1) must be tested and marked in accordance with the provisions applicable to packing group II packagings intended for the transport of solids or inner packagings, except as follows:

(a) The test substance used in performing the tests must be water, and the packagings must be filled to not less than 98% of their maximum capacity. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass so long as they are placed so that the test results are not affected. Alternatively, in performing the drop test, the drop height may be varied in accordance with 6.1.5.3.5(b); and

(b) Packagings must, in addition, have been successfully subjected to the leakproofness test at 30 kPa, with the results of this test reflected in the test report required by 6.1.5.7; and
6.1.5.12 Special packagings marked with “V” [UN 6.1.5.1.7]

Articles or inner packagings of any type for solids or liquids may be assembled and transported without testing in an outer packaging under the following conditions:

(a) The outer packaging must have been successfully tested in accordance with 6.1.5.3 with fragile (e.g. glass) inner packagings containing liquids using the packing group I drop height;

(b) The total combined gross mass of inner packagings must not exceed one half the gross mass of inner packagings used for the drop test in (a) above;

(c) The thickness of cushioning material between inner packagings and between inner packagings and the outside of the packaging must not be reduced below the corresponding thicknesses in the originally tested packaging; and if a single inner packaging was used in the original test, the thicknesses of cushioning between inner packagings must not be less than the thickness of cushioning between the outside of the packaging and the inner packaging in the original test. If either fewer or smaller inner packagings are used (as compared to the inner packagings used in the drop test), sufficient additional cushioning material must be used to take up void spaces;

(d) The outer packaging must have passed successfully the stacking test in 6.1.5.6 while empty. The total mass of identical packages must be based on the combined mass of inner packagings used for the drop test in (a) above;

(e) Inner packagings containing liquids must be completely surrounded with a sufficient quantity of absorbent material to absorb the entire liquid contents of the inner packagings;

(f) If the outer packaging is intended to contain inner packagings for liquids and is not leakproof, or is intended to contain inner packagings for solids and is not siftproof, a means of containing any liquid or solid contents in the event of leakage must be provided in the form of a leakproof liner, plastics bag or other equally efficient means of containment. For packagings containing liquids, the absorbent material required in (e) above must be placed inside the means of containing the liquid contents;

(g) For air transport, packagings must comply with 4.1.1.4.1;

(h) Packagings must be marked in accordance with 6.1.3 as having been tested to packing group I performance for combination packagings. The marked gross mass in kilograms must be the sum of the mass of the outer packaging plus one half of the mass of the inner packaging(s) as used for the drop test referred to in (a) above. Such a package mark must also contain a letter “V” as described in 6.1.2.4.

6.1.5.2 Preparation of packagings for testing

6.1.5.2.1 Tests must be carried out on packagings prepared as for transport including, with respect to combination packagings, the inner packagings used. Inner or single receptacles or packagings other than bags must be filled to not less than 98% of their maximum capacity for liquids or 95% for solids. Bags must be filled to the maximum mass at which they may be used. For combination packagings where the inner packaging is designed to carry liquids and solids, separate testing is required for both liquid and solid contents. The substances or articles to be transported in the packagings may be replaced by other substances or articles except where this would invalidate the results of the tests. For solids, when another substance is used it must have the same
physical characteristics (mass, grain size, etc.) as the substance to be carried. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass, so long as they are placed so that the test results are not affected.
In the drop tests for liquids, when another substance is used, it must be of similar relative density and viscosity to those of the substance being transported. Water may also be used for the liquid drop test under the conditions in 6.1.5.3.5.

Paper or fibreboard packagings must be conditioned for at least 24 hours in an atmosphere having a controlled temperature and relative humidity (r.h.). There are three options, one of which must be chosen. The preferred atmosphere is 23 ± 2°C and 50% ± 2% r.h. The two other options are 20 ± 2°C and 65% ± 2% r.h. or 27 ± 2°C and 65% ± 2% r.h.

NOTE: Average values must fall within these limits. Short-term fluctuations and measurement limitations may cause individual measurements to vary by up to ± 5% relative humidity without significant impairment of test reproducibility.

Additional steps must be taken to ascertain that the plastics material used in the manufacture of plastics drums, plastics jerricans and composite packagings (plastics material) intended to contain liquids complies with the requirements in 6.1.1.2, 6.1.4.8.1 and 6.1.4.8.3. This may be done, for example, by submitting sample receptacles or packagings to a preliminary test extending over a long period, for example six months, during which the samples would remain filled with the substances they are intended to contain, and after which the samples must be submitted to the applicable tests listed in 6.1.5.3, 6.1.5.4, 6.1.5.5 and 6.1.5.6. For substances which may cause stress-cracking or weakening in plastics drums or jerricans, the sample, filled with the substance or another substance that is known to have at least as severe a stress-cracking influence on the plastics material in question, must be subjected to a superimposed load equivalent to the total mass of identical packages which might be stacked on it during transport. The minimum height of the stack including the test sample must be 3 metres.

6.1.5.3 Drop test

6.1.5.3.1 Number of test samples (per design type and manufacturer) and drop orientation

For other than flat drops the centre of gravity must be vertically over the point of impact.

Where more than one orientation is possible for a given drop test, the orientation most likely to result in failure of the packaging must be used.

<table>
<thead>
<tr>
<th>Packaging</th>
<th>No. of test samples</th>
<th>Drop orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel drums</td>
<td>Six* (three for each drop)</td>
<td></td>
</tr>
<tr>
<td>Aluminum drums</td>
<td></td>
<td>First drop (using three samples):</td>
</tr>
<tr>
<td>Metal drums, other than steel or aluminum drums</td>
<td></td>
<td>the packaging must strike the target diagonally on the chime or, if the packaging has no chime, on a circumferential seam or an edge.</td>
</tr>
<tr>
<td>Steel jerricans</td>
<td></td>
<td>Second drop (using the other three samples):</td>
</tr>
<tr>
<td>Aluminum jerricans</td>
<td></td>
<td>the packaging must strike the target on the weakest part not tested by the first drop, for example a closure or, for some cylindrical drums, the welded longitudinal seam of the drum body.</td>
</tr>
<tr>
<td>Plywood drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre drums</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics drums and jerricans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite packagings which are in the shape of a drum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxes of natural wood</td>
<td>Five (one for each drop)</td>
<td>First drop: flat on the bottom</td>
</tr>
<tr>
<td>Plywood boxes</td>
<td></td>
<td>Second drop: flat on the top</td>
</tr>
<tr>
<td>Reconstituted wood boxes</td>
<td></td>
<td>Third drop: flat on the long side</td>
</tr>
</tbody>
</table>
Packaging

<table>
<thead>
<tr>
<th>Packaging</th>
<th>No. of test samples</th>
<th>Drop orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibreboard boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics boxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel or aluminum boxes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Composite packagings which are in the shape of a box | Three (three drops per bag) | Fourth drop: flat on the short side
| | | Fifth drop: on a corner |
| Bags – single-ply with a side seam | Two (two drops per bag) | First drop: flat on a wide face
| | | Second drop: flat on a narrow face
| | | Third drop: on an end of the bag |
| Bags – single-ply without a side seam, or multi-ply | | First drop: flat on a wide face
| | | Second drop: on an end of the bag |

a. Examples of orientations acceptable in Australia are depicted in Figure 6.1.

Figure 6.1 Examples of Drop Test Orientation

1. Diagonally, with centre of mass directly above the top edge, adjacent the major closure, so as the closure and seam strike the target
2. Diagonally, with centre of mass directly above the bottom seam, major closure at the lowest position on the drum head
3. Diagonally, with centre of mass directly above the top seam diametrically opposite the major closure
4. Vertically, so as to strike the target flat on the bottom
5. Vertically, so as to strike the target flat on the top
6. Horizontally, so as to strike the target on the side of the drum with the major closure at the lowest point

6.1.5.3.2 Special preparation of test samples for the drop test

The temperature of the test sample and its contents must be reduced to -18 °C or lower for the following packagings:

- (a) Plastics drums (see 6.1.4.8);
- (b) Plastics jerricans (see 6.1.4.8);
- (c) Plastics boxes other than expanded plastics boxes (see 6.1.4.13);
- (d) Composite packagings (plastics material) (see 6.1.4.19); and
- (e) Combination packagings with plastics inner packagings, other than plastics bags intended to contain solids or articles.

Where test samples are prepared in this way, the conditioning in 6.1.5.2.3 may be waived. Test liquids must be kept in the liquid state by the addition of anti-freeze if necessary.

6.1.5.3.3 Removable head packagings for liquids must not be dropped until at least 24 hours after filling and closing to allow for any possible gasket relaxation.

6.1.5.3.4 Target

The target must be a non-resilient and horizontal surface and must be:

- Integral and massive enough to be immovable;
- Flat with a surface kept free from local defects capable of influencing the test results;
– Rigid enough to be non-deformable under test conditions and not liable to become damaged by the tests; and
– Sufficiently large to ensure that the test package falls entirely upon the surface.
6.1.5.3.5 Drop height

For solids and liquids, if the test is performed with the solid or liquid to be carried or with another substance having essentially the same physical characteristics:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

For liquids in single packagings and for inner packagings of combination packagings, if the test is performed with water:

NOTE: The term water includes water/antifreeze solutions with a minimum specific gravity of 0.95 for testing at -18 °C.

(a) Where the substances to be transported have a relative density not exceeding 1.2:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

(b) Where the substances to be transported have a relative density exceeding 1.2, the drop height must be calculated on the basis of the relative density (d) of the substance to be carried, rounded up to the first decimal, as follows:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d \times 1.5$ (m)</td>
<td>$d \times 1.0$ (m)</td>
<td>$d \times 0.67$ (m)</td>
</tr>
</tbody>
</table>

6.1.5.3.6 Criteria for passing the test:

6.1.5.3.6.1 Each packaging containing liquid must be leakproof when equilibrium has been reached between the internal and external pressures, except for inner packagings of combination packagings when it is not necessary that the pressures be equalised.

6.1.5.3.6.2 Where a packaging for solids undergoes a drop test and its upper face strikes the target, the test sample passes the test if the entire contents are retained by an inner packaging or inner receptacle (e.g. a plastics bag), even if the closure while retaining its containment function, is no longer silt-proof.

6.1.5.3.6.3 The packaging or outer packaging of a composite or combination packaging must not exhibit any damage liable to affect safety during transport. Inner receptacles, inner packagings, or articles must remain completely within the outer packaging and there must be no leakage of the filling substance from the inner receptacle(s) or inner packaging(s).

6.1.5.3.6.4 Neither the outermost ply of a bag nor an outer packaging may exhibit any damage liable to affect safety during transport.

6.1.5.3.6.5 A slight discharge from the closure(s) upon impact is not considered to be a failure of the packaging provided that no further leakage occurs.

6.1.5.3.6.6 No rupture is permitted in packagings for goods of Class 1 which would permit the spillage of loose explosive substances or articles from the outer packaging.
6.1.5.4 Leakproofness test

The leakproofness test must be performed on all design types of packagings intended to contain liquids; however, this test is not required for the inner packagings of combination packagings.

6.1.5.4.1 Number of test samples: three test samples per design type and manufacturer.

6.1.5.4.2 Special preparation of test samples for the test: either vented closures must be replaced by similar non-vented closures or the vent must be sealed.

6.1.5.4.3 Test method and pressure to be applied: the packagings including their closures must be restrained under water for 5 minutes while an internal air pressure is applied, the method of restraint must not affect the results of the test.

The air pressure (gauge) to be applied must be:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not less than 30 kPa (0.3 bar)</td>
<td>Not less than 20 kPa (0.2 bar)</td>
<td>Not less than 20 kPa (0.2 bar)</td>
</tr>
</tbody>
</table>

Other methods at least equally effective may be used.

6.1.5.4.4 Criterion for passing the test: —there must be no leakage.

6.1.5.5 Internal pressure (hydraulic) test

6.1.5.5.1 Packagings to be tested: —the internal pressure (hydraulic) test must be carried out on all design types of metal, plastics and composite packagings intended to contain liquids. This test is not required for inner packagings of combination packagings.

6.1.5.5.2 Number of test samples: –three test samples per design type and manufacturer.

6.1.5.5.3 Special preparation of packagings for testing: – either vented closures must be replaced by similar non-vented closures or the vent must be sealed.

6.1.5.5.4 Test method and pressure to be applied: –metal packagings and composite packagings (glass, porcelain or stoneware) including their closures must be subjected to the test pressure for 5 minutes. Plastics packagings and composite packagings (plastics material) including their closures must be subjected to the test pressure for 30 minutes. This pressure is the one to be included in the marking required by 6.1.3.1(d). The manner in which the packagings are supported must not invalidate the test. The test pressure must be applied continuously and evenly; it must be kept constant throughout the test period. The hydraulic pressure (gauge) applied, as determined by any one of the following methods, must be:

(a) not less than the total gauge pressure measured in the packaging (i.e. the vapour pressure of the filling liquid and the partial pressure of the air or other inert gases, minus 100 kPa) at 55 °C, multiplied by a safety factor of 1.5; this total gauge pressure must be determined on the basis of a maximum degree of filling in accordance with 4.1.1.4 and a filling temperature of 15 °C;

(b) not less than 1.75 times the vapour pressure at 50 °C of the liquid to be transported, minus 100 kPa but with a minimum test pressure of 100 kPa;

(c) not less than 1.5 times the vapour pressure at 55 °C of the liquid to be transported, minus 100 kPa but with a minimum test pressure of 100 kPa.
6.1.5.5 In addition, packagings intended to contain liquids of packing group I must be tested to a minimum test pressure of 250 kPa (gauge) for a test period of 5 or 30 minutes depending upon the material of construction of the packaging.

6.1.5.6 The special requirements for air transport, including minimum test pressures, may not be covered in 6.1.5.5.4.

6.1.5.7 Criterion for passing the test: - no packaging may leak.

6.1.6 Stacking test

All design types of packagings other than bags are subject to a stacking test.

6.1.6.1 Number of test samples: three test samples per design type and manufacturer.

6.1.6.2 Test method: - the test sample must be subjected to a force applied to the top surface of the test sample equivalent to the total weight of identical packages which might be stacked on it during transport; where the contents of the test sample are liquids with relative density different from that of the liquid to be transported, the force must be calculated in relation to the latter. The minimum height of the stack including the test sample must be 3 meters. The duration of the test must be 24 hours except that plastics drums, jerricans, and composite packagings 6HH1 and 6HH2 intended for liquids must be subjected to the stacking test for a period of 28 days at a temperature of not less than 40°C.

6.1.6.3 Criterion for passing the test: no test sample may leak. In composite packagings or combination packagings, there must be no leakage of the filling substance from the inner receptacle or inner packaging. No test sample may show any deterioration which could adversely affect transport safety or any distortion liable to reduce its strength or cause instability in stacks of packages. Plastics packagings must be cooled to ambient temperature before the assessment.

6.1.7 Test Report

6.1.7.1 A test report containing at least the following particulars must be drawn up and must be available to the users of the packaging:

1. Name and address of the test facility;
2. Name and address of applicant (where appropriate);
3. A unique test report identification;
4. Date of the test report;
5. Manufacturer of the packaging;
6. Description of the packaging design type (e.g. dimensions, materials, closures, thickness, etc.), including method of manufacture (e.g. blow moulding) and which may include drawing(s) and/or photograph(s);
7. Maximum capacity;
8. Characteristics of test contents, e.g. viscosity and relative density for liquids and particle size for solids;
9. Test descriptions and results;
10. The test report must be signed with the name and status of the signatory.

6.1.7.2 The test report must contain statements that the packaging prepared as for transport was tested in accordance with the appropriate requirements of this Chapter and that the use of other packaging methods or components may render it invalid. A copy of the test report must be available to the competent authority.
CHAPTER 6.2 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PRESSURE RECEPTACLES, AEROSOL DISPENSERS, SMALL RECEPTACLES CONTAINING GAS (GAS CARTRIDGES) AND FUEL CELL CARTRIDGES CONTAINING LIQUEFIED FLAMMABLE GAS

Introductory Note

In all Australian States and Territories, the filling of cylinders is governed by other legislation relating to the use of pressure vessels. Generally this requires the manufacture, verification, filling, inspection, testing and maintenance of cylinders to be in accordance with AS 2030. Most cylinders complying with AS 2030 are not UN Pressure Receptacles and are therefore not subject to Section 6.2.2. The requirements for Non-UN Pressure Receptacles are in Section 6.2.3. (See also Introductory Note to Section 6.2.2.)

NOTE: Aerosol dispensers, small receptacles containing gas (gas cartridges) and fuel cell cartridges containing liquefied flammable gas are not subject to the requirements of 6.2.1 to 6.2.3.

6.2.1 GENERAL REQUIREMENTS

6.2.1.1 Design and construction

6.2.1.1.1 Pressure receptacles and their closures must be designed, manufactured, tested and equipped in such a way as to withstand all conditions, including fatigue, to which they will be subjected during normal conditions of transport.

6.2.1.1.2 In recognition of scientific and technological advances, and recognising that pressure receptacles other than those that are marked with a UN certification marking may be used on a national or regional basis, pressure receptacles conforming to requirements other than those specified in Section 6.2.2 may be used if approved by the competent authorities in the countries of transport and use. In Australia, the manufacture, verification, filling, inspection, testing and maintenance of gas cylinders must comply with AS 2030.

6.2.1.1.3 In no case must the minimum wall thickness be less than that specified in the design and construction technical standards.

6.2.1.1.4 For welded pressure receptacles, only metals of weldable quality must be used.

6.2.1.1.5 The test pressure of cylinders, tubes, pressure drums and bundles of cylinders must be in accordance with packing instruction P200 or AS 2030, or, for a chemical under pressure, with packing instruction P206. The test pressure for closed cryogenic receptacles must be in accordance with packing instruction P203. The test pressure of a metal hydride storage system must be in accordance with packing instruction P205. The test pressure of a cylinder for an adsorbed gas must be in accordance with packing instruction P208.
6.2.1.1.6 Pressure receptacles assembled in bundles must be structurally supported and held together as a unit. Pressure receptacles must be secured in a manner that prevents movement in relation to the structural assembly and movement that would result in the concentration of harmful local stresses. Manifold assemblies (e.g. manifold, valves and pressure gauges) must be designed and constructed such that they are protected from impact and forces normally encountered in transport.

Manifolds must have at least the same test pressure as the cylinders. For toxic liquefied gases, means must be provided to ensure that each pressure receptacle can be filled separately and that no interchange of pressure receptacle contents can occur during transport.

6.2.1.1.7 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.2.1.1.8 Additional requirements for the construction of closed cryogenic receptacles for refrigerated liquefied gases

6.2.1.1.8.1 The mechanical properties of the metal used must be established for each pressure receptacle, including the impact strength and the bending coefficient.

6.2.1.1.8.2 The pressure receptacles must be thermally insulated. The thermal insulation must be protected against impact by means of a jacket. If the space between the pressure receptacle and the jacket is evacuated of air (vacuum-insulation), the jacket must be designed to withstand without permanent deformation an external pressure of at least 100 kPa (1 bar) calculated in accordance with a recognised technical code or a calculated critical collapsing pressure of not less than 200 kPa (2 bar) gauge pressure. If the jacket is so closed as to be gas-tight (e.g. in the case of vacuum-insulation), a device must be provided to prevent any dangerous pressure from developing in the insulating layer in the event of inadequate gas-tightness of the pressure receptacle or its fittings. The device must prevent moisture from penetrating into the insulation.

6.2.1.1.8.3 Closed cryogenic receptacles intended for the transport of refrigerated liquefied gases having a boiling point below -182 °C at atmospheric pressure must not include materials which may react with oxygen or oxygen enriched atmospheres in a dangerous manner, when located in parts of the thermal insulation where there is a risk of contact with oxygen or with oxygen enriched liquid.

6.2.1.1.8.4 Closed cryogenic receptacles must be designed and constructed with suitable lifting and securing arrangements.

6.2.1.1.9 Additional requirements for the construction of pressure receptacles for acetylene

Pressure receptacles for UN 1001 acetylene, dissolved, and UN 3374 acetylene, solvent free, must be filled with a porous material, uniformly distributed, of a type that conforms to the requirements and testing specified by the competent authority and which:

(a) is compatible with the pressure receptacle and does not form harmful or dangerous compounds either with the acetylene or with the solvent in the case of UN 1001; and

(b) is capable of preventing the spread of decomposition of the acetylene in the mass.

In the case of UN 1001, the solvent must be compatible with the pressure receptacles.
6.2.1.2 Materials

6.2.1.2.1 Construction materials of pressure receptacles and their closures which are in direct contact with dangerous goods must not be affected or weakened by the dangerous goods intended and must not cause a dangerous effect e.g. catalysing a reaction or reacting with the dangerous goods.

6.2.1.2.2 Pressure receptacles and their closures must be made of the materials specified in the design and construction technical standards and the applicable packing instruction for the substances intended for transport in the pressure receptacle. The materials must be resistant to brittle fracture and to stress corrosion cracking as indicated in the design and construction technical standards.

6.2.1.3 Service equipment

6.2.1.3.1 Valves, piping, other fittings subjected to pressure, excluding pressure relief devices, must be designed and constructed so that the burst pressure is at least 1.5 times the test pressure of the pressure receptacle.

6.2.1.3.2 Service equipment must be configured or designed to prevent damage that could result in the release of the pressure receptacle contents during normal conditions of handling and transport. Manifold piping leading to shut-off valves must be sufficiently flexible to protect the valves and the piping from shearing or releasing the pressure receptacle contents. The filling and discharge valves and any protective caps must be capable of being secured against unintended opening. Valves must be protected as specified in 4.1.6.1.8.

6.2.1.3.3 Pressure receptacles which are not capable of being handled manually or rolled, must be fitted with devices (skids, rings, straps) ensuring that they can be safely handled by mechanical means and so arranged as not to impair the strength of, nor cause undue stresses, in the pressure receptacle.

6.2.1.3.4 Individual pressure receptacles must be equipped with pressure relief devices as specified in AS 2030, P200(1), P205 or 6.2.1.3.6.4 and 6.2.1.3.6.5. Pressure-relief devices must be designed to prevent the entry of foreign matter, the leakage of gas and the development of any dangerous excess pressure. When fitted, pressure relief devices on manifolded horizontal pressure receptacles filled with flammable gas must be arranged to discharge freely to the open air in such a manner as to prevent any impingement of escaping gas upon the pressure receptacle itself under normal conditions of transport.

6.2.1.3.5 Pressure receptacles whose filling is measured by volume must be provided with a level indicator.

6.2.1.3.6 Additional requirements for closed cryogenic receptacles

6.2.1.3.6.1 Each filling and discharge opening in a closed cryogenic receptacle used for the transport of flammable refrigerated liquefied gases must be fitted with at least two mutually independent shut-off devices in series, the first being a stop-valve, the second being a cap or equivalent device.

6.2.1.3.6.2 For sections of piping which can be closed at both ends and where liquid product can be trapped, a method of automatic pressure-relief must be provided to prevent excess pressure build-up within the piping.

6.2.1.3.6.3 Each connection on a closed cryogenic receptacle must be clearly marked to indicate its function (e.g. vapour or liquid phase).
6.2.1.3.6.4 **Pressure-relief devices**

6.2.1.3.6.4.1 Every closed cryogenic receptacle must be provided with at least one pressure-relief device. The pressure-relief device must be of the type that will resist dynamic forces including surge.

6.2.1.3.6.4.2 Closed cryogenic receptacles may, in addition, have a frangible disc in parallel with the spring loaded device(s) in order to meet the requirements of 6.2.1.3.6.5.

6.2.1.3.6.4.3 Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the pressure-relief device.

6.2.1.3.6.4.4 All pressure-relief device inlets must under maximum filling conditions be situated in the vapour space of the closed cryogenic receptacle and the devices must be so arranged as to ensure that the escaping vapour is discharged unrestrictedly.

6.2.1.3.6.5 **Capacity and setting of pressure-relief devices**

NOTE: In relation to pressure-relief devices of closed cryogenic receptacles, MAWP means the maximum effective gauge pressure permissible at the top of a loaded closed cryogenic receptacle in its operating position including the highest effective pressure during filling and discharge.

6.2.1.3.6.5.1 The pressure-relief device must open automatically at a pressure not less than the MAWP and be fully open a pressure equal to 110% of the MAWP. It must, after discharge, close at a pressure not lower than 10% below the pressure at which discharge starts and must remain closed at all lower pressures.

6.2.1.3.6.5.2 Frangible discs must be set to rupture at a nominal pressure which is the lower of either the test pressure or 150% of the MAWP.

6.2.1.3.6.5.3 In the case of the loss of vacuum in a vacuum-insulated closed cryogenic receptacle the combined capacity of all pressure-relief devices installed must be sufficient so that the pressure (including accumulation) inside the closed cryogenic receptacle does not exceed 120% of the MAWP.

6.2.1.3.6.5.4 The required capacity of the pressure-relief devices must be calculated in accordance with an established technical code recognised by the competent authority.

6.2.1.4 **Approval of pressure receptacles**

6.2.1.4.1 The conformity of pressure receptacles must be assessed at time of manufacture as required by the competent authority. Pressure receptacles must be inspected, tested and approved by an inspection body. The technical documentation must include full specifications on design and construction, and full documentation on the manufacturing and testing.

6.2.1.4.2 Quality assurance systems must conform to the requirements of the competent authority.

6.2.1.5 **Initial inspection and test**

6.2.1.5.1 New pressure receptacles, other than closed cryogenic receptacles and metal hydride storage systems, must be subjected to testing and inspection during and after manufacture in accordance with the applicable design standards including the following:
On an adequate sample of pressure receptacles:

(a) Testing of the mechanical characteristics of the material of construction;
(b) Verification of the minimum wall thickness;
(c) Verification of the homogeneity of the material for each manufacturing batch;
(d) Inspection of the external and internal conditions of the pressure receptacles;
(e) Inspection of the neck threads;
(f) Verification of the conformance with the design standard;

For all pressure receptacles:

(g) A hydraulic pressure test. Pressure receptacles must withstand the test pressure without expansion greater than that allowed in the design specification;

NOTE: With the agreement of the competent authority, the hydraulic pressure test may be replaced by a test using a gas, where such an operation does not entail any danger.

(h) Inspection and assessment of manufacturing defects and either repairing them or rendering the pressure receptacles unserviceable. In the case of welded pressure receptacles, particular attention must be paid to the quality of the welds;

(i) An inspection of the markings on the pressure receptacles;

(j) In addition, pressure receptacles intended for the transport of UN 1001 acetylene, dissolved, and UN 3374 acetylene, solvent free, must be inspected to ensure proper installation and condition of the porous material and, if applicable, the quantity of solvent.

6.2.1.5.2 On an adequate sample of closed cryogenic receptacles, the inspections and tests specified in 6.2.1.5.1(a), (b), (d), and (f) must be performed. In addition, welds must be inspected by radiographic, ultrasonic or another suitable non-destructive test method on a sample of closed cryogenic receptacles according to the applicable design and construction standard. This weld inspection does not apply to the jacket.

Additionally, all closed cryogenic receptacles must undergo the initial inspections and tests specified in 6.2.1.5.1(g), (h), and (i), as well as a leakproofness test and a test of the satisfactory operation of the service equipment after assembly.

6.2.1.5.3 For metal hydride storage systems, it must be verified that the inspections and tests specified in 6.2.1.5.1 (a), (b), (c), (d), (e) if applicable, (f), (g), (h) and (i) have been performed on an adequate sample of the receptacles used in the metal hydride storage system. In addition, on an adequate sample of metal hydride storage systems, the inspections and tests specified in 6.2.1.5.1 (c) and (f) must be performed, as well as 6.2.1.5.1 (e), if applicable, and inspection of the external conditions of the metal hydride storage system.

Additionally, all metal hydride storage systems must undergo the initial inspections and tests specified in 6.2.1.5.1 (h) and (i), as well as a leakproofness test and a test of the satisfactory operation of the service equipment.
6.2.1.6 Periodic inspection and test

6.2.1.6.1 Refillable pressure receptacles, other than cryogenic receptacles, must be subjected to periodic inspections and tests by a body authorised by the competent authority, in accordance with the following:

(a) Check of the external conditions of the pressure receptacle and verification of the equipment and the external markings;

(b) Check of the internal conditions of the pressure receptacle (e.g. internal inspection, verification of minimum wall thickness);

(c) Checking of the threads if there is evidence of corrosion or if the fittings are removed;

(d) A hydraulic pressure test and, if necessary, verification of the characteristics of the material by suitable tests;

(e) Check of service equipment, other accessories and pressure-relief devices, if to be reintroduced into service.

NOTE 1: With the agreement of the competent authority, the hydraulic pressure test may be replaced by a test using a gas, where such an operation does not entail any danger.

NOTE 2: With the agreement of the competent authority, the hydraulic pressure test of cylinders or tubes may be replaced by an equivalent method based on acoustic emission testing, ultrasonic examination or a combination of acoustic emission testing and ultrasonic examination.

NOTE 3: The hydraulic pressure test may be replaced by ultrasonic examination carried out in accordance with ISO 10461:2005+A1:2006 for seamless aluminium alloy gas cylinders and in accordance with ISO 6406:2005 for seamless steel gas cylinders.

NOTE 4: For the periodic inspection and test frequencies, see packing instruction P200 or, for a chemical under pressure, packing instruction P206 of 4.1.4.1.

6.2.1.6.2 For pressure receptacles intended for the transport of UN 1001 acetylene, dissolved and UN 3374 acetylene, solvent free, only the external condition (corrosion, deformation) and the condition of the porous material (loosening, settlement) must be required to be examined.

6.2.1.6.3 Pressure relief valves for closed cryogenic receptacles must be subject to periodic inspections and tests

6.2.1.7 Requirements for manufacturers

6.2.1.7.1 The manufacturer must be technically able and must possess all resources required for the satisfactory manufacture of pressure receptacles; this relates in particular to qualified personnel:

(a) to supervise the entire manufacturing process; and

(b) to carry out joining of materials; and

(c) to carry out the relevant tests.

6.2.1.7.2 The proficiency test of a manufacturer must in all instances be carried out by an inspection body approved by the competent authority of the jurisdiction of approval.
6.2.1.8 Requirements for inspection bodies

6.2.1.8.1 Inspection bodies must be independent from manufacturing enterprises and competent to perform the tests, inspections and approvals required.

6.2.1.8.2 The application of 6.2.1.8.1 is subject to the relevant Australian Standards under which inspection is required.

6.2.2 REQUIREMENTS FOR UN PRESSURE RECEPTACLES

INTRODUCTORY NOTE: This Section applies to those cylinders and other pressure receptacles that fully meet the requirements specified in UN (ISO) pressure receptacles Standards. In Australia, most cylinders covered by AS 2030 are not UN (ISO) pressure receptacles. Rather they are Australian Standard [AS], American/Canadian [DOT/CTC] or British Standard [BS] cylinders. For these, the technical detail of Section 6.2.2 does not apply, as their design and operational requirements must follow AS 2030 and its subordinate Standards. The requirements for Non-UN (ISO) pressure receptacles are in Section 6.2.3.

Therefore:

Cylinders meeting UN (ISO) Standards must comply with Section 6.2.2 and be filled and used in accordance with Packing Provision P200;

All other cylinders must comply with Section 6.2.3 and be filled and used in accordance with AS 2030 and its subordinate Standards.

6.2.2.0 In addition to the general requirements of section 6.2.1, UN pressure receptacles must comply with the requirements of this section, including the standards, as applicable.

Manufacture of new pressure receptacles or service equipment according to any particular standard in 6.2.2.1 and 6.2.2.3 is not permitted after the date shown in the right hand column of the tables.

NOTE 1: With the agreement of the competent authority, more recently published versions of the standards, if available, may be used.

NOTE 2: UN pressure receptacles and service equipment constructed according to standards applicable at the date of manufacture may continue in use subject to the periodic inspection provisions of this Code.

6.2.2.1 Design, construction and initial inspection and test

6.2.2.1.1 The following standards apply for the design, construction, and initial inspection and test of UN cylinders, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5:
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
</table>
| ISO 9809-1:1999 | Gas cylinders - Refillable seamless steel gas cylinders - Design, construction and testing - Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa
NOTE: The note concerning the F factor in section 7.3 of this standard must not be applied for UN cylinders. | 31 December 2018 |
| ISO 9801-1:2010 | Gas cylinders -- Refillable seamless steel gas cylinders -- Design, construction and testing -- Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa. | Until further notice |
| ISO 9809-2:2000 | Gas cylinders - Refillable seamless steel gas cylinders - Design, construction and testing - Part 2: Quenched and tempered steel cylinders with tensile strength greater than or equal to 1100 MPa | 31 December 2018 |
| ISO 7866:1999 | Gas cylinders - Refillable seamless aluminium alloy gas cylinders - Design, construction and testing
NOTE: The note concerning the F factor in section 7.2 of this standard must not be applied for UN cylinders. Aluminium alloy 6351A – T6 or equivalent must not be authorised. | Until further notice |
| ISO 11118:1999 | Gas cylinders - Non-refillable metallic gas cylinders - Specification and test methods | Until further notice |
| ISO 11119-1:2002 | Gas cylinders of composite construction - Specification and test methods - Part 1: Hoop wrapped composite gas cylinders | Until further notice |
| ISO 4706:2008 | Gas cylinders - Refillable welded steel cylinders - Test pressure 60 bar and below | Until further notice |
| ISO 20703:2006 | Gas cylinders - Refillable welded aluminium-alloy cylinders - Design, construction and testing | Until further notice |
| ISO 18172-1:2007 | Gas cylinders - Refillable welded stainless steel cylinders - Part 1: Test pressure 6 MPa and below | Until further notice |
NOTE 1: In the above referenced standards composite cylinders must be designed for unlimited service life.

NOTE 2: After the first 15 years of service, composite cylinders manufactured according to these standards, may be approved for extended service by the competent authority which was responsible for the original approval of the cylinders and which will base its decision on the test information supplied by the manufacturer or owner or user.

6.2.2.1.2 The following standards apply for the design, construction, and initial inspection and test of UN tubes, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 11120:1999</td>
<td>Gas cylinders - Refillable seamless steel tubes for compressed gas transport, of water capacity between 150 L and 3000 L - Design, construction and testing</td>
<td>Until further notice.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The note concerning the F factor in section 7.1 of this standard must not be applied for UN tubes</td>
<td></td>
</tr>
</tbody>
</table>

6.2.2.1.3 The following standards apply for the design, construction and initial inspection and test of UN acetylene cylinders, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5:

For the cylinder shell:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 9809-1:1999</td>
<td>Gas cylinders - Refillable seamless steel gas cylinders - Design, construction and testing - Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa</td>
<td>31 December 2018</td>
</tr>
<tr>
<td></td>
<td>NOTE: The note concerning the F factor in section 7.3 of this standard must not be applied for UN cylinders.</td>
<td></td>
</tr>
</tbody>
</table>

| ISO 9809-1:2010| Gas cylinders – Refillable seamless steel gas cylinders – Design, construction and testing – Part 1: Quenched and tempered steel cylinders with tensile strength less than 1100 MPa | Until further notice |
For the porous material in the cylinder:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 3807-1:2000</td>
<td>Cylinders for acetylene - Basic requirements - Part 1: Cylinders without fusible plugs</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 3807-2:2000</td>
<td>Cylinders for acetylene - Basic requirements - Part 2: Cylinders with fusible plugs</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

6.2.2.1.4 The following standard applies for the design, construction and initial inspection and test of UN cryogenic receptacles, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 21029-1:2004</td>
<td>Cryogenic vessels - Transportable vacuum insulated vessels of not more than 1000 L volume - Part 1: Design, fabrication, inspection and tests</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

6.2.2.1.5 The following standards apply for the design, construction, and initial inspection and test of UN metal hydride storage systems, except that inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 16111:2008</td>
<td>Transportable gas storage devices - Hydrogen absorbed in reversible metal hydride</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

6.2.2.1.6 The standard shown below applies for the design, construction and initial inspection and test of UN bundles of cylinders. Each cylinder in a UN bundle of cylinders must be a UN cylinder complying with the requirements of 6.2.2. The inspection requirements related to the conformity assessment system and approval for UN bundles of cylinders must be in accordance with 6.2.2.5.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 10961:2010</td>
<td>Gas cylinders – Cylinder bundles – Design, manufacture, testing and inspection.</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

NOTE: Changing one or more cylinders of the same design type, including the same test pressure, in an existing UN bundle of cylinders does not require re-certification of the existing bundle.

6.2.2.1.7 The following standards apply for the design, construction and initial inspection and test of UN cylinders for adsorbed gases except that the inspection requirements related to the conformity assessment system and approval must be in accordance with 6.2.2.5.
6.2.2.2 Materials

In addition to the material requirements specified in the pressure receptacle design and construction standards, and any restrictions specified in the applicable packing instruction for the gas(es) to be transported (e.g. packing instruction P200 or P205), the following standards apply to material compatibility:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for manufacture</th>
</tr>
</thead>
</table>

NOTE: The limitations imposed in ISO 11114-1 on high strength steel alloys at ultimate tensile strength levels up to 1,100 MPa do not apply to SILANE (UN 2203).

6.2.2.3 Service equipment

The following standards apply to closures and their protection:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 11117:2008 + Cor 1: 2009</td>
<td>Gas cylinders – Valve protection caps and valve guards – Design, construction and tests</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 10297:2006</td>
<td>Gas cylinders – Refillable gas cylinder valves - Specification and type testing</td>
<td>Until further notice</td>
</tr>
<tr>
<td>ISO 13340:2001</td>
<td>Transportable gas cylinders – Cylinders valves for non-refillable cylinders – Specification and prototype testing</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>
For UN metal hydride storage systems, the requirements specified in the following standard apply to closures and their protection:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 16111:2008</td>
<td>Transportable gas storage devices – Hydrogen absorbed in reversible metal hydride</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>

6.2.2.4 Periodic inspection and test

The following standards apply to the periodic inspection and testing of UN cylinders and UN metal hydride storage systems:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Applicable for Manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 6406:2005</td>
<td>Seamless steel gas cylinders – Periodic inspection and testing of seamless steel gas cylinders</td>
<td>Until further notice</td>
</tr>
</tbody>
</table>
| ISO 10460:2005 | Gas cylinders – Welded carbon-steel gas cylinders – Periodic inspection and testing

NOTE: The repair of welds described in clause 12.1 of this standard must not be permitted. Repairs described in clause 12.2 require the approval of the competent authority which approved the periodic inspection and test body in accordance with 6.2.2.6.

ISO 10461:2005/A1:2006	Seamless aluminium - alloy gas cylinders – Periodic inspection and testing	Until further notice
ISO 10462:2005	Transportable cylinders for dissolved acetylene – Periodic inspection and maintenance	Until further notice
ISO 11513:2011	Gas cylinders – Refillable welded steel cylinders containing materials for sub-atmospheric gas packaging (excluding acetylene) – Design, construction, testing, use and periodic inspection	Until further notice
ISO 11623:2002	Transportable gas cylinders – Periodic inspection and testing of composite gas cylinders	Until further notice
ISO 16111:2008	Transportable gas storage devices – Hydrogen absorbed in reversible metal hydride	Until further notice

6.2.2.5 Conformity assessment system and approval for manufacture of pressure receptacles

6.2.2.5.1 Definitions

For the purposes of this section:

Conformity assessment system means a system for competent authority approval of a manufacturer, by pressure receptacle design type approval, approval of manufacturer's quality system and approval of inspection bodies;

Design type means a pressure receptacle design as specified by a particular pressure receptacle standard;

Verify means confirm by examination or provision of objective evidence that specified requirements have been fulfilled.

6.2.2.5.2 General requirements

Competent authority

6.2.2.5.2.1 The competent authority that approves the pressure receptacle must approve the conformity assessment system for the purpose of ensuring that pressure receptacles conform to the requirements of this Code. In instances where the competent authority that approves a pressure receptacle is not the competent
authority in the country of manufacture, the marks of the approval country and the country of manufacture must be indicated in the pressure receptacle marking (see 6.2.2.7 and 6.2.2.8).

The competent authority of the country of approval must supply, upon request, evidence demonstrating compliance to this conformity assessment system to its counterpart in a country of use.

6.2.2.5.2.2 The competent authority may delegate its functions in this conformity assessment system in whole or in part.

6.2.2.5.2.3 The competent authority must ensure that a current list of approved inspection bodies and their identity marks and approved manufacturers and their identity marks is available.

Inspection body

6.2.2.5.2.4 The inspection body must be approved by the competent authority for the inspection of pressure receptacles and must:

(a) have a staff with an organisational structure, capable, trained, competent, and skilled, to satisfactorily perform its technical functions;

(b) have access to suitable and adequate facilities and equipment;

(c) operate in an impartial manner and be free from any influence which could prevent it from doing so;

(d) ensure commercial confidentiality of the commercial and proprietary activities of the manufacturer and other bodies;

(e) maintain clear demarcation between actual inspection body functions and unrelated functions;

(f) operate a documented quality system;

(g) ensure that the tests and inspections specified in the relevant pressure receptacle standard and this Code are performed; and

(h) maintain an effective and appropriate report and record system in accordance with 6.2.2.5.6.

6.2.2.5.2.5 The inspection body must perform design type approval, pressure receptacle production testing and inspection, and certification to verify conformity with the relevant pressure receptacle standard (see 6.2.2.5.4 and 6.2.2.5.5).

Manufacturer

6.2.2.5.2.6 The manufacturer must:

(a) operate a documented quality system in accordance with 6.2.2.5.3;

(b) apply for design type approvals in accordance with 6.2.2.5.4;

(c) select an inspection body from the list of approved inspection bodies maintained by the competent authority in the country of approval; and

(d) maintain records in accordance with 6.2.2.5.6.

Testing laboratory

6.2.2.5.2.7 The testing laboratory must have:

(a) staff with an organisational structure, sufficient in number, competence, and skill; and

(b) suitable and adequate facilities and equipment to perform the tests required by the manufacturing standard to the satisfaction of the inspection body.
6.2.2.5.3 **Manufacturer's quality system**

6.2.2.5.3.1 The quality system must contain all the elements, requirements, and provisions adopted by the manufacturer. It must be documented in a systematic and orderly manner in the form of written policies, procedures and instructions.

The contents must in particular include adequate descriptions of:

(a) the organisational structure and responsibilities of personnel with regard to design and product quality;

(b) the design control and design verification techniques, processes, and procedures that will be used when designing the pressure receptacles;

(c) the relevant pressure receptacle manufacturing, quality control, quality assurance and process operation instructions that will be used;

(d) quality records, such as inspection reports, test data and calibration data;

(e) management reviews to ensure the effective operation of the quality system arising from the audits in accordance with 6.2.2.5.3.2;

(f) the process describing how customer requirements are met;

(g) the process for control of documents and their revision;

(h) the means for control of non-conforming pressure receptacles, purchased components, in-process and final materials; and

(i) training programmes and qualification procedures for relevant personnel.

6.2.2.5.3.2 Audit of the quality system

The quality system must be initially assessed to determine whether it meets the requirements in 6.2.2.5.3.1 to the satisfaction of the competent authority. The manufacturer must be notified of the results of the audit. The notification must contain the conclusions of the audit and any corrective actions required. Periodic audits must be carried out, to the satisfaction of the competent authority, to ensure that the manufacturer maintains and applies the quality system. Reports of the periodic audits must be provided to the manufacturer.

6.2.2.5.3.3 Maintenance of the quality system

The manufacturer must maintain the quality system as approved in order that it remains adequate and efficient. The manufacturer must notify the competent authority that approved the quality system, of any intended changes. The proposed changes must be evaluated in order to determine whether the amended quality system will still satisfy the requirements in 6.2.2.5.3.1.

6.2.2.5.4 **Approval process**

6.2.2.5.4.1 The initial design type approval must consist of approval of the manufacturer’s quality system and approval of the pressure receptacle design to be produced. An application for an initial design type approval must meet the requirements of 6.2.2.5.4.2 to 6.2.2.5.4.6 and 6.2.2.5.4.9.

6.2.2.5.4.2 A manufacturer desiring to produce pressure receptacles in accordance with a pressure receptacle standard and this Code must apply for, obtain, and retain a design type approval certificate issued by the competent authority in the country of approval for at least one pressure receptacle design type in accordance with the procedure given in 6.2.2.5.4.9. This certificate must, on request, be submitted to the competent authority of the country of use.
6.2.2.5.4.3 An application must be made for each manufacturing facility and must include:
(a) the name and registered address of the manufacturer and in addition, if the application is submitted by an authorised representative, its name and address;
(b) the address of the manufacturing facility (if different from the above);
(c) the name and title of the person(s) responsible for the quality system;
(d) the designation of the pressure receptacle and the relevant pressure receptacle standard;
(e) details of any refusal of approval of a similar application by any other competent authority;
(f) the identity of the inspection body for design type approval;
(g) documentation on the manufacturing facility as specified under 6.2.2.5.3.1; and
(h) the technical documentation required for design type approval, which must enable verification of the conformity of the pressure receptacles with the requirements of the relevant pressure receptacle design standard. The technical documentation must cover the design and method of manufacture and must contain, as far as is relevant for assessment, at least the following:
 (i) pressure receptacle design standard, design and manufacturing drawings, showing components and subassemblies, if any;
 (ii) descriptions and explanations necessary for the understanding of the drawings and intended use of the pressure receptacles;
 (iii) a list of the standards necessary to fully define the manufacturing process;
 (iv) design calculations and material specifications; and
 (v) design type approval test reports, describing the results of examinations and tests carried out in accordance with 6.2.2.5.4.9.

6.2.2.5.4.4 An initial audit in accordance with 6.2.2.5.3.2 must be performed to the satisfaction of the competent authority.

6.2.2.5.4.5 If the manufacturer is denied approval, the competent authority must provide written detailed reasons for such denial.

6.2.2.5.4.6 Following approval, changes to the information submitted under 6.2.2.5.4.3 relating to the initial approval must be provided to the competent authority.

Subsequent design type approvals

6.2.2.5.4.7 An application for a subsequent design type approval must encompass the requirements of 6.2.2.5.4.8 and 6.2.2.5.4.9, provided a manufacturer is in the possession of an initial design type approval. In such a case, the manufacturer's quality system according to 6.2.2.5.3 must have been approved during the initial design type approval and must be applicable for the new design.

6.2.2.5.4.8 The application must include:
(a) the name and address of the manufacturer and in addition, if the application is submitted by an authorised representative, its name and address;
(b) details of any refusal of approval of a similar application by any other competent authority;
(c) evidence that initial design type approval has been granted; and
(d) the technical documentation, as described in 6.2.2.5.4.3(h).

Procedure for design type approval

6.2.2.5.4.9 The inspection body must:

(a) examine the technical documentation to verify that:
 (i) the design is in accordance with the relevant provisions of the standard, and
 (ii) the prototype lot has been manufactured in conformity with the technical documentation and is representative of the design;

(b) verify that the production inspections have been carried out as required in accordance with 6.2.2.5.5;

(c) select pressure receptacles from a prototype production lot and supervise the tests of these pressure receptacles as required for design type approval;

(d) perform or have performed the examinations and tests specified in the pressure receptacle standard to determine that:
 (i) the standard has been applied and fulfilled, and
 (ii) the procedures adopted by the manufacturer meet the requirements of the standard; and

(e) ensure that the various type approval examinations and tests are correctly and competently carried out.

After prototype testing has been carried out with satisfactory results and all applicable requirements of 6.2.2.5.4 have been satisfied, a design type approval certificate must be issued, which must include the name and address of the manufacturer, results and conclusions of the examination, and the necessary data for identification of the design type.

If the manufacturer is denied a design type approval, the competent authority must provide written detailed reasons for such denial.

6.2.2.5.4.10 *Modifications to approved design types*

The manufacturer must either:

(a) inform the issuing competent authority of modifications to the approved design type where such modifications do not constitute a new design, as specified in the pressure receptacle standard; or

(b) request a subsequent design type approval where such modifications constitute a new design according to the relevant pressure receptacle standard. This additional approval must be given in the form of an amendment to the original design type approval certificate.

6.2.2.5.11 Upon request, the competent authority must communicate to any other competent authority, information concerning design type approval, modifications of approvals and withdrawn approvals.

6.2.2.5.5 *Production inspection and certification*

An inspection body, or its delegate, must carry out the inspection and certification of each pressure receptacle. The inspection body selected by the manufacturer for inspection and testing during production may be different from the inspection body used for the design type approval testing.

Where it can be demonstrated to the satisfaction of the inspection body that the manufacturer has trained competent inspectors, independent of the manufacturing operations, inspection may be performed by those inspectors.
In such a case, the manufacturer must maintain training records of the inspectors.

The inspection body must verify that the inspections by the manufacturer, and tests performed on those pressure receptacles, fully conform to the standard and the requirements of this Code. Should non-conformance in conjunction with this inspection and testing be determined, the permission to have inspection performed by the manufacturer's inspectors may be withdrawn.

The manufacturer must, after approval by the inspection body, make a declaration of conformity with the certified design type. The application of the pressure receptacle certification marking must be considered a declaration that the pressure receptacle complies with the applicable pressure receptacle standards and the requirements of this conformity assessment system and this Code. The inspection body must affix or delegate the manufacturer to affix the pressure receptacle certification marking and the registered mark of the inspection body to each approved pressure receptacle.

A certificate of compliance, signed by the inspection body and the manufacturer, must be issued before the pressure receptacles are filled.

6.2.2.5.6 Records
Design type approval and certificate of compliance records must be retained by the manufacturer and the inspection body for not less than 20 years.

6.2.2.6 Approval system for periodic inspection and test of pressure receptacles
6.2.2.6.1 Definition
For the purposes of this section:

Approval system means a system for competent authority approval of a body performing periodic inspection and test of pressure receptacles (hereinafter referred to as “periodic inspection and test body”), including approval of that body’s quality system.

6.2.2.6.2 General requirements
Competent authority

6.2.2.6.2.1 The competent authority must establish an approval system for the purpose of ensuring that the periodic inspection and test of pressure receptacles conform to the requirements of this Code. In instances where the competent authority that approves a body performing periodic inspection and test of a pressure receptacle is not the competent authority of the country approving the manufacture of the pressure receptacle, the marks of the approval country of periodic inspection and test must be indicated in the pressure receptacle marking (see 6.2.2.7).

The competent authority of the country of approval for the periodic inspection and test must supply, upon request, evidence demonstrating compliance to this approval system including the records of the periodic inspection and test to its counterpart in a country of use.

The competent authority of the country of approval may terminate the approval certificate referred to in 6.2.2.6.4.1, upon evidence demonstrating non-compliance with the approval system.

6.2.2.6.2.2 The competent authority may delegate its functions in this approval system, in whole or in part.
6.2.2.6.2.3 The competent authority must ensure that a current list of approved periodic inspection and test bodies and their identity marks is available.

Periodic inspection and test body

6.2.2.6.2.4 The periodic inspection and test body must be approved by the competent authority and must:

(a) have a staff with an organisational structure, capable, trained, competent, and skilled, to satisfactorily perform its technical functions;

(b) have access to suitable and adequate facilities and equipment;

(c) operate in an impartial manner and be free from any influence which could prevent it from doing so;

(d) ensure commercial confidentiality;

(e) maintain clear demarcation between actual periodic inspection and test body functions and unrelated functions;

(f) operate a documented quality system accordance with 6.2.2.6.3;

(g) apply for approval in accordance with 6.2.2.6.4;

(h) ensure that the periodic inspections and tests are performed in accordance with 6.2.2.6.5; and

(i) maintain an effective and appropriate report and record system in accordance with 6.2.2.6.6.

6.2.2.6.3 Quality system and audit of the periodic inspection and test body

6.2.2.6.3.1 Quality system

The quality system must contain all the elements, requirements, and provisions adopted by the periodic inspection and test body. It must be documented in a systematic and orderly manner in the form of written policies, procedures, and instructions.

The quality system must include:

(a) a description of the organisational structure and responsibilities;

(b) the relevant inspection and test, quality control, quality assurance, and process operation instructions that will be used;

(c) quality records, such as inspection reports, test data, calibration data and certificates;

(d) management reviews to ensure the effective operation of the quality system arising from the audits performed in accordance with 6.2.2.6.3.2;

(e) a process for control of documents and their revision;

(f) a means for control of non-conforming pressure receptacles; and

(g) training programmes and qualification procedures for relevant personnel.

6.2.2.6.3.2 Audit

The periodic inspection and test body and its quality system must be audited in order to determine whether it meets the requirements of this Code to the satisfaction of the competent authority.

An audit must be conducted as part of the initial approval process (see 6.2.2.6.4.3). An audit may be required as part of the process to modify an approval (see 6.2.2.6.4.6).
Periodic audits must be conducted, to the satisfaction of the competent authority, to ensure that the periodic inspection and test body continues to meet the requirements of this Code.

The periodic inspection and test body must be notified of the results of any audit. The notification must contain the conclusions of the audit and any corrective actions required.

6.2.2.6.3.3 Maintenance of the quality system

The periodic inspection and test body must maintain the quality system as approved in order that it remains adequate and efficient.

The periodic inspection and test body must notify the competent authority that approved the quality system, of any intended changes, in accordance with the process for modification of an approval in 6.2.2.6.4.6.

6.2.2.6.4 Approval process for periodic inspection and test bodies

Initial approval

6.2.2.6.4.1 A body desiring to perform periodic inspection and test of pressure receptacles in accordance with a pressure receptacle standard and this Code must apply for, obtain, and retain an approval certificate issued by the competent authority.

This written approval must, on request, be submitted to the competent authority of a country of use.

6.2.2.6.4.2 An application must be made for each periodic inspection and test body and must include:

(a) the name and address of the periodic inspection and test body and, if the application is submitted by an authorised representative, its name and address;

(b) the address of each facility performing periodic inspection and test;

(c) the name and title of the person(s) responsible for the quality system;

(d) the designation of the pressure receptacles, the periodic inspection and test methods, and the relevant pressure receptacle standards met by the quality system;

(e) documentation on each facility, the equipment, and the quality system as specified under 6.2.2.6.3.1;

(f) the qualifications and training records of the periodic inspection and test personnel; and

(g) details of any refusal of approval of a similar application by any other competent authority.

6.2.2.6.4.3 The competent authority must:

(a) examine the documentation to verify that the procedures are in accordance with the requirements of the relevant pressure receptacle standards and this Code; and

(b) conduct an audit in accordance with 6.2.2.6.3.2 to verify that the inspections and tests are carried out as required by the relevant pressure receptacle standards and this Code, to the satisfaction of the competent authority.

6.2.2.6.4.4 After the audit has been carried out with satisfactory results and all applicable requirements of 6.2.2.6.4 have been satisfied, an approval certificate must be
issued. It must include the name of the periodic inspection and test body, the registered mark, the address of each facility, and the necessary data for identification of its approved activities (e.g. designation of pressure receptacles, periodic inspection and test method and pressure receptacle standards).

6.2.2.6.4.5 If the periodic inspection and test body is denied approval, the competent authority must provide written detailed reasons for such denial.

Modifications to periodic inspection and test body approvals

6.2.2.6.4.6 Following approval, the periodic inspection and test body must notify the issuing competent authority of any modifications to the information submitted under 6.2.2.6.4.2 relating to the initial approval.

The modifications must be evaluated in order to determine whether the requirements of the relevant pressure receptacle standards and this Code will be satisfied. An audit in accordance with 6.2.2.6.3.2 may be required. The competent authority must accept or reject these modifications in writing, and an amended approval certificate must be issued as necessary.

6.2.2.6.4.7 Upon request, the competent authority must communicate to any other competent authority, information concerning initial approvals, modifications of approvals, and withdrawn approvals.

6.2.2.6.5 Periodic inspection and test and certification

The application of the periodic inspection and test marking to a pressure receptacle must be considered a declaration that the pressure receptacle complies with the applicable pressure receptacle standards and the requirements of this Code. The periodic inspection and test body must affix the periodic inspection and test marking, including its registered mark, to each approved pressure receptacle (see 6.2.2.7.6).

A record certifying that a pressure receptacle has passed the periodic inspection and test must be issued by the periodic inspection and test body, before the pressure receptacle is filled.

6.2.2.6.6 Records

The periodic inspection and test body must retain records of pressure receptacle periodic inspection and tests (both passed and failed) including the location of the test facility, for not less than 15 years.

The owner of the pressure receptacle must retain an identical record until the next periodic inspection and test unless the pressure receptacle is permanently removed from service.

6.2.2.7 Marking of refillable UN pressure receptacles

NOTE: Marking requirements for UN metal hydride storage systems are given in 6.2.2.9. and marking requirements for UN bundles of cylinders are given in 6.2.2.10.

6.2.2.7.1 Refillable UN pressure receptacles must be marked clearly and legibly with certification, operational and manufacturing marks. These marks must be permanently affixed (e.g. stamped, engraved, or etched) on the pressure receptacle. The marks must be on the shoulder, top end or neck of the pressure receptacle or on a permanently affixed component of the pressure receptacle (e.g. welded collar or corrosion resistant plate welded on the outer jacket of a closed cryogenic receptacle). Except for the UN packaging symbol, the minimum size of the marks must be 5 mm for pressure receptacles with a diameter greater than or equal to 140 mm and 2.5 mm for pressure
receptacles with a diameter less than 140 mm. The minimum size of the UN packaging symbol must be 10 mm for pressure receptacles with a diameter greater than or equal to 140 mm and 5 mm for pressure receptacles with a diameter less than 140 mm.

6.2.2.7.2 The following certification marks must be applied:

(a) The UN packaging symbol.

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8;

(b) The technical standard (e.g. ISO 9809-1) used for design, manufacture and testing;

(c) The character(s) identifying the country of approval as indicated by the distinguishing signs of motor vehicles in international traffic;

(d) The identity mark or stamp of the inspection body that is registered with the competent authority of the country authorising the marking;

(e) The date of the initial inspection, the year (four digits) followed by the month (two digits) separated by a slash (i.e. “/”).

6.2.2.7.3 The following operational marks must be applied:

(f) The test pressure in bar, preceded by the letters “PH” and followed by the letters “BAR”;

(g) The mass of the empty pressure receptacle including all permanently attached integral parts (e.g. neck ring, foot ring, etc.) in kilograms, followed by the letters “KG”. This mass must not include the mass of valve, valve cap or valve guard, any coating, or porous material for acetylene. The mass must be expressed to three significant figures rounded up to the last digit. For cylinders of less than 1 kg, the mass must be expressed to two significant figures rounded up to the last digit. In the case of pressure receptacles for UN 1001 acetylene, dissolved and UN 3374 acetylene, solvent free, at least one decimal must be shown after the decimal point and two digits for pressure receptacles of less than 1 kg;

(h) The minimum guaranteed wall thickness of the pressure receptacle in millimetres followed by the letters “MM”. This mark is not required for pressure receptacles with a water capacity less than or equal to 1 litre or for composite cylinders or for closed cryogenic receptacles;

(i) In the case of pressure receptacles for compressed gases, UN 1001 acetylene, dissolved, and UN 3374 acetylene, solvent free, the working pressure in bar, preceded by the letters “PW”. In the case of closed cryogenic receptacles, the maximum allowable working pressure preceded by the letters “MAWP”;

(j) In the case of pressure receptacles for liquefied gases and refrigerated liquefied gases, the water capacity in litres expressed to three significant digits rounded down to the last digit, followed by the letter “L”. If the value of the minimum or nominal water capacity is an integer, the figures after the decimal point may be neglected;

(k) In the case of pressure receptacles for UN 1001 acetylene, dissolved, the total of the mass of the empty receptacle, the fittings and accessories not removed during filling, any coating, the porous material, the solvent and the saturation gas expressed to three significant figures rounded down to the last digit followed by the letters “KG”. At least one decimal must be shown after the decimal point. For pressure receptacles of less than 1 kg,
the mass must be expressed to two significant figures rounded down to
the last digit;

(i) In the case of pressure receptacles for UN 3374 acetylene, solvent free,
the total of the mass of the empty receptacle, the fittings and accessories
not removed during filling, any coating and the porous material expressed
to three significant figures rounded down to the last digit followed by the
letters "KG". At least one decimal must be shown after the decimal point.
For pressure receptacles of less than 1 kg, the mass must be expressed
to two significant figures rounded down to the last digit;

6.2.2.7.4 The following manufacturing marks must be applied:

(m) Identification of the cylinder thread (e.g. 25E). This mark is not required
for closed cryogenic receptacles;

(n) The manufacturer's mark registered by the competent authority. When the
country of manufacture is not the same as the country of approval, then
the manufacturer's mark must be preceded by the character(s) identifying
the country of manufacture as indicated by the distinguishing signs of
motor vehicles in international traffic. The country mark and the
manufacturer's mark must be separated by a space or slash;

(o) The serial number assigned by the manufacturer.

(p) In the case of steel pressure receptacles and composite pressure
receptacles with steel liner intended for the transport of gases with a risk
of hydrogen embrittlement, the letter "H" showing compatibility of the steel
(see ISO 11114-1:19972012);

6.2.2.7.5 The above marks must be placed in three groups:

- Manufacturing marks must be the top grouping and must appear
 consecutively in the sequence given in 6.2.2.7.4.

- The operational marks in 6.2.2.7.3 must be the middle grouping and
 the test pressure (f) must be immediately preceded by the working
 pressure (i) when the latter is required.

- Certification marks must be the bottom grouping and must appear in
 the sequence given in 6.2.2.7.2.
The following is an example of the markings applied to a cylinder.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(n)</td>
<td>(o)</td>
<td>(p)</td>
<td></td>
</tr>
<tr>
<td>25E</td>
<td>D</td>
<td>MF</td>
<td>765432</td>
<td>H</td>
</tr>
</tbody>
</table>

6.2.2.7.6 Other marks are allowed in areas other than the side wall, provided they are made in low stress areas and are not of a size and depth that will create harmful stress concentrations. In the case of closed cryogenic receptacles, such marks may be on a separate plate attached to the outer jacket. Such marks must not conflict with required marks.

6.2.2.7.7 In addition to the preceding marks, each refillable pressure receptacle that meets the periodic inspection and test requirements of 6.2.2.4 must be marked indicating:

(a) The character(s) identifying the country authorising the body performing the periodic inspection and test. This marking is not required if this body is approved by the competent authority of the country approving manufacture;

(b) The registered mark of the body authorised by the competent authority for performing periodic inspection and test;

(c) The date of the periodic inspection and test, the year (two digits) followed by the month (two digits) separated by a slash (i.e. “/”). Four digits may be used to indicate the year.

The above marks must appear consecutively in the sequence given.

6.2.2.7.8 For acetylene cylinders, with the agreement of the competent authority, the date of the most recent periodic inspection and the stamp of the body performing the periodic inspection and test may be engraved on a ring held on the cylinder by the valve. The ring must be configured so that it can only be removed by disconnecting the valve from the cylinder.

6.2.2.7.9 <UN Deleted> For bundles of cylinders, pressure receptacle marking requirements only apply to the individual cylinders of a bundle and not to any assembly structure.

6.2.2.8 Marking of non-refillable UN pressure receptacles

6.2.2.8.1 Non-refillable UN pressure receptacles must be marked clearly and legibly with certification and gas or pressure receptacle specific marks. These marks must be permanently affixed (e.g. stencilled, stamped, engraved, or etched) on the pressure receptacle. Except when stencilled, the marks must be on the shoulder, top end or neck of the pressure receptacle or on a permanently affixed component of the pressure receptacle (e.g. welded collar). Except for the “UN” mark and the “DO NOT REFILL” mark, the minimum size of the marks must be 5 mm for pressure receptacles with a diameter greater than or equal to 140 mm and 2.5 mm for pressure receptacles with a diameter less than 140 mm.
The minimum size of the “UN” mark must be 10 mm for pressure receptacles with a diameter greater than or equal to 140 mm and 5 mm for pressure receptacles with a diameter less than 140 mm. The minimum size of the “DO NOT REFILL” mark must be 5 mm.

6.2.2.8.2 The marks listed in 6.2.2.7.1 to 6.2.2.7.3 must be applied with the exception of (g), (h), and (m). The serial number (o) may be replaced by the batch number. In addition, the words “DO NOT REFILL” in letters of at least 5 mm in height are required.

6.2.2.8.3 The requirements of 6.2.2.7.4 must apply.

NOTE: Non-refillable pressure receptacles may, on account of their size, substitute this marking by a label.

6.2.2.8.4 Other marks are allowed provided they are made in low stress areas other than the side wall and are not of a size and depth that will create harmful stress concentrations. Such marks must not conflict with required marks.

6.2.2.9 Marking of UN metal hydride storage systems

6.2.2.9.1 UN metal hydride storage systems must be marked clearly and legibly with the marks listed below. These marks must be permanently affixed (e.g. stamped, engraved, or etched) on the metal hydride storage system. The marks must be on the shoulder, top end or neck of the metal hydride storage system or on a permanently affixed component of the metal hydride storage system. Except for the United Nations packaging symbol, the minimum size of the marks must be 5 mm for metal hydride storage systems with a smallest overall dimension greater than or equal to 140 mm and 2.5 mm for metal hydride storage systems with a smallest overall dimension less than 140 mm. The minimum size of the United Nations packaging symbol must be 10 mm for metal hydride storage systems with a smallest overall dimension greater than or equal to 140 mm and 5 mm for metal hydride storage systems with a smallest overall dimension less than 140 mm.

6.2.2.9.2 The following marks must be applied:

(a) The United Nations packaging symbol

![UN Symbol]

This symbol must not be used for any purpose other than certifying that a packaging, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;

(b) “ISO 16111” (the technical standard used for design, manufacture and testing);

(c) The character(s) identifying the country of approval as indicated by the distinguishing signs of motor vehicles in international traffic;

(d) The identity mark or stamp of the inspection body that is registered with the competent authority of the country authorising the marking;

(e) The date of the initial inspection, the year (four digits) followed by the month (two digits) separated by a slash (i.e. “/”);

(f) The test pressure of the receptacle in bar, preceded by the letters "PH" and followed by the letters "BAR";

(g) The rated charging pressure of the metal hydride storage system in bar, preceded by the letters "RCP" and followed by the letters "BAR";

(h) The manufacturer's mark registered by the competent authority. When the country of manufacture is not the same as the country of approval, then
the manufacturer’s mark must be preceded by the character(s) identifying the country of manufacture as indicated by the distinguishing signs of motor vehicles in international traffic. The country mark and the manufacturer’s mark must be separated by a space or slash;

(i) The serial number assigned by the manufacturer;

(j) In the case of steel receptacles and composite receptacles with steel liner, the letter "H" showing compatibility of the steel (see 1SO 11114-1:1997); and,

(k) In the case of metal hydride storage systems having limited life, the date of expiry, denoted by the letters "FINAL" followed by the year (four digits) followed by the month (two digits) separated by a slash (i.e. "/").

The certification marks specified in (a) to (e) above must appear consecutively in the sequence given. The test pressure (f) must be immediately preceded by the rated charging pressure (g). The manufacturing marks specified in (h) to (k) above must appear consecutively in the sequence given.

6.2.2.9.3 Other marks are allowed in areas other than the side wall, provided they are made in low stress areas and are not of a size and depth that will create harmful stress concentrations. Such marks must not conflict with required marks.

6.2.2.9.4 In addition to the preceding marks, each metal hydride storage system that meets the periodic inspection and test requirements of 6.2.2.4 must be marked indicating:

(a) The character(s) identifying the country authorising the body performing the periodic inspection and test, as indicated by the distinguishing sign of motor vehicles in international traffic. This marking is not required if this body is approved by the competent authority of the country approving manufacture;

(b) The registered mark of the body authorised by the competent authority for performing periodic inspection and test;

(c) The date of the periodic inspection and test, the year (two digits) followed by the month (two digits) separated by a slash (i.e. "/"). Four digits may be used to indicate the year.

The above marks must appear consecutively in the sequence given.

6.2.2.10 Marking of bundles of cylinders

6.2.2.10.1 Individual cylinders in a bundle of cylinders must be marked in accordance with 6.2.2.7.

6.2.2.10.2 Refillable UN bundles of cylinders must be marked clearly and legibly with certification, operational, and manufacturing marks. These marks must be permanently affixed (e.g. stamped, engraved, or etched) on a plate permanently attached to the frame of the bundle of cylinders. Except for the UN packaging symbol, the minimum size of the marks must be 5 mm. The minimum size of the UN packaging symbol must be 10 mm.

6.2.2.10.3 The following marks must be applied:

(a) The certification marks specified in 6.2.2.7.2 (a), (b), (c), (d) and (e);

(b) The operational marks specified in 6.2.2.7.3 (f), (i), (j) and the total of the mass of the frame of the bundle and all permanently attached parts (cylinders, manifold, fittings and valves). Bundles intended for the carriage of UN 1001 acetylene, dissolved and UN 3374 acetylene, solvent free must bear the tare mass as specified in clause B.4.2 of ISO 10961:2010; and
6.2.2.10.4 The marks must be placed in three groups:
(a) The manufacturing marks must be the top grouping and must appear consecutively in the sequence given in 6.2.2.10.3 (c);
(b) The operational marks in 6.2.2.10.3 (b) must be the middle grouping and the operational mark specified in 6.2.2.7.3 (f) must be immediately preceded by the operational mark specified in 6.2.2.7.3 (i) when the latter is required;
(c) Certification marks must be the bottom grouping and must appear in the sequence given in 6.2.2.10.3 (a).

6.2.3 REQUIREMENTS FOR NON-UN PRESSURE RECEPTACLES

6.2.3.1 Pressure receptacles not designed, constructed, inspected, tested and approved according to the requirements of Section 6.2.2, that are cylinders to be filled and used in Australia, must comply with AS 2030 and its relevant subordinate standards, and with the general requirements of Section 6.2.1.

6.2.3.2 Pressure receptacles that do not comply with Section 6.2.2 must not be marked with the UN packaging symbol.

6.2.3.3 Except for cylinders that comply with AS 2030 and its subordinate standards, for metallic cylinders, tubes, pressure drums, bundles of cylinders and salvage pressure receptacles, the construction must be such that the minimum burst ratio (burst pressure divided by test pressure) is:
– 1.50 for refillable pressure receptacles,
– 2.00 for non-refillable pressure receptacles.

6.2.3.4 Cylinders that comply with AS 2030 and its subordinate standards must be marked in accordance with AS 2030.

6.2.3.5 Salvage pressure receptacles

To permit the safe handling and disposal of the pressure receptacles transported within the salvage pressure receptacle, the design may include equipment not otherwise used for cylinders or pressure drums such as flat heads, quick opening devices and openings in the cylindrical part.

Instructions on the safe handling and use of the salvage pressure receptacle must be clearly shown in the documentation for the application to the competent authority and must form part of the approval certificate. In the approval certificate, the pressure receptacles authorised to be transported in a salvage pressure receptacle must be indicated. A list of the materials of construction of all parts likely to be in contact with the dangerous goods must also be included.

A copy of the approval certificate must be delivered by the manufacturer to the owner of a salvage pressure receptacle.

The marking of salvage pressure receptacles according to 6.2.3 must be determined by the competent authority in taking into account suitable marking provisions of 6.2.2.7 as appropriate. The marking must include the water capacity and test pressure of the salvage pressure receptacle.

NOTE: These provisions for salvage pressure receptacles may be applied for new salvage pressure receptacles as from 1 January 2013, unless otherwise authorised, and are to be applied for all new salvage pressure receptacles as
from 1 January 2014. Salvage pressure receptacles approved in accordance with national regulations may be used with the approval of the competent authorities of the countries of use.

6.2.4 REQUIREMENTS FOR AEROSOL DISPENSERS, SMALL RECEPTACLES CONTAINING GAS (GAS CARTRIDGES) AND FUEL CELL CARTRIDGES CONTAINING LIQUEFIED FLAMMABLE GAS

Each filled aerosol dispenser or gas cartridge or fuel cell cartridge must be subjected to a test in a hot water bath in accordance with 6.2.4.1 or an approved water bath alternative in accordance with 6.2.4.2.

6.2.4.1 Small receptacles containing gas (gas cartridges) and fuel cell cartridges containing liquefied flammable gas

6.2.4.1.1 Each receptacle or fuel cell cartridge must be subjected to a test performed in a hot water bath; the temperature of the bath and the duration of the test must be such that the internal pressure reaches that which would be reached at 55°C (50°C if the liquid phase does not exceed 95% of the capacity of the receptacle or fuel cell cartridge at 50°C). If the contents are sensitive to heat or if the receptacles or the fuel cell cartridges are made of plastics material which softens at this test temperature, the temperature of the bath must be set at between 20°C and 30°C but, in addition, one receptacle or fuel cell cartridge in 2000 must be tested at the higher temperature.

6.2.4.1.2 No leakage or permanent deformation of a receptacle or fuel cell cartridge may occur, except that a plastics receptacle or fuel cell cartridge may be deformed through softening provided that it does not leak.

6.2.4.2 Aerosol Dispensers

Aerosol dispensers must comply with AS 2278 or an equivalent international or foreign standard (see 1.2.3.2.4). Each filled aerosol dispenser must be subjected to a test performed in a hot water bath or a water bath alternative where permitted by AS 2278.

6.2.4.2.1 Hot water bath test

6.2.4.2.1.1 The temperature of the water bath and the duration of the test must be such that the internal pressure reaches that which would be reached at 55°C (50°C if the liquid phase does not exceed 95% of the capacity of the aerosol dispenser, gas cartridge or fuel cell cartridge at 50°C). If the contents are sensitive to heat or if the aerosol dispensers, gas cartridge or fuel cell cartridge are made of plastics material which softens at this test temperature, the temperature of the bath must be set at between 20°C and 30°C but, in addition, one aerosol dispenser, gas cartridge or fuel cell cartridge in 2000 must be tested at the higher temperature.

6.2.4.2.1.2 No leakage or permanent deformation of an aerosol dispenser, receptacle or fuel cell cartridge may occur, except that a plastic aerosol dispenser, gas cartridge or fuel cell cartridge may be deformed through softening provided that it does not leak.

6.2.4.2.2 Alternative methods

Where permitted by AS 2278 alternative methods which provide an equivalent level of safety may be used provided that the requirements of 6.2.4.2.2.1, 6.2.4.2.2.2 and 6.2.4.2.2.3 6.2.4.2.1 and, as appropriate, 6.2.4.2.2 or 6.2.4.2.3 are met.

6.2.4.2.2.1 Quality system
Aerosol dispenser, gas cartridge or fuel cell cartridge fillers and component manufacturers must have a quality system. The quality system must implement procedures to ensure that all aerosol dispensers, gas cartridge or fuel cell cartridges that leak or that are deformed are rejected and not offered for transport.

The quality system must include:
(a) a description of the organisational structure and responsibilities;
(b) the relevant inspection and test, quality control, quality assurance, and process operation instructions that will be used;
(c) quality records, such as inspection reports, test data, calibration data and certificates;
(d) management reviews to ensure the effective operation of the quality system;
(e) a process for control of documents and their revision;
(f) a means for control of non-conforming aerosol dispensers, gas cartridge or fuel cell cartridges;
(g) training programmes and qualification procedures for relevant personnel; and
(h) procedures to ensure that there is no damage to the final product.

An initial audit and periodic audits must be conducted in accordance with AS 2278. These audits must ensure the system is and remains adequate and efficient.

6.2.4.2.2 Aerosol Dispensers

6.2.4.2.2.1 Pressure and leak testing of aerosol dispensers before filling

Every Each empty aerosol dispenser must be subjected to a pressure equal to or in excess of the maximum expected in the filled aerosol dispensers at 55 °C (50 °C if the liquid phase does not exceed 95% of the capacity of the receptacle at 50 °C). This must be at least two-thirds of the design pressure of the aerosol dispenser. If any aerosol dispenser shows evidence of leakage at a rate equal to or greater than 3.3×10^{-2} mbar.L.s$^{-1}$ at the test pressure, distortion or other defect, it must be rejected.

6.2.4.2.2.3 Testing of the aerosol dispensers after filling

Prior to filling the filler must ensure that the crimping equipment is set appropriately and the specified propellant is used.

Each filled aerosol dispenser must be weighed and leak tested. The leak detection equipment must be sufficiently sensitive to detect at least a leak rate of 2.0×10^{-3} mbar.L.s$^{-1}$ at 20 °C.

Any filled aerosol dispenser which shows evidence of leakage, deformation or excessive weight must be rejected.

6.2.4.2.3 Gas cartridges and fuel cell cartridges

6.2.4.2.3.1 Pressure testing of gas cartridges and fuel cell cartridges

Each gas cartridge or fuel cell cartridge must be subjected to a test pressure equal to or in excess of the maximum expected in the filled receptacle at 55°C (50°C if the liquid phase does not exceed 95% of the capacity of the receptacle at 50°C). This test pressure must be that specified for the gas cartridge or fuel cell cartridge and must not be less than two thirds the design
pressure of the gas cartridge or fuel cell cartridge. If any gas cartridge or fuel cell cartridge shows evidence of leakage at a rate equal to or greater than $3.3 \times 10^{-2} \text{ mbar} \cdot \text{l} \cdot \text{s}^{-1}$ at the test pressure or distortion or any other defect, it must be rejected.

6.2.4.2.3.2 Leak testing gas cartridges and fuel cell cartridges

Prior to filling and sealing, the filler must ensure that the closures (if any), and the associated sealing equipment are closed appropriately and the specified gas is used.

Each filled gas cartridge or fuel cell cartridge must be checked for the correct mass of gas and must be leak tested. The leak detection equipment must be sufficiently sensitive to detect at least a leak rate of $2.0 \times 10^{-3} \text{ mbar} \cdot \text{l} \cdot \text{s}^{-1}$ at 20°C.

Any gas cartridge or fuel cell cartridge that has gas masses not in conformity with the declared mass limits or shows evidence of leakage or deformation, must be rejected.

6.2.4.3 With the approval of the competent authority, aerosols and receptacles, small, are not subject to 6.2.4.1 and 6.2.4.2, if they are required to be sterile but may be adversely affected by water bath testing, provided:

(a) They contain a non-flammable gas and either
 (i) contain other substances that are constituent parts of pharmaceutical products for medical, veterinary or similar purposes;
 (ii) contain other substances used in the production process for pharmaceutical products; or
 (iii) are used in medical, veterinary or similar applications;

(b) An equivalent level of safety is achieved by the manufacturer's use of alternative methods for leak detection and pressure resistance, such as helium detection and water bathing a statistical sample of at least 1 in 2000 from each production batch; and

(c) For pharmaceutical products according to (a) (i) and (iii) above, they are manufactured under the authority of a national health administration. If required by the competent authority, the principles of Good Manufacturing Practice (GMP) established by the World Health Organisation (WHO) must be followed.
CHAPTER 6.3 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF PACKAGINGS FOR DIVISION 6.2 INFECTIOUS SUBSTANCES OF CATEGORY A

NOTE: For land transport in Australia only, this Chapter does not apply to packagings for medical or clinical waste that is correctly assigned to UN 3291 in accordance with 2.6.3.5 and is packed in accordance with Packing Instruction P62A.

6.3.1 GENERAL
6.3.1.1 The requirements of this Chapter apply to packagings intended for the transport of infectious substances of Category A.

6.3.2 REQUIREMENTS FOR PACKAGINGS
6.3.2.1 The requirements for packagings in this section are based on packagings, as specified in 6.1.4, currently used. In order to take into account progress in science and technology, there is no objection to the use of packagings having specifications different from those in this Chapter provided that they are equally effective, and able successfully to withstand the tests described in 6.3.5. Methods of testing other than those described in this Code are acceptable provided they are equivalent.

6.3.2.2 Packagings must be manufactured and tested under a quality assurance programme in order to ensure that each packaging meets the requirements of this Chapter.

NOTE: AS ISO 16106 [ISO 16106:2006] “Packaging – Transport packages for dangerous goods – Dangerous goods packagings, intermediate bulk containers (IBCs) and large packagings – Guidelines for the application of ISO 9001” provides acceptable guidance on procedures which may be followed.

6.3.2.3 Manufacturers and subsequent distributors of packagings must provide information regarding procedures to be followed and a description of the types and dimensions of closures (including required gaskets) and any other components needed to ensure that packages as presented for transport are capable of passing the applicable performance tests of this Chapter.

6.3.3 CODE FOR DESIGNATING TYPES OF PACKAGINGS
6.3.3.1 The codes for designating types of packagings are set out in 6.1.2.7.

6.3.3.2 The letters “U” or “W” may follow the packaging code. The letter “U” signifies a special packaging conforming to the requirements of 6.3.5.1.6. The letter “W” signifies that the packaging, although, of the same type indicated by the code is manufactured to a specification different from that in 6.1.4 and is considered equivalent under the requirements of 6.3.2.1.
6.3.4 MARKING

NOTE 1: The marking indicates that the packaging which bears it corresponds to a successfully tested design type and that it complies with the requirements of this Chapter which are related to the manufacture, but not to the use, of the packaging.

NOTE 2: The marking is intended to be of assistance to packaging manufacturers, reconditioners, packaging users, carriers and regulatory authorities.

NOTE 3: The marking does not always provide full details of the test levels, etc., and these may need to be taken further into account, e.g. by reference to a test certificate, to test reports or to a register of successfully tested packagings.

6.3.4.1 Each packaging intended for use according to this Code must bear markings which are durable, legible and placed in a location and of such a size relative to the packaging as to be readily visible. For packages with a gross mass of more than 30 kg, the markings or a duplicate thereof must appear on the top or on a side of the packaging. Letters, numerals and symbols must be at least 12 mm high, except for packagings of 30 litres or 30 kg capacity or less, when they must be at least 6 mm in height and for packagings of 5 litres or 5 kg or less when they must be of an appropriate size.

6.3.4.2 A packaging that meets the requirements of this section and of 6.3.5 must be marked with:

(a) The United Nations packaging symbol

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8;

(b) The code designating the type of packaging according to the requirements of 6.1.2;

(c) The text “CLASS 6.2”;

(d) The last two digits of the year of manufacture of the packaging;

(e) The state authorising the allocation of the mark, indicated by the distinguishing sign for motor vehicles in international traffic;

(f) The name of the manufacturer or other identification of the packaging specified by the competent authority;

(g) For packagings meeting the requirements of 6.3.5.1.6, the letter “U”, inserted immediately following the marking required in (b) above.

6.3.4.3 Marking must be applied in the sequence shown in 6.3.4.2 (a) to (g); each element of the marking required in these sub-paragraphs must be clearly separated, e.g. by a slash or space, so as to be easily identifiable. For examples, see 6.3.4.4.

Any additional markings authorised by a competent authority must still enable the parts of the mark to be correctly identified with reference to 6.3.4.1.

6.3.4.4 Example Of Marking:

| 4G(CLASS 6.2/06/ S/SP-9989-ERIKSSON | as in 6.3.4.2(a), (b), (c) and (d) | as in 6.3.4.2(e) and (f) |
6.3.5 TEST REQUIREMENTS FOR PACKAGINGS

6.3.5.1 Performance and frequency of tests

6.3.5.1.1 The design type of each packaging must be tested as provided in this section in accordance with procedures established by the competent authority.

6.3.5.1.2 Each packaging design type must successfully pass the tests prescribed in this Chapter before being used. A packaging design type is defined by the design, size, material and thickness, manner of construction and packing, but may include various surface treatments. It also includes packagings which differ from the design type only in their lesser design height.

6.3.5.1.3 Tests must be repeated on production samples at intervals established by the competent authority.

6.3.5.1.4 Tests must also be repeated after each modification which alters the design, material or manner of construction of a packaging.

6.3.5.1.5 The competent authority may permit the selective testing of packagings that differ only in minor respects from a tested type, e.g. smaller sizes or lower net mass of primary receptacles; and packagings such as drums and boxes which are produced with small reductions in external dimension(s).

6.3.5.1.6 Primary receptacles of any type may be assembled within a secondary packaging and transported without testing in the rigid outer packaging under the following conditions:

(a) The rigid outer packaging must have been successfully tested in accordance with 6.3.5.2.2 with fragile (e.g., glass) inner receptacles;

(b) The total combined gross mass of primary receptacles must not exceed one half the gross mass of primary receptacles used for the drop test in (a) above;

(c) The thickness of cushioning between primary receptacles and between primary receptacles and the outside of the secondary packaging must not be reduced below the corresponding thicknesses in the originally tested packaging; and if a single primary receptacle was used in the original test, the thickness of cushioning between primary receptacles must not be less than the thickness of cushioning between the outside of the secondary packaging and the primary receptacle in the original test. When either fewer or smaller primary receptacles are used (as compared to the primary receptacles used in the drop test), sufficient additional cushioning material must be used to take up the void spaces;

(d) The rigid outer packaging must have successfully passed the stacking test in 6.1.5.6 while empty. The total mass of identical packages must be based on the combined mass of packagings used in the drop test in (a) above;

(e) For primary receptacles containing liquids, an adequate quantity of absorbent material to absorb the entire liquid content of the primary receptacles must be present;
(f) If the rigid outer packaging is intended to contain primary receptacles for liquids and is not leakproof, or is intended to contain primary receptacles for solids and is not siftproof, a means of containing any liquid or solid contents in the event of leakage must be provided in the form of a leakproof liner, plastics bag or other equally effective means of containment;

(g) In addition to the markings prescribed in 6.3.4.2(a) to (f), packagings must be marked in accordance with 6.3.4.2(g).

6.3.5.1.7 The competent authority may at any time require proof, by tests in accordance with this section, that serially-produced packagings meet the requirements of the design type tests.

6.3.5.1.8 Provided the validity of the test results is not affected, several tests may be made on one sample.

6.3.5.2 Preparation of packagings for testing

6.3.5.2.1 Samples of each packaging must be prepared as for transport except that a liquid or solid infectious substance must be replaced by water or, where conditioning at -18 °C is specified, by water/antifreeze. Each primary receptacle must be filled to 98% of its capacity.

NOTE: The term water includes water/antifreeze solution with a minimum specific gravity of 0.95 for testing at -18 °C.

6.3.5.2.2 Tests and number of samples required

Tests required for packaging types

<table>
<thead>
<tr>
<th>Type of packaging</th>
<th>Tests required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary receptacle</td>
</tr>
<tr>
<td>Rigid outer packaging</td>
<td></td>
</tr>
<tr>
<td>Plastics x Other Numbers of samples</td>
<td></td>
</tr>
<tr>
<td>Fibreboard box</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Fibreboard drum</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Plastics box</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Plastics drum/jerrican</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Boxes of other material</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Drums/jerricans of other material</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

a. "Type of packaging" categorises packagings for test purposes according to the kind of packaging and its material characteristics.

NOTE 1: In instances where a primary receptacle is made of two or more materials, the material most liable to damage determines the appropriate test.
NOTE 2: The material of the secondary packagings are not taken into consideration when selecting the test or conditioning for the test.

Explanation for use of the table:

If the packaging to be tested consists of a fibreboard outer box with a plastics primary receptacle, five samples must undergo the water spray test (see 6.3.5.3.6.1) prior to dropping and another five must be conditioned to – 18 °C (see 6.3.5.3.6.2) prior to dropping. If the packaging is to contain dry ice then one further single sample must be dropped five times after conditioning in accordance with 6.3.5.3.6.3.

Packagings prepared as for transport must be subjected to the tests in 6.3.5.3 and 6.3.5.4. For outer packagings, the headings in the table relate to fibreboard or similar materials whose performance may be rapidly affected by moisture; plastics which may embrittle at low temperature; and other materials such as metal whose performance is not affected by moisture or temperature.

6.3.5.3 Drop Test

6.3.5.3.1 Samples must be subjected to free-fall drops from a height of 9 m on to a non-resilient, horizontal, flat, massive and rigid surface in conformity with 6.1.5.3.4.

6.3.5.3.2 Where the samples are in the shape of a box, five must be dropped, one in each of the following orientations:

(a) flat on to the base;
(b) flat on to the top;
(c) flat on to the longest side;
(d) flat on to the shortest side;
(e) on to a corner.

6.3.5.3.3 Where the samples are in the shape of a drum, three must be dropped, one in each of the following orientations:

(a) diagonally on to the top chime, with the centre of gravity directly above the point of impact;
(b) diagonally on to the base chime;
(c) flat on to the side.

6.3.5.3.4 While the sample must be released in the required orientation, it is accepted that for aerodynamic reasons the impact may not take place in that orientation.

6.3.5.3.5 Following the appropriate drop sequence, there must be no leakage from the primary receptacle(s) which must remain protected by cushioning/absorbent material in the secondary packaging.

6.3.5.3.6 Special preparation of test sample for the drop test

6.3.5.3.6.1 Fibreboard - Water spray test

Fibreboard outer packagings: - The sample must be subjected to a water spray that simulates exposure to rainfall of approximately 5 cm per hour for at least one hour. It must then be subjected to the test described in 6.3.5.3.1.
6.3.5.3.6.2 **Plastics material – Cold conditioning**

Plastics primary receptacles or outer packagings: –The temperature of the test sample and its contents must be reduced to -18 °C or lower for a period of at least 24 hours and, within 15 minutes of removal from that atmosphere, the test sample must be subjected to the test described in 6.3.5.3.1. Where the sample contains dry ice, the conditioning period may be reduced to 4 hours.

6.3.5.3.6.3 **Packagings intended to contain dry ice - Additional drop test**

Where the packaging is intended to contain dry ice, a test additional to that specified in 6.3.5.3.1 and, when appropriate, in 6.3.5.3.6.1 or 6.3.5.3.6.2 must be carried out. One sample must be stored so that all the dry ice dissipates and then that sample must be dropped in one of the orientations described in 6.3.5.3.2 which must be that most likely to result in failure of the packaging.

6.3.5.4 **Puncture Test**

6.3.5.4.1 **Packagings with a gross mass of 7 kg or less**

Samples must be placed on a level hard surface. A cylindrical steel rod with a mass of at least 7 kg, a diameter of 38 mm and the impact end edges a radius not exceeding 6 mm (see Figure 6.3.1), must be dropped in a vertical free fall from a height of 1 m, measured from the impact end to the impact surface of the sample. One sample must be placed on its base. A second sample must be placed in an orientation perpendicular to that used for the first. In each instance the steel rod must be aimed to impact the primary receptacle. Following each impact, penetration of the secondary packaging is acceptable, provided that there is no leakage from the primary receptacle(s).

6.3.5.4.2 **Packagings with a gross mass exceeding 7 kg**

Samples must be dropped on to the end of a cylindrical steel rod. The rod must be set vertically in a level hard surface. It must have a diameter of 38 mm and the edges of the upper end a radius not exceeding 6 mm (see Figure 6.3.1). The rod must protrude from the surface a distance at least equal to that between the centre of the primary receptacle(s) and the outer surface of the outer packaging with a minimum of 200 mm. One sample must be dropped with its top face lowermost in a vertical free fall from a height of 1 m, measured from the top of the steel rod. A second sample must be dropped from the same height in an orientation perpendicular to that used for the first. In each instance the packaging must be so orientated that the steel rod would be capable of penetrating the primary receptacle(s). Following each impact, penetration of the secondary packaging is acceptable provided that there is no leakage from the primary receptacle(s).
6.3.5.5 Test report

6.3.5.5.1 A written test report containing at least the following particulars must be drawn up and must be available to the users of the packaging:

1. Name and address of the test facility;
2. Name and address of applicant (where appropriate);
3. A unique test report identification;
4. Date of the test and of the report;
5. Manufacturer of the packaging;
6. Description of the packaging design type (e.g. dimensions, materials, closures, thickness, etc.), including method of manufacture (e.g. blow moulding) and which may include drawing(s) and/or photograph(s);
7. Maximum capacity;
8. Test contents;
9. Test descriptions and results;
10. The test report must be signed with the name and status of the signatory.

6.3.5.5.2 The test report must contain statements that the packaging prepared as for transport was tested in accordance with the appropriate requirements of this Chapter and that the use of other packaging methods or components may render it invalid. A copy of the test report must be available to the competent authority.
CHAPTER 6.5 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF INTERMEDIATE BULK CONTAINERS

6.5.1 GENERAL REQUIREMENTS

6.5.1.1 Scope

6.5.1.1.1 The requirements of this Chapter apply to IBCs intended for the transport of certain dangerous goods. The provisions set out general requirements for multimodal transport and do not establish special requirements that may be required for a particular mode.

6.5.1.1.2 Exceptionally, IBCs and their service equipment not conforming strictly to the requirements herein, but having acceptable alternatives, may be considered by the competent authority for approval. In addition, in order to take into account progress in science and technology, the use of alternative arrangements which offer at least equivalent safety in use in respect of compatibility with the properties of the substances carried and equivalent or superior resistance to impact, loading and fire, may be considered by the competent authority.

6.5.1.1.3 The construction, equipment, testing, marking and operation of IBCs must be subject to acceptance by the competent authority of the country in which the IBCs are approved.

6.5.1.1.4 Manufacturers and subsequent distributors of IBCs must provide information regarding procedures to be followed and a description of the types and dimensions of closures (including required gaskets) and any other components needed to ensure that IBCs as presented for transport are capable of passing the applicable performance tests of this Chapter.

6.5.1.2 Definitions

Body (for all categories of IBCs other than composite IBCs) means the receptacle proper, including openings and their closures, but does not include service equipment;

Handling device (for flexible IBCs) means any sling, loop, eye or frame attached to the body of the IBC or formed from a continuation of the IBC body material;

Maximum permissible gross mass means the mass of the IBC and any service or structural equipment together with the maximum net mass;

Plastics material, when used in connection with inner receptacles for composite IBCs, is taken to include other polymeric materials such as rubber;

Protected (for metal IBCs) means being provided with additional protection against impact, the protection taking the form of, for example, a multi-layer (sandwich) or double wall construction or a frame with a metal lattice-work casing;
Service equipment means filling and discharge devices and, according to the category of IBC, pressure-relief or venting, safety, heating and heat-insulating devices and measuring instruments;

Structural equipment (for all categories of IBCs other than flexible IBCs) means the reinforcing, fastening, handling, protective or stabilising members of the body, including the base pallet for composite IBCs with plastics inner receptacle, fibreboard and wooden IBCs;

Woven plastics (for flexible IBCs) means a material made from stretched tapes or monofilaments of a suitable plastics material.

6.5.1.3 Categories of IBCs

6.5.1.3.1 Metal IBCs
Metal IBCs consist of a metal body together with appropriate service and structural equipment.

6.5.1.3.2 Flexible IBCs
Flexible IBCs consist of a body constituted of film, woven fabric or any other flexible material or combinations thereof, and if necessary an inner coating or liner, together with any appropriate service equipment and handling devices.

6.5.1.3.3 Rigid plastics IBCs
Rigid plastics IBCs consist of a rigid plastics body, which may have structural equipment together with appropriate service equipment.

6.5.1.3.4 Composite IBCs
Composite IBCs consist of structural equipment in the form of a rigid outer casing enclosing a plastics inner receptacle together with any service or other structural equipment. They are so constructed that the inner receptacle and outer casing once assembled, form and are used as, an integrated single unit to be filled, stored, transported or emptied as such.

6.5.1.3.5 Fibreboard IBCs
Fibreboard IBCs consist of a fibreboard body with or without separate top and bottom caps, if necessary an inner liner (but no inner packagings), appropriate service and structural equipment.

6.5.1.3.6 Wooden IBCs
Wooden IBCs consist of a rigid or collapsible wooden body together with an inner liner (but no inner packagings) and appropriate service and structural equipment.

6.5.1.4 Designatory code system for IBCs

6.5.1.4.1 The code must consist of two Arabic numerals as specified in (a); followed by a capital letter(s) specified in (b); followed, when specified in an individual section, by an Arabic numeral indicating the category of IBC.

<table>
<thead>
<tr>
<th>Type</th>
<th>For solids filled or discharged</th>
<th>For liquids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>by gravity under pressure of more than 10 kPa (0.1 bar)</td>
<td></td>
</tr>
<tr>
<td>Rigid</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>Flexible</td>
<td>13</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

(a)
(b) A. Steel (all types and surface treatments)
B. Aluminium
C. Natural wood
D. Plywood
F. Reconstituted wood
G. Fibreboard
H. Plastics material
L. Textile
M. Paper, multiwall
N. Metal (other than steel or aluminium)

6.5.1.4.2 For composite IBCs, two capital letters in Latin characters must be used in sequence in the second position of the code. The first must indicate the material of the inner receptacle of the IBC and the second that of the outer packaging of the IBC.
The following types and codes of IBC are assigned:

<table>
<thead>
<tr>
<th>Material</th>
<th>Category</th>
<th>Code</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td></td>
<td></td>
<td>6.5.5.1</td>
</tr>
<tr>
<td>A. Steel</td>
<td>for solids, filled or discharged by gravity</td>
<td>11A</td>
<td>6.5.5.1</td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged under pressure</td>
<td>21A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for liquids</td>
<td>31A</td>
<td></td>
</tr>
<tr>
<td>B. Aluminium</td>
<td>for solids, filled or discharged by gravity</td>
<td>11B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged under pressure</td>
<td>21B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for liquids</td>
<td>31B</td>
<td></td>
</tr>
<tr>
<td>N. Other than steel or aluminium</td>
<td>for solids, filled or discharged by gravity</td>
<td>11N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged under pressure</td>
<td>21N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for liquids</td>
<td>31N</td>
<td></td>
</tr>
<tr>
<td>Flexible</td>
<td></td>
<td></td>
<td>6.5.5.2</td>
</tr>
<tr>
<td>H. Plastics</td>
<td>woven plastics without coating or liner</td>
<td>13H1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>woven plastics, coated</td>
<td>13H2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>woven plastics with liner</td>
<td>13H3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>woven plastics, coated and with liner</td>
<td>13H4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>plastics film</td>
<td>13H5</td>
<td></td>
</tr>
<tr>
<td>L. Textile</td>
<td>without coating or liner</td>
<td>13L1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coated</td>
<td>13L2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with liner</td>
<td>13L3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>coated and with liner</td>
<td>13L4</td>
<td></td>
</tr>
<tr>
<td>M. Paper</td>
<td>Multiwall</td>
<td>13M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiwall, water resistant</td>
<td>13M2</td>
<td></td>
</tr>
<tr>
<td>H. Rigid Plastics</td>
<td>for solids, filled or discharged by gravity, fitted with structural equipment</td>
<td>11H1</td>
<td>6.5.5.3</td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged by gravity, freestanding</td>
<td>11H2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged under pressure, fitted with structural equipment</td>
<td>21H1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged under pressure, freestanding</td>
<td>21H2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for liquids, fitted with structural equipment for liquids, freestanding</td>
<td>31H1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31H2</td>
<td></td>
</tr>
<tr>
<td>HZ. Composite with plastic inner receptacle</td>
<td>for solids, filled or discharged by gravity, with rigid plastics receptacle</td>
<td>11HZ1</td>
<td>6.5.5.4</td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged by gravity, with flexible plastics receptacle</td>
<td>11HZ2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged under pressure, with rigid plastics receptacle</td>
<td>21HZ1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for solids, filled or discharged under pressure, with flexible plastics receptacle</td>
<td>21HZ2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for liquids, with rigid plastics receptacle</td>
<td>31HZ1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for liquids, with flexible plastics receptacle</td>
<td>31HZ2</td>
<td></td>
</tr>
<tr>
<td>G. Fibreboard</td>
<td>for solids, filled or discharged by gravity</td>
<td>11G</td>
<td>6.5.5.5</td>
</tr>
<tr>
<td>Wooden</td>
<td></td>
<td></td>
<td>6.5.5.6</td>
</tr>
<tr>
<td>C. Natural wood</td>
<td>for solids, filled or discharged by gravity with inner liner</td>
<td>11C</td>
<td></td>
</tr>
<tr>
<td>D. Plywood</td>
<td>for solids, filled or discharged by gravity with inner liner</td>
<td>11D</td>
<td></td>
</tr>
<tr>
<td>F. Reconstituted wood</td>
<td>for solids, filled or discharged by gravity with inner liner</td>
<td>11F</td>
<td></td>
</tr>
</tbody>
</table>

a The code must be completed by replacing the letter Z with a capital letter in accordance with 6.5.1.4.1(b) to indicate the nature of the material used for the outer casing.
6.5.1.4.4 The letter “W” may follow the IBC code. The letter “W” signifies that the IBC, although of the same type indicated by the code, is manufactured to a specification different from those in section 6.5.5 and is considered equivalent in accordance with the requirements in 6.5.1.1.2.

6.5.2 MARKING

6.5.2.1 Primary marking

6.5.2.1.1 Each IBC manufactured and intended for use according to this Code must bear markings which are durable, legible and placed in a location so as to be readily visible. Letters, numerals and symbols must be at least 12 mm high and must show:

(a) The United Nations packaging symbol .

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8.;

For metal IBCs on which the marking is stamped or embossed, the capital letters “UN” may be applied instead of the symbol;

(b) The code designating the type of IBC according to 6.5.1.4;

(c) A capital letter designating the packing group(s) for which the design type has been approved:

(i) X for packing groups I, II and III (IBCs for solids only);

(ii) Y for packing groups II and III;

(iii) Z for packing group III only;

(d) The month and year (last two digits) of manufacture;

(e) The State authorising the allocation of the mark; indicated by the distinguishing sign for motor vehicles in international traffic;

(f) The name or symbol of the manufacturer and other identification of the IBC as specified by the competent authority;

(g) The stacking test load in kg. For IBCs not designed for stacking, the figure “0” must be shown;

(h) The maximum permissible gross mass in kg.

Marking must be applied in the sequence shown in (a) to (h); each element of the marking required in these subparagraphs and when appropriate, 6.5.2.2, must be clearly separated, e.g. by a slash or space and presented in a way that ensures that all of the parts of the mark may be easily identified.
6.5.2.1.2 Examples of markings for various types of IBC in accordance with (a) to (h) above:

- **11A/Y/02 99/NL/ Mulder 007/5500/1500**
 For a metal IBC for solids discharged for instance by gravity and made from steel for packing groups II and III manufactured in February 1999/authorised by the Netherlands/manufactured by Mulder and of a design type to which the competent authority has allocated serial number 007/the stacking test load in kg/the maximum permissible gross mass in kg.

- **13H3/Z/03 01/F/ Meunier 1713/0/1500**
 For a flexible IBC for solids discharged for instance by gravity and made from woven plastics with a liner/not designed to be stacked.

- **31H1/Y/04 99/ GB/9099 10800/1200**
 For a rigid plastics IBC for liquids made from plastics with structural equipment withstanding the stack load.

- **31HA1/Y/05 01/D/ Muller 1683/10800/1200**
 For a composite IBC for liquids with a rigid plastics inner receptacle and a steel outer casing.

- **11C/X/01 02/S/ Aurigny 9876/ 3000/910**
 For a wooden IBC for solids with an inner liner and authorised for packing group I solids.

6.5.2.2 Additional marking

6.5.2.2.1 Each IBC must bear the markings required in 6.5.2.1 and, in addition, the following information which may appear on a corrosion-resistant plate permanently attached in a place readily accessible for inspection:

<table>
<thead>
<tr>
<th>Additional marking</th>
<th>Metal</th>
<th>Rigid Plastics</th>
<th>Composite</th>
<th>Fibreboard</th>
<th>Wooden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity in litres at 20°C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tare mass in kg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Test (gauge) pressure, in kPa or bar*, if applicable</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum filling/discharge pressure in kPa or bar*, if applicable</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum permitted stacking load b</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Body material and its minimum thickness in mm</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of last leakproofness test, if applicable (month and year)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of last inspection (month and year)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial number of the manufacturer</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| a | The unit used must be indicated. |
| b | See 6.5.2.2.2 |

NOTE: This additional marking applies to all IBCs manufactured, repaired or remanufactured as from 1 January 2011.
6.5.2.2.2 The maximum permitted stacking load applicable when the IBC is in use must be displayed on a symbol as shown in Figure 6.5.1 or Figure 6.5.2. The symbol must be durable and clearly visible.

Figure 6.5.1

The minimum dimensions must be 100 mm x 100 mm. The letters and numbers indicating the mass must be at least 12 mm high. The area within the printer’s marks indicated by the dimensional arrows must be square. Where dimensions are not specified, all features must be in approximate proportion to those shown. The mass marked above the symbol must not exceed the load imposed during the design type test (see 6.5.6.6.4) divided by 1.8.

NOTE: The provisions of 6.5.2.2.2 must apply to all IBCs manufactured, repaired or remanufactured as from 1 January 2011. The provisions of 6.5.2.2.2 of the seventeenth revised edition of version 7.3 of the ADG Code may continue to be applied to all IBCs manufactured, repaired or remanufactured between 1 January 2011 and 31 December 2016.

The symbol must be not less than 100 mm x 100 mm, be durable and clearly visible. The letters and numbers indicating the mass must be at least 12 mm high.

The mass marked above the symbol must not exceed the load imposed during the design type test (see 6.5.6.6.4) divided by 1.8.

NOTE: The provisions of 6.5.2.2.2 apply to all IBCs manufactured, repaired or remanufactured as from 1 January 2011.

6.5.2.2.3 In addition to the markings required in 6.5.2.1, flexible IBCs may bear a pictogram indicating recommended lifting methods.

6.5.2.2.4 The inner receptacle of composite IBCs manufactured after 1 January 2011 must bear the markings indicated in 6.5.2.1.1 (b), (c), (d) where this date is that of the manufacture of the plastics inner receptacle, (e) and (f). In such a case, the two digits of the year in the primary marking and in the inner circle of the clock must be identical. The UN packaging symbol must not be applied. The marking must be applied in the sequence shown in 6.5.2.1.1. It must be durable, legible and placed in a location so as to be readily visible when the inner receptacle is placed in the outer casing.

The date of the manufacture of the plastics inner receptacle may alternatively be marked on the inner receptacle adjacent to the remainder of the marking. An example of an appropriate marking method is:
6.5.2.2.5 Where a composite IBC is designed in such a manner that the outer casing is intended to be dismantled for transport when empty (such as for return of the IBC for reuse to the original consignor), each of the parts intended to be detached when so dismantled must be marked with the month and year of manufacture and the name or symbol of the manufacturer and other identification of the IBC as specified by the competent authority (6.5.2.1.1(f)).

6.5.2.3 Conformity to design type. The marking indicates that IBCs correspond to a successfully tested design type and that the requirements referred to in the certificate have been met.

6.5.2.4 Marking of remanufactured composite IBCs (31HZ1)
The marking specified in 6.5.2.1.1 and 6.5.2.2 must be removed from the original IBC or made permanently illegible and new markings must be applied to an IBC remanufactured in accordance with this Code.

6.5.3 CONSTRUCTION REQUIREMENTS

6.5.3.1 General requirements
6.5.3.1.1 IBCs must be resistant to or adequately protected from deterioration due to the external environment.

6.5.3.1.2 IBCs must be so constructed and closed that none of the contents can escape under normal conditions of transport including the effect of vibration, or by changes in temperature, humidity or pressure.

6.5.3.1.3 IBCs and their closures must be constructed of materials compatible with their contents, or be protected internally, so that they are not liable:
(a) To be attacked by the contents so as to make their use dangerous;
(b) To cause the contents to react or decompose, or form harmful or dangerous compounds with the IBCs.

6.5.3.1.4 Gaskets, where used, must be made of materials not subject to attack by the contents of the IBCs.

6.5.3.1.5 All service equipment must be so positioned or protected as to minimise the risk of escape of the contents owing to damage during handling and transport.

6.5.3.1.6 IBCs, their attachments and their service and structural equipment must be designed to withstand, without loss of contents, the internal pressure of the contents and the stresses of normal handling and transport. IBCs intended for stacking must be designed for stacking. Any lifting or securing features of IBCs must be of sufficient strength to withstand the normal conditions of
handling and transport without gross distortion or failure and must be so positioned that no undue stress is caused in any part of the IBC.

6.5.3.1.7 Where an IBC consists of a body within a framework it must be so constructed that:

(a) The body does not chafe or rub against the framework so as to cause material damage to the body;

(b) The body is retained within the framework at all times;

(c) The items of equipment are fixed in such a way that they cannot be damaged if the connections between body and frame allow relative expansion or movement.

6.5.3.1.8 Where a bottom discharge valve is fitted, it must be capable of being made secure in the closed position and the whole discharge system must be suitably protected from damage. Valves having lever closures must be able to be secured against accidental opening and the open or closed position must be readily apparent. For IBCs containing liquids, a secondary means of sealing the discharge aperture must also be provided, e.g. by a blank flange or equivalent device.

6.5.4 TESTING, CERTIFICATION AND INSPECTION

6.5.4.1 Quality assurance: - the IBCs must be manufactured, remanufactured, repaired and tested under a quality assurance programme in order to ensure that each manufactured, remanufactured or repaired IBC meets the requirements of this Chapter.

NOTE: AS ISO 16106 [ISO 16106:2006] “Packaging - Transport packages for dangerous goods - Dangerous goods packagings, intermediate bulk containers (IBCs) and large packagings - Guidelines for the application of ISO 9001” provides acceptable guidance on procedures which may be followed.

6.5.4.2 Test requirements: - IBCs must be subject to design type tests and, if applicable, to initial and periodic inspections and tests in accordance with 6.5.4.4.

6.5.4.3 Certification: - in respect of each design type of IBC a certificate and mark (as in 6.5.2) must be issued attesting that the design type including its equipment meets the test requirements.

6.5.4.4 Inspection and testing

NOTE: See also 6.5.4.5 for tests and inspections on repaired IBCs.

6.5.4.4.1 Every metal, rigid plastics and composite IBCs must be inspected to the satisfaction of the competent authority:

(a) Before it is put into service (including after remanufactured), and thereafter at intervals not exceeding five years, with regard to:
 (i) conformity to design type including marking;
 (ii) internal and external condition;
 (iii) proper functioning of service equipment;

Thermal insulation, if any, need be removed only to the extent necessary for a proper examination of the body of the IBC;

(b) At intervals of not more than two and a half years, with regard to:
 (i) external condition;
(ii) proper functioning of service equipment;

Thermal insulation, if any, need be removed only to the extent necessary for a proper examination of the body of the IBC.

Each IBC must correspond in all respects to its design type.

6.5.4.4.2 Every metal, rigid plastics and composite IBC for liquids, or for solids which are filled or discharged under pressure, must undergo a suitable leakproofness test at least equally effective as the test prescribed in 6.5.6.7.3 and be capable of meeting the test level indicated in 6.5.6.7.3:

(a) before it is first used for transport; and

(b) at intervals of not more than two and a half years.

For this test the IBC must be fitted with the primary bottom closure. The inner receptacle of a composite IBC may be tested without the outer casing, provided the test results are not affected.

6.5.4.4.3 A report of each inspection and test must be kept by the owner of the IBC at least until the next inspection or test. The report must include the results of the inspection and test and must identify the party performing the inspection and test (see also the marking requirements in 6.5.2.2.1).

6.5.4.5 Repaired IBCs

6.5.4.5.1 When an IBC is impaired as a result of impact (e.g. accident) or any other cause, it must be repaired or otherwise maintained (see definition of “Routine maintenance of IBCs” in 1.2.1.1), so as to conform to the design type. The bodies of rigid plastics IBCs and the inner receptacles of composite IBCs that are impaired must be replaced.

6.5.4.5.2 In addition to any other testing and inspection requirements in this Code, an IBC must be subjected to the full testing and inspection requirements set out in 6.5.4.4, and the required reports must be prepared, whenever it is repaired.

6.5.4.5.3 The Party performing the tests and inspections after the repair must durably marking the IBC near the manufacturer's UN design type marking to show:

(a) the State in which the repair was carried out;

(b) the name or authorised symbol of the party performing the repair; and

(c) the date (month and year) of the tests and inspections.

6.5.4.5.4 Test and inspections performed in accordance with 6.5.4.5.2 may be considered to satisfy the requirements for the two and a half and five-year periodic tests and inspections.

6.5.4.5.5 The competent authority may at any time require proof, by tests in accordance with this Chapter, that IBCs meet the requirements of the design type tests.

6.5.5 Specific requirements for IBCs

6.5.5.1 Specific requirements for metal IBCs

6.5.5.1.1 These requirements apply to metal IBCs intended for the transport of solids and liquids. There are three categories of metal IBCs:

(a) Those for solids which are filled or discharged by gravity (11A, 11B, 11N);

(b) Those for solids which are filled or discharged at a gauge pressure greater than 10 kPa (0.1 bar) (21A, 21B, 21N); and

(c) Those for liquids (31A, 31B, 31N).

6.5.5.1.2 Bodies must be made of suitable ductile metal in which the weldability has been fully demonstrated. Welds must be skillfully made and afford complete
safety. Low-temperature performance must be taken into account when appropriate.

6.5.5.1.3 Care must be taken to avoid damage by galvanic action due to the juxtaposition of dissimilar metals.

6.5.5.1.4 Aluminium IBCs intended for the carriage of flammable liquids must have no movable parts, such as covers, closures, etc., made of unprotected steel liable to rust, which might cause a dangerous reaction by coming into frictional or percussive contact with the aluminium.

6.5.5.1.5 Metal IBCs must be made of metals which meet the following requirements:

(a) For steel the elongation at fracture, in %, must not be less than \(\frac{10000}{\text{Rm}} \)

- with an absolute minimum of 20%;

where Rm = guaranteed minimum tensile strength of the steel to be used, in N/mm\(^2\);

(b) For aluminium the elongation at fracture, in %, must not be less than \(\frac{10000}{6\text{Rm}} \) – with an absolute minimum of 8%.

Specimens used to determine the elongation at fracture must be taken transversely to the direction of rolling and be so secured that:

\[
L_0 = 5d \quad \text{or} \quad L_0 = 5.65 \sqrt{A}
\]

where:
- \(L_0 \) = gauge length of the specimen before the test
- \(d \) = diameter
- \(A \) = cross-sectional area of test specimen.

6.5.5.1.6 Minimum wall thickness:

(a) For a reference steel having a product of \(\text{Rm} \times A_0 = 10\,000 \), the wall thickness must not be less than:

<table>
<thead>
<tr>
<th>Capacity (C) in litres</th>
<th>Wall thickness (T) in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprotected</td>
<td>Protected</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>C (\leq 1000)</td>
<td>T = C/2000 + 1.5</td>
</tr>
<tr>
<td>1000 < C (\leq 2000)</td>
<td>T = C/2000 + 1.5</td>
</tr>
<tr>
<td>2000 < C (\leq 3000)</td>
<td>T = C/2000 + 1.5</td>
</tr>
</tbody>
</table>

where: \(A_0 \) = minimum elongation (as a percentage) of the reference steel to be used on fracture under tensile stress (see 6.5.5.1.5);

(b) For metals other than the reference steel described in (a), the minimum wall thickness is given by the following equivalence formula:

\[
c_1 = \frac{21.4 \times c_0}{\sqrt[3]{\text{Rm}_1 A_1}}
\]
where: $e_1 =$ required equivalent wall thickness of the metal to be used (in mm);

$e_0 =$ required minimum wall thickness for the reference steel (in mm);

$Rm_1 =$ guaranteed minimum tensile strength of the metal to be used (in N/mm2) (see (c));

$A_1 =$ minimum elongation (as a percentage) of the metal to be used on fracture under tensile stress (see 6.5.5.1.5);

However, in no case must the wall thickness be less than 1.5 mm.

(c) For purposes of the calculation described in (b), the guaranteed minimum tensile strength of the metal to be used (Rm_1) must be the minimum value according to national or international material standards. However, for austenitic steels, the specified minimum value for Rm according to the material standards may be increased by up to 15% when a greater value is attested in the material inspection certificate. When no material standard exists for the material in question, the value of Rm must be the minimum value attested in the material inspection certificate.

6.5.5.1.7 Pressure relief requirements: - IBCs for liquids must be capable of releasing a sufficient amount of vapour in the event of fire engulfment to ensure that no rupture of the body will occur. This can be achieved by conventional pressure-relief devices or by other constructional means. The start-to-discharge pressure must not be higher than 65 kPa (0.65 bar) and no lower than the total gauge pressure experienced in the IBC (i.e. the vapour pressure of the filling substance plus the partial pressure of the air or other inert gases, minus 100 kPa (1 bar)) at 55 °C, determined on the basis of a maximum degree of filling as defined in 4.1.1.4. The required relief devices must be fitted in the vapour space.

6.5.5.2 Specific requirements for flexible IBCs

6.5.5.2.1 These requirements apply to flexible IBCs of the following types:

- 13H1 woven plastics without coating or liner
- 13H2 woven plastics, coated
- 13H3 woven plastics with liner
- 13H4 woven plastics, coated and with liner
- 13H5 plastics film
- 13L1 textile without coating or liner
- 13L2 textile, coated
- 13L3 textile with liner
- 13L4 textile, coated and with liner
- 13M1 paper, multiwall
- 13M2 paper, multiwall, water resistant

Flexible IBCs are intended for the transport of solids only.

6.5.5.2.2 Bodies must be manufactured from suitable materials. The strength of the material and the construction of the flexible IBC must be appropriate to its capacity and its intended use.
6.5.5.2.3 All materials used in the construction of flexible IBCs of types 13M1 and 13M2 must, after complete immersion in water for not less than 24 hours, retain at least 85% of the tensile strength as measured originally on the material conditioned to equilibrium at 67% relative humidity or less.

6.5.5.2.4 Seams must be formed by stitching, heat sealing, gluing or any equivalent method. All stitched seam-ends must be secured.

6.5.5.2.5 Flexible IBCs must provide adequate resistance to ageing and to degradation caused by ultraviolet radiation or the climatic conditions, or by the substance contained, thereby rendering them appropriate to their intended use.

6.5.5.2.6 For flexible plastics IBCs where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the body. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.5.5.2.7 Additives may be incorporated into the material of the body to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.5.5.2.8 No material recovered from used receptacles must be used in the manufacture of IBC bodies. Production residues or scrap from the same manufacturing process may, however, be used. Component parts such as fittings and pallet bases may also be used provided such components have not in any way been damaged in previous use.

6.5.5.2.9 When filled, the ratio of height to width must be not more than 2:1.

6.5.5.2.10 The liner must be made of a suitable material. The strength of the material used and the construction of the liner must be appropriate to the capacity of the IBC and the intended use. Joins and closures must be silt proof and capable of withstanding pressures and impacts liable to occur under normal conditions of handling and transport.

6.5.5.3 Specific requirements for rigid plastics IBCs

6.5.5.3.1 These requirements apply to rigid plastics IBCs for the transport of solids or liquids. Rigid plastics IBCs are of the following types:

- 11H1 fitted with structural equipment designed to withstand the whole load when IBCs are stacked, for solids which are filled or discharged by gravity
- 11H2 freestanding, for solids which are filled or discharged by gravity
- 21H1 fitted with structural equipment designed to withstand the whole load when IBCs are stacked, for solids which are filled or discharged under pressure
- 21H2 freestanding, for solids which are filled or discharged under pressure
- 31H1 fitted with structural equipment designed to withstand the whole load when IBCs are stacked, for liquids
- 31H2 freestanding, for liquids
6.5.5.3.2 The body must be manufactured from suitable plastics material of known specifications and be of adequate strength in relation to its capacity and its intended use. The material must be adequately resistant to ageing and to degradation caused by the substance contained or, where relevant, by ultraviolet radiation. Low temperature performance must be taken into account when appropriate. Any permeation of the substance contained must not constitute a danger under normal conditions of transport.

6.5.5.3.3 Where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the body. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.5.5.3.4 Additives may be incorporated in the material of the body to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.5.5.3.5 No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of rigid plastics IBCs.

6.5.5.4 Specific requirements for composite IBCs with plastics inner receptacles

6.5.5.4.1 These requirements apply to composite IBCs for the transport of solids and liquids of the following types:

- 11HZ1 composite IBCs with a rigid plastics inner receptacle, for solids filled or discharged by gravity
- 11HZ2 composite IBCs with a flexible plastics inner receptacle, for solids filled or discharged by gravity
- 21HZ1 composite IBCs with a rigid plastics inner receptacle, for solids filled or discharged under pressure
- 21HZ2 composite IBCs with a flexible plastics inner receptacle, for solids filled or discharged under pressure
- 31HZ1 composite IBCs with a rigid plastics inner receptacle, for liquids
- 31HZ2 composite IBCs with a flexible plastics inner receptacle, for liquids

This code must be completed by replacing the letter Z by a capital letter in accordance with 6.5.1.4.1 (b) to indicate the nature of the material used for the outer casing.

6.5.5.4.2 The inner receptacle is not intended to perform a containment function without its outer casing. A “rigid” inner receptacle is a receptacle which retains its general shape when empty without closures in place and without benefit of the outer casing. Any inner receptacle that is not “rigid” is considered to be “flexible”.

6.5.5.4.3 The outer casing normally consists of rigid material formed so as to protect the inner receptacle from physical damage during handling and transport but is not intended to perform the containment function. It includes the base pallet where appropriate.

6.5.5.4.4 A composite IBC with a fully enclosing outer casing must be so designed that the integrity of the inner container may be readily assessed following the leakproofness and hydraulic tests.

6.5.5.4.5 IBCs of type 31HZ2 must be limited to a capacity of not more than 1250 litres.
6.5.5.4.6 The inner receptacle must be manufactured from suitable plastics material of known specifications and be of adequate strength in relation to its capacity and its intended use. The material must be adequately resistant to ageing and to degradation caused by the substance contained or, where relevant, by ultraviolet radiation. Low temperature performance must be taken into account when appropriate. Any permeation of the substance contained must not constitute a danger under normal conditions of transport.

6.5.5.4.7 Where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the inner receptacle. Where use is made of carbon black, pigments or inhibitors, other than those used in the manufacture of the tested design type, retesting may be waived if changes in carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.5.5.4.8 Additives may be incorporated in the material of the inner receptacle to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.5.5.4.9 No used material other than production residues or regrind from the same manufacturing process may be used in the manufacture of inner receptacles.

6.5.5.4.10 The inner receptacle of IBCs type 31HZ2 must consist of at least three plies of film.

6.5.5.4.11 The strength of the material and the construction of the outer casing must be appropriate to the capacity of the composite IBC and its intended use.

6.5.5.4.12 The outer casing must be free of any projection that might damage the inner receptacle.

6.5.5.4.13 Outer casings of steel or aluminium must be constructed of a suitable metal of adequate thickness.

6.5.5.4.14 Outer casings of natural wood must be of well-seasoned wood, commercially dry and free from defects that would materially lessen the strength of any part of the casing. The tops and bottoms may be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type.

6.5.5.4.15 Outer casings of plywood must be made of well-seasoned rotary cut, sliced or sawn veneer, commercially dry and free from defects that would materially lessen the strength of the casing. All adjacent plies must be glued with water resistant adhesive. Other suitable materials may be used with plywood for the construction of casings. Casings must be firmly nailed or secured to corner posts or ends or be assembled by equally suitable devices.

6.5.5.4.16 The walls of outer casings of reconstituted wood must be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type. Other parts of the casings may be made of other suitable material.
6.5.5.4.17 For fibreboard outer casings, strong and good quality solid or double-faced corrugated fibreboard (single or multiwall) must be used appropriate to the capacity of the casing and to its intended use. The water resistance of the outer surface must be such that the increase in mass, as determined in a test carried out over 30 minutes by the Cobb method of determining water absorption, is not greater than 155 g/m² - see ISO 535:1991. It must have proper bending qualities. Fibreboard must be cut, creased without scoring, and slotted so as to permit assembly without cracking, surface breaks or undue bending. The fluting of corrugated fibreboard must be firmly glued to the facings.

6.5.5.4.18 The ends of fibreboard outer casings may have a wooden frame or be entirely of wood. Reinforcements of wooden battens may be used.

6.5.5.4.19 Manufacturing joins in the fibreboard outer casing must be taped, lapped and glued, or lapped and stitched with metal staples. Lapped joins must have an appropriate overlap. Where closing is effected by gluing or taping, a water resistant adhesive must be used.

6.5.5.4.20 Where the outer casing is of plastics material, the relevant requirements of 6.5.5.4.6 to 6.5.5.4.9 apply.

6.5.5.4.21 The outer casing of a 31HZ2 must enclose the inner receptacle on all sides.

6.5.5.4.22 Any integral pallet base forming part of an IBC or any detachable pallet must be suitable for mechanical handling with the IBC filled to its maximum permissible gross mass.

6.5.5.4.23 The pallet or integral base must be designed so as to avoid any protrusion of the base of the IBC that might be liable to damage in handling.

6.5.5.4.24 The outer casing must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the IBC.

6.5.5.4.25 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the inner receptacle.

6.5.5.4.26 Where IBCs are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner. Such IBCs must be designed so that the load is not supported by the inner receptacle.

6.5.5.5 Specific requirements for fibreboard IBCs

6.5.5.5.1 These requirements apply to fibreboard IBCs for the transport of solids which are filled or discharged by gravity. Fibreboard IBCs are of the following type: -11G.

6.5.5.5.2 Fibreboard IBCs must not incorporate top lifting devices.

6.5.5.5.3 The body must be made of strong and good quality solid or double-faced corrugated fibreboard (single or multiwall), appropriate to the capacity of the IBC and to its intended use. The water resistance of the outer surface must be such that the increase in mass, as determined in a test carried out over a period of 30 minutes by the Cobb method of determining water absorption, is not greater than 155 g/m² - see ISO 535:1991. It must have proper bending qualities. Fibreboard must be cut, creased without scoring, and slotted so as to permit assembly without cracking, surface breaks or undue bending. The fluting of corrugated fibreboard must be firmly glued to the facings.
6.5.5.4 The walls, including top and bottom, must have a minimum puncture resistance of 15 J measured according to ISO 3036:1975.

6.5.5.5 Manufacturing joins in the body of IBCs must be made with an appropriate overlap and must be taped, glued, stitched with metal staples or fastened by other means at least equally effective. Where joins are effected by gluing or taping, a water resistant adhesive must be used. Metal staples must pass completely through all pieces to be fastened and be formed or protected so that any inner liner cannot be abraded or punctured by them.

6.5.5.6 The liner must be made of a suitable material. The strength of the material used and the construction of the liner must be appropriate to the capacity of the IBC and the intended use. Joins and closures must be silt-proof and capable of withstanding pressures and impacts liable to occur under normal conditions of handling and transport.

6.5.5.7 Any integral pallet base forming part of an IBC or any detachable pallet must be suitable for mechanical handling with the IBC filled to its maximum permissible gross mass.

6.5.5.8 The pallet or integral base must be designed so as to avoid any protrusion of the base of the IBC that might be liable to damage in handling.

6.5.5.9 The body must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the IBC.

6.5.5.10 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the liner.

6.5.5.11 Where IBCs are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner.

6.5.5.6 Specific requirements for wooden IBCs

6.5.5.6.1 These requirements apply to wooden IBCs for the transport of solids which are filled or discharged by gravity. Wooden IBCs are of the following types:

- 11C natural wood with inner liner
- 11D plywood with inner liner
- 11F reconstituted wood with inner liner.

6.5.5.6.2 Wooden IBCs must not incorporate top lifting devices.

6.5.5.6.3 The strength of the materials used and the method of construction of the body must be appropriate to the capacity and intended use of the IBC.

6.5.5.6.4 Natural wood must be well-seasoned, commercially dry and free from defects that would materially lessen the strength of any part of the IBC. Each part of the IBC must consist of one piece or be equivalent thereto. Parts are considered equivalent to one piece when a suitable method of glued assembly is used as for instance Lindermann joint, tongue and groove joint, ship lap or rabbet joint; or butt joint with at least two corrugated metal fasteners at each joint, or when other methods at least equally effective are used.

6.5.5.6.5 Bodies of plywood must be at least 3-ply. It must be made of well-seasoned rotary cut, sliced or sawn veneer, commercially dry and free from defects that would materially lessen the strength of the body. All adjacent plies must be glued with water resistant adhesive. Other suitable materials may be used with plywood for the construction of the body.

6.5.5.6.6 Bodies of reconstituted wood must be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type.
6.5.5.7 IBCs must be firmly nailed or secured to corner posts or ends or be assembled by equally suitable devices.

6.5.5.8 The liner must be made of a suitable material. The strength of the material used and the construction of the liner must be appropriate to the capacity of the IBC and the intended use. Joins and closures must be silt-proof and capable of withstanding pressures and impacts liable to occur under normal conditions of handling and transport.

6.5.5.9 Any integral pallet base forming part of an IBC or any detachable pallet must be suitable for mechanical handling with the IBC filled to its maximum permissible gross mass.

6.5.5.10 The pallet or integral base must be designed so as to avoid any protrusion of the base of the IBC that might be liable to damage in handling.

6.5.5.11 The body must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the IBC.

6.5.5.12 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the liner.

6.5.5.13 Where IBCs are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner.

6.5.6 TEST REQUIREMENTS FOR IBCS

6.5.6.1 Performance and frequency of tests

6.5.6.1.1 Each IBC design type must successfully pass the tests prescribed in this Chapter before being used. An IBC design type is defined by the design, size, material and thickness, manner of construction and means of filling and discharging but may include various surface treatments. It also includes IBCs which differ from the design type only in their lesser external dimensions.

6.5.6.1.2 Tests must be carried out on IBCs prepared for transport. IBCs must be filled as indicated in the relevant sections. The substances to be transported in the IBCs may be replaced by other substances except where this would invalidate the results of the tests. For solids, when another substance is used it must have the same physical characteristics (mass, grain size, etc.) as the substance to be carried. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass, so long as they are placed so that the test results are not affected.

6.5.6.2 Design type tests

6.5.6.2.1 One IBC of each design type, size, wall thickness and manner of construction must be submitted to the tests listed in the order shown in 6.5.6.3.5 and as set out in 6.5.6.4 to 6.5.6.13. These design type tests must be carried out as required by the competent authority.

6.5.6.2.2 The competent authority may permit the selective testing of IBCs which differ only in minor respects from a tested type, e.g. with small reductions in external dimensions.

6.5.6.2.3 If detachable pallets are used in the tests, the test report issued in accordance with 6.5.6.14 must include a technical description of the pallets used.
6.5.6.3 Preparation of IBCs for testing

6.5.6.3.1 Paper and fibreboard IBCs and composite IBCs with fibreboard outer casings must be conditioned for at least 24 hours in an atmosphere having a controlled temperature and relative humidity (r.h.). There are three options, one of which must be chosen.

The preferred atmosphere is 23 ± 2 °C and 50% ± 2% r.h. The two other options are 20 ± 2 °C and 65% ± 2% r.h.; or 27 ± 2 °C and 65% ± 2% r.h.

NOTE: Average values must fall within these limits. Short-term fluctuations and measurement limitations may cause individual measurements to vary by up to ±5% relative humidity without significant impairment of test reproducibility.

6.5.6.3.2 Additional steps must be taken to ascertain that the plastics material used in the manufacture of rigid plastics IBCs (types 31H1 and 31H2) and composite IBCs (types 31HZ1 and 31HZ2) complies respectively with the requirements in 6.5.5.3.2 to 6.5.5.3.4 and 6.5.5.4.6 to 6.5.5.4.9.

6.5.6.3.3 This may be done, for example, by submitting sample IBCs to a preliminary test extending over a long period, for example six months, during which the samples would remain filled with the substances they are intended to contain or with substances which are known to have at least as severe a stress-cracking, weakening or molecular degradation influence on the plastics materials in question, and after which the samples must be submitted to the applicable tests listed on the table in 6.5.6.3.5.

6.5.6.3.4 Where the behaviour of the plastics material has been established by other means, the above compatibility test may be dispensed with.

6.5.6.3.5 Design type tests required and sequential order

<table>
<thead>
<tr>
<th>Type of IBC</th>
<th>Vibration</th>
<th>Bottom lift</th>
<th>Top lift</th>
<th>Stacking</th>
<th>Leak-proofness</th>
<th>Hydraulic pressure</th>
<th>Drop</th>
<th>Tear</th>
<th>Topple</th>
<th>Righting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal:</td>
<td></td>
</tr>
<tr>
<td>11A, 11B, 11N</td>
<td>1st a</td>
<td>2nd</td>
<td>3rd</td>
<td>-</td>
<td></td>
<td>4th*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21A, 21B, 21N</td>
<td>1st a</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31A, 31B, 31N</td>
<td>2nd a</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
<td>7th*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible d</td>
<td></td>
<td>-</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigid plastics:</td>
<td></td>
</tr>
<tr>
<td>11H1, 11H2</td>
<td>1st a</td>
<td>2nd</td>
<td>3rd</td>
<td>-</td>
<td></td>
<td>4th</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21H1, 21H2</td>
<td>1st a</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31H1, 31H2</td>
<td>2nd a</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite:</td>
<td></td>
</tr>
<tr>
<td>11HZ1, 11HZ2</td>
<td>1st a</td>
<td>2nd</td>
<td>3rd</td>
<td>-</td>
<td></td>
<td>4th*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21HZ1, 21HZ2</td>
<td>1st a</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31HZ1, 31HZ2</td>
<td>2nd a</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
<td>7th*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibreboard</td>
<td>1st</td>
<td>-</td>
<td>2nd</td>
<td>-</td>
<td>3rd</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wooden</td>
<td>1st</td>
<td>-</td>
<td>2nd</td>
<td>-</td>
<td>3rd</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a When IBCs are designed for this method of handling.
b When IBCs are designed to be stacked.
c When IBCs are designated to be lifted from the top or the side.
d Required test indicated by x; an IBC which has passed one test may be used for other tests, in any order.
e Another IBC of the same design may be used for the drop test.
f Another IBC of the same design may be used for the vibration test.
6.5.6.4 Bottom lift test

6.5.6.4.1 Applicability
For all fibreboard and wooden IBCs, and for all types of IBC which are fitted with means of lifting from the base, as a design type test.

6.5.6.4.2 Preparation of the IBC for test
The IBC must be filled. A load must be added and evenly distributed. The mass of the filled IBC and the load must be 1.25 times the maximum permissible gross mass.

6.5.6.4.3 Method of testing
The IBC must be raised and lowered twice by a lift truck with the forks centrally positioned and spaced at three quarters of the dimension of the side of entry (unless the points of entry are fixed). The forks must penetrate to three quarters of the direction of entry. The test must be repeated from each possible direction of entry.

6.5.6.4.4 Criteria for passing the test
No permanent deformation which renders the IBC, including the base pallet, if any, unsafe for transport and no loss of contents.

6.5.6.5 Top lift test

6.5.6.5.1 Applicability
For all types of IBC which are designed to be lifted from the top and for flexible IBCs designed to be lifted from the top or the side, as a design type test.

6.5.6.5.2 Preparation of the IBC for test
Metal, rigid plastics and composite IBCs must be filled. A load must be added and evenly distributed. The mass of the filled IBC and the load must be twice the maximum permissible gross mass.

Flexible IBCs must be filled with a representative material and then must be loaded to six times their maximum design gross mass, the load being evenly distributed.

6.5.6.5.3 Methods of testing
Metal and flexible IBCs must be lifted in the manner for which they are designed until clear of the floor and maintained in that position for a period of five minutes.

Rigid plastics and composite IBCs must be lifted:
(a) By each pair of diagonally opposite lifting devices, so that the hoisting forces are applied vertically, for a period of five minutes; and
(b) By each pair of diagonally opposite lifting devices, so that the hoisting forces are applied toward the centre at 45° to the vertical, for a period of five minutes.

6.5.6.5.4 Other methods of top lift testing and preparation at least equally effective may be used for flexible IBCs.
6.5.6.5 *Criteria for passing the test*

(a) Metal, rigid plastics and composite IBCs: –the IBC remains safe for normal conditions of transport, there is no observable permanent deformation of the IBC, including the base pallet, if any, and no loss of contents;

(b) Flexible IBCs: –no damage to the IBC or its lifting devices which renders the IBC unsafe for transport or handling and no loss of contents.

6.5.6.6 *Stacking test*

6.5.6.6.1 *Applicability*

For all types of IBC which are designed to be stacked on each other, as a design type test.

6.5.6.6.2 *Preparation of the IBC for test*

The IBC must be filled to its maximum permissible gross mass. If the specific gravity of the product being used for testing makes this impracticable, the IBC must be additionally loaded so that it is tested at its maximum permissible gross mass, the load being evenly distributed.

6.5.6.6.3 *Methods of testing*

(a) The IBC must be placed on its base on level hard ground and subjected to a uniformly distributed superimposed test load (see 6.5.6.6.4). IBCs must be subjected to the test load for a period of at least:

 (i) 5 minutes, for metal IBCs;
 (ii) 28 days at 40 °C, for rigid plastics IBCs of types 11H2, 21H2 and 31H2 and for composite IBCs with outer casings of plastics material which bear the stacking load (i.e., types 11HH1, 11HH2, 21HH1, 21HH2, 31HH1 and 31HH2);
 (iii) 24 hours, for all other types of IBCs;

(b) The load must be applied by one of the following methods:

 (i) one or more IBCs of the same type filled to the maximum permissible gross mass stacked on the test IBC;

 (ii) appropriate weights loaded onto either a flat plate or a reproduction of the base of the IBC, which is stacked on the test IBC.

6.5.6.6.4 *Calculation of superimposed test load*

The load to be placed on the IBC must be 1.8 times the combined maximum permissible gross mass of the number of similar IBCs that may be stacked on top of the IBC during transport.

6.5.6.6.5 *Criteria for passing the test*

(a) All types of IBCs other than flexible IBCs: –no permanent deformation which renders the IBC including the base pallet, if any, unsafe for transport and no loss of contents;

(b) Flexible IBCs: –no deterioration of the body which renders the IBC unsafe for transport and no loss of contents.
6.5.6.7 Leakproofness test

6.5.6.7.1 Applicability

For those types of IBCs used for liquids or for solids filled or discharged under pressure, as a design type test and periodic test.

6.5.6.7.2 Preparation of the IBC for test

The test must be carried out before the fitting of any thermal insulation equipment. Vented closures must either be replaced by similar non-vented closures or the vent must be sealed.

6.5.6.7.3 Method of testing and pressure to be applied

The test must be carried out for a period of at least 10 minutes using air at a gauge pressure of not less than 20 kPa (0.2 bar). The air tightness of the IBC must be determined by a suitable method such as by air-pressure differential test or by immersing the IBC in water or, for metal IBCs, by coating the seams and joints with a soap solution. In the latter case a correction factor must be applied for the hydrostatic pressure.

6.5.6.7.4 Criterion for passing the test

No leakage of air.

6.5.6.8 Hydraulic pressure test

6.5.6.8.1 Applicability

For those types of IBCs used for liquids or for solids filled or discharged under pressure, as a design type test.

6.5.6.8.2 Preparation of the IBC for test

The test must be carried out before the fitting of any thermal insulation equipment. Pressure-relief devices must be removed and their apertures plugged, or must be rendered inoperative.

6.5.6.8.3 Method of testing

The test must be carried out for a period of at least 10 minutes applying a hydraulic pressure not less than that indicated in 6.5.6.8.4. The IBCs must not be mechanically restrained during the test.

6.5.6.8.4 Pressures to be applied

6.5.6.8.4.1 Metal IBCs:

(a) For IBCs of types 21A, 21B and 21N, for packing group I solids, a 250 kPa (2.5 bar) gauge pressure;

(b) For IBCs of types 21A, 21B, 21N, 31A, 31B and 31N, for packing groups II or III substances, a 200 kPa (2 bar) gauge pressure;

(c) In addition, for IBCs of types 31A, 31B and 31N, a 65 kPa (0.65 bar) gauge pressure. This test must be performed before the 200 kPa test.
6.5.6.8.4.2 *Rigid plastics and composite IBCs:*
(a) For IBCs of types 21H1, 21H2, 21HZ1 and 21HZ2: –75 kPa (0.75 bar) (gauge);
(b) For IBCs of types 31H1, 31H2, 31HZ1 and 31HZ2: –whichever is the greater of two values, the first as determined by one of the following methods:
 (i) the total gauge pressure measured in the IBC (i.e. the vapour pressure of the filling substance and the partial pressure of the air or other inert gases, minus 100 kPa) at 55 °C multiplied by a safety factor of 1.5; this total gauge pressure must be determined on the basis of a maximum degree of filling in accordance with 4.1.1.4 and a filling temperature of 15 °C;
 (ii) 1.75 times the vapour pressure at 50 °C of the substance to be transported minus 100 kPa, but with a minimum test pressure of 100 kPa;
 (iii) 1.5 times the vapour pressure at 55 °C of the substance to be transported minus 100 kPa, but with a minimum test pressure of 100 kPa;
and the second as determined by the following method:
 (iv) twice the static pressure of the substance to be transported, with a minimum of twice the static pressure of water.

6.5.6.8.5 *Criteria for passing the test(s):*
(a) For IBCs of types 21A, 21B, 21N, 31A, 31B and 31N, when subjected to the test pressure specified in 6.5.6.8.4.1 (a) or (b): - no leakage;
(b) For IBCs of types 31A, 31B and 31N, when subjected to the test pressure specified in 6.5.6.8.4.1(c): - neither permanent deformation which would render the IBC unsafe for transport, nor leakage;
(c) For rigid plastics and composite IBCs: - no permanent deformation which would render the IBC unsafe for transport and no leakage.

6.5.6.9 *Drop test*

6.5.6.9.1 *Applicability*
For all types of IBCs, as a design type test.

6.5.6.9.2 *Preparation of the IBC for test*
(a) Metal IBCs: - the IBC must be filled to not less than 95% of its maximum capacity for solids or 98% of its capacity for liquids. Pressure-relief devices must be removed and their apertures plugged, or must be rendered inoperative;
(b) Flexible IBCs: - the IBC must be filled to the maximum permissible gross mass, the contents being evenly distributed;
(c) Rigid plastics and composite IBCs: - the IBC must be filled to not less than 95% of its maximum capacity for solids or 98% of its maximum capacity for liquids. Arrangements provided for pressure-relief may be removed and plugged or rendered inoperative. Testing of IBCs must be carried out when the temperature of the test sample and its contents has been reduced to minus 18 °C or lower. Where test samples of composite IBCs are prepared in this way the conditioning specified in 6.5.6.3.1 may be waived. Test liquids must be kept in the liquid state, if necessary by the addition of anti-freeze. This conditioning may be disregarded if the materials in question are of sufficient ductility and tensile strength at low temperatures;
(d) Fibreboard and wooden IBCs: - the IBC must be filled to not less than 95% of its maximum capacity.

6.5.6.9.3 Method of testing

The IBC must be dropped on its base onto a non-resilient, horizontal, flat, massive and rigid surface in conformity with the requirements of 6.1.5.3.4, in such a manner as to ensure that the point of impact is that part of the base of the IBC considered to be the most vulnerable. IBCs of 0.45m³ or less capacity must also be dropped:

(a) Metal IBCs: –on the most vulnerable part other than the part of the base tested in the first drop;

(b) Flexible IBCs: –on the most vulnerable side;

(c) Rigid plastics, composite, fibreboard and wooden IBCs: –flat on a side, flat on the top and on a corner.

The same or different IBCs may be used for each drop.

6.5.6.9.4 Drop height

For solids and liquids, if the test is performed with the solid or liquid to be transported or with another substance having essentially the same physical characteristics:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

For liquids if the test is performed with water:

(a) Where the substances to be transported have a relative density not exceeding 1.2:

<table>
<thead>
<tr>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

(b) Where the substances to be transported have a relative density exceeding 1.2, the drop heights must be calculated on the basis of the relative density (d) of the substance to be transported rounded up to the first decimal as follows:

<table>
<thead>
<tr>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>d × 1.0 m</td>
<td>d × 0.67 m</td>
</tr>
</tbody>
</table>

6.5.6.9.5 Criteria for passing the test(s)

(a) Metal IBCs: –no loss of contents;

(b) Flexible IBCs: - no loss of contents. A slight discharge, e.g. from closures or stitch holes, upon impact must not be considered to be a failure of the IBC provided that no further leakage occurs after the IBC has been raised clear of the ground;

(c) Rigid plastics, composite, fibreboard and wooden IBCs: - no loss of contents. A slight discharge from a closure upon impact must not be considered to be a failure of the IBC provided that no further leakage occurs.

(d) All IBCs: - no damage which renders the IBC unsafe to be transported for salvage or for disposal, and no loss of contents. In addition, the IBC must be capable of being lifted by an appropriate means until clear of the floor for five minutes.
NOTE: The criteria in (d) apply to design types for IBCs manufactured as from 1 January 2011.

6.5.6.10 Tear test

6.5.6.10.1 Applicability
For all types of flexible IBCs, as a design type test.

6.5.6.10.2 Preparation of the IBC for test
The IBC must be filled to not less than 95% of its capacity and to its maximum permissible gross mass, the contents being evenly distributed.

6.5.6.10.3 Method of testing
Once the IBC is placed on the ground, a 100 mm knife score, completely penetrating the wall of a wide face, is made at a 45° angle to the principal axis of the IBC, halfway between the bottom surface and the top level of the contents. The IBC must then be subjected to a uniformly distributed superimposed load equivalent to twice the maximum permissible gross mass. The load must be applied for at least five minutes. An IBC which is designed to be lifted from the top or the side must then, after removal of the superimposed load, be lifted clear of the floor and maintained in that position for a period of five minutes.

6.5.6.10.4 Criterion for passing the test
The cut must not propagate more than 25% of its original length.

6.5.6.11 Topple test

6.5.6.11.1 Applicability
For all types of flexible IBCs, as a design type test.

6.5.6.11.2 Preparation of the IBC for test
The IBC must be filled to not less than 95% of its capacity and to its maximum permissible gross mass, the contents being evenly distributed.

6.5.6.11.3 Method of testing
The IBC must be caused to topple on to any part of its top on to a rigid, non-resilient, smooth, flat and horizontal surface.

6.5.6.11.4 Topple height

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

6.5.6.11.5 Criterion for passing the test
No loss of contents. A slight discharge, e.g. from closures or stitch holes, upon impact must not be considered to be a failure of the IBC provided that no further leakage occurs.

6.5.6.12 Righting test

6.5.6.12.1 Applicability
For all flexible IBCs designed to be lifted from the top or side, as a design type test.
6.5.6.12.2 Preparation of the IBC for test
The IBC must be filled to not less than 95% of its capacity and to its maximum permissible gross mass, the contents being evenly distributed.

6.5.6.12.3 Method of testing
The IBC, lying on its side, must be lifted at a speed of at least 0.1 m/s to upright position, clear of the floor, by one lifting device or by two lifting devices when four are provided.

6.5.6.12.4 Criterion for passing the test
No damage to the IBC or its lifting devices which renders the IBC unsafe for transport or handling.

6.5.6.13 Vibration test
6.5.6.13.1 Applicability
For all IBCs used for liquids, as a design type test.

NOTE: This test applies to design types for IBCs manufactured after 31 December 2010.

6.5.6.13.2 Preparation of the IBC for test
A sample IBC must be selected at random and must be fitted and closed as for transport. The IBC must be filled with water to not less than 98% of its maximum capacity.

6.5.6.13.3 Test method and duration
6.5.6.13.3.1 The IBC must be placed in the centre of the test machine platform with a vertical sinusoidal, double amplitude (peak-to peak displacement) of 25 mm ± 5%. If necessary, restraining devices must be attached to the platform to prevent the specimen from moving horizontally off the platform without restricting vertical movement.

6.5.6.13.3.2 The test must be conducted for one hour at a frequency that causes part of the base of the IBC to be momentarily raised from the vibrating platform for part of each cycle to such a degree that a metal shim can be completely inserted intermittently at, at least, one point between the base of the IBC and the test platform. The frequency may need to be adjusted after the initial set point to prevent the packaging from going into resonance. Nevertheless, the test frequency must continue to allow placement of the metal shim under the IBC as described in this paragraph. The continuing ability to insert the metal shim is essential to passing the test. The metal shim used for this test must be at least 1.6 mm thick, 50 mm wide, and be of sufficient length to be inserted between the IBC and the test platform a minimum of 100 mm to perform the test.

6.5.6.13.4 Criteria for passing the test
No leakage or rupture must be observed. In addition, no breakage or failure of structural components, such as broken welds or failed fastenings, must be observed.
6.5.6.14 Test report

6.5.6.14.1 A test report containing at least the following particulars must be drawn up and must be available to the users of the IBC:

1. Name and address of the test facility
2. Name and address of applicant (where appropriate)
3. A unique test report identification
4. Date of the test report
5. Manufacturer of the IBC
6. Description of the IBC design type (e.g. dimensions, materials, closures, thickness, etc.) including method of manufacture (e.g. blow moulding) and which may include drawing(s) and/or photograph(s)
7. Maximum capacity
8. Characteristics of test contents, e.g. viscosity and relative density for liquids and particle size for solids
9. Test descriptions and results
10. The test report must be signed with the name and status of the signatory

6.5.6.14.2 The test report must contain statements that the IBC prepared as for transport was tested in accordance with the appropriate requirements of this Chapter and that the use of other packaging methods or components may render it invalid. A copy of the test report must be available to the competent authority.
CHAPTER 6.6 - REQUIREMENTS FOR THE CONSTRUCTION AND TESTING OF LARGE PACKAGINGS

6.6.1 GENERAL

6.6.1.1 The requirements of this Chapter do not apply to:
- Class 2, except articles including aerosols;
- Division 6.2, except clinical waste of UN 3291;
- Class 7 packages containing radioactive material.

6.6.1.2 Large packagings must be manufactured, tested and remanufactured under a quality assurance programme in order to ensure that each manufactured or remanufactured large packaging meets the requirements of this Chapter.

NOTE: AS ISO 16106 [ISO 16106:2006] “Packaging – Transport packages for dangerous goods – Dangerous goods packagings, intermediate bulk containers (IBCs) and large packagings – Guidelines for the application of ISO 9001” provides acceptable guidance on procedures which may be followed.

6.6.1.3 The specific requirements for large packagings in 6.6.4 are based on large packagings currently used. In order to take into account progress in science and technology, there is no objection to the use of large packagings having specifications different from those in 6.6.4 provided they are equally effective, acceptable to the competent authority and able successfully to withstand the tests described in 6.6.5. Methods of testing other than those described in this Code are acceptable provided they are equivalent.

6.6.1.4 Manufacturers and subsequent distributors of packagings must provide information regarding procedures to be followed and a description of the types and dimensions of closures (including required gaskets) and any other components needed to ensure that packages as presented for transport are capable of passing the applicable performance tests of this Chapter.

6.6.2 CODE FOR DESIGNATING TYPES OF LARGE PACKAGINGS

6.6.2.1 The code used for large packagings consists of:

(a) Two Arabic numerals:
 50 for rigid large packagings; or
 51 for flexible large packagings; and

(b) Capital letters in Latin characters indicating the nature of the material, e.g. wood, steel etc. The capital letters used must be those shown in 6.1.2.6.

6.6.2.2 The letters “T” or “W” may follow the large packaging code. The letter “T” signifies a large salvage packaging conforming to the requirements of 6.6.5.1.9 The letter “CW” signifies that the large packaging, although of the same type indicated by the code, is manufactured to a specification different from those in 6.6.4 and is considered equivalent in accordance with the requirements in 6.6.1.3.
6.6.3 MARKING

6.6.3.1 Primary marking

Each large packaging manufactured and intended for the use according to this Code must bear markings which are durable, legible and placed in a location so as to be readily visible. Letters, numerals and symbols must be at least 12 mm high and must show:

(a) The United Nations packaging symbol .

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8.;

For metal large packagings on which the marking is stamped or embossed, the capital letters "UN" may be applied instead of the symbol;

(b) The code “50” designating a large rigid packaging or “51” for flexible large packagings, followed by the material type in accordance with 6.5.1.4.1(b);

(c) A capital letter designating the packing group(s) for which the design type has been approved:

X for packing groups I, II and III
Y for packing groups II and III
Z for packing group III only;

(d) The month and year (last two digits) of manufacture;

(e) The State authorising the allocation of the mark; indicated by the distinguishing sign for motor vehicles in international traffic (AUS for Australia);

(f) The name or symbol of the manufacturer and other identification of the large packagings as specified by the competent authority;

(g) The stacking test load in kg. For large packagings not designed for stacking the figure “0” must be shown;

(h) The maximum permissible gross mass in kilograms.

The primary marking required above must be applied in the sequence of the sub-paragraphs.

Each element of the making applied in accordance with (a) to (h) must be clearly separated, e.g. by a slash or space, so as to be easily identifiable.

NOTE: The size requirement for the primary marking applies for large packagings manufactured as from 1 January 2014.

6.6.3.2 Examples of the marking:

- **50 A/X/05/01/N/PQRS/2500/1000** For a large steel packaging suitable for stacking; stacking load: 2500 kg; maximum gross mass: 1000 kg.

- **50AT/Y/05/01/B/PQRS/2500/1000** For a large steel salvage packaging suitable for stacking; stacking load: 2500 Kg; maximum gross mass: 1000 kg.
6.6.3.3 The maximum permitted stacking load applicable when the large packaging is in use must be displayed on a symbol as shown in Figure 6.6.1 or Figure 6.6.2. The symbol must be durable and clearly visible.

The minimum dimensions must be 100 mm x 100 mm. The letters and numbers indicating the mass must be at least 12 mm high. The area within the printer’s marks indicated by the dimensional arrows must be square. Where dimensions are not specified, all features must be in approximate proportion to those shown. The mass marked above the symbol must not exceed the load imposed during the design type test (see 6.6.5.3.3.4) divided by 1.8.

NOTE: The provisions of 6.6.3.3 must apply to all large packagings manufactured, repaired or remanufactured as from 1 January 2015. The provisions of 6.6.3.3 from version 7.3 of the ADG Code may continue to be applied to all IBCs manufactured, repaired or remanufactured between 1 January 2015 and 31 December 2016.

The symbol must be not less than 100 mm x 100 mm, be durable and clearly visible. The letters and numbers indicating the mass must be at least 12 mm high. The mass marked above the symbol must not exceed the load imposed during the design type test (see 6.6.5.3.3.4) divided by 1.8.

NOTE: The provisions of 6.6.3.3 apply to all large packagings manufactured, repaired or remanufactured as from 1 January 2015.
6.6.4 SPECIFIC REQUIREMENTS FOR LARGE PACKAGINGS

6.6.4.1 Specific requirements for metal large packagings

- **50A** steel
- **50B** aluminium
- **50N** metal (other than steel or aluminium)

6.6.4.1.1 The large packaging must be made of suitable ductile metal in which the weldability has been fully demonstrated. Welds must be skilfully made and afford complete safety. Low-temperature performance must be taken into account when appropriate.

6.6.4.1.2 Care must be taken to avoid damage by galvanic action due to the juxtaposition of dissimilar metals.

6.6.4.2 Specific requirements for flexible material large packagings

- **51H** flexible plastics
- **51M** flexible paper

6.6.4.2.1 The large packaging must be manufactured from suitable materials. The strength of the material and the construction of the flexible large packagings must be appropriate to its capacity and its intended use.

6.6.4.2.2 All materials used in the construction of flexible large packagings of types 51M must, after complete immersion in water for not less than 24 hours, retain at least 85% of the tensile strength as measured originally on the material conditioned to equilibrium at 67% relative humidity or less.

6.6.4.2.3 Seams must be formed by stitching, heat sealing, gluing or any equivalent method. All stitched seam-ends must be secured.

6.6.4.2.4 Flexible large packagings must provide adequate resistance to ageing and to degradation caused by ultraviolet radiation or the climatic conditions, or by the substance contained, thereby rendering them appropriate to their intended use.

6.6.4.2.5 For plastics flexible large packagings where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the large packaging. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.6.4.2.6 Additives may be incorporated into the material of the large packaging to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.6.4.2.7 When filled, the ratio of height to width must be not more than 2:1.

6.6.4.3 Specific requirements for plastics large packagings

- **50H** rigid plastics
6.6.4.3.1 The large packaging must be manufactured from suitable plastics material of known specifications and be of adequate strength in relation to its capacity and its intended use. The material must be adequately resistant to ageing and to degradation caused by the substance contained or, where relevant, by ultraviolet radiation. Low temperature performance must be taken into account when appropriate. Any permeation of the substance contained must not constitute a danger under normal conditions of transport.

6.6.4.3.2 Where protection against ultraviolet radiation is required, it must be provided by the addition of carbon black or other suitable pigments or inhibitors. These additives must be compatible with the contents and remain effective throughout the life of the outer packaging. Where use is made of carbon black, pigments or inhibitors other than those used in the manufacture of the tested design type, re-testing may be waived if changes in the carbon black content, the pigment content or the inhibitor content do not adversely affect the physical properties of the material of construction.

6.6.4.3.3 Additives may be incorporated in the material of the large packaging to improve the resistance to ageing or to serve other purposes, provided that these do not adversely affect the physical or chemical properties of the material.

6.6.4.4 Specific requirements for fibreboard large packagings

50G rigid fibreboard

6.6.4.4.1 Strong and good quality solid or double-faced corrugated fibreboard (single or multiwall) must be used, appropriate to the capacity of the large packagings and to their intended use. The water resistance of the outer surface must be such that the increase in mass, as determined in a test carried out over a period of 30 minutes by the Cobb method of determining water absorption, is not greater than 155 g/m² – see ISO 535:1991. It must have proper bending qualities. Fibreboard must be cut, creased without scoring, and slotted so as to permit assembly without cracking, surface breaks or undue bending. The fluting or corrugated fibreboard must be firmly glued to the facings.

6.6.4.4.2 The walls, including top and bottom, must have a minimum puncture resistance of 15 J measured according to ISO 3036:1975.

6.6.4.4.3 Manufacturing joins in the outer packaging of large packagings must be made with an appropriate overlap and must be taped, glued, stitched with metal staples or fastened by other means at least equally effective. Where joins are effected by gluing or taping, a water resistant adhesive must be used. Metal staples must pass completely through all pieces to be fastened and be formed or protected so that any inner liner cannot be abraded or punctured by them.

6.6.4.4.4 Any integral pallet base forming part of a large packaging or any detachable pallet must be suitable for mechanical handling with the large packaging filled to its maximum permissible gross mass.

6.6.4.4.5 The pallet or integral base must be designed so as to avoid any protrusion of the base of the large packaging that might be liable to damage in handling.

6.6.4.4.6 The body must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the large packaging.

6.6.4.4.7 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the liner.
6.6.4.8 Where large packagings are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner.

6.6.4.5 Specific requirements for wooden large packagings

50C natural wood
50D plywood
50F reconstituted wood

6.6.4.5.1 The strength of the materials used and the method of construction must be appropriate to the capacity and intended use of the large packagings.

6.6.4.5.2 Natural wood must be well-seasoned, commercially dry and free from defects that would materially lessen the strength of any part of the large packagings. Each part of the large packagings must consist of one piece or be equivalent thereto. Parts are considered equivalent to one piece when a suitable method of glued assembly is used as for instance Lindermann joint, tongue and groove joint, ship lap or rabbet joint; or butt joint with at least two corrugated metal fasteners at each joint, or when other methods at least equally effective are used.

6.6.4.5.3 Large packagings of plywood must be at least 3-ply. They must be made of well-seasoned rotary cut, sliced or sawn veneer, commercially dry and free from defects that would materially lessen the strength of the large packaging. All adjacent plies must be glued with water resistant adhesive. Other suitable materials may be used with plywood for the construction of the large packaging.

6.6.4.5.4 Large packagings of reconstituted wood must be made of water resistant reconstituted wood such as hardboard, particle board or other suitable type.

6.6.4.5.5 Large packagings must be firmly nailed or secured to corner posts or ends or be assembled by equally suitable devices.

6.6.4.5.6 Any integral pallet base forming part of a large packaging or any detachable pallet must be suitable for mechanical handling with the large packaging filled to its maximum permissible gross mass.

6.6.4.5.7 The pallet or integral base must be designed so as to avoid any protrusion of the base of the large packaging that might be liable to damage in handling.

6.6.4.5.8 The body must be secured to any detachable pallet to ensure stability in handling and transport. Where a detachable pallet is used, its top surface must be free from sharp protrusions that might damage the large packaging.

6.6.4.5.9 Strengthening devices such as timber supports to increase stacking performance may be used but must be external to the liner.

6.6.4.5.10 Where large packagings are intended for stacking, the bearing surface must be such as to distribute the load in a safe manner.

6.6.5 TEST REQUIREMENTS FOR LARGE PACKAGINGS

6.6.5.1 Performance and frequency of test

6.6.5.1.1 The design type of each large packaging must be tested as provided in 6.6.5.3 in accordance with procedures established by the competent authority.
6.6.5.1.2 Each large packaging design type must successfully pass the tests prescribed in this Chapter before being used. A large packaging design type is defined by the design, size, material and thickness, manner of construction and packing, but may include various surface treatments. It also includes large packagings which differ from the design type only in their lesser design height.

6.6.5.1.3 Tests must be repeated on production samples at intervals established by the competent authority. For such tests on fibreboard large packagings, preparation at ambient conditions is considered equivalent to the provisions of 6.6.5.2.4.

6.6.5.1.4 Tests must also be repeated after each modification which alters the design, material or manner of construction of large packagings.

6.6.5.1.5 The competent authority may permit the selective testing of large packagings that differ only in minor respects from a tested type, e.g. smaller sizes of inner packagings or inner packagings of lower net mass; and large packagings which are produced with small reductions in external dimension(s).

6.6.5.1.6 <Reserved> (by UN)

NOTE: For the conditions for assembling different inner packagings in a large packaging and permissible variations in inner packagings, see 4.1.1.5.1.

6.6.5.1.7 The competent authority may at any time require proof, by tests in accordance with this section, that serially-produced large packagings meet the requirements of the design type tests.

6.6.5.1.8 Provided the validity of the test results is not affected and with the approval of the competent authority, several tests may be made on one sample.

6.6.5.1.9 Large Salvage Packagings

Large salvage packagings must be tested and marked in accordance with the provisions applicable to packing group II large packagings intended for the transport of solids or inner packagings, except as follows:

(a) The test substance used in performing the tests must be water, and the large salvage packagings must be filled to not less than 98% of their maximum capacity. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass so long as they are placed so that the test results are not affected. Alternatively, in performing the drop test, the drop height may be varied in accordance with 6.6.5.3.4.4.2 (b);

(b) Large salvage packagings must, in addition, have been successfully subjected to the leakproofness test at 30 kPa, with the results of this test reflected in the test report required by 6.6.5.4; and

(c) Large salvage packagings must be marked with the letter “T” as described in 6.6.2.2.

6.6.5.2 Preparation for testing

6.6.5.2.1 Tests must be carried out on large packagings prepared as for transport including the inner packagings or articles used. Inner packagings must be filled to not less than 98% of their maximum capacity for liquids or 95% for solids. For large packagings where the inner packagings are designed to carry liquids and solids, separate testing is required for both liquid and solid contents. The substances in the inner packagings or the articles to be transported in the large packagings may be replaced by other material or articles except where this would invalidate the results of the tests. When other
inner packagings or articles are used they must have the same physical characteristics (mass, etc) as the inner packagings or articles to be carried. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total package mass, so long as they are placed so that the test results are not affected.

6.6.5.2.2 In the drop tests for liquids, when another substance is used, its relative density and viscosity must be similar to those of the substance being transported. Water may also be used for the liquid drop test under the conditions in 6.6.5.3.4.4.

6.6.5.2.3 Large packagings made of plastics materials and large packagings containing inner packagings of plastic materials - other than bags intended to contain solids or articles - must be drop tested when the temperature of the test sample and its contents has been reduced to -18°C or lower. This conditioning may be disregarded if the materials in question are of sufficient ductility and tensile strength at low temperatures. Where test sample are prepared in this way, the conditioning in 6.6.5.2.4 may be waived. Test liquids must be kept in the liquid state by the addition of anti-freeze if necessary.

6.6.5.2.4 Large packagings of fibreboard must be conditioned for at least 24 hours in an atmosphere having a controlled temperature and relative humidity (r.h). There are three options, one of which must be chosen.

The preferred atmosphere is 23 ± 2°C and 50% ± 2% r.h.
The two other options are: 20 ± 2°C and 65% ± 2% r.h.; or 27 ± 2°C and 65% ± 2% r.h.

NOTE: Average values must fall within these limits. Short-term fluctuations and measurement limitations may cause individual measurements to vary by up to ± 5% relative humidity without significant impairment of test reproducibility.

6.6.5.3 Test requirements
6.6.5.3.1 Bottom lift test
6.6.5.3.1.1 Applicability

For all types of large packagings which are fitted with means of lifting from the base, as a design type test.

6.6.5.3.1.2 Preparation of large packaging for test

The large packaging must be loaded to 1.25 times its maximum permissible gross mass, the load being evenly distributed.

6.6.5.3.1.3 Method of testing

The large packaging must be raised and lowered twice by a lift truck with the forks centrally positioned and spaced at three quarters of the dimension of the side of entry (unless the points of entry are fixed). The forks must penetrate to three quarters of the direction of entry. The test must be repeated from each possible direction of entry.

6.6.5.3.1.4 Criteria for passing the test

No permanent deformation which renders the large packaging unsafe for transport and no loss of contents.
6.6.5.3.2 Top lift test

6.6.5.3.2.1 Applicability
For types of large packagings which are intended to be lifted from the top and fitted with means of lifting, as a design type test.

6.6.5.3.2.2 Preparation of large packaging for test
The large packaging must be loaded to twice its maximum permissible gross mass. A flexible large packaging must be loaded to six times its maximum permissible gross mass, the load being evenly distributed.

6.6.5.3.2.3 Method of testing
The large packaging must be lifted in the manner for which it is designed until clear of the floor and maintained in that position for a period of five minutes.

6.6.5.3.2.4 Criteria for passing the test
(a) Metal, rigid plastics and composite large packagings: –no permanent deformation which renders the large packaging, including the base pallet, if any, unsafe for transport and no loss of contents;
(b) Flexible large packagings: –no damage to the large packaging or its lifting devices which renders the large packaging unsafe for transport or handling and no loss of contents.

6.6.5.3.3 Stacking test

6.6.5.3.3.1 Applicability
For all types of large packagings which are designed to be stacked on each other, as a design type test.

6.6.5.3.3.2 Preparation of large packaging for test
The large packaging must be filled to its maximum permissible gross mass.

6.6.5.3.3.3 Method of testing
The large packaging must be placed on its base on level hard ground and subjected to a uniformly distributed superimposed test load (see 6.6.5.3.3.4) for a period of at least five minutes. For large packagings of wood, fibreboard and plastics materials the period must be 24 h.

6.6.5.3.3.4 Calculation of superimposed test load
The load to be placed on the large packaging must be 1.8 times the combined maximum permissible gross mass of the number of similar large packaging that may be stacked on top of the large packaging during transport.

6.6.5.3.3.5 Criteria for passing the test
(a) All types of large packagings other than flexible large packagings: no permanent deformation which renders the large packaging including the base pallet, if any, unsafe for transport and no loss of contents;
(b) Flexible large packagings: no deterioration of the body which renders the large packaging unsafe for transport and no loss of contents.

6.6.5.3.4 Drop test

6.6.5.3.4.1 Applicability
For all types of large packagings as a design type test.
6.6.5.3.4.2 Preparation of large packaging for testing

The large packaging must be filled in accordance with 6.6.5.2.1.

6.6.5.3.4.3 Method of testing

The large packaging must be dropped onto a non-resilient, horizontal, flat massive and rigid surface in conformity with 6.1.5.3.4, in such a manner as to ensure that the point of impact is that part of the base of the large packaging considered to be the most vulnerable.

6.6.5.3.4.4 Drop height

NOTE: Large packagings for substances and articles of Class 1 are to be tested at the packing group II performance level.

6.6.5.3.4.4.1 For inner packagings containing solid or liquid substances or articles, if the test is performed with the solid, liquid or articles to be transported, or with another substance or article having essentially the same characteristics:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

6.6.5.3.4.4.2 For inner packagings containing liquids if the test is performed with water:

(a) Where the substances to be transported have a relative density not exceeding 1.2:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 m</td>
<td>1.2 m</td>
<td>0.8 m</td>
</tr>
</tbody>
</table>

(b) Where the substances to be transported have a relative density exceeding 1.2, the drop height must be calculated on the basis of the relative density (d) of the substance to be carried, rounded up to the first decimal, as follows:

<table>
<thead>
<tr>
<th>Packing group I</th>
<th>Packing group II</th>
<th>Packing group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>d × 1.5 (m)</td>
<td>d × 1.0 (m)</td>
<td>d × 0.67 (m)</td>
</tr>
</tbody>
</table>
6.6.5.3.4.5 Criteria for passing the test

6.6.5.3.4.5.1 The large packaging must not exhibit any damage liable to affect safety during transport. There must be no leakage of the filling substance from inner packaging(s) or article(s).

6.6.5.3.4.5.2 No rupture is permitted in large packagings for articles of Class 1 which would permit the spillage of loose explosive substances or articles from the large packaging.

6.6.5.3.4.5.3 Where a large packaging undergoes a drop test, the sample passes the test if the entire contents are retained even if the closure is no longer sight-proof.

6.6.5.4 Certification and test report

6.6.5.4.1 In respect of each design type of large packaging a certificate and mark (as in 6.6.3) must be issued attesting that the design type including its equipment meets the test requirements.

6.6.5.4.2 A test report containing at least the following particulars must be drawn up and must be available to the users of the large packaging:

1. Name and address of the test facility;
2. Name and address of applicant (where appropriate);
3. A unique test report identification;
4. Date of the test report;
5. Manufacturer of the large packaging;
6. Description of the large packaging design type (e.g. dimensions, materials, closures, thickness, etc) and/or photograph(s);
7. Maximum capacity/maximum permissible gross mass;
8. Characteristics of test contents, e.g. types and descriptions of inner packagings or articles used;
9. Test descriptions and results;
10. The test report must be signed with the name and status of the signatory.

6.6.5.4.3 The test report must contain statements that the large packaging prepared as for transport was tested in accordance with the appropriate provisions of this Chapter and that the use of other packaging methods or components may render it invalid. A copy of the test report must be available to the competent authority.
CHAPTER 6.7 - REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS AND MULTIPLE-ELEMENT GAS CONTAINERS (MEGCs)

6.7.1 APPLICATION AND GENERAL REQUIREMENTS

6.7.1.1 The requirements of this Chapter apply to portable tanks intended for the transport of dangerous goods of Classes 2, 3, 4, 5, 6, 7, 8 and 9, and to MEGCs intended for the transport of non-refrigerated gases of Class 2, by all modes of transport. In addition to the requirements of this Chapter, unless otherwise specified, the applicable requirements of the International Convention for Safe Containers (CSC) 1972, as amended, must be fulfilled by any multimodal portable tank or MEGC which meets the definition of a “container” within the terms of that Convention. Additional requirements may apply to offshore portable tanks or MEGCs that are handled in open seas.

6.7.1.2 In recognition of scientific and technological advances, the technical requirements of this Chapter may be varied by alternative arrangements. These alternative arrangements must offer a level of safety not less than that given by the requirements of this Chapter with respect to the compatibility with substances transported and the ability of the portable tank or MEGC to withstand impact, loading and fire conditions. For international transport, alternative arrangement portable tanks or MEGCs must be approved by the applicable competent authorities.

6.7.1.3 When a substance is not assigned a portable tank instruction (T1 to T23, T50 or T75) in Column 10 of the Dangerous Goods List in Chapter 3.2, a determination in accordance with Regulation 1.6.1(2) may be issued by the competent authority of the jurisdiction of origin. The determination must be included in the documentation of the consignment and contain as a minimum the information normally provided in the portable tank instructions and the conditions under which the substance must be transported. Appropriate measures should be initiated by the competent authority to include the assignment in the Dangerous Goods List.

6.7.2 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS INTENDED FOR THE TRANSPORT OF SUBSTANCES OF CLASS 1 AND CLASSES 3 TO 9

6.7.2.1 Definitions

For the purposes of this section:

Design pressure means the pressure to be used in calculations required by a recognised pressure vessel code. The design pressure must be not less than the highest of the following pressures:

(a) The maximum effective gauge pressure allowed in the shell during filling or discharge; or

(b) The sum of:

(i) the absolute vapour pressure (in bar) of the substance at 65°C (at highest temperature during filling, discharge or transport for substances transported above 65°C), minus 1 bar; and
(ii) the partial pressure (in bar) of air or other gases in the ullage space being determined by a maximum ullage temperature of 65 °C and a liquid expansion due to an increase in mean bulk temperature of \(t_r - t_f \) (\(t_f = \) filling temperature usually 15 °C; \(t_r = 50 °C \) maximum mean bulk temperature); and

(iii) a head pressure determined on the basis of the static forces specified in 6.7.2.2.12, but not less than 0.35 bar; or

(c) Two thirds of the minimum test pressure specified in the applicable portable tank instruction in 4.2.5.2.6;

Design temperature range for the shell must be -40 °C to 50 °C for substances transported under ambient conditions. For the other substances handled under elevated temperature conditions the design temperature must be not less than the maximum temperature of the substance during filling, discharge or transport. More severe design temperatures must be considered for portable tanks subjected to severe climatic conditions;

Fine grain steel means steel which has a ferritic grain size of 6 or finer when determined in accordance with ASTM E 112-96 or as defined in EN 10028-3, Part 3;

Fusible element means a non-reclosable pressure relief device that is thermally actuated;

Leakproofness test means a test using gas subjecting the shell and its service equipment to an effective internal pressure of not less than 25% of the MAWP;

Maximum allowable working pressure (MAWP) means a pressure that must be not less than the highest of the following pressures measured at the top of the shell while in operating position:

(a) The maximum effective gauge pressure allowed in the shell during filling or discharge; or

(b) The maximum effective gauge pressure to which the shell is designed which must be not less than the sum of:

(i) the absolute vapour pressure (in bar) of the substance at 65 °C (at the highest temperature during filling, discharge or transport for substances transported above 65 °C), minus 1 bar; and

(ii) the partial pressure (in bar) of air or other gases in the ullage space being determined by a maximum ullage temperature of 65 °C and a liquid expansion due to an increase in mean bulk temperature of \(t_r - t_f \) (\(t_f = \) filling temperature, usually 15 °C; \(t_r = 50 °C \), maximum mean bulk temperature);

Maximum permissible gross mass (MPGM) means the sum of the tare mass of the portable tank and the heaviest load authorised for transport;

Mild steel means a steel with a guaranteed minimum tensile strength of 360 N/mm² to 440 N/mm² and a guaranteed minimum elongation at fracture conforming to 6.7.2.3.3.3;

Offshore portable tank means a portable tank specially designed for repeated use for transport of dangerous goods to, from and between offshore facilities. An offshore portable tank is designed and constructed in accordance with the Guidelines for the Approval of Containers Handled in Open Seas specified by the International Maritime Organisation in document MSC/Circ.860;
Portable tank means a multimodal tank used for the transport of substances of Class 1 and Classes 3 to 9. The portable tank includes a shell fitted with service equipment and structural equipment necessary for the transport of dangerous substances. The portable tank must be capable of being filled and discharged without the removal of its structural equipment. It must possess stabilising members external to the shell, and must be capable of being lifted when full. It must be designed primarily to be loaded onto a transport vehicle or ship and must be equipped with skids, mountings or accessories to facilitate mechanical handling. Road tank-vehicles, rail tank-wagons, non-metallic tanks and intermediate bulk containers (IBCs) are not considered to fall within the definition for portable tanks;

Reference steel means a steel with a tensile strength of 370 N/mm2 and an elongation at fracture of 27%;

Service equipment means measuring instruments and filling, discharge, venting, safety, heating, cooling and insulating devices;

Shell means the part of the portable tank which retains the substance intended for transport (tank proper), including openings and their closures, but does not include service equipment or external structural equipment;

Structural equipment means the reinforcing, fastening, protective and stabilising members external to the shell;

Test pressure means the maximum gauge pressure at the top of the shell during the hydraulic pressure test equal to not less than 1.5 times the design pressure. The minimum test pressure for portable tanks intended for specific substances is specified in the applicable portable tank instruction in 4.2.5.2.6.

6.7.2.2 General design and construction requirements

6.7.2.2.1 Shells

Shells must be designed and constructed in accordance with the requirements of a pressure vessel code recognised by the competent authority. Shells must be made of metallic materials suitable for forming. The materials must in principle conform to national or international material standards. For welded shells only a material whose weldability has been fully demonstrated must be used. Welds must be skillfully made and afford complete safety. When the manufacturing process or the materials make it necessary, the shells must be suitably heat-treated to guarantee adequate toughness in the weld and in the heat affected zones. In choosing the material, the design temperature range must be taken into account with respect to risk of brittle fracture, to stress corrosion cracking and to resistance to impact. When fine grain steel is used, the guaranteed value of the yield strength must be not more than 460 N/mm2 and the guaranteed value of the upper limit of the tensile strength must be not more than 725 N/mm2 according to the material specification. Aluminium may only be used as a construction material when indicated in a portable tank special provision assigned to a specific substance in Column 11 of the Dangerous Goods List or when determined by the competent authority. When aluminium is authorised, it must be insulated to prevent significant loss of physical properties when subjected to a heat load of 110 kW/m2 for a period of not less than 30 minutes. The insulation must remain effective at all temperatures less than 649 °C and must be jacketed with a material with a melting point of not less than 700 °C. Portable tank materials must be suitable for the external environment in which they may be transported.

6.7.2.2 Portable tank shells, fittings, and pipework

Portable tank shells, fittings, and pipework must be constructed from materials which are:

(a) Substantially immune to attack by the substance(s) intended to be transported; or
6.7.2.2.3 Gaskets must be made of materials not subject to attack by the substance(s) intended to be transported.

6.7.2.2.4 When shells are lined, the lining must be substantially immune to attack by the substance(s) intended to be transported, homogeneous, non porous, free from perforations, sufficiently elastic and compatible with the thermal expansion characteristics of the shell. The lining of every shell, shell fittings and piping must be continuous, and must extend around the face of any flange. Where external fittings are welded to the tank, the lining must be continuous through the fitting and around the face of external flanges.

6.7.2.2.5 Joints and seams in the lining must be made by fusing the material together or by other equally effective means.

6.7.2.2.6 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.7.2.2.7 The materials of the portable tank, including any devices, gaskets, linings and accessories, must not adversely affect the substance(s) intended to be transported in the portable tank.

6.7.2.2.8 Portable tanks must be designed and constructed with supports to provide a secure base during transport and with suitable lifting and tie-down attachments.

6.7.2.2.9 Portable tanks must be designed to withstand, without loss of contents, at least the internal pressure due to the contents, and the static, dynamic and thermal loads during normal conditions of handling and transport. The design must demonstrate that the effects of fatigue, caused by repeated application of these loads through the expected life of the portable tank, have been taken into account.

6.7.2.2.9.1 For portable tanks that are intended for use offshore, the dynamic stresses imposed by handling in open seas must be taken into account.

6.7.2.2.10 A shell which is to be equipped with a vacuum-relief device must be designed to withstand, without permanent deformation, an external pressure of not less than 0.21 bar above the internal pressure. The vacuum-relief device must be set to relieve at a vacuum setting not greater than minus 0.21 bar unless the shell is designed for a higher external over pressure, in which case the vacuum-relief pressure of the device to be fitted must be not greater than the tank design vacuum pressure. A shell used for the transport of solid substances of packing groups II or III only, which do not liquefy during transport, may be designed for a lower external pressure, subject to competent authority approval. In this case, the vacuum-relief device must be set to relieve at this lower pressure. A shell that is not to be fitted with a vacuum-relief device must be designed to withstand, without permanent deformation, an external pressure of not less than 0.4 bar above the internal pressure.

6.7.2.2.11 Vacuum-relief devices used on portable tanks intended for the transport of substances meeting the flash point criteria of Class 3, including elevated temperature substances transported at or above their flash point, must prevent the immediate passage of flame into the shell, or the portable tank must have a shell capable of withstanding, without leakage an internal explosion resulting from the passage of flame into the shell.
6.7.2.2.12 Portable tanks and their fastenings must, under the maximum permissible load, be capable of absorbing the following separately applied static forces:

(a) In the direction of travel: – twice the MPGM multiplied by the acceleration due to gravity \((g)\);

(b) Horizontally at right angles to the direction of travel: - the MPGM (when the direction of travel is not clearly determined, the forces must be equal to twice the MPGM) multiplied by the acceleration due to gravity \((g)\); and

(c) Vertically upwards: - the MPGM multiplied by the acceleration due to gravity \((g)\); and

(d) Vertically downwards: - twice the MPGM (total loading including the effect of gravity) multiplied by the acceleration due to gravity \((g)\).

6.7.2.2.13 Under each of the forces in 6.7.2.2.12, the safety factor to be observed must be as follows:

(a) For metals having a clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed yield strength; or

(b) For metals with no clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed 0.2% proof strength and, for austenitic steels, the 1% proof strength.

6.7.2.2.14 The values of yield strength or proof strength must be the values according to national or international material standards. When austenitic steels are used, the specified minimum values of yield strength or proof strength according to the material standards may be increased by up to 15% when these greater values are attested in the material inspection certificate. When no material standard exists for the metal in question, the value of yield strength or proof strength used must be approved by the competent authority.

6.7.2.2.15 Portable tanks must be capable of being electrically earthed when intended for the transport of substances meeting the flash point criteria of Class 3 including elevated temperature substances transported at or above their flash point. Measures must be taken to prevent dangerous electrostatic discharge.

6.7.2.2.16 When required for certain substances by the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6, or by a portable tank special provision indicated in Column 11 and described in 4.2.5.3 of the Dangerous Goods List, portable tanks must be provided with additional protection, which may take the form of additional shell thickness or a higher test pressure, the additional shell thickness or higher test pressure being determined in the light of the inherent risks associated with the transport of the substances concerned.

6.7.2.2.17 Thermal insulation directly in contact with the shell intended for substances transported at elevated temperature must have an ignition temperature at least 50 \(^\circ\)C higher than the maximum design temperature of the tank.

6.7.2.3 Design criteria

6.7.2.3.1 Shells must be of a design capable of being stress-analysed mathematically or experimentally by resistance strain gauges, or by other methods approved by the competent authority.
6.7.2.3.2 Shells must be designed and constructed to withstand a hydraulic test pressure not less than 1.5 times the design pressure. Specific requirements are laid down for certain substances in the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6 or by a portable tank special provision indicated in Column 11 of the Dangerous Goods List and described in 4.2.5.3. Attention is drawn to the minimum shell thickness requirements for these tanks specified in 6.7.2.4.1 to 6.7.2.4.10.

6.7.2.3.3 For metals exhibiting a clearly defined yield point or characterised by a guaranteed proof strength (0.2% proof strength, generally, or 1% proof strength for austenitic steels) the primary membrane stress σ (sigma) in the shell must not exceed 0.75 R_e or 0.50 R_m, whichever is lower, at the test pressure, where:

$$R_e = \text{yield strength in N/mm}^2, \text{or } 0.2\% \text{ proof strength or, for austenitic steels, } 1\% \text{ proof strength};$$

$$R_m = \text{minimum tensile strength in N/mm}^2.$$

6.7.2.3.3.1 The values of R_e and R_m to be used must be the specified minimum values according to national or international material standards. When austenitic steels are used, the specified minimum values for R_e and R_m according to the material standards may be increased by up to 15% when greater values are attested in the material inspection certificate. When no material standard exists for the metal in question, the values of R_e and R_m used must be approved by the competent authority or its authorised body.

6.7.2.3.3.2 Steels which have a R_e/R_m ratio of more than 0.85 are not allowed for the construction of welded shells. The values of R_e and R_m to be used in determining this ratio must be the values specified in the material inspection certificate.

6.7.2.3.3.3 Steels used in the construction of shells must have an elongation at fracture, in $\%$, of not less than 10 000/R_m with an absolute minimum of 16% for fine grain steels and 20% for other steels. Aluminium and aluminium alloys used in the construction of shells must have an elongation at fracture, in $\%$, of not less than 10 000/6R_m with an absolute minimum of 12%.

6.7.2.3.3.4 For the purpose of determining actual values for materials, it must be noted that for sheet metal, the axis of the tensile test specimen must be at right angles (transversely) to the direction of rolling. The permanent elongation at fracture must be measured on test specimens of rectangular cross sections in accordance with ISO 6892:1998 using a 50 mm gauge length.

6.7.2.4 Minimum shell thickness

6.7.2.4.1 The minimum shell thickness must be the greater thickness based on:

(a) The minimum thickness determined in accordance with the requirements of 6.7.2.4.2 to 6.7.2.4.10;

(b) The minimum thickness determined in accordance with the recognised pressure vessel code including the requirements in 6.7.2.3; and

(c) The minimum thickness specified in the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6, or by a portable tank special provision indicated in Column 11 of the Dangerous Goods List and described in 4.2.5.3.
6.7.2.4.2 The cylindrical portions, ends (heads) and manhole covers of shells not more than 1.80 m in diameter must be not less than 5 mm thick in the reference steel or of equivalent thickness in the metal to be used. Shells more than 1.80 m in diameter must be not less than 6 mm thick in the reference steel or of equivalent thickness in the metal to be used, except that for powdered or granular solid substances of packing group II or III the minimum thickness requirement may be reduced to not less than 5 mm thick in the reference steel or of equivalent thickness in the metal to be used.

6.7.2.4.3 When additional protection against shell damage is provided, portable tanks with test pressures less than 2.65 bar, may have the minimum shell thickness reduced, in proportion to the protection provided, as approved by the competent authority. However, shells not more than 1.80 m in diameter must be not less than 3 mm thick in the reference steel or of equivalent thickness in the metal to be used. Shells more than 1.80 m in diameter must be not less than 4 mm thick in the reference steel or of equivalent thickness in the metal to be used.

6.7.2.4.4 The cylindrical portions, ends (heads) and manhole covers of all shells must be not less than 3 mm thick regardless of the material of construction.

6.7.2.4.5 The additional protection referred to in 6.7.2.4.3 may be provided by overall external structural protection, such as suitable “sandwich” construction with the outer sheathing (jacket) secured to the shell, double wall construction or by enclosing the shell in a complete framework with longitudinal and transverse structural members.

6.7.2.4.6 The equivalent thickness of a metal other than the thickness prescribed for the reference steel in 6.7.2.4.3 must be determined using the following formula:

\[
e_i = \frac{21.4e_0}{\frac{1}{3}Rm_i \times A_i}
\]

where:
- \(e_1\) = required equivalent thickness (in mm) of the metal to be used;
- \(e_0\) = minimum thickness (in mm) of the reference steel specified in the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6 or by a portable tank special provision indicated in Column 11 of the Dangerous Goods List and described in 4.2.5.3;
- \(Rm_i\) = guaranteed minimum tensile strength (in N/mm\(^2\)) of the metal to be used (see 6.7.2.3.3);
- \(A_i\) = guaranteed minimum elongation at fracture (in %) of the metal to be used according to national or international standards.

6.7.2.4.7 When in the applicable portable tank instruction in 4.2.5.2.6, a minimum thickness of 8 mm or 10 mm is specified, it must be noted that these thicknesses are based on the properties of the reference steel and a shell diameter of 1.80 m. When a metal other than mild steel (see 6.7.2.1) is used or the shell has a diameter of more than 1.80 m, the thickness must be determined using the following formula:

\[
e_i = \frac{21.4e_0d_i}{1.8\frac{1}{3}Rm_i \times A_i}
\]
where: $e_1 =$ required equivalent thickness (in mm) of the metal to be used;
\[e_0 = \text{minimum thickness (in mm) of the reference steel specified in the applicable portable tank instruction indicated in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6 or by a portable tank special provision indicated in Column 11 of the Dangerous Goods List and described in 4.2.5.3;}\]
\[d_1 = \text{diameter of the shell (in m), but not less than 1.80 m;}\]
\[Rm_1 = \text{guaranteed minimum tensile strength (in N/mm}^2\text{) of the metal to be used (see 6.7.2.3.3);}\]
\[A_1 = \text{guaranteed minimum elongation at fracture (in %) of the metal to be used according to national or international standards.}\]

6.7.2.4.8 In no case must the wall thickness be less than that prescribed in 6.7.2.4.2, 6.7.2.4.3 and 6.7.2.4.4. All parts of the shell must have a minimum thickness as determined by 6.7.2.4.2 to 6.7.2.4.4. This thickness must be exclusive of any corrosion allowance.

6.7.2.4.9 When mild steel is used (see 6.7.2.1), calculation using the formula in 6.7.2.4.6 is not required.

6.7.2.4.10 There must be no sudden change of plate thickness at the attachment of the ends (heads) to the cylindrical portion of the shell.

6.7.2.5 Service equipment

6.7.2.5.1 Service equipment must be so arranged as to be protected against the risk of being wrenched off or damaged during handling and transport. When the connection between the frame and the shell allows relative movement between the sub-assemblies, the equipment must be so fastened as to permit such movement without risk of damage to working parts. The external discharge fittings (pipe sockets, shut-off devices), the internal stop-valve and its seating must be protected against the danger of being wrenched off by external forces (for example using shear sections). The filling and discharge devices (including flanges or threaded plugs) and any protective caps must be capable of being secured against unintended opening.

6.7.2.5.2 All openings in the shell, intended for filling or discharging the portable tank must be fitted with a manually operated stop-valve located as close to the shell as reasonably practicable. Other openings, except for openings leading to venting or pressure-relief devices, must be equipped with either a stop-valve or another suitable means of closure located as close to the shell as reasonably practicable.

6.7.2.5.3 All portable tanks must be fitted with a manhole or other inspection openings of a suitable size to allow for internal inspection and adequate access for maintenance and repair of the interior. Compartmented portable tanks must have a manhole or other inspection openings for each compartment.

6.7.2.5.4 As far as reasonably practicable, external fittings must be grouped together. For insulated portable tanks, top fittings must be surrounded by a spill collection reservoir with suitable drains.
6.7.2.5.5 Each connection to a portable tank must be clearly marked to indicate its function.

6.7.2.5.6 Each stop-valve or other means of closure must be designed and constructed to a rated pressure not less than the MAWP of the shell taking into account the temperatures expected during transport. All stop-valves with screwed spindles must close by a clockwise motion of the handwheel. For other stop-valves the position (open and closed) and direction of closure must be clearly indicated. All stop-valves must be designed to prevent unintentional opening.

6.7.2.5.7 No moving parts, such as covers, components of closures, etc., must be made of unprotected corrodiible steel when they are liable to come into frictional or percussive contact with aluminium portable tanks intended for the transport of substances meeting the flash point criteria of Class 3 including elevated temperature substances transported at or above their flash point.

6.7.2.5.8 Piping must be designed, constructed and installed so as to avoid the risk of damage due to thermal expansion and contraction, mechanical shock and vibration. All piping must be of a suitable metallic material. Welded pipe joints must be used wherever possible.

6.7.2.5.9 Joints in copper tubing must be brazed or have an equally strong metal union. The melting point of brazing materials must be no lower than 525 °C. The joints must not decrease the strength of the tubing as may happen when cutting threads.

6.7.2.5.10 The burst pressure of all piping and pipe fittings must be not less than the highest of four times the MAWP of the shell or four times the pressure to which it may be subjected in service by the action of a pump or other device (except pressure-relief devices).

6.7.2.5.11 Ductile metals must be used in the construction of valves and accessories.

6.7.2.5.12 The heating system must be designed or controlled so that a substance cannot reach a temperature at which the pressure in the tank exceeds its MAWP or causes other hazards (e.g. dangerous thermal decomposition).

6.7.2.5.13 The heating system must be designed or controlled so that power for internal heating elements must not be available unless the heating elements are completely submerged. The temperature at the surface of the heating elements for internal heating equipment, or the temperature at the shell for external heating equipment must, in no case, exceed 80% of the autoignition temperature (in °C) of the substance transported.

6.7.2.5.14 If an electrical heating system is installed inside the tank, it must be equipped with an earth leakage circuit breaker with a releasing current of less than 100 mA.

6.7.2.5.15 Electrical switch cabinets mounted to tanks must not have a direct connection to the tank interior and must provide protection of at least the equivalent of type IP56 according to IEC 144 or IEC 529.

6.7.2.6 Bottom openings

6.7.2.6.1 Certain substances must not be transported in portable tanks with bottom openings. When the applicable portable tank instruction identified in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6 indicates that bottom openings are prohibited there must be no openings below the liquid level of the shell when it is filled to its maximum permissible filling limit. When an existing opening is closed it must be accomplished by internally and externally welding one plate to the shell.
6.7.2.6.2 Bottom discharge outlets for portable tanks carrying certain solid, crystallisable or highly viscous substances must be equipped with not less than two serially fitted and mutually independent shut-off devices. The design of the equipment must be to the satisfaction of the competent authority or its authorised body and must include:

(a) An external stop-valve, fitted as close to the shell as reasonably practicable, and so designed as to prevent any unintended opening through impact or other inadvertent act; and

(b) A liquid tight closure at the end of the discharge pipe, which may be a bolted blank flange or a screw cap.

6.7.2.6.3 Every bottom discharge outlet, except as provided in 6.7.2.6.2, must be equipped with three serially fitted and mutually independent shut-off devices. The design of the equipment must be to the satisfaction of the competent authority or its authorised body and include:

(a) A self-closing internal stop-valve, that is a stop-valve within the shell or within a welded flange or its companion flange, such that:

(i) The control devices for the operation of the valve are designed so as to prevent any unintended opening through impact or other inadvertent act;

(ii) The valve may be operable from above or below;

(iii) If possible, the setting of the valve (open or closed) must be capable of being verified from the ground;

(iv) Except for portable tanks having a capacity of not more than 1,000 litres, it must be possible to close the valve from an accessible position of the portable tank that is remote from the valve itself; and

(v) The valve must continue to be effective in the event of damage to the external device for controlling the operation of the valve;

(b) An external stop-valve fitted as close to the shell as reasonably practicable; and

(c) A liquid tight closure at the end of the discharge pipe, which may be a bolted blank flange or a screw cap.

6.7.2.6.4 For a lined shell, the internal stop-valve required by 6.7.2.6.3(a) may be replaced by an additional external stop-valve. The manufacturer must satisfy the requirements of the competent authority or its authorised body.

6.7.2.7 Safety relief devices

6.7.2.7.1 All portable tanks must be fitted with at least one pressure-relief device. All relief devices must be designed, constructed and marked to the satisfaction of the competent authority or its authorised body.

6.7.2.8 Pressure-relief devices

6.7.2.8.1 Every portable tank with a capacity not less than 1,900 litres and every independent compartment of a portable tank with a similar capacity, must be provided with one or more pressure-relief devices of the spring-loaded type and may in addition have a frangible disc or fusible element in parallel with the spring-loaded devices except when prohibited by reference to 6.7.2.8.3 in the applicable portable tank instruction in 4.2.5.2.6. The pressure-relief devices must have sufficient capacity to prevent rupture of the shell due to overpressurisation or vacuum resulting from filling, discharging, or from heating of the contents.
6.7.2.8.2 Pressure-relief devices must be designed to prevent the entry of foreign matter, the leakage of liquid and the development of any dangerous excess pressure.

6.7.2.8.3 When required for certain substances by the applicable portable tank instruction identified in Column 10 of the Dangerous Goods List and described in 4.2.5.2.6, portable tanks must have a pressure-relief device approved by the competent authority. Unless a portable tank in dedicated service is fitted with an approved relief device constructed of materials compatible with the load, the relief device must comprise a frangible disc preceding a spring-loaded pressure-relief device. When a frangible disc is inserted in series with the required pressure-relief device, the space between the frangible disc and the pressure-relief device must be provided with a pressure gauge or suitable tell-tale indicator for the detection of disc rupture, pinholing, or leakage which could cause a malfunction of the pressure-relief system. The frangible disc must rupture at a nominal pressure 10% above the start to discharge pressure of the relief device.

6.7.2.8.4 Every portable tank with a capacity less than 1,900 litres must be fitted with a pressure-relief device which may be a frangible disc when this disc complies with the requirements of 6.7.2.11.1. When no spring-loaded pressure-relief device is used, the frangible disc must be set to rupture at a nominal pressure equal to the test pressure. In addition, fusible elements conforming to 6.7.2.10.1 may also be used.

6.7.2.8.5 When the shell is fitted for pressure discharge, the inlet line must be provided with a suitable pressure-relief device set to operate at a pressure not higher than the MAWP of the shell, and a stop-valve must be fitted as close to the shell as reasonably practicable.

6.7.2.9 Setting of pressure-relief devices

6.7.2.9.1 It must be noted that the pressure-relief devices must operate only in conditions of excessive rise in temperature, since the shell must not be subject to undue fluctuations of pressure during normal conditions of transport (see 6.7.2.12.2).

6.7.2.9.2 Except where 6.7.2.9.3 applies, the required pressure-relief device must be set to start-to-discharge at a nominal pressure of five-sixths of the test pressure for shells having a test pressure of not more than 4.5 bar and 110% of two-thirds of the test pressure for shells having a test pressure of more than 4.5 bar. After discharge the device must close at a pressure not more than 10% below the pressure at which the discharge starts. The device must remain closed at all lower pressures. This requirement does not prevent the use of vacuum-relief or combination pressure-relief and vacuum-relief devices.

6.7.2.9.3 Where required by legislation governing the design and use of pressure vessels in the jurisdiction, the settings for pressure relief devices must comply with those specified in AS 1210 rather than 6.7.2.9.2.

6.7.2.10 Fusible elements

6.7.2.10.1 Fusible elements must operate at a temperature between 100 °C and 149 °C on condition that the pressure in the shell at the fusing temperature will be not more than the test pressure. They must be placed at the top of the shell with their inlets in the vapour space and when used for transport safety purposes, they must not be shielded from external heat.
Fusible elements must not be used on portable tanks with a test pressure which exceeds 2.65 bar unless specified by special provision TP36 in Column 11 of the Dangerous Goods List of Chapter 3.2. Fusible elements used on portable tanks intended for the transport of elevated temperature substances must be designed to operate at a temperature higher than the maximum temperature that will be experienced during transport and must be to the satisfaction of the competent authority or its authorised body.

6.7.2.11 Frangible discs

6.7.2.11.1 Except as specified in 6.7.2.8.3, frangible discs must be set to rupture at a nominal pressure equal to the test pressure throughout the design temperature range. Particular attention must be given to the requirements of 6.7.2.5.1 and 6.7.2.8.3 if frangible discs are used.

6.7.2.11.2 Frangible discs must be appropriate for the vacuum pressures which may be produced in the portable tank.

6.7.2.12 Capacity of pressure-relief devices

6.7.2.12.1 The spring-loaded pressure-relief device required by 6.7.2.8.1 must have a minimum cross sectional flow area equivalent to an orifice of 31.75 mm diameter. Vacuum-relief devices, when used, must have a cross sectional flow area not less than 284 mm².

6.7.2.12.2 The combined delivery capacity of the pressure relief system (taking into account the reduction of the flow when the portable tank is fitted with frangible-discs preceding spring-loaded pressure-relief devices or when the spring-loaded pressure-relief devices are provided with a device to prevent the passage of the flame), in condition of complete fire engulfment of the portable tank must be sufficient to limit the pressure in the shell to 20% above the start-to-discharge pressure of the pressure limiting device. Emergency pressure-relief devices may be used to achieve the full relief capacity prescribed. These devices may be fusible, spring loaded or frangible disc components, or a combination of spring-loaded and frangible disc devices. The total required capacity of the relief devices may be determined using the formula in 6.7.2.12.2.1 or the table in 6.7.2.12.2.3.

6.7.2.12.2.1 To determine the total required capacity of the relief devices, which must be regarded as being the sum of the individual capacities of all the contributing devices, the following formula must be used:

\[
Q = 12.4 \frac{FA^{0.82}}{LC} \sqrt{\frac{ZT}{M}}
\]

where:

- \(Q\) = minimum required rate of discharge in cubic metres of air per second (m³/s) at standard conditions: 1 bar and 0 °C (273 K);
- \(F\) = is a coefficient with the following value:
 - for uninsulated shells \(F = 1\);
 - for insulated shells \(F = U(649 - t)/13.6\)
 - but in no case is less than 0.25 where:
- \(U\) = thermal conductance of the insulation, in kW·m⁻²·K⁻¹, at 38 °C
- \(t\) = actual temperature of the substance during filling (in °C);
 - when this temperature is unknown, let \(t = 15 \, ^°C\):
The value of F given above for insulated shells may be taken provided that the insulation is in conformance with 6.7.2.12.2.4;

A = total external surface area of shell in square metres;

Z = the gas compressibility factor in the accumulating condition (when this factor is unknown, let Z equal 1.0);

T = absolute temperature in Kelvin ($\degree C + 273$) above the pressure-relief devices in the accumulating condition;

L = the latent heat of vaporisation of the liquid, in kJ/kg, in the accumulating condition;

M = molecular mass of the discharged gas;

C = a constant which is derived from one of the following formulae as a function of the ratio k of specific heats:

$$ k = \frac{c_p}{c_v} $$

where:

c_p is the specific heat at constant pressure; and

c_v is the specific heat at constant volume.

When $k > 1$:

$$ C = \sqrt{\frac{2}{k+1}} $$

When $k = 1$, or k is unknown:

$$ C = \frac{1}{e^{1/k}} = 0.607 $$

where e is the mathematical constant 2.7183

C may also be taken from the following table:

<table>
<thead>
<tr>
<th>k</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.607</td>
</tr>
<tr>
<td>1.02</td>
<td>0.611</td>
</tr>
<tr>
<td>1.04</td>
<td>0.615</td>
</tr>
<tr>
<td>1.06</td>
<td>0.620</td>
</tr>
<tr>
<td>1.08</td>
<td>0.624</td>
</tr>
<tr>
<td>1.10</td>
<td>0.628</td>
</tr>
<tr>
<td>1.12</td>
<td>0.633</td>
</tr>
<tr>
<td>1.14</td>
<td>0.637</td>
</tr>
<tr>
<td>1.16</td>
<td>0.641</td>
</tr>
<tr>
<td>1.18</td>
<td>0.645</td>
</tr>
<tr>
<td>1.20</td>
<td>0.649</td>
</tr>
<tr>
<td>1.22</td>
<td>0.652</td>
</tr>
<tr>
<td>1.24</td>
<td>0.656</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.26</td>
<td>0.660</td>
</tr>
<tr>
<td>1.28</td>
<td>0.664</td>
</tr>
<tr>
<td>1.30</td>
<td>0.667</td>
</tr>
<tr>
<td>1.32</td>
<td>0.671</td>
</tr>
<tr>
<td>1.34</td>
<td>0.674</td>
</tr>
<tr>
<td>1.36</td>
<td>0.678</td>
</tr>
<tr>
<td>1.38</td>
<td>0.681</td>
</tr>
<tr>
<td>1.40</td>
<td>0.685</td>
</tr>
<tr>
<td>1.42</td>
<td>0.688</td>
</tr>
<tr>
<td>1.44</td>
<td>0.691</td>
</tr>
<tr>
<td>1.46</td>
<td>0.695</td>
</tr>
<tr>
<td>1.48</td>
<td>0.698</td>
</tr>
<tr>
<td>1.50</td>
<td>0.701</td>
</tr>
<tr>
<td>1.52</td>
<td>0.704</td>
</tr>
<tr>
<td>1.54</td>
<td>0.707</td>
</tr>
<tr>
<td>1.56</td>
<td>0.710</td>
</tr>
<tr>
<td>1.58</td>
<td>0.713</td>
</tr>
<tr>
<td>1.60</td>
<td>0.716</td>
</tr>
<tr>
<td>1.62</td>
<td>0.719</td>
</tr>
<tr>
<td>1.64</td>
<td>0.722</td>
</tr>
<tr>
<td>1.66</td>
<td>0.725</td>
</tr>
<tr>
<td>1.68</td>
<td>0.728</td>
</tr>
<tr>
<td>1.70</td>
<td>0.731</td>
</tr>
<tr>
<td>2.00</td>
<td>0.770</td>
</tr>
<tr>
<td>2.20</td>
<td>0.793</td>
</tr>
</tbody>
</table>
6.7.2.12.2.2 As an alternative to the formula above, shells designed for the transport of liquids may have their relief devices sized in accordance with the table in 6.7.2.12.2.3. This table assumes an insulation value of \(F = 1 \) and must be adjusted accordingly when the shell is insulated. Other values used in determining this table are:

\[
\begin{align*}
M &= 86.7 \\
T &= 394 \text{ K} \\
L &= 334.94 \text{ kJ/kg} \\
C &= 0.607 \\
Z &= 1
\end{align*}
\]

6.7.2.12.2.3 Minimum required rate of discharge, \(Q \), in cubic metres of air per second at 1 bar and 0 \(^\circ \text{C} \) (273 K).

<table>
<thead>
<tr>
<th>Exposed area (square metres)</th>
<th>Q (Cubic metres of air per second)</th>
<th>Exposed area (square metres)</th>
<th>Q (Cubic metres of air per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.230</td>
<td>37.5</td>
<td>2.539</td>
</tr>
<tr>
<td>3</td>
<td>0.320</td>
<td>40</td>
<td>2.677</td>
</tr>
<tr>
<td>4</td>
<td>0.405</td>
<td>42.5</td>
<td>2.814</td>
</tr>
<tr>
<td>5</td>
<td>0.487</td>
<td>45</td>
<td>2.949</td>
</tr>
<tr>
<td>6</td>
<td>0.565</td>
<td>47.5</td>
<td>3.082</td>
</tr>
<tr>
<td>7</td>
<td>0.641</td>
<td>50</td>
<td>3.215</td>
</tr>
<tr>
<td>8</td>
<td>0.715</td>
<td>52.5</td>
<td>3.346</td>
</tr>
<tr>
<td>9</td>
<td>0.788</td>
<td>55</td>
<td>3.476</td>
</tr>
<tr>
<td>10</td>
<td>0.859</td>
<td>57.5</td>
<td>3.605</td>
</tr>
<tr>
<td>12</td>
<td>0.998</td>
<td>60</td>
<td>3.733</td>
</tr>
<tr>
<td>14</td>
<td>1.132</td>
<td>62.5</td>
<td>3.860</td>
</tr>
<tr>
<td>16</td>
<td>1.263</td>
<td>65</td>
<td>3.987</td>
</tr>
<tr>
<td>18</td>
<td>1.391</td>
<td>67.5</td>
<td>4.112</td>
</tr>
<tr>
<td>20</td>
<td>1.517</td>
<td>70</td>
<td>4.236</td>
</tr>
<tr>
<td>22.5</td>
<td>1.670</td>
<td>75</td>
<td>4.483</td>
</tr>
<tr>
<td>25</td>
<td>1.821</td>
<td>80</td>
<td>4.726</td>
</tr>
<tr>
<td>27.5</td>
<td>1.969</td>
<td>85</td>
<td>4.967</td>
</tr>
<tr>
<td>30</td>
<td>2.115</td>
<td>90</td>
<td>5.206</td>
</tr>
<tr>
<td>32.5</td>
<td>2.258</td>
<td>95</td>
<td>5.442</td>
</tr>
<tr>
<td>35</td>
<td>2.400</td>
<td>100</td>
<td>5.676</td>
</tr>
</tbody>
</table>

6.7.2.12.2.4 Insulation systems, used for the purpose of reducing venting capacity, must be approved by the competent authority or its authorised body. In all cases, insulation systems approved for this purpose must:

(a) Remain effective at all temperatures up to 649 \(^\circ \text{C} \); and

(b) Be jacketed with a material having a melting point of 700 \(^\circ \text{C} \) or greater.

6.7.2.13 Marking of pressure-relief devices

6.7.2.13.1 Every pressure-relief device must be clearly and permanently marked with the following:

(a) The pressure (in bar or kPa) or temperature (in \(^\circ \text{C} \)) at which it is set to discharge;

(b) The allowable tolerance at the discharge pressure for spring-loaded devices;
(c) The reference temperature corresponding to the rated pressure for frangible discs;

(d) The allowable temperature tolerance for fusible elements;

(e) The rated flow capacity of the spring-loaded pressure relief devices, frangible discs or fusible elements in standard cubic meters of air per second (m\(^3\)/s); and

(f) The cross sectional flow areas of the spring loaded pressure-relief devices, frangible discs and fusible elements in mm\(^2\).

When practicable, the following information must also be shown:

(g) The manufacturer's name and relevant catalogue number.

6.7.2.13.2 The rated flow capacity marked on the spring-loaded pressure-relief devices must be determined according to ISO 4126-1:2004 and ISO 4126-7:2004.

6.7.2.14 Connections to pressure-relief devices

6.7.2.14.1 Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the safety device. No stop-valve must be installed between the shell and the pressure-relief devices except where duplicate devices are provided for maintenance or other reasons and the stop-valves serving the devices actually in use are locked open or the stop-valves are interlocked so that at least one of the duplicate devices is always in use. There must be no obstruction in an opening leading to a vent or pressure-relief device which might restrict or cut-off the flow from the shell to that device. Vents or pipes from the pressure-relief device outlets, when used, must deliver the relieved vapour or liquid to the atmosphere in conditions of minimum back-pressure on the relieving devices.

6.7.2.15 Siting of pressure-relief devices

6.7.2.15.1 Each pressure-relief device inlet must be situated on top of the shell in a position as near the longitudinal and transverse centre of the shell as reasonably practicable. All pressure-relief device inlets must under maximum filling conditions be situated in the vapour space of the shell and the devices must be so arranged as to ensure the escaping vapour is discharged unrestricredly. For flammable substances, the escaping vapour must be directed away from the shell in such a manner that it cannot impinge upon the shell. Protective devices which deflect the flow of vapour are permissible provided the required relief-device capacity is not reduced.

6.7.2.15.2 Arrangements must be made to prevent access to the pressure-relief devices by unauthorised persons and to protect the devices from damage caused by the portable tank overturning.

6.7.2.16 Gauging devices

6.7.2.16.1 Glass level-gauges and gauges made of other fragile material, which are in direct communication with the contents of the tank must not be used.

6.7.2.17 Portable tank supports, frameworks, lifting and tie-down attachments

6.7.2.17.1 Portable tanks must be designed and constructed with a support structure to provide a secure base during transport. The forces specified in 6.7.2.2.12 and the safety factor specified in 6.7. must be considered in this aspect of the design. Skids, frameworks, cradles or other similar structures are acceptable.
6.7.2.17.2 The combined stresses caused by portable tank mountings (e.g. cradles, framework, etc.) and portable tank lifting and tie-down attachments must not cause excessive stress in any portion of the shell. Permanent lifting and tie-down attachments must be fitted to all portable tanks. Preferably they must be fitted to the portable tank supports but may be secured to reinforcing plates located on the shell at the points of support.

6.7.2.17.3 In the design of supports and frameworks the effects of environmental corrosion must be taken into account.

6.7.2.17.4 Forklift pockets must be capable of being closed off. The means of closing forklift pockets must be a permanent part of the framework or permanently attached to the framework. Single compartment portable tanks with a length less than 3.65 m need not have closed off forklift pockets provided that:

(a) The shell including all the fittings are well protected from being hit by the forklift blades; and

(b) The distance between the centres of the forklift pockets is at least half of the maximum length of the portable tank.

6.7.2.17.5 When portable tanks are not protected during transport, according to 4.2.1.2, the shells and service equipment must be protected against damage to the shell and service equipment resulting from lateral or longitudinal impact or overturning. External fittings must be protected so as to preclude the release of the shell contents upon impact or overturning of the portable tank on its fittings. Examples of protection include:

(a) Protection against lateral impact which may consist of longitudinal bars protecting the shell on both sides at the level of the median line;

(b) Protection of the portable tank against overturning which may consist of reinforcement rings or bars fixed across the frame;

(c) Protection against rear impact which may consist of a bumper or frame;

(d) Protection of the shell against damage from impact or overturning by use of an ISO frame in accordance with ISO 1496-3:1995.

6.7.2.18 Design approval

6.7.2.18.1 The competent authority or its authorised body may issue a design approval certificate for any new design of a portable tank. This certificate must attest that a portable tank has been surveyed by that authority, is suitable for its intended purpose and meets the requirements of this Chapter and where appropriate, the provisions for substances provided in Chapter 4.2 and in the Dangerous Goods List in Chapter 3.2. When a series of portable tanks are manufactured without change in the design, the certificate must be valid for the entire series. The certificate must refer to the prototype test report, the substances or group of substances allowed to be transported, the materials of construction of the shell and lining (when applicable) and an approval number. The approval number must consist of the distinguishing sign or mark of the State in whose territory the approval was granted, i.e. the distinguishing sign for use in international traffic as prescribed by the Convention on Road Traffic, Vienna 1968 (for Australia, the letters ‘AUS’), and a registration number. Any alternative arrangements according to 6.7.1.2 must be indicated on the certificate. A design approval may serve for the approval of smaller portable tanks made of materials of the same kind and thickness, by the same fabrication techniques and with identical supports, equivalent closures and other appurtenances.
6.7.2.18.2 The prototype test report for the design approval must include at least the following:

(a) The results of the applicable framework test specified in ISO 1496-3:1995;
(b) The results of the initial inspection and test in 6.7.2.19.3; and
(c) The results of the impact test in 6.7.2.19.1, when applicable.

6.7.2.19 Inspection and testing

6.7.2.19.1 Portable tanks meeting the definition of container in the International Convention for Safe Containers (CSC), 1972, as amended, must not be used unless they are successfully qualified by subjecting a representative prototype of each design to the Dynamic, Longitudinal Impact Test prescribed in the Manual for Tests and Criteria, Part IV, Section 40.

6.7.2.19.2 The shell and items of equipment of each portable tank must be inspected and tested before being put into service for the first time (initial inspection and test) and thereafter at not more than five-year intervals (5 year periodic inspection and test) with an intermediate periodic inspection and test (2.5 year periodic inspection and test) midway between the 5 year periodic inspections and tests. The 2.5 year inspection and test may be performed within 3 months of the specified date. An exceptional inspection and test must be performed regardless of the date of the last periodic inspection and test when necessary according to 6.7.2.19.7.

6.7.2.19.3 The initial inspection and test of a portable tank must include a check of the design characteristics, an internal and external examination of the portable tank and its fittings with due regard to the substances to be transported, and a pressure test. Before the portable tank is placed into service, a leakproofness test and a test of the satisfactory operation of all service equipment must also be performed. When the shell and its fittings have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test.

6.7.2.19.4 The 5-year periodic inspection and test must include an internal and external examination and, as a general rule, a hydraulic pressure test. For tanks only used for the transport of solid substances, other than toxic or corrosive substances that do not liquefy during transport, the hydraulic pressure test may be replaced by a suitable pressure test at 1.5 times the MAWP, subject to competent authority exemption. Sheathing, thermal insulation and the like must be removed only to the extent required for reliable appraisal of the condition of the portable tank. When the shell and equipment have been pressure-tested separately, they must also be subjected to a leakproofness test together after assembly.

6.7.2.19.5 The intermediate 2.5 year periodic inspection and test must at least include an internal and external examination of the portable tank and its fittings with due regard to the substances intended to be transported, a leakproofness test and a test of the satisfactory operation of all service equipment. Sheathing, thermal insulation and the like must be removed only to the extent required for reliable appraisal of the condition of the portable tank. For portable tanks dedicated to the transport of a single substance, the 2.5 year internal examination may be waived or substituted by other test methods or inspection procedures specified by the competent authority or its authorised body.
6.7.2.19.6 A portable tank may not be filled and offered for transport after the date of expiry of the last 5 year or 2.5 year periodic inspection and test as required by 6.7.2.19.2. However a portable tank filled prior to the date of expiry of the last periodic inspection and test may be transported for a period not to exceed three months beyond the date of expiry of the last periodic test or inspection. In addition, a portable tank may be transported after the date of expiry of the last periodic test and inspection:

(a) After emptying but before cleaning, for purposes of performing the next required test or inspection prior to refilling; and

(b) Unless otherwise exempted by the competent authority, for a period not to exceed six months beyond the date of expiry of the last periodic test or inspection, in order to allow the return of dangerous goods for proper disposal or recycling. Reference to this exemption must be mentioned in the transport document.

6.7.2.19.7 The exceptional inspection and test is necessary when the portable tank shows evidence of damaged or corroded areas, or leakage, or other conditions that indicate a deficiency that could affect the integrity of the portable tank. The extent of the exceptional inspection and test must depend on the amount of damage or deterioration of the portable tank. It must include at least the 2.5 year inspection and test according to 6.7.2.19.5.

6.7.2.19.8 The internal and external examinations must ensure that:

(a) The shell is inspected for pitting, corrosion, or abrasions, dents, distortions, defects in welds or any other conditions, including leakage, that might render the portable tank unsafe for transport;

(b) The piping, valves, heating/cooling system, and gaskets are inspected for corroded areas, defects, or any other conditions, including leakage, that might render the portable tank unsafe for filling, discharge or transport;

(c) Devices for tightening manhole covers are operative and there is no leakage at manhole covers or gaskets;

(d) Missing or loose bolts or nuts on any flanged connection or blank flange are replaced or tightened;

(e) All emergency devices and valves are free from corrosion, distortion and any damage or defect that could prevent their normal operation. Remote closure devices and self-closing stop-valves must be operated to demonstrate proper operation;

(f) Linings, if any, are inspected in accordance with criteria outlined by the lining manufacturer;

(g) Required markings on the portable tank are legible and in accordance with the applicable requirements; and

(h) The framework, supports and arrangements for lifting the portable tank are in a satisfactory condition.

6.7.2.19.9 The inspections and tests in 6.7.2.19.1, 6.7.2.19.3, 6.7.2.19.4, 6.7.2.19.5 and 6.7.2.19.7 must be performed or witnessed by an expert recognised by the competent authority or its authorised body. When the pressure test is a part of the inspection and test, the test pressure must be the one indicated on the data plate of the portable tank. While under pressure, the portable tank must be inspected for any leaks in the shell, piping or equipment.
6.7.2.19.10 In all cases when cutting, burning or welding operations on the shell have been effected, that work must be to the approval of the competent authority or its authorised body taking into account the pressure vessel code used for the construction of the shell. A pressure test to the original test pressure must be performed after the work is completed.

6.7.2.19.11 When evidence of any unsafe condition is discovered, the portable tank must not be returned to service until it has been corrected and the test is repeated and passed.

6.7.2.20 Marking

6.7.2.20.1 Every portable tank must be fitted with a corrosion resistant metal plate permanently attached to the portable tank in a conspicuous place readily accessible for inspection. When for reasons of portable tank arrangements the plate cannot be permanently attached to the shell, the shell must be marked with at least the information required by the pressure vessel code. As a minimum, at least the following information must be marked on the plate by stamping or by any other similar method:

(a) Owner information
 (i) Owner’s registration number;

(b) Manufacturing information
 (i) Country of manufacture;
 (ii) Year of manufacture;
 (iii) Manufacturer’s name or mark;
 (iv) Manufacturer’s serial number;

(c) Approval information
 (i) The United Nations packaging symbol
 This symbol must not be used for any purpose other than certifying that a packaging, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;
 (ii) Approval country;
 (iii) Authorised body for the design approval;
 (iv) Design approval number;
 (v) Letters ‘AA’, if the design was approved under alternative arrangements (see 6.7.1.2);
 (vi) Pressure vessel code to which the shell is designed;

(d) Pressures
 (i) MAWP (in bar gauge or kPa gauge);
 (ii) Test pressure (in bar gauge or kPa gauge);
 (iii) Initial pressure test date (month and year);
 (iv) Identification mark of the initial pressure test witness;
 (v) External design pressure (in bar gauge or kPa gauge);
 (vi) MAWP for heating/cooling system (in bar gauge or kPa gauge) (when applicable);

(e) Temperatures
 (i) Design temperature range (in °C);

(f) Materials
 (i) Shell material(s) and material standard reference(s);
(ii) Equivalent thickness in reference steel (in mm) \(^2\);
(iii) Lining material (when applicable);

(g) Capacity
(i) Tank water capacity at 20 °C (in litres) \(^2\);
 This indication is to be followed by the symbol "S" when the shell is divided by surge plates into sections of not more than 7 500 litres capacity;
(ii) Water capacity of each compartment at 20 °C (in litres) \(^2\) (when applicable, for multi-compartment tanks).
 This indication is to be followed by the symbol "S" when the compartment is divided by surge plates into sections of not more than 7 500 litres capacity;

(j) Periodic inspections and tests
(i) Type of the most recent periodic test (2.5-year, 5-year or exceptional);
(ii) Date of the most recent periodic test (month and year);
(iii) Test pressure (in bar gauge or kPa gauge) \(^2\) of the most recent periodic test (if applicable);
(iv) Identification mark of the authorised body who performed or witnessed the most recent test.
Figure 6.7.2.20.1: Example of identification plate marking

<table>
<thead>
<tr>
<th>MANUFACTURING INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of manufacture</td>
</tr>
<tr>
<td>Year of manufacture</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Manufacturer’s serial number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPROVAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval country</td>
</tr>
<tr>
<td>Authorised body for design approval</td>
</tr>
<tr>
<td>Design approval number</td>
</tr>
<tr>
<td>Shell design code (pressure vessel code)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAWP</td>
</tr>
<tr>
<td>Test pressure</td>
</tr>
<tr>
<td>Initial pressure test date: (mm/yyyy)</td>
</tr>
<tr>
<td>External design pressure</td>
</tr>
<tr>
<td>MAWP for heating/cooling system (when applicable)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design temperature range °C to °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell material(s) and material standard reference(s)</td>
</tr>
<tr>
<td>Equivalent thickness in reference steel mm</td>
</tr>
<tr>
<td>Lining material (when applicable)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank water capacity at 20 °C litres ‘S’ (if applicable)</td>
</tr>
<tr>
<td>Water capacity of compartment ___ at 20 °C (when applicable, for multi-compartment tanks) litres ‘S’ (if applicable)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERIODIC INSPECTIONS / TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test type</td>
</tr>
<tr>
<td>(mm/yyyy)</td>
</tr>
</tbody>
</table>

* Test pressure if applicable.

6.7.2.20.2 The following information must be durably marked either on the portable tank itself or on a metal plate firmly secured to the portable tank:

- Name of the operator
- Maximum permissible gross mass (MPGM) ___________ kg
- Unladen (tare) mass ___________ kg

Portable tank instruction in accordance with 4.2.5.2.6

NOTE:

For the identification of the substances being transported, see also Part 5.

6.7.2.20.3 If a portable tank is designed and approved for handling in open seas, the words “OFFSHORE PORTABLE TANK” must be marked on the identification plate.
6.7.3 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS INTENDED FOR THE TRANSPORT OF NON-REFRIGERATED LIQUEFIED GASES

NOTE: These requirements also apply to portable tanks intended for the transport of chemicals under pressure (UN Nos. 3500, 3501, 3502, 3503, 3504 and 3505).

6.7.3.1 Application and Definitions

6.7.3.1.1 Application

This Section must be applied in conjunction with the legislation applicable in the particular State or Territory to pressure vessels. Where there is conflict, the requirements of that legislation and any Codes and Standards mandated by that legislation take precedence over this Section.

6.7.3.1.2 Definitions

For the purposes of this section:

Design pressure means the pressure to be used in calculations required by a recognised pressure vessel code. The design pressure must be not less than the highest of the following pressures:

(a) The maximum effective gauge pressure allowed in the shell during filling or discharge; or

(b) The sum of:

(i) the maximum effective gauge pressure to which the shell is designed as defined in (b) of the MAWP definition (see above); and

(ii) a head pressure determined on the basis of the static forces specified in 6.7.3.2.9, but not less than 0.35 bar;

Design reference temperature means the temperature at which the vapour pressure of the contents is determined for the purpose of calculating the MAWP. The design reference temperature must be less than the critical temperature of the non-refrigerated liquefied gas or liquefied gas propellants of chemicals under pressure intended to be transported to ensure that the gas at all times is liquefied. This value for each portable tank type is as follows:

(a) Shell with a diameter of 1.5 metres or less: 65 °C;

(b) Shell with a diameter of more than 1.5 metres:

(i) without insulation or sun shield: 60 °C;

(ii) with sun shield (see 6.7.3.2.12): 55 °C; and

(iii) with insulation (see 6.7.3.2.12): 50 °C;

Design temperature range for the shell must be -40 °C to 50 °C for non-refrigerated liquefied gases transported under ambient conditions. More severe design temperatures must be considered for portable tanks subjected to severe climatic conditions;

Filling density means the average mass of non-refrigerated liquefied gas per litre of shell capacity (kg/L). The filling density is given in portable tank instruction T50 in 4.2.5.2.6;

Leakproofness test means a test using gas subjecting the shell and its service equipment to an effective internal pressure of not less than 25% of the MAWP;
Maximum allowable working pressure (MAWP) means a pressure that must be not less than the highest of the following pressures measured at the top of the shell while in operating position, but in no case less than 7 bar:

(a) The maximum effective gauge pressure allowed in the shell during filling or discharge; or

(b) The maximum effective gauge pressure to which the shell is designed, which must be:

(i) for a non-refrigerated liquefied gas listed in the portable tank instruction T50 in 4.2.5.2.6, the MAWP (in bar) given in T50 portable tank instruction for that gas;

(ii) for other non-refrigerated liquefied gases, not less than the sum of:

- the absolute vapour pressure (in bar) of the non-refrigerated liquefied gas at the design reference temperature minus 1 bar; and

- the partial pressure (in bar) of air or other gases in the ullage space being determined by the design reference temperature and the liquid phase expansion due to an increase of the mean bulk temperature of \(t_f - t_r \) (\(t_f \) = filling temperature, usually 15°C, \(t_r \) = 50°C maximum mean bulk temperature);

(iii) for chemicals under pressure, the MAWP (in bar) given in T50 portable tank instruction for the liquefied gas portion of the propellants listed in T50 in 4.2.5.2.6;

Maximum permissible gross mass (MPGM) means the sum of the tare mass of the portable tank and the heaviest load authorised for transport;

Mild steel means a steel with a guaranteed minimum tensile strength of 360 N/mm\(^2\) to 440 N/mm\(^2\) and a guaranteed minimum elongation at fracture conforming to 6.7.3.3.3.3;

Portable tank means a multimodal tank having a capacity of more than 450 litres used for the transport of non-refrigerated liquefied gases of Class 2. The portable tank includes a shell fitted with service equipment and structural equipment necessary for the transport of gases. The portable tank must be capable of being filled and discharged without the removal of its structural equipment. It must possess stabilising members external to the shell, and must be capable of being lifted when full. It must be designed primarily to be loaded onto a transport vehicle or ship and must be equipped with skids, mountings or accessories to facilitate mechanical handling. Road tank-vehicles, rail tank-wagons, non-metallic tanks, intermediate bulk containers (IBCs), gas cylinders and large receptacles are not considered to fall within the definition for portable tanks;

Reference steel means a steel with a tensile strength of 370 N/mm\(^2\) and an elongation at fracture of 27%;

Service equipment means measuring instruments and filling, discharge, venting, safety and insulating devices;

Shell means the part of the portable tank which retains the non-refrigerated liquefied gas intended for transport (tank proper), including openings and their closures, but does not include service equipment or external structural equipment;

Structural equipment means the reinforcing, fastening, protective and stabilising members external to the shell;
Test pressure means the maximum gauge pressure at the top of the shell during the pressure test.

6.7.3.2 General design and construction requirements

6.7.3.2.1 Shells must be designed and constructed in accordance with the requirements of a pressure vessel code recognised by the competent authority. Shells must be made of steel suitable for forming. The materials must in principle conform to national or international material standards. For welded shells, only a material whose weldability has been fully demonstrated must be used. Welds must be skillfully made and afford complete safety. When the manufacturing process or the materials make it necessary, the shells must be suitably heat-treated to guarantee adequate toughness in the weld and in the heat affected zones. In choosing the material the design temperature range must be taken into account with respect to risk of brittle fracture, to stress corrosion cracking and to resistance to impact. When fine grain steel is used, the guaranteed value of the yield strength must be not more than 460 N/mm2 and the guaranteed value of the upper limit of the tensile strength must be not more than 725 N/mm2 according to the material specification. Portable tank materials must be suitable for the external environment in which they may be transported.

6.7.3.2.2 Portable tank shells, fittings and pipework must be constructed of materials which are:

(a) Substantially immune to attack by the non-refrigerated liquefied gas(es) intended to be transported; or

(b) Properly passivated or neutralised by chemical reaction.

6.7.3.2.3 Gaskets must be made of materials compatible with the non-refrigerated liquefied gas(es) intended to be transported.

6.7.3.2.4 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.7.3.2.5 The materials of the portable tank, including any devices, gaskets, and accessories, must not adversely affect the non-refrigerated liquefied gas(es) intended for transport in the portable tank.

6.7.3.2.6 Portable tanks must be designed and constructed with supports to provide a secure base during transport and with suitable lifting and tie-down attachments.

6.7.3.2.7 Portable tanks must be designed to withstand, without loss of contents, at least the internal pressure due to the contents, and the static, dynamic and thermal loads during normal conditions of handling and transport. The design must demonstrate that the effects of fatigue, caused by repeated application of these loads through the expected life of the portable tank, have been taken into account.

6.7.3.2.8 Shells must be designed to withstand an external pressure of at least 0.4 bar gauge above the internal pressure without permanent deformation. When the shell is to be subjected to a significant vacuum before filling or during discharge it must be designed to withstand an external pressure of at least 0.9 bar gauge above the internal pressure and must be proven at that pressure.
6.7.3.2.9 Portable tanks and their fastenings must, under the maximum permissible load, be capable of absorbing the following separately applied static forces:

(a) In the direction of travel: \(-\)twice the MPGM multiplied by the acceleration due to gravity \((g)^5\); and

(b) Horizontally at right angles to the direction of travel: \(-\)the MPGM (when the direction of travel is not clearly determined, the forces must be equal to twice the MPGM) multiplied by the acceleration due to gravity \((g)^5\); and

(c) Vertically upwards: \(-\)the MPGM multiplied by the acceleration due to gravity \((g)^5\); and

(d) Vertically downwards: \(-\)twice the MPGM (total loading including the effect of gravity) multiplied by the acceleration due to gravity \((g)^5\).

6.7.3.2.10 Under each of the forces in 6.7.3.2.9, the safety factor to be observed must be as follows:

(a) For steels having a clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed yield strength; or

(b) For steels with no clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed 0.2% proof strength and, for austenitic steels, the 1% proof strength.

6.7.3.2.11 The values of yield strength or proof strength must be the values according to national or international material standards. When austenitic steels are used, the specified minimum values of yield strength and proof strength according to the material standards may be increased by up to 15% when these greater values are attested in the material inspection certificate. When no material standard exists for the steel in question, the value of yield strength or proof strength used must be approved by the competent authority.

6.7.3.2.12 When the shells intended for the transport of non-refrigerated liquefied gases are equipped with thermal insulation, the thermal insulation systems must satisfy the following requirements:

(a) It must consist of a shield covering not less than the upper third but not more than the upper half of the surface of the shell and separated from the shell by an air space about 40 mm across; or

(b) It must consist of a complete cladding of adequate thickness of insulating materials protected so as to prevent the ingress of moisture and damage under normal conditions of transport and so as to provide a thermal conductance of not more than 0.67 \((W\cdot m^{-2}\cdot K^{-1})\);

(c) When the protective covering is so closed as to be gas-tight, a device must be provided to prevent any dangerous pressure from developing in the insulating layer in the event of inadequate gas tightness of the shell or of its items of equipment;

(d) The thermal insulation must not inhibit access to the fittings and discharge devices.

6.7.3.2.13 Portable tanks intended for the transport of flammable non-refrigerated liquefied gases must be capable of being electrically earthed.

6.7.3 Design criteria

6.7.3.1 Shells must be of a circular cross-section.
6.7.3.3.2 Shells must be designed and constructed to withstand a test pressure not less than 1.3 times the design pressure. The shell design must take into account the minimum MAWP values provided in portable tank instruction T50 in 4.2.5.2.6 for each non-refrigerated liquefied gas intended for transport. Attention is drawn to the minimum shell thickness requirements for these shells specified in 6.7.3.4.

6.7.3.3 For steels exhibiting a clearly defined yield point or characterised by a guaranteed proof strength (0.2% proof strength, generally, or 1% proof strength for austenitic steels) the primary membrane stress in the shell must not exceed 0.75 Re or 0.50 Rm, whichever is lower, at the test pressure, where:

\[
Re = \text{yield strength in } \text{N/mm}^2, \text{ or 0.2\% proof strength or, for austenitic steels, 1\% proof strength;}
\]

\[
Rm = \text{minimum tensile strength in } \text{N/mm}^2.
\]

6.7.3.3.1 The values of Re and Rm to be used must be the specified minimum values according to national or international material standards. When austenitic steels are used, the specified minimum values for Re and Rm according to the material standards may be increased by up to 15% when these greater values are attested in the material inspection certificate. When no material standard exists for the steel in question, the values of Re and Rm used must be approved by the competent authority or its authorised body.

6.7.3.3.2 Steels which have an Re/Rm ratio of more than 0.85 are not allowed for the construction of welded shells. The values of Re and Rm to be used in determining this ratio must be the values specified in the material inspection certificate.

6.7.3.3.3 Steels used in the construction of shells must have an elongation at fracture, in %, of not less than 10 000/Rm with an absolute minimum of 16% for fine grain steels and 20% for other steels.

6.7.3.3.4 For the purpose of determining actual values for materials, it must be noted that for sheet metal, the axis of the tensile test specimen must be at right angles (transversely) to the direction of rolling. The permanent elongation at fracture must be measured on test specimens of rectangular cross sections in accordance with ISO 6892:1998 using a 50 mm gauge length.

6.7.3.4 Minimum shell thickness

6.7.3.4.1 The minimum shell thickness must be the greater thickness based on:

(a) The minimum thickness determined in accordance with the requirements in 6.7.3.4; and

(b) The minimum thickness determined in accordance with the recognised pressure vessel code including the requirements in 6.7.3.3.

6.7.3.4.2 The cylindrical portions, ends (heads) and manhole covers of shells of not more than 1.80 m in diameter must be not less than 5 mm thick in the reference steel or of equivalent thickness in the steel to be used. Shells of more than 1.80 m in diameter must be not less than 6 mm thick in the reference steel or of equivalent thickness in the steel to be used.

6.7.3.4.3 The cylindrical portions, ends (heads) and manhole covers of all shells must be not less than 4 mm thick regardless of the material of construction.
6.7.3.4.4 The equivalent thickness of a steel other than the thickness prescribed for the reference steel in 6.7.3.4.2 must be determined using the following formula:

\[e_1 = \frac{21.4e_0}{\sqrt{Rm_1 \times A_1}} \]

where:
- \(e_1 \) = required equivalent thickness (in mm) of the steel to be used;
- \(e_0 \) = minimum thickness (in mm) for the reference steel specified in 6.7.3.4.2;
- \(Rm_1 \) = guaranteed minimum tensile strength (in N/mm\(^2\)) of the steel to be used (see 6.7.3.3.3);
- \(A_1 \) = guaranteed minimum elongation at fracture (in %) of the steel to be used according to national or international standards.

6.7.3.4.5 In no case must the wall thickness be less than that prescribed in 6.7.3.4.1 to 6.7.3.4.3. All parts of the shell must have a minimum thickness as determined by 6.7.3.4.1 to 6.7.3.4.3. This thickness must be exclusive of any corrosion allowance.

6.7.3.4.6 When mild steel is used (see 6.7.3.1), calculation using the formula in 6.7.3.4.4 is not required.

6.7.3.4.7 There must be no sudden change of plate thickness at the attachment of the ends (heads) to the cylindrical portion of the shell.

6.7.3.5 Service equipment

6.7.3.5.1 Service equipment must be so arranged as to be protected against the risk of being wrenched off or damaged during handling and transport. When the connection between the frame and the shell allows relative movement between the sub-assemblies, the equipment must be so fastened as to permit such movement without risk of damage to working parts. The external discharge fittings (pipe sockets, shut-off devices), the internal stop-valve and its seating must be protected against the danger of being wrenched off by external forces (for example using shear sections). The filling and discharge devices (including flanges or threaded plugs) and any protective caps must be capable of being secured against unintended opening.

6.7.3.5.2 All openings with a diameter of more than 1.5 mm in shells of portable tanks, except openings for pressure-relief devices, inspection openings and closed bleed holes, must be fitted with at least three mutually independent shut-off devices in series, the first being an internal stop-valve, excess flow valve or equivalent device, the second being an external stop-valve and the third being a blank flange or equivalent device.

6.7.3.5.2.1 When a portable tank is fitted with an excess flow valve the excess flow valve must be so fitted that its seating is inside the shell or inside a welded flange or, when fitted externally, its mountings must be designed so that in the event of impact its effectiveness must be maintained. The excess flow valves must be selected and fitted so as to close automatically when the rated flow specified by the manufacturer is reached. Connections and accessories leading to or from such a valve must have a capacity for a flow more than the rated flow of the excess flow valve.
6.7.3.5.3 For filling and discharge openings the first shut-off device must be an internal stop-valve and the second must be a stop-valve placed in an accessible position on each discharge and filling pipe.

6.7.3.5.4 For filling and discharge bottom openings of portable tanks intended for the transport of flammable and/or toxic non-refrigerated liquefied gases or chemicals under pressure the internal stop-valve must be a quick closing safety device which closes automatically in the event of unintended movement of the portable tank during filling or discharge or fire engulfment. Except for portable tanks having a capacity of not more than 1,000 litres, it must be possible to operate this device by remote control.

6.7.3.5.5 In addition to filling, discharge and gas pressure equalising orifices, shells may have openings in which gauges, thermometers and manometers can be fitted. Connections for such instruments must be made by suitable welded nozzles or pockets and not be screwed connections through the shell.

6.7.3.5.6 All portable tanks must be fitted with manholes or other inspection openings of suitable size to allow for internal inspection and adequate access for maintenance and repair of the interior.

6.7.3.5.7 External fittings must be grouped together as far as reasonably practicable.

6.7.3.5.8 Each connection on a portable tank must be clearly marked to indicate its function.

6.7.3.5.9 Each stop-valve or other means of closure must be designed and constructed to a rated pressure not less than the MAWP of the shell taking into account the temperatures expected during transport. All stop-valves with a screwed spindle must close by a clockwise motion of the handwheel. For other stop-valves the position (open and closed) and direction of closure must be clearly indicated. All stop-valves must be designed to prevent unintentional opening.

6.7.3.5.10 Piping must be designed, constructed and installed so as to avoid the risk of damage due to thermal expansion and contraction, mechanical shock and vibration. All piping must be of suitable metallic material. Welded pipe joints must be used wherever possible.

6.7.3.5.11 Joints in copper tubing must be brazed or have an equally strong metal union. The melting point of brazing materials must be no lower than 525 °C. The joints must not decrease the strength of tubing as may happen when cutting threads.

6.7.3.5.12 The burst pressure of all piping and pipe fittings must be not less than the highest of four times the MAWP of the shell or four times the pressure to which it may be subjected in service by the action of a pump or other device (except pressure-relief devices).

6.7.3.5.13 Ductile metals must be used in the construction of valves and accessories.

6.7.3.6 Bottom openings

6.7.3.6.1 Certain non-refrigerated liquefied gases must not be transported in portable tanks with bottom openings. When portable tank instruction T50 in 4.2.5.2.6 indicates that bottom openings are not allowed, there must be no openings below the liquid level of the shell when it is filled to its maximum permissible filling limit.
6.7.3.7 Pressure-relief devices

6.7.3.7.1 Portable tanks must be provided with one or more spring-loaded pressure-relief devices. The pressure-relief devices must open automatically at a pressure not less than the MAWP and be fully open at a pressure equal to 110% of the MAWP. These devices must, after discharge, close at a pressure not lower than 10% below the pressure at which discharge starts and must remain closed at all lower pressures. The pressure-relief devices must be of a type that will resist dynamic forces including liquid surge. Frangible discs not in series with a spring-loaded pressure-relief device are not permitted.

6.7.3.7.2 Pressure-relief devices must be designed to prevent the entry of foreign matter, the leakage of gas and the development of any dangerous excess pressure.

6.7.3.7.3 Portable tanks intended for the transport of certain non-refrigerated liquefied gases identified in portable tank instruction T50 in 4.2.5.2.6 must have a pressure-relief device approved by the competent authority. Unless a portable tank in dedicated service is fitted with an approved relief device constructed of materials compatible with the load, such device must comprise a frangible disc preceding a spring-loaded device. The space between the frangible disc and the device must be provided with a pressure gauge or a suitable tell-tale indicator. This arrangement permits the detection of disc rupture, pinholing or leakage which could cause a malfunction of the pressure-relief device. The frangible discs must rupture at a nominal pressure 10% above the start-to-discharge pressure of the relief device.

6.7.3.7.4 In the case of multi-purpose portable tanks, the pressure-relief devices must open at a pressure indicated in 6.7.3.7.1 for the gas having the highest maximum allowable pressure of the gases allowed to be transported in the portable tank.

6.7.3.8 Capacity of relief devices

6.7.3.8.1 The combined delivery capacity of the relief devices must be sufficient that, in the event of total fire engulfment, the pressure (including accumulation) inside the shell does not exceed 120% of the MAWP. Spring-loaded relief devices must be used to achieve the full relief capacity prescribed. In the case of multi-purpose tanks, the combined delivery capacity of the pressure-relief devices must be taken for the gas which requires the highest delivery capacity of the gases allowed to be transported in portable tanks.

6.7.3.8.1.1 To determine the total required capacity of the relief devices, which must be regarded as being the sum of the individual capacities of the several devices, the following formula must be used:

\[Q = 12.4 \frac{F A^{0.82} Z T}{L C} \sqrt{\frac{Z T}{M}} \]

where:

- **Q** = minimum required rate of discharge in cubic metres of air per second (m³/s) at standard conditions: 1 bar and 0 °C (273 K);
- **F** = is a coefficient with the following value:
 - for uninsulated shells \(F = 1 \);
 - for insulated shells \(F = \frac{U(649-t)}{13.6} \);
 - but in no case is less than 0.25 where.
- **U** = thermal conductance of the insulation, in kW·m⁻²·K⁻¹, at 38 °C;
t = actual temperature of the non-refrigerated liquefied gas during filling (°C); when this temperature is unknown, let t = 15 °C.

The value of F given above for insulated shells may be taken provided that the insulation is in conformance with 6.7.3.8.1.2;

A = total external surface area of shell in square metres;
Z = the gas compressibility factor in the accumulating condition (when this factor is unknown, let Z equal 1.0);
T = absolute temperature in Kelvin (°C + 273) above the pressure-relief devices in the accumulating condition;
L = the latent heat of vaporisation of the liquid, in kJ/kg, in the accumulating condition;
M = molecular mass of the discharged gas;
C = a constant which is derived from one of the following formulae as a function of the ratio k of specific heats.

\[k = \frac{c_p}{c_v} \]

where:

\(c_p \) is the specific heat at constant pressure; and
\(c_v \) is the specific heat at constant volume.

When \(k > 1 \):

\[C = \left[k \left(\frac{2}{k+1} \right)^{k-1} \right] \]

When \(k = 1 \), or \(k \) is unknown:

\[C = \frac{1}{\sqrt{e}} = 0.607 \]

where \(e \) is the mathematical constant 2.7183

C may also be taken from the following table:

<table>
<thead>
<tr>
<th>k</th>
<th>C</th>
<th>k</th>
<th>C</th>
<th>k</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.607</td>
<td>1.02</td>
<td>0.611</td>
<td>1.04</td>
<td>0.615</td>
</tr>
<tr>
<td>1.06</td>
<td>0.620</td>
<td>1.08</td>
<td>0.624</td>
<td>1.10</td>
<td>0.628</td>
</tr>
<tr>
<td>1.12</td>
<td>0.633</td>
<td>1.14</td>
<td>0.637</td>
<td>1.16</td>
<td>0.641</td>
</tr>
<tr>
<td>1.18</td>
<td>0.645</td>
<td>1.20</td>
<td>0.649</td>
<td>1.22</td>
<td>0.652</td>
</tr>
<tr>
<td>1.24</td>
<td>0.656</td>
<td>1.26</td>
<td>0.660</td>
<td>1.28</td>
<td>0.664</td>
</tr>
<tr>
<td>1.30</td>
<td>0.667</td>
<td>1.32</td>
<td>0.671</td>
<td>1.34</td>
<td>0.674</td>
</tr>
<tr>
<td>1.36</td>
<td>0.678</td>
<td>1.38</td>
<td>0.681</td>
<td>1.40</td>
<td>0.685</td>
</tr>
<tr>
<td>1.42</td>
<td>0.688</td>
<td>1.44</td>
<td>0.691</td>
<td>1.46</td>
<td>0.695</td>
</tr>
<tr>
<td>1.48</td>
<td>0.698</td>
<td>1.50</td>
<td>0.701</td>
<td>1.52</td>
<td>0.704</td>
</tr>
<tr>
<td>1.54</td>
<td>0.707</td>
<td>1.56</td>
<td>0.710</td>
<td>1.58</td>
<td>0.713</td>
</tr>
<tr>
<td>1.60</td>
<td>0.716</td>
<td>1.62</td>
<td>0.719</td>
<td>1.64</td>
<td>0.722</td>
</tr>
<tr>
<td>1.66</td>
<td>0.725</td>
<td>1.68</td>
<td>0.728</td>
<td>1.70</td>
<td>0.731</td>
</tr>
<tr>
<td>2.00</td>
<td>0.770</td>
<td>2.20</td>
<td>0.793</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.7.3.8.1.2 Insulation systems, used for the purpose of reducing the venting capacity, must be approved by the competent authority or its authorised body. In all cases, insulation systems approved for this purpose must:

(a) Remain effective at all temperatures up to 649 °C; and
(b) Be jacketed with a material having a melting point of 700 °C or greater.

6.7.3.9 **Marking of pressure-relief devices**

6.7.3.9.1 Every pressure-relief device must be plainly and permanently marked with the following:

(a) The pressure (in bar or kPa) at which it is set to discharge;
(b) The allowable tolerance at the discharge pressure for spring-loaded devices;
(c) The reference temperature corresponding to the rated pressure for frangible discs;
(d) The rated flow capacity of the device in standard cubic metres of air per second (m³/s); and
(e) The cross sectional flow areas of the spring loaded pressure-relief devices and frangible discs in mm².

When practicable, the following information must also be shown:

(f) The manufacturer’s name and relevant catalogue number.

6.7.3.9.2 The rated flow capacity marked on the pressure-relief devices must be determined according to ISO 4126-1:2004 and ISO 4126-7:2004.

6.7.3.10 **Connections to pressure-relief devices**

6.7.3.10.1 Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the safety device. No stop-valve must be installed between the shell and the pressure-relief devices except when duplicate devices are provided for maintenance or other reasons and the stop-valves serving the devices actually in use are locked open or the stop-valves are interlocked so that at least one of the duplicate devices is always operable and capable of meeting the requirements of 6.7.3.8. There must be no obstruction in an opening leading to a vent or pressure-relief device which might restrict or cut-off the flow from the shell to that device. Vents from the pressure-relief devices, when used, must deliver the relieved vapour or liquid to the atmosphere in conditions of minimum back-pressure on the relieving device.

6.7.3.11 **Siting of pressure-relief devices**

6.7.3.11.1 Each pressure-relief device inlet must be situated on top of the shell in a position as near the longitudinal and transverse centre of the shell as reasonably practicable. All pressure relief device inlets must under maximum filling conditions be situated in the vapour space of the shell and the devices must be so arranged as to ensure that the escaping vapour is discharged unrestrictedly. For flammable non-refrigerated liquefied gases, the escaping vapour must be directed away from the shell in such a manner that it cannot impinge upon the shell. Protective devices which deflect the flow of vapour are permissible provided the required relief-device capacity is not reduced.

6.7.3.11.2 Arrangements must be made to prevent access to the pressure-relief devices by unauthorised persons and to protect the devices from damage caused by the portable tank overturning.
6.7.3.12 Gauging devices

6.7.3.12.1 Unless a portable tank is intended to be filled by weight it must be equipped with one or more gauging devices. Glass level-gauges and gauges made of other fragile material, which are in direct communication with the contents of the shell must not be used.

6.7.3.13 Portable tank supports, frameworks, lifting and tie-down attachments

6.7.3.13.1 Portable tanks must be designed and constructed with a support structure to provide a secure base during transport. The forces specified in 6.7.3.2.9 and the safety factor specified in 6.7.3.2.10 must be considered in this aspect of the design. Skids, frameworks, cradles or other similar structures are acceptable.

6.7.3.13.2 The combined stresses caused by portable tank mountings (e.g. cradles, frameworks, etc.) and portable tank lifting and tie-down attachments must not cause excessive stress in any portion of the shell. Permanent lifting and tie-down attachments must be fitted to all portable tanks. Preferably they must be fitted to the portable tank supports but may be secured to reinforcing plates located on the shell at the points of support.

6.7.3.13.3 In the design of supports and frameworks the effects of environmental corrosion must be taken into account.

6.7.3.13.4 Forklift pockets must be capable of being closed off. The means of closing forklift pockets must be a permanent part of the framework or permanently attached to the framework. Single compartment portable tanks with a length less than 3.65 m need not have closed off forklift pockets provided that:
 (a) The shell and all the fittings are well protected from being hit by the forklift blades; and
 (b) The distance between the centres of the forklift pockets is at least half of the maximum length of the portable tank.

6.7.3.13.5 When portable tanks are not protected during transport, according to 4.2.2.3, the shells and service equipment must be protected against damage to the shell and service equipment resulting from lateral or longitudinal impact or overturning. External fittings must be protected so as to preclude the release of the shell contents upon impact or overturning of the portable tank on its fittings. Examples of protection include:
 (a) Protection against lateral impact which may consist of longitudinal bars protecting the shell on both sides at the level of the median line;
 (b) Protection of the portable tank against overturning which may consist of reinforcement rings or bars fixed across the frame;
 (c) Protection against rear impact which may consist of a bumper or frame;
 (d) Protection of the shell against damage from impact or overturning by use of an ISO frame in accordance with ISO 1496-3:1995.

6.7.3.14 Design approval

6.7.3.14.1 The competent authority or its authorised body must issue a design approval certificate for any new design of a portable tank. This certificate must attest that a portable tank has been surveyed by that authority, is suitable for its intended purpose and meets the requirements of this Chapter and where appropriate the provisions for gases provided in portable tank instruction T50 in 4.2.5.2.6. When a series of portable tanks are manufactured without change in the design, the certificate must be valid for the entire series.
The certificate must refer to the prototype test report, the gases allowed to be transported, the materials of construction of the shell and an approval number. The approval number must consist of the distinguishing sign or mark of the State in whose territory the approval was granted, i.e. the distinguishing sign for use in international traffic, as prescribed by the Convention on Road Traffic, Vienna 1968 (for Australia, the letters ‘AUS’), and a registration number. Any alternative arrangements according to 6.7.1.2 must be indicated on the certificate.

A design approval may serve for the approval of smaller portable tanks made of materials of the same kind and thickness, by the same fabrication techniques and with identical supports, equivalent closures and other appurtenances.

6.7.3.14.2 The prototype test report for the design approval must include at least the following:
(a) The results of the applicable framework test specified in ISO 1496-3:1995;
(b) The results of the initial inspection and test in 6.7.3.15.3; and
(c) The results of the impact test in 6.7.3.15.1, when applicable.

6.7.3.15 Inspection and testing

6.7.3.15.1 Portable tanks meeting the definition of container in the International Convention for Safe Containers (CSC), 1972, as amended, must not be used unless they are successfully qualified by subjecting a representative prototype of each design to the Dynamic, Longitudinal Impact Test prescribed in the Manual for Tests and Criteria, Part IV, Section 40.

6.7.3.15.2 The shell and items of equipment of each portable tank must be inspected and tested before being put into service for the first time (initial inspection and test) and thereafter at not more than five-year intervals (5 year periodic inspection and test) with an intermediate periodic inspection and test (2.5 year periodic inspection and test) midway between the 5 year periodic inspections and tests. The 2.5 year inspection and test may be performed within 3 months of the specified date. An exceptional inspection and test must be performed regardless of the last periodic inspection and test when necessary according to 6.7.3.15.7.

6.7.3.15.3 The initial inspection and test of a portable tank must include a check of the design characteristics, an internal and external examination of the portable tank and its fittings with due regard to the non-refrigerated liquefied gases to be transported, and a pressure test referring to the test pressures according to 6.7.3.3.2. The pressure test may be performed as a hydraulic test or by using another liquid or gas with the agreement of the competent authority or its authorised body. Before the portable tank is placed into service, a leakproofness test and a test of the satisfactory operation of all service equipment must also be performed. When the shell and its fittings have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test. All welds subject to full stress level in the shell must be inspected during the initial test by radiographic, ultrasonic, or another suitable non-destructive test method. This does not apply to the jacket.

6.7.3.15.4 The 5 year periodic inspection and test must include an internal and external examination and, as a general rule, a hydraulic pressure test. Sheathing, thermal insulation and the like must be removed only to the extent required for reliable appraisal of the condition of the portable tank. When the shell and equipment have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test.
6.7.3.15.5 The intermediate 2.5 year periodic inspection and test must at least include an internal and external examination of the portable tank and its fittings with due regard to the non-refrigerated liquefied gases intended to be transported, a leakproofness test and a test of the satisfactory operation of all service equipment. Sheathing thermal insulation and the like must be removed only to the extent required for reliable appraisal of the condition of the portable tank. For portable tanks intended for the transport of a single non-refrigerated liquefied gas, the 2.5 year internal examination may be waived or substituted by other test methods or inspection procedures specified by the competent authority or its authorised body.

6.7.3.15.6 A portable tank may not be filled and offered for transport after the date of expiry of the last 5 year or 2.5 year periodic inspection and test as required by 6.7.3.15.2. However a portable tank filled prior to the date of expiry of the last periodic inspection and test may be transported for a period not to exceed three months beyond the date of expiry of the last periodic test or inspection. In addition, a portable tank may be transported after the date of expiry of the last periodic test and inspection:

(a) After emptying but before cleaning, for purposes of performing the next required test or inspection prior to refilling; and

(b) Unless otherwise exempted by the competent authority, for a period not to exceed six months beyond the date of expiry of the last periodic test or inspection, in order to allow the return of dangerous goods for proper disposal or recycling. Reference to this exemption must be mentioned in the transport document.

6.7.3.15.7 The exceptional inspection and test is necessary when the portable tank shows evidence of damaged or corroded areas, or leakage, or other conditions that indicate a deficiency that could affect the integrity of the portable tank. The extent of the exceptional inspection and test must depend on the amount of damage or deterioration of the portable tank. It must include at least the 2.5 year inspection and test according to 6.7.3.15.5.

6.7.3.15.8 The internal and external examinations must ensure that:

(a) The shell is inspected for pitting, corrosion, or abrasions, dents, distortions, defects in welds or any other conditions, including leakage, that might render the portable tank unsafe for transport;

(b) The piping, valves, and gaskets are inspected for corroded areas, defects, or any other conditions, including leakage, that might render the portable tank unsafe for filling, discharge or transport;

(c) Devices for tightening manhole covers are operative and there is no leakage at manhole covers or gaskets;

(d) Missing or loose bolts or nuts on any flanged connection or blank flange are replaced or tightened;

(e) All emergency devices and valves are free from corrosion, distortion and any damage or defect that could prevent their normal operation. Remote closure devices and self-closing stop-valves must be operated to demonstrate proper operation;

(f) Required markings on the portable tank are legible and in accordance with the applicable requirements; and

(g) The framework, the supports and the arrangements for lifting the portable tank are in satisfactory condition.
6.7.3.15.9 The inspections and tests in 6.7.3.15.1, 6.7.3.15.3, 6.7.3.15.4, 6.7.3.15.5 and 6.7.3.15.7 must be performed or witnessed by an expert recognised by the competent authority or its authorised body. When the pressure test is a part of the inspection and test, the test pressure must be the one indicated on the data plate of the portable tank. While under pressure, the portable tank must be inspected for any leaks in the shell, piping or equipment.

6.7.3.15.10 In all cases when cutting, burning or welding operations on the shell have been effected, that work must be to the approval of the competent authority or its authorised body taking into account the pressure vessel code used for the construction of the shell. A pressure test to the original test pressure must be performed after the work is completed.

6.7.3.15.11 When evidence of any unsafe condition is discovered, the portable tank must not be returned to service until it has been corrected and the pressure test is repeated and passed.

6.7.3.16 Marking

6.7.3.16.1 Every portable tank must be fitted with a corrosion resistant metal plate permanently attached to the portable tank in a conspicuous place readily accessible for inspection. When for reasons of portable tank arrangements the plate cannot be permanently attached to the shell, the shell must be marked with at least the information required by the pressure vessel code. As a minimum, at least the following information must be marked on the plate by stamping or by any other similar method:

(a) Owner information
 (i) Owner’s registration number;

(b) Manufacturing information
 (i) Country of manufacture;
 (ii) Year of manufacture;
 (iii) Manufacturer’s name or mark;
 (iv) Manufacturer’s serial number;

(c) Approval information
 (i) The United Nations packaging symbol

 This symbol must not be used for any purpose other than certifying that a packaging, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;
 (ii) Approval country;
 (iii) Authorised body for the design approval;
 (iv) Design approval number;
 (v) Letters ‘AA’, if the design was approved under alternative arrangements (see 6.7.1.2);
 (vi) Pressure vessel code to which the shell is designed;

(d) Pressures
 (i) MAWP (in bar gauge or kPa gauge);
 (ii) Test pressure (in bar gauge or kPa gauge);
 (iii) Initial pressure test date (month and year);
 (iv) Identification mark of the initial pressure test witness;
 (v) External design pressure (in bar gauge or kPa gauge);

(e) Temperatures
 (i) Design temperature range (in °C);
(ii) Design reference temperature (in °C)\(^6\):

(f) Materials

(i) Shell material(s) and material standard reference(s);

(ii) Equivalent thickness in reference steel (in mm)\(^6\);

(g) Capacity

(i) Tank water capacity at 20 °C (in litres)\(^6\);

(h) Periodic inspections and tests

(i) Type of the most recent periodic test (2.5-year, 5-year or exceptional);

(ii) Date of the most recent periodic test (month and year);

(iii) Test pressure (in bar gauge or kPa gauge)\(^6\) of the most recent periodic test (if applicable);

(iv) Identification mark of the authorised body who performed or witnessed the most recent test.

Figure 6.7.3.16.1: Example of identification plate marking

<table>
<thead>
<tr>
<th>Owner’s registration number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUFACTURING INFORMATION</td>
</tr>
<tr>
<td>Country of manufacture</td>
</tr>
<tr>
<td>Year of manufacture</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Manufacturer’s serial number</td>
</tr>
<tr>
<td>APPROVAL INFORMATION</td>
</tr>
<tr>
<td>Approval country</td>
</tr>
<tr>
<td>Authorised body for design approval</td>
</tr>
<tr>
<td>Design approval number</td>
</tr>
<tr>
<td>‘AA’ (if applicable)</td>
</tr>
<tr>
<td>Shell design code (pressure vessel code)</td>
</tr>
<tr>
<td>PRESSURES</td>
</tr>
<tr>
<td>MAWP bar or kPa</td>
</tr>
<tr>
<td>Test pressure bar or kPa</td>
</tr>
<tr>
<td>Initial pressure test date: (mm/yyyy) Witness stamp:</td>
</tr>
<tr>
<td>External design pressure bar or kPa</td>
</tr>
<tr>
<td>TEMPERATURES</td>
</tr>
<tr>
<td>Design temperature range °C to °C</td>
</tr>
<tr>
<td>Design reference temperature °C</td>
</tr>
<tr>
<td>MATERIALS</td>
</tr>
<tr>
<td>Shell material(s) and material standard reference(s)</td>
</tr>
<tr>
<td>Equivalent thickness in reference steel mm</td>
</tr>
<tr>
<td>CAPACITY</td>
</tr>
<tr>
<td>Tank water capacity at 20 °C litres</td>
</tr>
<tr>
<td>PERIODIC INSPECTIONS / TESTS</td>
</tr>
<tr>
<td>Test type Test date Witness stamp and test pressure(^a)</td>
</tr>
<tr>
<td>(mm/yyyy) bar or kPa</td>
</tr>
<tr>
<td>Test type Test date Witness stamp and test pressure(^a)</td>
</tr>
<tr>
<td>(mm/yyyy) bar or kPa</td>
</tr>
</tbody>
</table>

\(^a\) Test pressure if applicable.
6.7.3.16.2 The following information must be durably marked either on the portable tank itself or on a metal plate firmly secured to the portable tank:

- Name of the operator
- Name of non-refrigerated liquefied gas(es) permitted for transport
- Maximum permissible load mass for each non-refrigerated liquefied gas permitted ______kg
- Maximum permissible gross mass (MPGM) __________ kg
- Unladen (tare) mass __________ kg
- Portable tank instruction in accordance with 4.2.5.2.6

NOTE: For the identification of the non-refrigerated liquefied gases being transported, see also Part 5.

6.7.3.16.3 If a portable tank is designed and approved for handling in open seas, the words “OFFSHORE PORTABLE TANK” must be marked on the identification plate.

6.7.4 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF PORTABLE TANKS INTENDED FOR THE TRANSPORT OF REFRIGERATED LIQUEFIED GASES

6.7.4.1 Application and Definitions

6.7.4.1.1 Application

This Section must be applied in conjunction with the legislation applicable in the particular State or Territory to pressure vessels. Where there is conflict, the requirements of that legislation and any Codes and Standards mandated by that legislation take precedence over this Section.

6.7.4.1.2 Definitions

For the purposes of this section:

- **Holding time** means the time that will elapse from the establishment of the initial filling condition until the pressure has risen due to heat influx to the lowest set pressure of the pressure limiting device(s);

- **Jacket** means the outer insulation cover or cladding which may be part of the insulation system;

- **Leakproofness test** means a test using gas subjecting the shell and its service equipment, to an effective internal pressure not less than 90% of the MAWP;

- **Maximum allowable working pressure (MAWP)** means the maximum effective gauge pressure permissible at the top of the shell of a loaded portable tank in its operating position including the highest effective pressure during filling and discharge;

- **Maximum permissible gross mass (MPGM)** means the sum of the tare mass of the portable tank and the heaviest load authorised for transport;

- **Minimum design temperature** means the temperature which is used for the design and construction of the shell not higher than the lowest (coldest) temperature (service temperature) of the contents during normal conditions of filling, discharge and transport;
Portable tank means a thermally insulated multimodal tank having a capacity of more than 450 litres fitted with service equipment and structural equipment necessary for the transport of refrigerated liquefied gases. The portable tank must be capable of being filled and discharged without the removal of its structural equipment. It must possess stabilising members external to the tank, and must be capable of being lifted when full. It must be designed primarily to be loaded onto a transport vehicle or ship and must be equipped with skids, mountings or accessories to facilitate mechanical handling. Road tank-vehicles, rail tank-wagons, non-metallic tanks, intermediate bulk containers (IBCs), gas cylinders and large receptacles are not considered to fall within the definition for portable tanks;

Reference steel means a steel with a tensile strength of 370 N/mm\(^2\) and an elongation at fracture of 27%;

Shell means the part of the portable tank which retains the refrigerated liquefied gas intended for transport, including openings and their closures, but does not include service equipment or external structural equipment;

Service equipment means measuring instruments and filling, discharge, venting, safety, pressurising, cooling and thermal insulation devices;

Structural equipment means the reinforcing, fastening, protective and stabilising members external to the shell;

Tank means a construction which normally consists of either:

(a) A jacket and one or more inner shells where the space between the shell(s) and the jacket is exhausted of air (vacuum insulation) and may incorporate a thermal insulation system; or

(b) A jacket and an inner shell with an intermediate layer of solid thermally insulating material (e.g. solid foam);

Test pressure means the maximum gauge pressure at the top of the shell during the pressure test.

6.7.4.2 General design and construction requirements

6.7.4.2.1 Shells must be designed and constructed in accordance with the requirements of a pressure vessel code recognised by the competent authority. Shells and jackets must be made of metallic materials suitable for forming. Jackets must be made of steel. Non-metallic materials may be used for the attachments and supports between the shell and jacket, provided their material properties at the minimum design temperature are proven to be sufficient. The materials must in principle conform to national or international material standards. For welded shells and jackets only materials whose weldability has been fully demonstrated must be used. Welds must be skilfully made and afford complete safety. When the manufacturing process or the materials make it necessary, the shell must be suitably heat treated to guarantee adequate toughness in the weld and in the heat affected zones. In choosing the material, the minimum design temperature must be taken into account with respect to risk of brittle fracture, to hydrogen embrittlement, to stress corrosion cracking and to resistance to impact. When fine grain steel is used, the guaranteed value of the yield strength must be not more than 460 N/mm\(^2\) and the guaranteed value of the upper limit of the tensile strength must be not more than 725 N/mm\(^2\) in accordance with the material specifications. Portable tank materials must be suitable for the external environment in which they may be transported.
6.7.4.2.2 Any part of a portable tank, including fittings, gaskets and pipe-work, which can be expected normally to come into contact with the refrigerated liquefied gas transported must be compatible with that refrigerated liquefied gas.

6.7.4.2.3 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.7.4.2.4 The thermal insulation system must include a complete covering of the shell(s) with effective insulating materials. External insulation must be protected by a jacket so as to prevent the ingress of moisture and other damage under normal transport conditions.

6.7.4.2.5 When a jacket is so closed as to be gas-tight, a device must be provided to prevent any dangerous pressure from developing in the insulation space.

6.7.4.2.6 Portable tanks intended for the transport of refrigerated liquefied gases having a boiling point below minus 182 °C at atmospheric pressure must not include materials which may react with oxygen or oxygen enriched atmospheres in a dangerous manner, when located in parts of the thermal insulation when there is a risk of contact with oxygen or with oxygen enriched fluid.

6.7.4.2.7 Insulating materials must not deteriorate unduly in service.

6.7.4.2.8 A reference holding time must be determined for each refrigerated liquefied gas intended for transport in a portable tank.

6.7.4.2.8.1 The reference holding time must be determined by a method recognised by the competent authority on the basis of the following:

(a) The effectiveness of the insulation system, determined in accordance with 6.7.4.2.8.2;

(b) The lowest set pressure of the pressure limiting device(s);

(c) The initial filling conditions;

(d) An assumed ambient temperature of 30 °C;

(e) The physical properties of the individual refrigerated liquefied gas intended to be transported.

6.7.4.2.8.2 The effectiveness of the insulation system (heat influx in watts) must be determined by type testing the portable tank in accordance with a procedure recognised by the competent authority. This test must consist of either:

(a) A constant pressure test (for example at atmospheric pressure) when the loss of refrigerated liquefied gas is measured over a period of time; or

(b) A closed system test when the rise in pressure in the shell is measured over a period of time.

When performing the constant pressure test, variations in atmospheric pressure must be taken into account. When performing either tests corrections must be made for any variation of the ambient temperature from the assumed ambient temperature reference value of 30 °C.

NOTE: For the determination of the actual holding time before each journey, refer to 4.2.3.7.
The jacket of a vacuum-insulated double-wall tank must have either an external design pressure not less than 100 kPa (1 bar) gauge pressure calculated in accordance with a recognised technical code or a calculated critical collapsing pressure of not less than 200 kPa (2 bar) gauge pressure. Internal and external reinforcements may be included in calculating the ability of the jacket to resist the external pressure.

Portable tanks must be designed and constructed with supports to provide a secure base during transport and with suitable lifting and tie-down attachments.

Portable tanks must be designed to withstand, without loss of contents, at least the internal pressure due to the contents, and the static, dynamic and thermal loads during normal conditions of handling and transport. The design must demonstrate that the effects of fatigue, caused by repeated application of these loads through the expected life of the portable tank, have been taken into account.

Portable tanks and their fastenings under the maximum permissible load must be capable of absorbing the following separately applied static forces:

(a) In the direction of travel: –twice the MPGM multiplied by the acceleration due to gravity \((g)\);

(b) Horizontally at right angles to the direction of travel: –the MPGM (when the direction of travel is not clearly determined, the forces must be equal to twice the MPGM) multiplied by the acceleration due to gravity \((g)\);

(c) Vertically upwards: –the MPGM multiplied by the acceleration due to gravity \((g)\); and

(d) Vertically downwards: –twice the MPGM (total loading including the effect of gravity) multiplied by the acceleration due to gravity \((g)\).

Under each of the forces in 6.7.4.2.12, the safety factor to be observed must be as follows:

(a) For materials having a clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed yield strength; or

(b) For materials with no clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed 0.2% proof strength or, for austenitic steels, the 1% proof strength.

The values of yield strength or proof strength must be the values according to national or international material standards. When austenitic steels are used, the specified minimum values according to the material standards may be increased by up to 15% when these greater values are attested in the material inspection certificate. When no material standard exists for the metal in question, or when non-metallic materials are used the values of yield strength or proof strength must be approved by the competent authority.

Portable tanks intended for the transport of flammable refrigerated liquefied gases must be capable of being electrically earthed.

Design criteria

Shells must be of a circular cross section.
6.7.4.3.2 Shells must be designed and constructed to withstand a test pressure not less than 1.3 times the MAWP. For shells with vacuum insulation the test pressure must not be less than 1.3 times the sum of the MAWP and 100 kPa (1 bar). In no case must the test pressure be less than 300 kPa (3 bar) gauge pressure. Attention is drawn to the minimum shell thickness requirements, specified in 6.7.4.4.2 to 6.7.4.4.7.

6.7.4.3.3 For metals exhibiting a clearly defined yield point or characterised by a guaranteed proof strength (0.2% proof strength, generally, or 1% proof strength for austenitic steels) the primary membrane stress σ (sigma) in the shell must not exceed 0.75 Re or 0.50 Rm, whichever is lower, at the test pressure, where:

\[
Re = \text{yield strength in N/mm}^2, \text{ or 0.2\% proof strength or, for austenitic steels, 1\% proof strength;}
\]

\[
Rm = \text{minimum tensile strength in N/mm}^2.
\]

6.7.4.3.3.1 The values of Re and Rm to be used must be the specified minimum values according to national or international material standards. When austenitic steels are used, the specified minimum values for Re and Rm according to the material standards may be increased by up to 15% when greater values are attested in the material inspection certificate. When no material standard exists for the metal in question, the values of Re and Rm used must be approved by the competent authority or its authorised body.

6.7.4.3.3.2 Steels which have a Re/Rm ratio of more than 0.85 are not allowed for the construction of welded shells. The values of Re and Rm to be used in determining this ratio must be the values specified in the material inspection certificate.

6.7.4.3.3.3 Steels used in the construction of shells must have an elongation at fracture, in %, of not less than 10 000/Rm with an absolute minimum of 16% for fine grain steels and 20% for other steels. Aluminium and aluminium alloys used in the construction of shells must have an elongation at fracture, in %, of not less than 10 000/$6Rm$ with an absolute minimum of 12%.

6.7.4.3.3.4 For the purpose of determining actual values for materials, it must be noted that for sheet metal, the axis of the tensile test specimen must be at right angles (transversely) to the direction of rolling. The permanent elongation at fracture must be measured on test specimens of rectangular cross sections in accordance with ISO 6892:1998 using a 50 mm gauge length.

6.7.4.4 Minimum shell thickness

6.7.4.4.1 The minimum shell thickness must be the greater thickness based on:

(a) The minimum thickness determined in accordance with the requirements in 6.7.4.4.2 to 6.7.4.4.7; and

(b) The minimum thickness determined in accordance with the recognised pressure vessel code including the requirements in 6.7.4.3.

6.7.4.4.2 Shells of not more than 1.80 m in diameter must be not less than 5 mm thick in the reference steel or of equivalent thickness in the metal to be used. Shells of more than 1.80 m in diameter must be not less than 6 mm thick in the reference steel or of equivalent thickness in the metal to be used.
6.7.4.3 Shells of vacuum-insulated tanks of not more than 1.80 m in diameter must be not less than 3 mm thick in the reference steel or of equivalent thickness in the metal to be used. Such shells of more than 1.80 m in diameter must be not less than 4 mm thick in the reference steel or of equivalent thickness in the metal to be used.

6.7.4.4 For vacuum-insulated tanks, the aggregate thickness of the jacket and the shell must correspond to the minimum thickness prescribed in 6.7.4.4.2, the thickness of the shell itself being not less than the minimum thickness prescribed in 6.7.4.4.3.

6.7.4.5 Shells must be not less than 3 mm thick regardless of the material of construction.

6.7.4.6 The equivalent thickness of a metal other than the thickness prescribed for the reference steel in 6.7.4.4.2 and 6.7.4.4.3 must be determined using the following formula:

$$e_i = \frac{21.4 \times e_0}{\frac{1}{3} Rm \times A_i}$$

where:
- e_i = required equivalent thickness (in mm) of the metal to be used;
- e_0 = minimum thickness (in mm) of the reference steel specified in 6.7.4.4.2 and 6.7.4.4.3;
- Rm = guaranteed minimum tensile strength (in N/mm2) of the metal to be used (see 6.7.4.3.3);
- A_i = guaranteed minimum elongation at fracture (in %) of the metal to be used according to national or international standards.

6.7.4.7 In no case must the wall thickness be less than that prescribed in 6.7.4.4.1 to 6.7.4.4.5. All parts of the shell must have a minimum thickness as determined by 6.7.4.4.1 to 6.7.4.4.6. This thickness must be exclusive of any corrosion allowance.

6.7.4.8 There must be no sudden change of plate thickness at the attachment of the ends (heads) to the cylindrical portion of the shell.

6.7.4.5 Service equipment

6.7.4.5.1 Service equipment must be so arranged as to be protected against the risk of being wrenched off or damaged during handling and transport. When the connection between the frame and the tank or the jacket and the shell allows relative movement, the equipment must be so fastened as to permit such movement without risk of damage to working parts. The external discharge fittings (pipe sockets, shut-off devices), the stop-valve and its seating must be protected against the danger of being wrenched off by external forces (for example using shear sections). The filling and discharge devices (including flanges or threaded plugs) and any protective caps must be capable of being secured against unintended opening.

6.7.4.5.2 Each filling and discharge opening in portable tanks used for the transport of flammable refrigerated liquefied gases must be fitted with at least three mutually independent shut-off devices in series, the first being a stop-valve situated as close as reasonably practicable to the jacket, the second being a stop-valve and the third being a blank flange or equivalent device.
The shut-off device closest to the jacket must be a quick closing device, which closes automatically in the event of unintended movement of the portable tank during filling or discharge or fire engulfment. This device must also be possible to operate by remote control.

6.7.4.5.3 Each filling and discharge opening in portable tanks used for the transport of non-flammable refrigerated liquefied gases must be fitted with at least two mutually independent shut-off devices in series, the first being a stop-valve situated as close as reasonably practicable to the jacket, the second a blank flange or equivalent device.

6.7.4.5.4 For sections of piping which can be closed at both ends and where liquid product can be trapped, a method of automatic pressure relief must be provided to prevent excess pressure build-up within the piping.

6.7.4.5.5 Vacuum insulated tanks need not have an opening for inspection.

6.7.4.5.6 External fittings must be grouped together as far as reasonably practicable.

6.7.4.5.7 Each connection on a portable tank must be clearly marked to indicate its function.

6.7.4.5.8 Each stop-valve or other means of closure must be designed and constructed to a rated pressure not less than the MAWP of the shell taking into account the temperature expected during transport. All stop-valves with a screwed spindle must be closed by a clockwise motion of the handwheel. In the case of other stop-valves the position (open and closed) and direction of closure must be clearly indicated. All stop-valves must be designed to prevent unintentional opening.

6.7.4.5.9 When pressure-building units are used, the liquid and vapour connections to that unit must be provided with a valve as close to the jacket as reasonably practicable to prevent the loss of contents in case of damage to the pressure-building unit.

6.7.4.5.10 Piping must be designed, constructed and installed so as to avoid the risk of damage due to thermal expansion and contraction, mechanical shock and vibration. All piping must be of a suitable material. To prevent leakage due to fire, only steel piping and welded joints must be used between the jacket and the connection to the first closure of any outlet. The method of attaching the closure to this connection must be to the satisfaction of the competent authority or its authorised body. Elsewhere pipe joints must be welded when necessary.

6.7.4.5.11 Joints in copper tubing must be brazed or have an equally strong metal union. The melting point of brazing materials must be no lower than 525 °C. The joints must not decrease the strength of the tubing as may happen when cutting threads.

6.7.4.5.12 The materials of construction of valves and accessories must have satisfactory properties at the lowest operating temperature of the portable tank.

6.7.4.5.13 The burst pressure of all piping and pipe fittings must be not less than the highest of four times the MAWP of the shell or four times the pressure to which it may be subjected in service by the action of a pump or other device (except pressure-relief devices).
6.7.4.6 Pressure-relief devices

6.7.4.6.1 Every shell must be provided with not less than two independent spring-loaded pressure-relief devices. The pressure-relief devices must open automatically at a pressure not less than the MAWP and be fully open at a pressure equal to 110% of the MAWP. These devices must, after discharge, close at a pressure not lower than 10% below the pressure at which discharge starts and must remain closed at all lower pressures. The pressure-relief devices must be of the type that will resist dynamic forces including surge.

6.7.4.6.2 Shells for non-flammable refrigerated liquefied gases and hydrogen may in addition have frangible discs in parallel with the spring-loaded devices as specified in 6.7.4.7.2 and 6.7.4.7.3.

6.7.4.6.3 Pressure-relief devices must be designed to prevent the entry of foreign matter, the leakage of gas and the development of any dangerous excess pressure.

6.7.4.6.4 Pressure-relief devices must be approved by the competent authority or its authorised body.

6.7.4.7 Capacity and setting of pressure-relief devices

6.7.4.7.1 In the case of the loss of vacuum in a vacuum-insulated tank or of loss of 20% of the insulation of a tank insulated with solid materials, the combined capacity of all pressure-relief devices installed must be sufficient so that the pressure (including accumulation) inside the shell does not exceed 120% of the MAWP.

6.7.4.7.2 For non-flammable refrigerated liquefied gases (except oxygen) and hydrogen, this capacity may be achieved by the use of frangible discs in parallel with the required safety-relief devices. Frangible discs must rupture at nominal pressure equal to the test pressure of the shell.

6.7.4.7.3 Under the circumstances described in 6.7.4.7.1 and 6.7.4.7.2 together with complete fire engulfment the combined capacity of all pressure-relief devices installed must be sufficient to limit the pressure in the shell to the test pressure.

6.7.4.7.4 The required capacity of the relief devices must be calculated in accordance with a well-established technical code recognised by the competent authority.

6.7.4.8 Marking of pressure-relief devices

6.7.4.8.1 Every pressure-relief device must be plainly and permanently marked with the following:

(a) The pressure (in bar or kPa) at which it is set to discharge;
(b) The allowable tolerance at the discharge pressure for spring-loaded devices;
(c) The reference temperature corresponding to the rated pressure for frangible discs;
(d) The rated flow capacity of the device in standard cubic meters of air per second (m³/s); and
(e) The cross sectional flow areas of the spring loaded pressure-relief devices and frangible discs in mm².

When practicable, the following information must also be shown:

(f) The manufacturer's name and relevant catalogue number.
6.7.4.8.2 The rated flow capacity marked on the pressure-relief devices must be determined according to ISO 4126-1:2004 and ISO 4126-7:2004.

6.7.4.9 Connections to pressure-relief devices

Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the safety device. No stop-valve must be installed between the shell and the pressure-relief devices except when duplicate devices are provided for maintenance or other reasons and the stop-valves serving the devices actually in use are locked open or the stop-valves are interlocked so that the requirements of 6.7.4.7 are always fulfilled. There must be no obstruction in an opening leading to a vent or pressure-relief device which might restrict or cut-off the flow from the shell to that device.

Pipework to vent the vapour or liquid from the outlet of the pressure-relief devices, when used, must deliver the relieved vapour or liquid to the atmosphere in conditions of minimum back-pressure on the relieving device.

6.7.4.10 Siting of pressure-relief devices

Each pressure-relief device inlet must be situated on top of the shell in a position as near the longitudinal and transverse centre of the shell as reasonably practicable. All pressure-relief device inlets must under maximum filling conditions be situated in the vapour space of the shell and the devices must be so arranged as to ensure that the escaping vapour is discharged unrestrictedly. For refrigerated liquefied gases, the escaping vapour must be directed away from the tank and in such a manner that it cannot impinge upon the tank. Protective devices which deflect the flow of vapour are permissible provided the required relief-device capacity is not reduced.

Arrangements must be made to prevent access to the devices by unauthorised persons and to protect the devices from damage caused by the portable tank overturning.

6.7.4.11 Gauging devices

Unless a portable tank is intended to be filled by weight, it must be equipped with one or more gauging devices. Glass level-gauges and gauges made of other fragile material, which are in direct communication with the contents of the shell must not be used.

A connection for a vacuum gauge must be provided in the jacket of a vacuum-insulated portable tank.

6.7.4.12 Portable tank supports, frameworks, lifting and tie-down attachments

Portable tanks must be designed and constructed with a support structure to provide a secure base during transport. The forces specified in 6.7.4.2.12 and the safety factor specified in 6.7.4.2.13 must be considered in this aspect of the design. Skids, frameworks, cradles or other similar structures are acceptable.

The combined stresses caused by portable tank mountings (e.g. cradles, frameworks, etc.) and portable tank lifting and tie-down attachments must not cause excessive stress in any portion of the tank. Permanent lifting and tie-down attachments must be fitted to all portable tanks. Preferably they must be fitted to the portable tank supports but may be secured to reinforcing plates located on the tank at the points of support.
6.7.4.12.3 In the design of supports and frameworks the effects of environmental corrosion must be taken into account.

6.7.4.12.4 Forklift pockets must be capable of being closed off. The means of closing forklift pockets must be a permanent part of the framework or permanently attached to the framework. Single compartment portable tanks with a length less than 3.65 m need not have closed off forklift pockets provided that:

(a) The tank and all the fittings are well protected from being hit by the forklift blades; and

(b) The distance between the centres of the forklift pockets is at least half of the maximum length of the portable tank.

6.7.4.12.5 When portable tanks are not protected during transport, according to 4.2.3.3, the shells and service equipment must be protected against damage to the shell and service equipment resulting from lateral or longitudinal impact or overturning. External fittings must be protected so as to preclude the release of the shell contents upon impact or overturning of the portable tank on its fittings. Examples of protection include:

(a) Protection against lateral impact which may consist of longitudinal bars protecting the shell on both sides at the level of the median line;

(b) Protection of the portable tank against overturning which may consist of reinforcement rings or bars fixed across the frame;

(c) Protection against rear impact which may consist of a bumper or frame;

(d) Protection of the shell against damage from impact or overturning by use of an ISO frame in accordance with ISO 1496-3:1995;

(e) Protection of the portable tank from impact or overturning by a vacuum insulation jacket.

6.7.4.13 Design approval

6.7.4.13.1 The competent authority or its authorised body must issue a design approval certificate for any new design of a portable tank. This certificate must attest that a portable tank has been surveyed by that authority, is suitable for its intended purpose and meets the requirements of this Chapter. When a series of portable tanks is manufactured without change in the design, the certificate must be valid for the entire series. The certificate must refer to the prototype test report, the refrigerated liquefied gases allowed to be transported, the materials of construction of the shell and jacket and an approval number. The approval number must consist of the distinguishing sign or mark of the State in whose territory the approval was granted, i.e. the distinguishing sign for use in international traffic, as prescribed by the Convention on Road Traffic, Vienna 1968 (for Australia, the letters ‘AUS’), and a registration number. Any alternative arrangements according to 6.7.1.2 must be indicated on the certificate. A design approval may serve for the approval of smaller portable tanks made of materials of the same kind and thickness, by the same fabrication techniques and with identical supports, equivalent closures and other appurtenances.
6.7.4.13.2 The prototype test report for the design approval must include at least the following:

(a) The results of the applicable framework test specified in ISO 1496-3:1995;

(b) The results of the initial inspection and test in 6.7.4.14.3; and

(c) The results of the impact test in 6.7.4.14.1, when applicable.

6.7.4.14 Inspection and testing

6.7.4.14.1 Portable tanks meeting the definition of container in the International Convention for Safe Containers (CSC), 1972, as amended, must not be used unless they are successfully qualified by subjecting a representative prototype of each design to the Dynamic, Longitudinal Impact Test prescribed in the Manual for Tests and Criteria, Part IV, Section 40.

6.7.4.14.2 The tank and items of equipment of each portable tank must be inspected and tested before being put into service for the first time (initial inspection and test) and thereafter at not more than five-year intervals (5 year periodic inspection and test) with an intermediate periodic inspection and test (2.5 year periodic inspection and test) midway between the 5 year periodic inspections and tests. The 2.5 year inspection and test may be performed within 3 months of the specified date. An exceptional inspection and test must be performed regardless of the last periodic inspection and test when necessary according to 6.7.4.14.7.

6.7.4.14.3 The initial inspection and test of a portable tank must include a check of the design characteristics, an internal and external examination of the portable tank shell and its fittings with due regard to the refrigerated liquefied gases to be transported, and a pressure test referring to the test pressures according to 6.7.4.3.2. The pressure test may be performed as a hydraulic test or by using another liquid or gas with the agreement of the competent authority or its authorised body. Before the portable tank is placed into service, a leakproofness test and a test of the satisfactory operation of all service equipment must also be performed. When the shell and its fittings have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test. All welds subject to full stress level must be inspected during the initial test by radiographic, ultrasonic, or another suitable non-destructive test method. This does not apply to the jacket.

6.7.4.14.4 The 5 and 2.5 year periodic inspection and test must include an external examination of the portable tank and its fittings with due regard to the refrigerated liquefied gases transported, a leakproofness test, a test of the satisfactory operation of all service equipment and a vacuum reading, when applicable. In the case of non-vacuum insulated tanks, the jacket and insulation must be removed during a 2.5 year and a 5 year periodic inspection and tests but only to the extent necessary for a reliable appraisal.

6.7.4.14.5 <Reserved> (Deleted by UN)

6.7.4.14.6 A portable tank may not be filled and offered for transport after the date of expiry of the last 5 year or 2.5 year periodic inspection and test as required by 6.7.4.14.2. However a portable tank filled prior to the date of expiry of the last periodic inspection and test may be transported for a period not to exceed three months beyond the date of expiry of the last periodic test or inspection. In addition, a portable tank may be transported after the date of expiry of the last periodic test and inspection:
(a) After emptying but before cleaning, for purposes of performing the next required test or inspection prior to refilling; and

(b) Unless otherwise exempted by the competent authority, for a period not to exceed six months beyond the date of expiry of the last periodic test or inspection, in order to allow the return of dangerous goods for proper disposal or recycling. Reference to this exemption must be mentioned in the transport document.

6.7.4.14.7 The exceptional inspection and test is necessary when the portable tank shows evidence of damaged or corroded areas, leakage, or any other conditions that indicate a deficiency that could affect the integrity of the portable tank. The extent of the exceptional inspection and test must depend on the amount of damage or deterioration of the portable tank. It must include at least the 2.5 year inspection and test according to 6.7.4.14.4.

6.7.4.14.8 The internal examination during the initial inspection and test must ensure that the shell is inspected for pitting, corrosion, or abrasions, dents, distortions, defects in welds or any other conditions, that might render the portable tank unsafe for transport.

6.7.4.14.9 The external examination must ensure that:

(a) The external piping, valves, pressurising/cooling systems when applicable and gaskets are inspected for corroded areas, defects, or any other conditions, including leakage, that might render the portable tank unsafe for filling, discharge or transport;

(b) There is no leakage at any manhole covers or gaskets;

(c) Missing or loose bolts or nuts on any flanged connection or blank flange are replaced or tightened;

(d) All emergency devices and valves are free from corrosion, distortion and any damage or defect that could prevent their normal operation. Remote closure devices and self-closing stop-valves must be operated to demonstrate proper operation;

(e) Required markings on the portable tank are legible and in accordance with the applicable requirements; and

(f) The framework, the supports and the arrangements for lifting the portable tank are in satisfactory condition.

6.7.4.14.10 The inspections and tests in 6.7.4.14.1, 6.7.4.14.3, 6.7.4.14.4 and 6.7.4.14.7 must be performed or witnessed by an expert recognised by the competent authority or its authorised body. When the pressure test is a part of the inspection and test, the test pressure must be the one indicated on the data plate of the portable tank. While under pressure, the portable tank must be inspected for any leaks in the shell, piping or equipment.

6.7.4.14.11 In all cases when cutting, burning or welding operations on the shell of a portable tank have been effected, that work must be to the approval of the competent authority or its authorised body taking into account the pressure vessel code used for the construction of the shell. A pressure test to the original test pressure must be performed after the work is completed.

6.7.4.14.12 When evidence of any unsafe condition is discovered, the portable tank must not be returned to service until it has been corrected and the test is repeated and passed.
6.7.4.15 Marking

6.7.4.15.1 Every portable tank must be fitted with a corrosion resistant metal plate permanently attached to the portable tank in a conspicuous place readily accessible for inspection. When for reasons of portable tank arrangements the plate cannot be permanently attached to the shell, the shell must be marked with at least the information required by the pressure vessel code. As a minimum, at least the following information must be marked on the plate by stamping or by any other similar method:

(a) Owner information
 (i) Owner’s registration number;

(b) Manufacturing information
 (i) Country of manufacture;
 (ii) Year of manufacture;
 (iii) Manufacturer’s name or mark;
 (iv) Manufacturer’s serial number;

(c) Approval information
 (i) The United Nations packaging symbol \(\text{UN}\); This symbol must not be used for any purpose other than certifying that a packaging, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;
 (ii) Approval country;
 (iii) Authorised body for the design approval;
 (iv) Design approval number;
 (v) Letters ‘AA’, if the design was approved under alternative arrangements (see 6.7.1.2);
 (vi) Pressure vessel code to which the shell is designed;

(d) Pressures
 (i) MAWP (in bar gauge or kPa gauge);
 (ii) Test pressure (in bar gauge or kPa gauge);
 (iii) Initial pressure test date (month and year);
 (iv) Identification mark of the initial pressure test witness;

(e) Temperatures
 (i) Minimum design temperature (in °C);

(f) Materials
 (i) Shell material(s) and material standard reference(s);
 (ii) Equivalent thickness in reference steel (in mm);

(g) Capacity
 (i) Tank water capacity at 20 °C (in litres);

(h) Insulation
 (i) Either “Thermally insulated” or “Vacuum insulated” (as applicable);
 (ii) Effectiveness of the insulation system (heat influx) (in Watts);

(i) Holding times – For each refrigerated liquefied gas permitted to be transported in the portable tank:
 (i) Name, in full, of the refrigerated liquefied gas;
(ii) Reference holding time (in days or hours);
(iii) Initial pressure (in bar gauge or kPa gauge);
(iv) Degree of filling (in kg);

(j) Periodic inspections and tests
(i) Type of the most recent periodic test (2.5-year, 5-year or exceptional);
(ii) Date of the most recent periodic test (month and year);
(iii) Identification mark of the authorised body who performed or witnessed the most recent test.

Figure 6.7.4.15.1: Example of identification plate marking

| Owner's registration number |
| MANUFACTURING INFORMATION |
| Country of manufacture |
| Year of manufacture |
| Manufacturer |
| Manufacturer’s serial number |

| APPROVAL INFORMATION |
| Approval country |
| Authorised body for design approval |
| Design approval number |

| 'AA' (if applicable) |
| Shell design code (pressure vessel code) |

PRESSURES

MAWP	bar or kPa
Test pressure	bar or kPa
Initial pressure test date: (mm/yyyy)	Witness stamp:

| TEMPERATURES |
| Minimum design temperature | °C |

MATERIALS

| Shell material(s) and material standard reference(s) |
| Equivalent thickness in reference steel | mm |

CAPACITY

| Tank water capacity at 20 °C | litres |

INSULATION

| 'Thermally insulated' or 'Vacuum insulated' (as applicable) |
| Heat influx | Watts |

HOLDING TIMES

| Refrigerated liquefied gas(es) permitted |
| Reference holding time |
| Initial pressure |
| Degree of filling |
| days or hours | bar or kPa | kg |

PERIODIC INSPECTIONS / TESTS

| Test type | Test date (mm/yyyy) | Witness stamp |
| Test type | Test date (mm/yyyy) | Witness stamp |

6.7.4.15.2 The following information must be durably marked either on the portable tank itself or on a metal plate firmly secured to the portable tank.

Name of the owner and the operator
Name of the refrigerated liquefied gas being transported (and minimum mean bulk temperature)
Maximum permissible gross mass (MPGM) ________ kg
Unladen (tare) mass ________ kg
Actual holding time for gas being transported ______ days (or hours)
Portable tank instruction in accordance with 4.2.5.2.6
NOTE: For the identification of the refrigerated liquefied gas(es) being transported, see also Part 5.

6.7.4.15.3 If a portable tank is designed and approved for handling in open seas, the words "OFFSHORE PORTABLE TANK" must be marked on the identification plate.

6.7.5 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF MULTIPLE-ELEMENT GAS CONTAINERS (MEGCs) INTENDED FOR THE TRANSPORT OF NON-REFRIGERATED GASES

6.7.5.1 Application and Definitions

6.7.5.1.1 Application

This Section must be applied in conjunction with the legislation applicable in the particular State or Territory to pressure vessels. Where there is conflict, the requirements of that legislation and any Codes and Standards mandated by that legislation take precedence over this Section.

6.7.5.1.2 Definitions

For the purposes of this section:

Elements are cylinders, tubes or bundles of cylinders;

Leakproofness test means a test using gas subjecting the elements and the service equipment of the MEGC to an effective internal pressure of not less than 20% of the test pressure;

Manifold means an assembly of piping and valves connecting the filling and/or discharge openings of the elements;

Maximum permissible gross mass (MPGM) means the sum of the tare mass of the MEGC and the heaviest load authorised for transport;

Service equipment means measuring instruments and filling, discharge, venting and safety devices;

Structural equipment means the reinforcing, fastening, protective and stabilising members external to the elements.

6.7.5.2 General design and construction requirements

6.7.5.2.1 The MEGC must be capable of being filled and discharged without the removal of its structural equipment. It must possess stabilising members external to the elements to provide structural integrity for handling and transport. MEGCs must be designed and constructed with supports to provide a secure base during transport and with lifting and tie-down attachments which are adequate for lifting the MEGC including when loaded to its maximum permissible gross mass. The MEGC must be designed to be loaded onto a cargo transport unit or ship and must be equipped with skids, mountings or accessories to facilitate mechanical handling.

6.7.5.2.2 MEGCs must be designed, manufactured and equipped in such a way as to withstand all conditions to which they will be subjected during normal conditions of handling and transport. The design must take into account the effects of dynamic loading and fatigue.

6.7.5.2.3 Elements of an MEGC must be made of seamless steel and be constructed and tested according to Chapter 6.2. All of the elements in an MEGC must be of the same design type.
6.7.5.2.4 Elements of MEGCs, fittings and pipework must be:
(a) compatible with the substances intended to be transported (for gases see ISO 11114-1:19972012 and ISO 11114-2:2000); or
(b) properly passivated or neutralised by chemical reaction.

6.7.5.2.5 Contact between dissimilar metals which could result in damage by galvanic action must be avoided.

6.7.5.2.6 The materials of the MEGC, including any devices, gaskets, and accessories, must not adversely affect the gases intended for transport in the MEGC.

6.7.5.2.7 MEGCs must be designed to withstand, without loss of contents, at least the internal pressure due to the contents, and the static, dynamic and thermal loads during normal conditions of handling and transport. The design must demonstrate that the effects of fatigue, caused by repeated application of these loads through the expected life of the multiple-element gas container, have been taken into account.

6.7.5.2.8 MEGCs and their fastenings must, under the maximum permissible load, be capable of withstanding the following separately applied static forces:
(a) in the direction of travel: – twice the MPGM multiplied by the acceleration due to gravity (g)²;
(b) horizontally at right angles to the direction of travel: – the MPGM (when the direction of travel is not clearly determined, the forces must be equal to twice the MPGM) multiplied by the acceleration due to gravity (g)²;
(c) vertically upwards: – the MPGM multiplied by the acceleration due to gravity (g)²; and
(d) vertically downwards: – twice the MPGM (total loading including the effect of gravity) multiplied by the acceleration due to gravity (g)².

6.7.5.2.9 Under the forces defined above, the stress at the most severely stressed point of the elements must not exceed the values given in either the relevant standards of 6.2.2.1 or, if the elements are not designed, constructed and tested according to those standards, in the technical code or standard recognised or approved by the competent authority of the country of use (see 6.2.3.1).
6.7.5.2.10 Under each of the forces in 6.7.5.2.8, the safety factor for the framework and fastenings to be observed must be as follows:

(a) for steels having a clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed yield strength; or

(b) for steels with no clearly defined yield point, a safety factor of 1.5 in relation to the guaranteed 0.2% proof strength and, for austenitic steels, the 1% proof strength.

6.7.5.2.11 MEGCs intended for the transport of flammable gases must be capable of being electrically earthed.

6.7.5.2.12 The elements must be secured in a manner that prevents undesired movement in relation to the structure and the concentration of harmful localised stresses.

6.7.5.3 Service equipment

6.7.5.3.1 Service equipment must be configured or designed to prevent damage that could result in the release of the pressure receptacle contents during normal conditions of handling and transport. When the connection between the frame and the elements allows relative movement between the sub-assemblies, the equipment must be so fastened as to permit such movement without damage to working parts. The manifolds, the discharge fittings (pipe sockets, shut-off devices), and the stop-valves must be protected from being wrenched off by external forces. Manifold piping leading to shut-off valves must be sufficiently flexible to protect the valves and the piping from shearing, or releasing the pressure receptacle contents. The filling and discharge devices (including flanges or threaded plugs) and any protective caps must be capable of being secured against unintended opening.

6.7.5.3.2 Each element intended for the transport of gases of Division 2.3 must be fitted with a valve. The manifold for liquefied gases of Division 2.3 must be so designed that the elements can be filled separately and be kept isolated by a valve capable of being sealed. For the transport of gases of Division 2.1, the elements must be divided into groups of not more than 3000 litres isolated by a valve. Each group must be fitted.

6.7.5.3.3 For filling and discharge openings of the MEGC, two valves in series must be placed in an accessible position on each discharge and filling pipe. One of the valves may be a non-return valve. The filling and discharge devices may be fitted to a manifold. For sections of piping which can be closed at both ends and where a liquid product can be trapped, a pressure-relief valve must be provided to prevent excessive pressure build-up. The main isolation valves on an MEGC must be clearly marked to indicate their directions of closure. Each stop-valve or other means of closure must be designed and constructed to withstand a pressure equal to or greater than 1.5 times the test pressure of the MEGC. All stop-valves with screwed spindles must close by a clockwise motion of the handwheel. For other stop-valves, the position (open or closed) and direction of closure must be clearly indicated. All stop-valves must be designed and positioned to prevent unintentional opening. Ductile metals must be used in the construction of valves or accessories.

6.7.5.3.4 Piping must be designed, constructed and installed so as to avoid damage due to expansion and contraction, mechanical shock and vibration. Joints in tubing must be brazed or have an equally strong metal union. The melting point of brazing materials must be no lower than 525 °C. The rated pressure of the service equipment and of the manifold must be not less than two thirds of the test pressure of the elements.
6.7.5.4 Pressure-relief devices

6.7.5.4.1 The elements of MEGCs used for the transport of UN 1013 carbon dioxide and UN 1070 nitrous oxide must be isolated by a valve into assemblies of not more than 3000 litres. Each assembly must be fitted with one or more pressure relief devices. If so required by the competent authority of the country of use, MEGCs for other gases must be fitted with pressure relief devices as specified by that competent authority.

6.7.5.4.2 When pressure relief devices are fitted, every element or group of elements of an MEGC that can be isolated must then be fitted with one or more pressure relief devices. Pressure relief devices must be of a type that will resist dynamic forces including liquid surge and must be designed to prevent the entry of foreign matter, the leakage of gas and the development of any dangerous excess pressure.

6.7.5.4.3 MEGCs used for the transport of certain non-refrigerated gases identified in instruction T50 in 4.2.5.2.6 may have a pressure-relief device as required by the competent authority of the country of use. Unless an MEGC in dedicated service is fitted with an approved pressure relief device constructed of materials compatible with the load, such a device must comprise a frangible disc preceding a spring-loaded device. The space between the frangible disc and the spring-loaded device may be equipped with a pressure gauge or a suitable telltale indicator. This arrangement permits the detection of disc rupture, pinholing or leakage which could cause a malfunction of the pressure relief device. The frangible disc must rupture at a nominal pressure 10% above the start-to-discharge pressure of the spring-loaded device.

6.7.5.4.4 In the case of multi-purpose MEGCs used for the transport of low-pressure liquefied gases, the pressure-relief devices must open at a pressure as specified in 6.7.3.7.1 for the gas having the highest maximum allowable working pressure of the gases allowed to be transported in the MEGC.

6.7.5.5 Capacity of pressure relief devices

6.7.5.5.1 The combined delivery capacity of the pressure relief devices when fitted must be sufficient that, in the event of total fire engulfment of the MEGC, the pressure (including accumulation) inside the elements does not exceed 120% of the set pressure of the pressure relief device. The formula provided in CGA S-1.2-2003 “Pressure Relief Device Standards, Part 2, Cargo and Portable Tanks for Compressed Gases” must be used to determine the minimum total flow capacity for the system of pressure relief devices. CGA S-1.1-2003 “Pressure Relief Device Standards, Part 1, Cylinders for Compressed Gases” may be used to determine the relief capacity of individual elements. Spring-loaded pressure relief devices may be used to achieve the full relief capacity prescribed in the case of low pressure liquefied gases. In the case of multi-purpose MEGCs, the combined delivery capacity of the pressure-relief devices must be taken for the gas which requires the highest delivery capacity of the gases allowed to be transported in the MEGC.

6.7.5.5.2 To determine the total required capacity of the pressure relief devices installed on the elements for the transport of liquefied gases, the thermodynamic properties of the gas must be considered (see, for example, CGA S-1.2-1995 for low pressure liquefied gases and CGA S-1.1-1994 for high pressure liquefied gases).
6.7.5.6 **Marking of pressure-relief devices**

6.7.5.6.1 Pressure relief devices must be clearly and permanently marked with the following:

(a) the manufacturer's name and relevant catalogue number.
(b) the set pressure and/or the set temperature;
(c) the date of the last test;
(d) The cross sectional flow areas of the spring loaded pressure-relief devices and frangible discs in mm².

6.7.5.6.2 The rated flow capacity marked on spring loaded pressure relief devices for low pressure liquefied gases must be determined according to ISO 4126-1:2004 and ISO 4126-7:2004.

6.7.5.7 **Connections to pressure-relief devices**

6.7.5.7.1 Connections to pressure-relief devices must be of sufficient size to enable the required discharge to pass unrestricted to the pressure relief device. No stop-valve must be installed between the element and the pressure-relief devices, except when duplicate devices are provided for maintenance or other reasons, and the stop-valves serving the devices actually in use are locked open, or the stop-valves are interlocked so that at least one of the duplicate devices is always operable and capable of meeting the requirements of 6.7.5.5. There must be no obstruction in an opening leading to or leaving from a vent or pressure-relief device which might restrict or cut-off the flow from the element to that device. The opening through all piping and fittings must have at least the same flow area as the inlet of the pressure relief device to which it is connected. The nominal size of the discharge piping must be at least as large as that of the pressure relief device outlet. Vents from the pressure-relief devices, when used, must deliver the relieved vapour or liquid to the atmosphere in conditions of minimum backpressure on the relieving device.

6.7.5.8 **Siting of pressure-relief devices**

6.7.5.8.1 Each pressure relief device must, under maximum filling conditions, be in communication with the vapour space of the elements for the transport of liquefied gases. The devices, when fitted, must be so arranged as to ensure that the escaping vapour is discharged upwards and unrestrictedly as to prevent any impingement of escaping gas or liquid upon the MEGC, its elements or personnel. For flammable, pyrophoric and oxidising gases, the escaping gas must be directed away from the element in such a manner that it cannot impinge upon the other elements. Heat resistant protective devices which deflect the flow of gas are permissible provided the required pressure relief device capacity is not reduced.

6.7.5.8.2 Arrangements must be made to prevent access to the pressure-relief devices by unauthorised persons and to protect the devices from damage caused by the MEGC overturning.

6.7.5.9 **Gauging devices**

6.7.5.9.1 When a MEGC is intended to be filled by mass, it must be equipped with one or more gauging devices. Level-gauges made of glass or other fragile material must not be used.
6.7.5.10 **MEGC supports, frameworks, lifting and tie-down attachments**

6.7.5.10.1 MEGCs must be designed and constructed with a support structure to provide a secure base during transport. The forces specified in 6.7.5.2.8 and the safety factor specified in 6.7.5.2.10 must be considered in this aspect of the design. Skids, frameworks, cradles or other similar structures are acceptable.

6.7.5.10.2 The combined stresses caused by element mountings (e.g. cradles, frameworks, etc.) and MEGC lifting and tie-down attachments must not cause excessive stress in any element. Permanent lifting and tie-down attachments must be fitted to all MEGCs. In no case must mountings or attachments be welded onto the elements.

6.7.5.10.3 In the design of supports and frameworks, the effects of environmental corrosion must be taken into account.

6.7.5.10.4 When MEGCs are not protected during transport, according to 4.2.5.3, the elements and service equipment must be protected against damage resulting from lateral or longitudinal impact or overturning. External fittings must be protected so as to preclude the release of the elements' contents upon impact or overturning of the MEGC on its fittings. Particular attention must be paid to the protection of the manifold. Examples of protection include:

(a) protection against lateral impact which may consist of longitudinal bars;
(b) protection against overturning which may consist of reinforcement rings or bars fixed across the frame;
(c) protection against rear impact which may consist of a bumper or frame;
(d) protection of the elements and service equipment against damage from impact or overturning by use of an ISO frame in accordance with the relevant provisions of ISO 1496-3:1995.

6.7.5.11 **Design approval**

6.7.5.11.1 The competent authority or its authorised body must issue a design approval certificate for any new design of a MEGC. This certificate must attest that the MEGC has been surveyed by that authority, is suitable for its intended purpose and meets the requirements of this Chapter, the applicable provisions for gases of Chapter 4.1 and of packing instruction P200. When a series of MEGCs are manufactured without change in the design, the certificate must be valid for the entire series. The certificate must refer to the prototype test report, the materials of construction of the manifold, the standards to which the elements are made and an approval number. The approval number must consist of the distinguishing sign or mark of the country granting the approval, i.e. the distinguishing sign for use in international traffic, as prescribed by the Convention on Road Traffic, Vienna 1968 (for Australia, the letters 'AUS'), and a registration number. Any alternative arrangements according to 6.7.1.2 must be indicated on the certificate. A design approval may serve for the approval of smaller MEGCs made of materials of the same type and thickness, by the same fabrication techniques and with identical supports, equivalent closures and other appurtenances.

6.7.5.11.2 The prototype test report for the design approval must include at least the following:

(a) the results of the applicable framework test specified in ISO 1496-3:1995;
(b) the results of the initial inspection and test specified in 6.7.5.12.3;
(c) the results of the impact test specified in 6.7.5.12.1; and
(d) certification documents verifying that the cylinders and tubes comply with the applicable standards.
6.7.5.12 Inspection and testing

6.7.5.12.1 MEGCs meeting the definition of container in the CSC must not be used unless they are successfully qualified by subjecting a representative prototype of each design to the Dynamic, Longitudinal Impact Test prescribed in the Manual for Tests and Criteria, Part IV, Section 40.

6.7.5.12.2 The elements and items of equipment of each MEGC must be inspected and tested before being put into service for the first time (initial inspection and test). Thereafter, MEGCs must be inspected at no more than five-year intervals (5 year periodic inspection). An exceptional inspection and test must be performed, regardless of the last periodic inspection and test, when necessary according to 6.7.5.12.5.

6.7.5.12.3 The initial inspection and test of an MEGC must include a check of the design characteristics, an external examination of the MEGC and its fittings with due regard to the gases to be transported, and a pressure test performed at the test pressures according to packing instruction P200. The pressure test of the manifold may be performed as a hydraulic test or by using another liquid or gas with the agreement of the competent authority or its authorised body. Before the MEGC is placed into service, a leakproofness test and a test of the satisfactory operation of all service equipment must also be performed. When the elements and their fittings have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test.

6.7.5.12.4 The 5-year periodic inspection must include an external examination of the structure, the elements and the service equipment in accordance with 6.7.5.12.6. The elements and the piping must be tested at the periodicity specified in packing instruction P200 and in accordance with the provisions described in 6.2.1.6. When the elements and equipment have been pressure-tested separately, they must be subjected together after assembly to a leakproofness test.

6.7.5.12.5 An exceptional inspection and test is necessary when the MEGC shows evidence of damaged or corroded areas, leakage, or other conditions that indicate a deficiency that could affect the integrity of the MEGC. The extent of the exceptional inspection and test must depend on the amount of damage or deterioration of the MEGC. It must include at least the examinations required under 6.7.5.12.6.

6.7.5.12.6 The examinations must ensure that:

(a) the elements are inspected externally for pitting, corrosion, abrasions, dents, distortions, defects in welds or any other conditions, including leakage, that might render the MEGC unsafe for transport;

(b) the piping, valves, and gaskets are inspected for corroded areas, defects, and other conditions, including leakage, that might render the MEGC unsafe for filling, discharge or transport;

(c) missing or loose bolts or nuts on any flanged connection or blank flange are replaced or tightened;

(d) all emergency devices and valves are free from corrosion, distortion and any damage or defect that could prevent their normal operation. Remote closure devices and self-closing stop-valves must be operated to demonstrate proper operation;

(e) required markings on the MEGC are legible and in accordance with the applicable requirements; and

(f) the framework, the supports and the arrangements for lifting the MEGC are in satisfactory condition.
6.7.5.12.7 The inspections and tests in 6.7.5.12.1, 6.7.5.12.3, 6.7.5.12.4 and 6.7.5.12.5 must be performed or witnessed by a body authorised by the competent authority. When the pressure test is a part of the inspection and test, the test pressure must be the one indicated on the data plate of the MEGC. While under pressure, the MEGC must be inspected for any leaks in the elements, piping or equipment.

6.7.5.12.8 When evidence of any unsafe condition is discovered, the MEGC must not be returned to service until it has been corrected and the applicable tests and verifications are passed.

6.7.5.13 Marking

6.7.5.13.1 Every MEGC must be fitted with a corrosion resistant metal plate permanently attached to the MEGC in a conspicuous place readily accessible for inspection. The metal plate must not be affixed to the elements. The elements must be marked in accordance with Chapter 6.2. As a minimum, at least the following information must be marked on the plate by stamping or by any other similar method:

(a) Owner information
 (i) Owner’s registration number;

(b) Manufacturing information
 (i) Country of manufacture;
 (ii) Year of manufacture;
 (iii) Manufacturer’s name or mark;
 (iv) Manufacturer’s serial number;

(c) Approval information
 (i) The United Nations packaging symbol \(\mathbb{U}n\);

This symbol must not be used for any purpose other than certifying that a packaging, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6 or 6.7;

 (ii) Approval country;
 (iii) Authorised body for the design approval;
 (iv) Design approval number;
 (v) Letters ‘AA’, if the design was approved under alternative arrangements (see 6.7.1.2);

(d) Pressures
 (i) Test pressure (in bar gauge)\(^6\);
 (ii) Initial pressure test date (month and year);
 (iii) Identification mark of the initial pressure test witness;

(e) Temperatures
 (i) Design temperature range (in °C)\(^5\);

(f) Elements / Capacity
 (i) Number of elements;
 (ii) Total water capacity (in litres)\(^6\);
Periodic inspections and tests

(i) Type of the most recent periodic test (5-year or exceptional);

(ii) Date of the most recent periodic test (month and year);

(iii) Identification mark of the authorised body who performed or witnessed the most recent test.

Figure 6.7.5.13.1: Example of identification plate marking

<table>
<thead>
<tr>
<th>Owner’s registration number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUFACTURING INFORMATION</td>
</tr>
<tr>
<td>Country of manufacture</td>
</tr>
<tr>
<td>Year of manufacture</td>
</tr>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Manufacturer’s serial number</td>
</tr>
<tr>
<td>APPROVAL INFORMATION</td>
</tr>
<tr>
<td>Approval country</td>
</tr>
<tr>
<td>Authorised body for design approval</td>
</tr>
<tr>
<td>Design approval number</td>
</tr>
<tr>
<td>‘AA’ (if applicable)</td>
</tr>
<tr>
<td>PRESSURES</td>
</tr>
<tr>
<td>Test pressure</td>
</tr>
<tr>
<td>Initial pressure test date: (mm/yyyy)</td>
</tr>
<tr>
<td>Witness stamp:</td>
</tr>
<tr>
<td>TEMPERATURES</td>
</tr>
<tr>
<td>Design temperature range:</td>
</tr>
<tr>
<td>°C to °C</td>
</tr>
<tr>
<td>ELEMENTS / CAPACITY</td>
</tr>
<tr>
<td>Number of elements</td>
</tr>
<tr>
<td>Total water capacity</td>
</tr>
<tr>
<td>litres</td>
</tr>
<tr>
<td>PERIODIC INSPECTIONS / TESTS</td>
</tr>
<tr>
<td>Test type</td>
</tr>
<tr>
<td>Test type</td>
</tr>
</tbody>
</table>

6.7.5.13.2 The following information must be durably marked on a metal plate firmly secured to the MEGC:

Name of the operator

Maximum permissible load mass ________ kg

Working pressure at 15°C ________ bar gauge

Maximum permissible gross mass (MPGM) ________ kg

Unladen (tare) mass ________ kg
CHAPTER 6.8 - REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF BULK CONTAINERS

6.8.1 DEFINITIONS

For the purposes of this section:

Closed bulk container means a totally closed bulk container having a rigid roof, sidewalls, end walls and floor (including hopper-type bottoms). The term includes bulk containers with an opening roof, side or end wall that can be closed during transport. Closed bulk containers may be equipped with openings to allow for the exchange of vapours and gases with air and which prevent under normal conditions of transport the release of solid contents as well as the penetration of rain and splash water.

Flexible bulk container means a flexible container with a capacity not exceeding 15 m3 and includes liners and attached handling devices and service equipment.

Sheeted bulk container means an open top bulk container with rigid bottom (including hopper-type bottom), side and end walls and a non-rigid covering.

6.8.2 APPLICATION AND GENERAL REQUIREMENTS

6.8.2.1 Bulk containers and their service and structural equipment must be designed and constructed to withstand, without loss of contents, the internal pressure of the contents and the stresses of normal handling and transport.

6.8.2.2 Where a discharge valve is fitted, it must be capable of being made secure in the closed position and the whole discharge system must be suitably protected from damage. Valves having lever closures must be able to be secured against unintended opening and the open or closed position must be readily apparent.

6.8.2.3 Code for designating types of bulk container

The following table indicates the codes to be used for designating types of bulk containers:

<table>
<thead>
<tr>
<th>Types of bulk containers</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheeted bulk container</td>
<td>BK1</td>
</tr>
<tr>
<td>Closed bulk container</td>
<td>BK2</td>
</tr>
<tr>
<td>Flexible bulk container</td>
<td>BK3</td>
</tr>
</tbody>
</table>

6.8.2.4 In order to take account of progress in science and technology, the use of alternative arrangements which offer at least equivalent safety as provided by the requirements of this chapter may be considered by the competent authority.
6.8.3 REQUISITES FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF FREIGHT CONTAINERS USED AS BK1 OR BK2 BULK CONTAINERS

6.8.3.1 Design and construction requirements

6.8.3.1.1 The general design and construction requirements of this section are deemed to be met if the bulk container complies with the requirements of ISO 1496-4:1991 “Series 1 Freight containers- Specification and testing - Part 4: Non pressurised containers for dry bulk” and the container is sightproof.

6.8.3.1.2 Freight containers designed and tested in accordance with ISO 1496-1:1990 “Series 1 Freight containers- Specification and testing – Part 1: General cargo containers for general purposes” must be equipped with operational equipment which is, including its connection to the freight container, designed to strengthen the end walls and to improve the longitudinal restraint as necessary to comply with the test requirements of ISO 1496-4:1991 as relevant.

6.8.3.1.3 Bulk containers must be sightproof. Where a liner is used to make the container sightproof it must be made of a suitable material. The strength of material used for, and the construction of, the liner must be appropriate to the capacity of the container and its intended use. Joins and closures of the liner must withstand pressures and impacts liable to occur under normal conditions of handling and transport. For ventilated bulk containers any liner must not impair the operation of ventilating devices.

6.8.3.1.4 The operational equipment of bulk containers designed to be emptied by tilting must be capable of withstanding the total filling mass in the tilted orientation.

6.8.3.1.5 Any movable roof or side or end wall or roof section must be fitted with locking devices with securing devices designed to show the locked state to an observer at ground level.

6.8.3.2 Service equipment

6.8.3.2.1 Filling and discharge devices must be so constructed and arranged as to be protected against the risk of being wrenched off or damaged during transport and handling. The filling and discharge devices must be capable of being secured against unintended opening. The open and closed position and direction of closure must be clearly indicated.

6.8.3.2.2 Seals of openings must be so arranged as to avoid any damage by the operation, filling and emptying of the bulk container.

6.8.3.2.3 Where ventilation is required bulk containers must be equipped with means of air exchange, either by natural convection, e.g. by openings, or active elements, e.g. fans. The ventilation must be designed to prevent negative pressures in the container at all times. Ventilating elements of bulk containers for the transport of flammable substances or substances emitting flammable gases or vapours must be designed so as not to be a source of ignition.

6.8.3.3 Inspection and testing

6.8.3.3.1 Freight containers used maintained and qualified as bulk containers in accordance with the requirements of this section must be tested and approved in accordance with the Convention for Safe Containers (CSC), 1972, as amended.

6.8.3.3.2 Freight containers used and qualified as bulk containers must be inspected periodically according to the CSC.
6.8.3.4 Marking

6.8.3.4.1 Freight containers used as bulk containers must be marked with a Safety Approval Plate in accordance with the CSC.

6.8.4 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION AND APPROVAL OF BK1 OR BK2 BULK CONTAINERS OTHER THAN FREIGHT CONTAINERS

6.8.4.1 Bulk containers covered in this section include skips, offshore bulk containers, bulk bins, swap bodies, trough shaped containers, roller containers, and load compartments of vehicles.

6.8.4.2 These bulk containers must be designed and constructed so as to be strong enough to withstand the shocks and loadings normally encountered during transport including, as applicable, transhipment between modes of transport.

6.8.4.3 Vehicles must comply with the requirements of, and be acceptable to, the competent authority responsible for land transport of the materials to be transported in bulk.

6.8.4.4 These bulk containers must be approved by the competent authority and the approval must include the code for designating types of bulk containers in accordance with 6.8.2.3 and the requirements for inspection and testing as appropriate.

6.8.4.5 Where it is necessary to use a liner in order to retain the dangerous goods it must meet the provisions of 6.8.3.1.3.

6.8.4.6 Except where 6.8.4.6.1 applies, the following statement must be shown on the transport document:

“Bulk container BK(x)^10 approved by the competent authority of ……………………….”.

6.8.4.6.1 For transport only by road or rail within Australia, if the statement required by 6.8.4.6 is clearly and prominently marked on the outside of the bulk container, it may be omitted from the transport document.

6.8.5 REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION AND TESTING OF FLEXIBLE BULK CONTAINERS BK3

6.8.5.1 Design and construction requirements

6.8.5.1.1 Flexible bulk containers must be sif-proof.

6.8.5.1.2 Flexible bulk containers must be completely closed to prevent the release of contents.

6.8.5.1.3 Flexible bulk containers must be waterproof.
6.8.5.1.4 Parts of the flexible bulk container which are in direct contact with dangerous goods:
(a) Must not be affected or significantly weakened by those dangerous goods;
(b) Must not cause a dangerous effect e.g. catalysing a reaction or reacting with the dangerous goods; and
(c) Must not allow permeation of the dangerous goods that could constitute a danger under normal conditions of transport.

6.8.5.2 Service equipment and handling devices

6.8.5.2.1 Filling and discharge devices must be so constructed as to be protected against damage during transport and handling. The filling and discharge devices must be capable of being secured against unintended opening.

6.8.5.2.2 Slings of the flexible bulk container, if fitted, must withstand pressure and dynamic forces which can appear in normal conditions of handling and transport.

6.8.5.2.3 The handling devices must be strong enough to withstand repeated use.

6.8.5.3 Inspection and testing

6.8.5.3.1 Each flexible bulk container design type must successfully pass the tests prescribed in this Chapter before being used.

6.8.5.3.2 Tests must also be repeated after each modification of design type which alters the design, material or manner of construction of a flexible bulk container.

6.8.5.3.3 Tests must be carried out on flexible bulk containers prepared as for transport. Flexible bulk containers must be filled to the maximum mass at which they may be used and the contents must be evenly distributed. The substances to be transported in the flexible bulk container may be replaced by other substances except where this would invalidate the results of the tests. When another substance is used it must have the same physical characteristics (mass, grain size, etc.) as the substance to be transported. It is permissible to use additives, such as bags of lead shot, to achieve the requisite total mass of the flexible bulk container, so long as they are placed so that the test results are not affected.

6.8.5.3.4 Flexible bulk containers must be manufactured and tested under a quality assurance programme which satisfies the competent authority, in order to ensure that each manufactured flexible bulk container meets the requirements of this Chapter.

6.8.5.3.5 Drop test

6.8.5.3.5.1 Applicability
For all types of flexible bulk containers, as a design type test.

6.8.5.3.5.2 Preparation for testing
The flexible bulk container must be filled to its maximum permissible gross mass.
6.8.5.3.5.3 The flexible bulk container must be dropped onto a target surface that is non-resilient and horizontal. The target surface must be:
(a) Integral and massive enough to be immovable;
(b) Flat with a surface kept free from local defects capable of influencing the test results;
(c) Rigid enough to be non-deformable under test conditions and not liable to become damaged by the tests; and
(d) Sufficiently large to ensure that the test flexible bulk container falls entirely upon the surface.

Following the drop, the flexible bulk container must be restored to the upright position for observation.

6.8.5.3.5.4 Drop height is:
Packing group III: 0.8 m

6.8.5.3.5.5 Criteria for passing the test:
(a) There must be no loss of contents. A slight discharge, e.g. from closures or stitch holes, upon impact is not to be considered to be a failure of the flexible bulk container provided that no further leakage occurs after the container has been restored to the upright position;
(b) There must be no damage which renders the flexible bulk container unsafe to be transported for salvage or for disposal.

6.8.5.3.6 Top lift test

6.8.5.3.6.1 Applicability
For all types of flexible bulk containers as a design type test.

6.8.5.3.6.2 Preparation for testing
Flexible bulk containers must be filled to six times the maximum net mass, the load being evenly distributed.

6.8.5.3.6.3 A flexible bulk container must be lifted in the manner for which it is designed until clear of the floor and maintained in that position for a period of five minutes.

6.8.5.3.6.4 Criteria for passing the test: there must be no damage to the flexible bulk container or its lifting devices which renders the flexible bulk container unsafe for transport or handling, and no loss of contents.

6.8.5.3.7 Topple test

6.8.5.3.7.1 Applicability
For all types of flexible bulk containers as a design type test.

6.8.5.3.7.2 Preparation for testing
The flexible bulk container must be filled to its maximum permissible gross mass.

6.8.5.3.7.3 Flexible bulk container must be toppled onto any part of its top by lifting the side furthest from the drop edge upon a target surface that is non-resilient and horizontal. The target surface must be:
(a) Integral and massive enough to be immovable;
(b) Flat with a surface kept free from local defects capable of influencing the test results;

(c) Rigid enough to be non-deformable under test conditions and not liable to become damaged by the tests; and

(d) Sufficiently large to ensure that the test flexible bulk container falls entirely upon the surface.

6.8.5.3.7.4 For all flexible bulk containers, the topple height is specified as follows:

- Packing group III: 0.8 m

6.8.5.3.7.5 Criterion for passing the test: there must be no loss of contents. A slight discharge, e.g., from closures or stitch holes, upon impact is not to be considered to be a failure of the flexible bulk container provided that no further leakage occurs.

6.8.5.3.8 Righting test

6.8.5.3.8.1 Applicability

For all types of flexible bulk containers designed to be lifted from the top or side, as a design type test.

6.8.5.3.8.2 Preparation for testing

The flexible bulk container must be filled to not less than 95% of its capacity and to its maximum permissible gross mass.

6.8.5.3.8.3 The flexible bulk container, lying on its side, must be lifted at a speed of at least 0.1 m/s to an upright position, clear of the floor, by no more than half of the lifting devices.

6.8.5.3.8.4 Criterion for passing the test: there must be no damage to the flexible bulk container or its lifting devices which renders the flexible bulk container unsafe for transport or handling.

6.8.5.3.9 Tear test

6.8.5.3.9.1 Applicability

For all types of flexible bulk containers as a design type test.

6.8.5.3.9.2 Preparation for testing

The flexible bulk container must be filled to its maximum permissible gross mass.

6.8.5.3.9.3 With the flexible bulk container placed on the ground, a 300 mm cut must be made, completely penetrating all layers of the flexible bulk container on a wall of a wide face. The cut must be made at a 45° angle to the principal axis of the flexible bulk container, halfway between the bottom surface and the top level of the contents. The flexible bulk container must then be subjected to a uniformly distributed superimposed load equivalent to twice the maximum gross mass. The load must be applied for at least fifteen minutes. A flexible bulk container which is designed to be lifted from the top or the side must, after removal of the superimposed load, be lifted clear of the floor and maintained in that position for a period of fifteen minutes.
6.8.5.3.9.4 Criterion for passing the test: the cut must not propagate more than 25% of its original length.

6.8.5.3.10 Stacking test

6.8.5.3.10.1 Applicability

For all types of flexible bulk containers as a design type test.

6.8.5.3.10.2 Preparation for testing

The flexible bulk container must be filled to its maximum permissible gross mass.

6.8.5.3.10.3 The flexible bulk container must be subjected to a force applied to its top surface that is four times the design load-carrying capacity for 24 hours.

6.8.5.3.10.4 Criterion for passing the test: there must be no loss of contents during the test or after removal of the load.

6.8.5.4 Test report

6.8.5.4.1 A test report containing at least the following particulars must be drawn up and must be available to the users of the flexible bulk container:

1. Name and address of the test facility;
2. Name and address of applicant (where appropriate);
3. Unique test report identification;
4. Date of the test report;
5. Manufacturer of the flexible bulk container;
6. Description of the flexible bulk container design type (e.g. dimensions, materials, closures, thickness, etc) and/or photograph(s);
7. Maximum capacity/maximum permissible gross mass;
8. Characteristics of test contents, e.g. particle size for solids;
9. Test descriptions and results;
10. The test report must be signed with the name and status of the signatory.

6.8.5.4.2 The test report must contain statements that the flexible bulk container prepared as for transport was tested in accordance with the appropriate provisions of this Chapter and that the use of other containment methods or components may render it invalid. A copy of the test report must be available to the competent authority.

6.8.5.5 Marking

6.8.5.5.1 Each flexible bulk container manufactured and intended for use according to this Code must bear markings that are durable, legible and placed in a location so as to be readily visible. Letters, numerals and symbols must be at least 24 mm high and must show:

(a) The United Nations packaging symbol

This symbol must not be used for any purpose other than certifying that a packaging, a flexible bulk container, a portable tank or a MEGC complies with the relevant requirements in Chapter 6.1, 6.2, 6.3, 6.5, 6.6, 6.7 or 6.8;

(b) The code BK3;
(c) A capital letter designating the packing group(s) for which the design type has been approved:
 Z for packing group III only;
(d) The month and year (last two digits) of manufacture;
(e) The character(s) identifying the country authorising the allocation of the mark; as indicated by the distinguishing sign for motor vehicles in international traffic;
(f) The name or symbol of the manufacturer and other identification of the flexible bulk container as specified by the competent authority;
(g) The stacking test load in kg;
(h) The maximum permissible gross mass in kg.

Marking must be applied in the sequence shown in (a) to (h); each element of the marking, required in these subparagraphs, must be clearly separated, e.g. by a slash or space and presented in a way that ensures that all of the parts of the mark are easily identified.

6.8.5.5.2 Example of marking

BK3/Z/11 09
RUS/NTT/MK-14-10
56000/14000".
CHAPTER 6.9 - REQUIREMENTS FOR THE DESIGN, CONSTRUCTION, INSPECTION, TESTING AND APPROVAL OF TANK VEHICLES

6.9.1 APPLICATION

The requirements of this Chapter apply to road tank vehicles and rail tank wagons intended for the transport of dangerous goods of Classes 2, 3, 4, 5, 6, 8 and 9.

6.9.2 REQUIREMENTS FOR TANK VEHICLES

6.9.2.1 Approval of tank designs

6.9.2.1.1 The design of a tank that forms part of or is used on a tank vehicle must be approved by the Competent Authority before it can be used for the transport of dangerous goods.

6.9.2.1.2 An application for design approval of a tank must demonstrate compliance with all of the applicable standards and codes that are relevant to the type of tank and vehicle, and the classes and types of dangerous goods it is intended to transport, as follows:

(a) for road tank vehicles - the relevant parts of AS 2809, as detailed in Table 6.1;
(b) for rail tank wagons - such codes or standards as are acceptable to the authority responsible for rail safety and the competent authority;
(c) for pressure vessels –AS 1210;
(d) for tanks to transport anhydrous ammonia –AS 2022.

Table 6.1 Construction standards for road tank vehicles

<table>
<thead>
<tr>
<th>Standard</th>
<th>Type of dangerous goods</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 2809 – Part 1</td>
<td>Part 1 applies to all road tank vehicles, in addition to the requirements of the applicable Part 2 – 6 according to the type of goods</td>
</tr>
<tr>
<td>AS 2809 – Part 2</td>
<td>Flammable liquids</td>
</tr>
<tr>
<td>AS 2809 – Part 3</td>
<td>Liquefied compressed gases</td>
</tr>
</tbody>
</table>
| AS 2809 – Part 4 | Toxic or corrosive liquids
The correct Type of tank (1–5)12 under this Part should be selected according to the properties of the dangerous goods to be transported |
| AS 2809 – Part 5 | Bitumen-based products |
| AS 2809 – Part 6 | Cryogenic gases & liquids |
6.9.2.1.3 The Competent Authority may also approve the design of a tank that forms part of, or is used, on a tank vehicle and that does not comply with the relevant requirements specified in 6.9.2.1.2 if –
 (a) the application for design approval of the tank demonstrates compliance with other criteria which are acceptable to the Competent Authority; and
 (b) the Competent Authority is satisfied that the use of the tank will not result in greater risk than a design that complies with the relevant requirements specified in 6.9.2.1.2.

6.9.2.2 Marking

6.9.2.2.1 Every tank vehicle must be fitted with a corrosion resistant metal plate permanently attached to the tank or its mounting in a conspicuous place readily accessible for inspection.

6.9.2.2.2 The compliance plate of a road tank vehicle must be in accordance with AS 2809 and 6.9.2.2.3.

6.9.2.2.3 A compliance plate fixed to a road tank vehicle or a rail tank wagon must include:
 (a) the name of the manufacturer of the tank;
 (b) the date on which the tank was manufactured;
 (c) the tank serial number;
 (d) the maximum allowable working pressure for the tank;
 (e) the test pressure;
 (f) the metallurgical design temperature of the tank if the temperature is above 50°C or below -20°C;
 (g) the capacity of the tank;
 (h) the maximum mass of dangerous goods that may be transported in the tank under the design approval;
 (i) the maximum gross mass of the tank;
 (j) the name of the Competent Authority who granted the approval and the approval number;
 (k) the initial hydraulic test date and subsequent test dates for the tank;
 (l) the name of the authority or organisation that witnessed the last hydraulic test; and
 (m) if the design approval is based on compliance with an Australian Standard or other standard or code, the standard or code to which the tank or vehicle has been designed.

6.9.2.2.4 The details required by 6.9.2.2.3 must be stamped, embossed, engraved or otherwise permanently marked on the compliance plate.

6.9.2.3 Inspection and maintenance

6.9.2.3.1 Road tank vehicles must be inspected and maintained in accordance with AS 2809.

6.9.2.3.2 Rail tank wagons must be inspected and maintained in accordance with the relevant design standard (see 6.9.2.1.2).

NOTE: Where the tank of a road or rail tank vehicle is also a pressure vessel, it must be maintained, tested and inspected in accordance with AS 3788 and any State or Territory law applicable to pressure vessels.
CHAPTER 6.10 - FREIGHT CONTAINERS

6.10.1 STANDARDS FOR FREIGHT CONTAINERS

A freight container used to transport dangerous goods must comply with:

(a) the standards specified in AS/NZS 3711 relating to the construction, maintenance and use of freight containers; or

(b) the standards specified by ISO for freight containers used to transport dangerous goods.

NOTE: Freight containers intended for transport by sea must comply with the International Convention for Safe Containers.
CHAPTER 6.11 - SEGREGATION DEVICES

NOTE 1: This Chapter replaces the specifications included in the document entitled ‘Specifications for Segregation Devices’ that was published separately as Supplement 3 to earlier editions of this Code.

NOTE 2: Segregation devices may only be used to facilitate the transport of incompatible goods where permitted by Section 9.2.2.

NOTE 3: Requirements for packing, using, marking and labelling of segregation devices are in Section 4.4.5.

6.11.1 TYPES OF SEGREGATION DEVICES

A segregation device may be:

(a) an Overpacking Drum Segregation Device as described in 6.11.2; or

(b) a Type I Segregation Device as detailed in 6.11.3; or

(c) a Type II Segregation Device in accordance with 6.11.4, used in accordance with an approval issued by the Competent Authority in 6.11.6; or

(d) a Non-Type I Underslung Segregation Device.

6.11.2 OVERPACKING DRUM SEGREGATION DEVICE

A removable head drum may be used as an Overpacking Drum Segregation Device provided the drum is:

(a) an approved drum for dangerous goods transport (Type Designator 1A2, 1B2 or 1H2), meeting the appropriate requirements of Chapter 6.1; and

(b) securely closed with its approved lid and closure.

6.11.3 TYPE I SEGREGATION DEVICE

6.11.3.1 A Type I Segregation Device must not exceed 450 litres in capacity. It need not be performance tested.

6.11.3.2 The device must be rigid, of substantial construction, liquid tight, with a permanently attached hinged lid and at least two suitable closing devices.

6.11.3.3 The device must be fixed to the vehicle by bolting, clamping or other suitable means and must not be lifted onto or from the vehicle when filled.

6.11.3.4 The interior of the Segregation Device must be smooth and free of any protrusion or fitting likely to cause damage to the packages within. It must allow for easy cleaning and be free of any cavities wherein spillage, dirt or contaminants might collect.

6.11.4 TYPE II SEGREGATION DEVICE

6.11.4.1 A Type II Segregation Device must be design-type approved in accordance with this sub-section. Each design type must be capable of successfully passing the design type tests specified in 6.11.5 and be approved by the Competent Authority.
6.11.4.2 General requirements

6.11.4.2.1 A Type II Segregation Device must not exceed 3000 litres in capacity.

6.11.4.2.2 A Type II Segregation Device may include a packaging, a large packaging, a tank, an Intermediate Bulk Container or a freight container provided it meets the requirements of this sub-section and is approved by the Competent Authority.

6.11.4.2.3 In approving a Type II Segregation Device, the Competent Authority may restrict the use of a particular device to certain specified dangerous goods or specified classes of dangerous goods.

6.11.4.3 Design and construction requirements

6.11.4.3.1 The segregation device must be of suitable design, construction, materials and strength for the intended service.

6.11.4.3.2 All body panels must be solid, substantial and resistant to penetration. Mesh, crate construction or similar is not acceptable but mesh reinforcing layers may be used. The body and panels must be resistant to or adequately protected from environmental deterioration.

6.11.4.3.3 The segregation device may be of fixed construction or may be designed to be folded, dismantled or collapsed for return transport.

6.11.4.3.4 The device must incorporate a base (which may also function as a lifting device) which raises the floor of the device at least 100mm above the floor of the transport vehicle at all times.

6.11.4.3.5 The segregation device must be designed for safe mechanical handling when fully loaded.

6.11.4.3.6 If intended to be stacked the device must be designed for safe stacking and be sufficiently strong to support the load imposed by similar devices to the maximum height likely to occur in transport.

6.11.4.3.7 The segregation device must be able to be restrained on or attached to the transport vehicle. Restraint components must be of sufficient strength to securely restrain the device when it is loaded to twice the approved gross load. Restraints must be of a type and so positioned that no distortion or undue stress is imposed on the device.

6.11.4.3.8 The interior of the segregation device must be smooth and free of any protrusion or fitting likely to cause damage to the packages transported within. It must allow for cleaning and be free of any cavities in which spillage, dirt or contaminants may collect.

6.11.4.3.9 Each type of segregation device must be designed, manufactured and tested under a quality assurance program in order to ensure that each meets the requirements of this Code.

6.11.5 DESIGN TYPE TESTS FOR TYPE II SEGREGATION DEVICES

6.11.5.1 The tests to which Type II Segregation Devices must be subjected are those specified for Large Packagings in Chapter 6.6, except that:

(a) the preparation for testing must be in accordance with 6.11.5.7; and

(b) irrespective of the intended contents, the drop height must be based on the requirements for packing group III.
6.11.5.2 Subject to 6.11.5.9, tests must be carried out on a segregation device design-type as it would be prepared for transport.

6.11.5.3 One Type II Segregation Device of each type, size and manner of construction must be subjected to the tests specified in order in the table below, as set out in the clauses indicated in the table.

<table>
<thead>
<tr>
<th>Test</th>
<th>Reference Clause</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom Lift</td>
<td>6.6.5.3.1</td>
<td>requireda</td>
</tr>
<tr>
<td>Top Lift</td>
<td>6.6.5.3.2</td>
<td>requireda</td>
</tr>
<tr>
<td>Stacking</td>
<td>6.6.5.3.3</td>
<td>requiredb</td>
</tr>
<tr>
<td>Drop</td>
<td>6.6.5.3.4</td>
<td>required</td>
</tr>
</tbody>
</table>

a When the device is designed for this means of lifting
b When the device is designed to be stacked.

6.11.5.4 A segregation device must be design type tested to a minimum rating of 0.75 kg per litre of available capacity. The person submitting the segregation device for approval must nominate any higher test rating required, before testing is initiated.

6.11.5.5 These tests must be repeated after each modification which significantly alters the design, material or manner of construction of the device.

6.11.5.6 The Competent Authority may at any time require proof, by tests in accordance with this section, that a Type II Segregation Device meets the requirements of the design type tests.

6.11.5.7 The design type tests must be performed:
(a) by a testing laboratory registered by the National Association of Testing Authorities (NATA) for the relevant tests and the results reported on a NATA endorsed test certificate;
(b) by a testing laboratory located overseas and recognised by the Competent Authority;
(c) where no such laboratory is available, at a suitable facility where the tests are supervised by a representative witnesses from the Competent Authority and the results are reported on a test certificate in accordance with the ADG Code.

6.11.5.8 The Competent Authority may permit the selective testing of segregation devices which differ only in minor aspects from the tested design type.

6.11.5.9 Preparation of Test Samples

6.11.5.9.1 Liner Bag
A 70-micron linear low-density polyethylene bag must be inserted into the test sample. The liner bag may be a pillow or gusseted bag of the following dimensions:

For pillow bags:
- Length = H + 1.5 \(W \)
- Width = 1.2 (L + W)

For gusseted bags:
- Length = H + 1.5W
- Width + Gusset Width = 1.2 (L + W)
Where: \(L = \) Length of Segregation Device in metres
\(W = \) Width of Segregation Device in metres
\(H = \) Height of Segregation Device in metres

6.11.5.9.2 **Filling Material**

High flow plastic granules of approximately 0.75kg/L bulk density are to be used as the bulk filling material. For lift tests it is permissible to use additives such as bags of lead shot to achieve the requisite total contained mass with the condition that they are placed so that the test results are not affected in any way.

6.11.5.9.3 **Filling**

The Segregation Device is to be filled so that the filling material occupies not less than 95% of the total volume of the test sample (see 6.11.5.4).

6.11.6 **Marking**

Each Type II Segregation Device manufactured in accordance with an approved design-type must be clearly and permanently marked on each side in lettering not less than 25mm high with the identification:

```
" AUSTRALIAN COMPETENT AUTHORITIES
APPROVED SEGREGATION DEVICE
FOR USE IN AUSTRALIA ONLY
APPROVAL XXX TARE YYY GROSS ZZZ "
```

Where:

- **XXX** is the unique number issued by the Competent Authority
- **YYY** is the Tare Mass of the segregation device
- **ZZZ** is the maximum permitted gross mass of the segregation device and contents

6.11.7 **NON-TYPE I UNDERSLUNG SEGREGATION DEVICE**

6.11.7.1 Any proposed underslung segregation device (which is not a Type I device) submitted for approval must comply with the requirements in this subsection and must be approved by the Competent Authority.

6.11.7.2 **Design and construction requirements**

6.11.7.2.1 The device must be designed to a maximum design load and be built with sufficient strength and rigidity to transport the maximum design load without failure or such distortion as would compromise any of the device’s function or features.

6.11.7.2.2 The device must be fitted with a permanently attached door and be liquid tight.

6.11.7.2.3 The device must have a door fitted with at least 2 securing devices and be capable of being locked against unauthorised access.

6.11.7.2.4 The device must be permanently attached to the vehicle to withstand a 2g force in any direction when loaded to its maximum design load.

6.11.7.2.5 The device must have a smooth interior free of any protrusion or fitting likely to damage packages within.

6.11.7.2.6 The device must be easy to clean and free from cavities where spillage or dirt or contaminants might collect.
6.11.7.2.7 The device must have a means of draining any liquid from the device which may accumulate due to leakage of any contents. When the device is in use the drainage facility must be tightly sealed.

6.11.7.2.8 The device, including supports and attachments, must have a ground clearance of at least 350mm and not project beyond the perimeter of the vehicle.

6.11.7.3 Application for approval

6.11.7.3.1 An application for the approval of a Competent Authority of a proposed underslung segregation device must be in writing and must include:

(a) a full description of the device;
(b) details of the dimensions, volumetric capacity and maximum design load (kg) of the device;
(c) signed detailed drawings of the device;
(d) details of the materials used in the device;
(e) details of the construction of the device;
(f) details of how the device is to be attached to the vehicle;
(g) any other information necessary to enable an assessment of whether the device complies with 6.11.7.2.

6.11.7.4 Approval number to be displayed

6.11.7.4.1 An approved underslung segregation device must be clearly and permanently marked, in a conspicuous position, in lettering not less than 25mm high with the following:

(a) for a device approved by a Competent Authority:

 Name of Competent Authority
 APPROVED SEGREGATION DEVICE
 FOR USE IN (State/Territory) ONLY
 APPROVAL XXX DESIGN LOAD YYY

(b) for a device approved by the Competent Authorities Panel:

 AUSTRALIAN COMPETENT AUTHORITIES
 APPROVED SEGREGATION DEVICE
 FOR USE IN AUSTRALIA ONLY
 AP REFERENCE CA20--/----
 DESIGN LOAD YYY

where:

XXX is the approval number issued by the Competent Authority
YYY is the maximum weight, in kg, that the device may carry."
Chapter 6 End Notes

1. This Code, aligning with the UN Code, no longer provides for the packing of dangerous goods in wooden barrels.
2. Relative density (d) is considered to be synonymous with Specific Gravity (SG) and is used throughout this text.
5. For calculation purposes g = 9.81 m/s².
6. The unit used must be indicated.
7. See 6.7.2.2.10
8. This formula applies only to non-refrigerated liquefied gases which have critical temperatures well above the temperature at the accumulating condition. For gases which have critical temperatures near or below the temperature at the accumulating condition, the calculation of the pressure-relief device delivery capacity must consider further thermodynamic properties of the gas (see for example CGA S-1.2-2003 “Pressure Relief Device Standards-Part 2-Cargo and Portable Tanks for Compressed Gases”).
9. See for example CGA S-1.2-2003 “Pressure Relief Device Standards-Part 2-Cargo and Portable Tanks for Compressed Gases”.
10. BK(x) refers to the type of bulk container, BK1 or BK2 (see 6.8.2.3). x should be replaced with “1” or “2” as appropriate. (Not used from UN 18).
11. Until a recognised Australian standard or national code of practice covering the design of rail tank wagons has been published, it is recommended that tank designs comply with standards applicable in North America or Europe.
12. Where a Type 2 tank is specified by AS 2809 Part 4, a Type 1 tank may also be used. Where a Type 4 tank is specified by AS 2809 Part 4, a Type 5 tank may also be used.